JP2005241314A - Spent fuel storing basket and spent fuel container - Google Patents

Spent fuel storing basket and spent fuel container Download PDF

Info

Publication number
JP2005241314A
JP2005241314A JP2004048895A JP2004048895A JP2005241314A JP 2005241314 A JP2005241314 A JP 2005241314A JP 2004048895 A JP2004048895 A JP 2004048895A JP 2004048895 A JP2004048895 A JP 2004048895A JP 2005241314 A JP2005241314 A JP 2005241314A
Authority
JP
Japan
Prior art keywords
spent fuel
row
fuel
storage basket
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048895A
Other languages
Japanese (ja)
Inventor
Tetsushi Hino
哲士 日野
Yoshihiko Ishii
佳彦 石井
Koji Fujimura
幸治 藤村
Kazuya Ishii
一弥 石井
Manabu Ueno
学 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004048895A priority Critical patent/JP2005241314A/en
Publication of JP2005241314A publication Critical patent/JP2005241314A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spent fuel storing basket capable of improving criticality prevention performance, without increasing the cask outside diameter, even in the case of a basket having grid-like compartments by a cake-box structure. <P>SOLUTION: In the basket, provided with grid-like compartments for arranging fuels therein formed, by combining grid members having respectively a cavity part inside in the longitudinal and lateral directions, grid members having respectively the narrowest cavity part are arranged in between the fuel in the outermost side row and the fuel in the next inside row, in the longitudinal and lateral directions respectively. Hereby, the number of stored fuel bodies can be increased, while keeping full criticality-preventing performance, as it is. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は原子炉の炉心から発生する使用済燃料の輸送・貯蔵容器の収納バスケットに関する。   The present invention relates to a storage basket for a transport / storage container for spent fuel generated from the core of a nuclear reactor.

原子炉炉心で一定期間使用されて使用済となった燃料は、炉心より取り出されて発電所内の使用済燃料貯蔵プールに一時保管し冷却される。所定の冷却期間が終了した燃料は、ウランおよびプルトニウム等の再利用可能な核燃料物質を回収するため、再処理工場に搬出され再処理される。近年、再処理工場建設の遅延等により、使用済燃料の一時保管量が使用済燃料貯蔵プールの貯蔵限界を超える可能性が生じてきている。そこで、再処理する工程の前に、使用済燃料を発電所内外の中間貯蔵施設に一時的に保管することが計画されている。   The spent fuel that has been used in the reactor core for a certain period of time is taken out of the core, temporarily stored in a spent fuel storage pool in the power plant, and cooled. The fuel whose predetermined cooling period has ended is transported to a reprocessing plant and reprocessed to recover reusable nuclear fuel materials such as uranium and plutonium. In recent years, due to delays in the construction of reprocessing plants, there is a possibility that the amount of temporary storage of spent fuel may exceed the storage limit of the spent fuel storage pool. Therefore, it is planned to temporarily store the spent fuel in intermediate storage facilities inside and outside the power plant before the reprocessing step.

金属キャスク貯蔵方式は、中間貯蔵方式の一つであり、コスト低減および長期にわたる安定貯蔵の観点から注目されている。金属キャスクは、使用済燃料容器(キャスク)の内部に、使用済燃料を収納するための複数の区画を備えたバスケットを配置し、これによって燃料を1体ずつ仕切った状態で収納する構造となっている。   The metal cask storage system is one of intermediate storage systems, and has attracted attention from the viewpoint of cost reduction and long-term stable storage. The metal cask has a structure in which a basket having a plurality of compartments for storing spent fuel is disposed inside a spent fuel container (cask), thereby storing the fuel in a partitioned state. ing.

使用済燃料の従来の輸送・貯蔵容器の収納バスケット例を図2に示す。図2(a)はバスケットの水平断面を示す図であり、図2(b)はバスケットの一部を斜視した図である。図2に示すバスケットでは、板状部材1aを間隔を置いて対面状に並べて格子部材1を構成し、前記格子部材を組み合わせて燃料を配置する複数の区画を構成する。具体的な構造としては、例えば特開平8−136695号公報〔特許文献1〕に示されているように、一の方向に向けて互いに平行に揃えられた第1格子部材群と前記一の方向と直角な方向に向けて互いに平行に揃えられた第2格子部材群とを、互いに交互に軸方向に積層配置することで構成される。ここで、直角方向に交差する部分にはスリットを設けて、いわゆる菓子折構造を構成する。   FIG. 2 shows an example of a storage basket for a conventional transport / storage container for spent fuel. FIG. 2A is a view showing a horizontal section of the basket, and FIG. 2B is a perspective view of a part of the basket. In the basket shown in FIG. 2, the lattice members 1 are configured by arranging plate-like members 1 a facing each other at intervals, and a plurality of compartments in which fuel is arranged by combining the lattice members. As a specific structure, for example, as disclosed in JP-A-8-136695 [Patent Document 1], the first lattice member group aligned in parallel to one direction and the one direction are described. The second lattice member group aligned in parallel with each other in the direction perpendicular to each other is alternately stacked in the axial direction. Here, slits are provided at portions intersecting at right angles to constitute a so-called confectionery folding structure.

バスケットは燃料を区画内に保持することで燃料同士の衝突による破損を防ぎ、また燃料からの放熱を容器に伝えることで燃料温度を燃料の健全性が保たれる温度以下に抑える役割を持つ。さらに、バスケットは収納した燃料が臨界に達しないようにする役割も持つ。この目的のため、バスケットの格子部材1の材料として、中性子吸収材であるホウ素を添加したステンレス鋼やアルミニウムなどが一般に用いられる。また、臨界防止性能を高めるため、図2(a)に示すように、燃料間に空隙部2を設ける場合がある。加圧水型軽水炉(PWR)の燃料は、沸騰水型軽水炉(BWR)の燃料と比較して、燃料集合体1体あたりの燃料棒本数が多く燃料集合体のサイズが大きいために反応度が高く臨界になりやすい。このため、PWRの使用済燃料用のバスケットの格子部材には上記空隙部2が設けてある。   The basket holds the fuel in the compartment to prevent damage due to collision between the fuels, and transmits heat released from the fuel to the container to keep the fuel temperature below a temperature at which the soundness of the fuel is maintained. In addition, the basket also serves to prevent the stored fuel from reaching criticality. For this purpose, as the material of the lattice member 1 of the basket, stainless steel or aluminum to which boron as a neutron absorber is added is generally used. Moreover, in order to improve the criticality prevention performance, as shown in FIG. Fuel in pressurized water reactors (PWR) is more critical than fuels in boiling water reactors (BWR) because of the high number of fuel rods per fuel assembly and large fuel assembly size It is easy to become. Therefore, the gap 2 is provided in the lattice member of the spent fuel basket of the PWR.

この空隙部の効果を以下に説明する。キャスクは、想定されるいかなる場合においても臨界とならない構造でなければならない。このため、キャスクの未臨界性を評価する場合は、キャスク内が冠水した条件を仮定する。これは、水によって中性子が減速されることで燃料の反応度が高くなり、最も臨界となりやすい条件となるためである。このとき、格子部材の空隙部も水で満たされる構造とする。こうすることにより、ある燃料で発生した中性子が、その燃料を取り囲む格子部材で吸収されずに透過し空隙部に漏れた場合、空隙部の水によって減速される。ホウ素はエネルギーの低い中性子ほど良く吸収する性質があるため、中性子が空隙部においてより減速されるほど、再び格子部材に到達した場合に格子部材で吸収される確率が高くなる。また、空隙部の水自身によって吸収される確率も高くなるため、空隙部が広いほど臨界防止性能が向上する。逆に空隙部が狭い場合は、十分に減速される前に格子部材に到達するため、格子部材で吸収されずに透過し、再び燃料に到達する確率が高くなる。また、空隙部がない場合は、格子部材を透過した中性子はそのまま隣接燃料に到達することになるため、臨界防止性能の観点からは劣ることになる。   The effect of this void will be described below. The cask must have a structure that is not critical in any conceivable case. For this reason, when evaluating the subcriticality of the cask, it is assumed that the cask is flooded. This is because neutrons are decelerated by water, so that the reactivity of the fuel becomes high and the condition becomes most critical. At this time, the gap portion of the lattice member is also filled with water. By doing so, when neutrons generated in a certain fuel are not absorbed by the lattice member surrounding the fuel and permeate and leak into the gap, they are decelerated by the water in the gap. Since boron has a property of absorbing neutrons with lower energy better, the more the neutrons are decelerated in the voids, the higher the probability that they will be absorbed by the lattice member when they reach the lattice member again. In addition, since the probability of being absorbed by the water itself in the void portion increases, the criticality prevention performance improves as the void portion becomes wider. On the other hand, when the gap is narrow, it reaches the lattice member before it is sufficiently decelerated, so that there is a high probability that it will permeate without being absorbed by the lattice member and reach the fuel again. In addition, when there is no gap, neutrons that have passed through the lattice member reach the adjacent fuel as they are, which is inferior from the viewpoint of criticality prevention performance.

PWR使用済燃料容器用バスケットの他の構造としては、例えば特許第3150676号公報〔特許文献2〕に示されたものがある。特許第3150676号公報に示されたバスケットは、図8に示すように凸部を設けた板状部材を互いに凸部同士が接合するように貼り合わせて構成される角管状の部材を格子部材として用いる。板状部材には中性子吸収材であるホウ素を添加したアルミニウムを用いる。この角管状部材には切込み部が設けてあり、図7に示すように切込み部を互いに嵌め合わせるように直角に組み合わせて菓子折構造を構成する。ここで、角管の空洞部が、中性子を減速し板状部材での中性子吸収効果を高めることで、臨界防止性能を高める役割を担っている。   Another structure of the PWR spent fuel container basket is disclosed in, for example, Japanese Patent No. 3150676 [Patent Document 2]. The basket shown in Japanese Patent No. 3150676 has a rectangular tubular member formed by bonding plate-like members provided with convex portions so that the convex portions are joined to each other as shown in FIG. Use. The plate member is made of aluminum to which boron, which is a neutron absorber, is added. This square tubular member is provided with a cut portion, and a confectionery folding structure is formed by combining the cut portions at right angles so as to fit each other as shown in FIG. Here, the hollow portion of the square tube plays a role of increasing criticality prevention performance by decelerating neutrons and enhancing the neutron absorption effect in the plate-like member.

PWR使用済燃料容器用バスケットのさらに他の構造としては、文献「放射性物質輸送のすべて第2版」(日刊工業新聞社)の140ページ図I.7 の左側に示されているNFT−14P型キャスクのようなものもある。図13にNFT−14P型キャスクのバスケット構造を示す。NFT−14P型キャスクのバスケットは、燃料を保持する角管状の燃料収納部材(チャンネル)を、軸方向に多数配置した円盤状部材(支持リング)により固定する構造となっている。燃料収納部材は、臨界防止性能を高めるために互いに間隔を空けて配置されている。NFT−14P型キャスクのバスケットは、特開平8−136695号公報や特許第3150676号公報で示されたような菓子折構造のバスケットよりも燃料配置の自由度が大きく、容器内に効率良く燃料を収納できる利点がある。すなわち、これらの従来例で示されたバスケットでは、燃料を配置する区画が格子状に限られるために、略円筒状の容器に収納した場合に容器と燃料の間に無駄なスペースが生じてしまうが、NFT−14P型キャスクのバスケットは燃料の配置が格子状に限らないために、前記無駄なスペースを生じさせることなく収納が可能となるのである。   Still another structure of the PWR spent fuel container basket is the NFT-14P type shown on the left side of Figure I.7 on page 140 of the document "All radioactive material transport, 2nd edition" (Nikkan Kogyo Shimbun). Some are like cask. FIG. 13 shows the basket structure of the NFT-14P type cask. The basket of the NFT-14P type cask has a structure in which a rectangular tubular fuel storage member (channel) that holds fuel is fixed by a disk-shaped member (support ring) arranged in the axial direction. The fuel storage members are spaced apart from each other in order to enhance criticality prevention performance. The NFT-14P type cask basket has a greater degree of freedom in fuel placement than the basket with a confectionery fold structure as disclosed in JP-A-8-136695 and Japanese Patent No. 3150676. There is an advantage that it can be stored. That is, in the baskets shown in these conventional examples, the section in which the fuel is disposed is limited to a lattice shape, and therefore, when stored in a substantially cylindrical container, a wasteful space is generated between the container and the fuel. However, since the NFT-14P type cask basket is not limited to the lattice arrangement of the fuel, it can be stored without generating the useless space.

しかしながら、燃料で発生する熱を容器に伝え、燃料温度を燃料の健全性が保たれる温度以下に保つという役割においては、特開平8−136695号公報や特許第3150676 号公報で示されたバスケットのように、燃料を区画する部分と容器に接する部分が一つの格子板により構成される構造の方が有利である。NFT−14P型キャスクのバスケットのような構造の場合は、燃料で発生する熱を容器に効率的に伝えるためには、燃料を区画する角管状の燃料収納部材と燃料収納部材を固定する円盤状部材の間に大きな隙間が生じないようにする必要がある。このために、例えば溶接などにより燃料収納部材と円盤状部材を固定する必要があり、製造コストが高くなる問題がある。   However, in the role of transferring the heat generated by the fuel to the container and keeping the fuel temperature below the temperature at which the soundness of the fuel is maintained, the baskets disclosed in Japanese Patent Application Laid-Open Nos. 8-136695 and 3150676 are disclosed. As described above, a structure in which the fuel partitioning portion and the portion in contact with the container are constituted by one grid plate is more advantageous. In the case of a structure such as an NFT-14P type cask basket, in order to efficiently transmit heat generated by the fuel to the container, a rectangular tubular fuel storage member that partitions the fuel and a disk shape that fixes the fuel storage member It is necessary to prevent a large gap from occurring between the members. For this reason, for example, it is necessary to fix a fuel storage member and a disk-shaped member by welding etc., and there exists a problem which manufacturing cost becomes high.

特開平8−136695号公報JP-A-8-136695 特許第3150676号公報Japanese Patent No. 3150676

輸送コストや貯蔵コストを低減し経済性を高めるため、金属キャスク1体当りの収納燃料体数を増加させるニーズが高まっている。収納燃料体数が増加すると、中心部に配置した燃料の温度がより高くなる傾向があるため、効率的に燃料で発生する熱を容器に伝えることが重要となる。このため、特開平8−136695号公報や特許第3150676号公報に示されるような菓子折構造のバスケットが有利となる。しかしながら、金属キャスクの外径は貯蔵施設の仕様によって制限されるため、キャスク1体当りの収納燃料体数を増加させるためには、必然的に燃料同士の距離を狭めざるを得ない。このため、菓子折構造により格子状の区画を有するバスケットの場合は、燃料間の空隙部が相対的に狭まり、燃料を未臨界に保つ性能が低下する。   In order to reduce transportation costs and storage costs and increase economic efficiency, there is an increasing need to increase the number of stored fuel bodies per metal cask. As the number of stored fuel bodies increases, the temperature of the fuel disposed at the center tends to be higher, so it is important to efficiently transfer heat generated by the fuel to the container. For this reason, a basket with a confectionery fold structure as shown in JP-A-8-136695 and Japanese Patent No. 3150676 is advantageous. However, since the outer diameter of the metal cask is limited by the specifications of the storage facility, in order to increase the number of stored fuel bodies per cask, the distance between the fuels inevitably has to be reduced. For this reason, in the case of a basket having lattice-like sections due to the confectionery folding structure, the gap between the fuels is relatively narrowed, and the performance of keeping the fuel in a subcritical state is lowered.

本発明の目的は、以上の課題をふまえ、菓子折構造により格子状の区画を有するバスケットにおいても、キャスク外径を増大することなく臨界防止性能を向上できる使用済燃料収納用のバスケットを提供することである。   An object of the present invention is to provide a spent fuel storage basket that can improve the criticality prevention performance without increasing the cask outer diameter even in a basket having a lattice-like section by a confectionery folding structure based on the above problems. That is.

前記目的を達成するために、本発明は使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、格子部材を組み合わせることによって使用済燃料を収納するための区画を設けた使用済燃料収納用バスケットにおいて、格子部材は内部に空隙部を有し、使用済燃料容器中の中心側にある第1の格子部材の空隙部と比較して、この第1の格子部材より使用済燃料容器中の外側にある第2の格子部材の空隙部を狭めたことを特徴とするものである。
また、本発明は使用済燃料収納用バスケットにおいて、2枚の板状部材を対面状に並べ、この2枚の板状部材の間に間隔を設けて格子部材の空隙部を構成することを特徴とするものである。
また、本発明は使用済燃料収納用バスケットにおいて、内部に空洞を有する角管状部材で格子部材を構成すること特徴とするものである。
また、本発明は使用済燃料収納用バスケットにおいて、第2の格子部材は使用済燃料容器の中心部から最も外側に置かれる燃料と、この燃料よりも内側に置かれた燃料との間に配置したことを特徴とするものである。
また、本発明の使用済燃料収納用バスケットは、使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、格子部材を縦横に組み合わせることによって使用済燃料を収納するための格子状の区画を設けた使用済燃料収納用バスケットにおいて、格子部材は内部に空隙部を有し、縦の列および横の列の少なくとも一方において、列の中心から近い位置にある第一の格子部材群と外側の列に近い位置にある第二の格子部材群に分けた場合、第二の格子部材群の空隙部の幅の平均値を、第一の格子部材群の空隙部の幅の平均値よりも狭めたことを特徴とする。
In order to achieve the above-mentioned object, the present invention is provided in a spent fuel container for storing or transporting spent fuel, and is provided with a compartment for storing spent fuel by combining lattice members. In the fuel storage basket, the lattice member has a void portion inside, and the spent fuel is more than the first lattice member in comparison with the void portion of the first lattice member on the center side in the spent fuel container. The void portion of the second lattice member outside the container is narrowed.
In the spent fuel storage basket, the present invention is characterized in that two plate-like members are arranged face-to-face, and a gap is formed between the two plate-like members to form a gap portion of the lattice member. It is what.
In the spent fuel storage basket, the present invention is characterized in that the lattice member is constituted by a rectangular tubular member having a cavity inside.
Further, in the spent fuel storage basket according to the present invention, the second lattice member is disposed between the fuel placed on the outermost side from the center of the spent fuel container and the fuel placed on the inner side of the fuel. It is characterized by that.
Further, the spent fuel storage basket of the present invention is provided in a spent fuel container for storing or transporting spent fuel, and is a lattice shape for storing spent fuel by combining lattice members vertically and horizontally. In the spent fuel storage basket provided with the section, the lattice member has a gap portion therein, and in at least one of the vertical row and the horizontal row, the first lattice member group that is close to the center of the row And the second lattice member group in a position close to the outer row, the average value of the width of the void portion of the second lattice member group is the average value of the width of the void portion of the first lattice member group. It is characterized by being narrower than.

また、本発明の使用済燃料収納用バスケットは、縦の列および横の列の少なくとも一方において、それぞれの列で最も幅の狭い空隙部を有する格子部材を、最も外側の列の燃料とその内側の列の燃料との間に配置したことを特徴とするものである。   Further, the spent fuel storage basket of the present invention includes a lattice member having a narrowest gap in each row in at least one of the vertical row and the horizontal row, the fuel in the outermost row and the inside thereof. It is characterized by being arranged between the fuels in the row.

また、本発明の使用済燃料収納用バスケットは、縦の列および横の列それぞれにおいて、最も幅の狭い空隙部を有する前記格子部材を、最も外側の列の燃料とその内側の列の燃料との間に配置したことを特徴とする。   In the spent fuel storage basket of the present invention, the lattice member having the narrowest gap in each of the vertical row and the horizontal row is divided into the outermost row fuel and the inner row fuel. It arrange | positions between.

また、本発明の使用済燃料収納用バスケットは、前述の構成において、好ましくは、前記空隙部の幅を、縦の列および横の列の少なくとも一方において、それぞれの列の中心に近い方に配置された格子部材のものからg1,g2,…gn-1,gn とすると、以下の関係を満たすようにする。 Further, the spent fuel storage basket of the present invention is preferably arranged in the above-described configuration, wherein the width of the gap is arranged closer to the center of each row in at least one of the vertical row and the horizontal row. When g 1 , g 2 ,..., G n−1 , g n are determined from the lattice members, the following relationship is satisfied.

1>=g2>=…>=gn-1>gn
ただし、gn は最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を示す。
g 1 > = g 2 > = ...> = g n-1 > g n
However, g n denotes an air gap width of the grid member disposed between the fuel outermost fuel and columns in the inner row.

また、本発明の使用済燃料収納用バスケットは、前述の構成において、好ましくは、最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅をg、それ以外の格子部材の空隙部幅で最も狭いものをg′とすると、縦の列および横の列それぞれにおいて以下の関係を満たすようにする。   In the spent fuel storage basket of the present invention, the gap width of the lattice member disposed between the fuel in the outermost row and the fuel in the inner row is preferably g, When g ′ is the narrowest gap width of the lattice members other than the above, the following relationship is satisfied in each of the vertical and horizontal columns.

0.4<g/g′<0.8
ところで、本発明の使用済燃料収納用バスケットにおいて格子部材とは、例えば2枚の板状部材を対面状に並べ、板状部材の間に間隔を設けて空隙部を構成したものとする、あるいは、格子部材として、内部に空洞を有する角管状部材を用いてもよい。
0.4 <g / g ′ <0.8
By the way, in the spent fuel storage basket of the present invention, the lattice member means, for example, that two plate-like members are arranged in a face-to-face manner, and a gap is formed by providing a gap between the plate-like members, or A square tubular member having a cavity inside may be used as the lattice member.

本発明の使用済燃料収納用バスケットを備えた使用済燃料用貯蔵および輸送容器によれば、十分な除熱性能と臨界防止性能を保持したまま、収納燃料体数を増加させることを実現できる。   According to the spent fuel storage and transport container provided with the spent fuel storage basket of the present invention, it is possible to increase the number of stored fuel bodies while maintaining sufficient heat removal performance and criticality prevention performance.

図1は、本発明の第1の実施形態における使用済燃料収納用バスケットの水平断面を示している。第1の実施形態におけるバスケットは、板状部材を2枚対面状に並べ、前記板状部材の間に間隔を設けて空隙部を構成する格子部材により構成され使用済燃料容器中に設けられるものである。以下では、板状部材間の距離を格子部材の空隙部幅とする。この格子部材を燃料間に縦横に配置することにより、PWR使用済燃料を24体収納する格子状の区画を構成している。ここで、図1において、縦横に並んだ燃料の縦の列を左側から第1列,第2列,…第6列と呼び、横の列を上から第1行,第2行,…第6行と呼ぶことにする。本実施形態では、第3列と第4列、および第3行と第4行の間がそれぞれ縦および横の列の中心、即ち使用済燃料容器の中心になっている。本実施形態では、第3列と第4列の燃料間および第3行と第4行の燃料間に配置する格子部材の空隙部2aの空隙部幅を同じg1 とし、また第2列と第3列,第4列と第5列,第2行と第3行、および第4行と第5行の燃料間に配置する格子部材の空隙部2bの空隙部幅を同じg2 とし、さらに第1列と第2列,第5列と第6列,第1行と第2行、および第5行と第6行の燃料間に配置する格子部材の空隙部2cの空隙部幅を同じg3 としている。空隙部幅を、列の中心に近い方に配置された格子部材のものから並べるとg1,g2,g3 となり、以下の関係を満たす。 FIG. 1 shows a horizontal cross section of a spent fuel storage basket in the first embodiment of the present invention. The basket in the first embodiment includes two plate-like members arranged in a face-to-face manner, and is configured by a lattice member that forms a gap by providing a gap between the plate-like members, and is provided in a spent fuel container. It is. Below, let the distance between plate-shaped members be the space | gap part width | variety of a lattice member. By disposing the lattice members vertically and horizontally between the fuels, a lattice-shaped section for storing 24 PWR spent fuels is formed. Here, in FIG. 1, the vertical columns of fuel arranged vertically and horizontally are called the first column, the second column,..., The sixth column from the left side, and the horizontal columns are the first row, the second row,. Let's call it 6 lines. In the present embodiment, the center of the vertical and horizontal columns, that is, the center of the spent fuel container, is between the third column and the fourth column and between the third row and the fourth row, respectively. In the present embodiment, the gap widths of the gap portions 2a of the lattice members disposed between the fuels in the third column and the fourth column and between the fuels in the third row and the fourth row are set to the same g 1 , The gap widths of the gap portions 2b of the lattice members arranged between the fuel in the third column, the fourth column and the fifth column, the second row and the third row, and the fourth row and the fifth row are the same g 2 , Further, the gap width of the gap portion 2c of the lattice member disposed between the fuel in the first column and the second column, the fifth column and the sixth column, the first row and the second row, and the fifth row and the sixth row is set. It is the same g 3. When the gap widths are arranged from those of the lattice members arranged closer to the center of the row, g 1 , g 2 , and g 3 are obtained , and the following relationship is satisfied.

1>g2>g3
次に本発明による効果を示す。図3は、キャスク外径が一定となるように、上記g1,g2,g3の関係を変えたときの実効増倍率の変化を計算した結果である。このとき、PWR燃料のウラン濃縮度は4.2wt% とし、格子部材を構成する板状部材としてホウ素を1wt%添加した厚さ15mmのステンレス板を用いた。図3から明らかなように、従来例
(g1=g2=g3)と比較して本発明によるバスケット構造(g1>g2>g3)を用いた場合は実効増倍率を小さくできる。従って、キャスク外径を大きくすることなく、臨界防止性能を向上できる。なお、図3に示す解析ではg1 =44mm,g2 =38mm,g3 =22mmとしたが、格子板厚さや格子板に添加するホウ素濃度によって最も実効増倍率を小さくできる値の組み合わせは変わり得る。しかしながら、g1>g2>g3 の関係を満たす構成にすることで最適な組み合わせを実現できることには変わりない。
g 1 > g 2 > g 3
Next, the effect by this invention is shown. FIG. 3 shows the result of calculating the change in effective multiplication factor when the relationship between g 1 , g 2 , and g 3 is changed so that the cask outer diameter is constant. At this time, the uranium enrichment of the PWR fuel was 4.2 wt%, and a 15 mm thick stainless steel plate to which 1 wt% boron was added was used as a plate member constituting the lattice member. As is apparent from FIG. 3, the effective multiplication factor can be reduced when the basket structure (g 1 > g 2 > g 3 ) according to the present invention is used as compared with the conventional example (g 1 = g 2 = g 3 ). . Therefore, the criticality prevention performance can be improved without increasing the cask outer diameter. In the analysis shown in FIG. 3, g 1 = 44 mm, g 2 = 38 mm, and g 3 = 22 mm, but the combination of values that can reduce the effective multiplication factor varies depending on the lattice plate thickness and the boron concentration added to the lattice plate. obtain. However, the configuration that satisfies the relationship of g 1 > g 2 > g 3 can still realize the optimum combination.

図4は本発明を構成するための格子部材1の例を示したものである。格子部材の空隙部幅g1,g2,g3 の大きさは、直角に他の板状部材を交差させるためのスリット5(嵌め合いスリット)の位置を変えることで任意に設定できる。 FIG. 4 shows an example of the lattice member 1 for constituting the present invention. The size of the gap widths g 1 , g 2 , and g 3 of the lattice member can be arbitrarily set by changing the position of the slit 5 (fitting slit) for intersecting another plate member at a right angle.

本発明による作用を以下に説明する。図5は列の中心に近い方から、第3行第3列目の燃料,第2行第3列目の燃料,第1行第3列目の燃料における相対中性子量を示したものである。従来例(g1=g2=g3) の場合、中性子量が列の中心に近い燃料ほど多いことが分かる。一方、本発明では列の中心に近い位置に配置する格子部材の空隙部幅を相対的に広げて空隙部における中性子減速効果を高め、より効果的に格子部材に中性子を吸収させている。ただし、キャスク外径が一定の条件では、外側の列の燃料間に配置する格子部材の空隙部幅が相対的に狭まり中性子吸収量が減少する。このため、本発明によるバスケット(g1>g2>g3)の場合は、図5に示すように外側の列の燃料(第1行第3列目の燃料) の中性子量が相対的に増加する。しかし、外側の列の燃料で発生した中性子はキャスク外部へ漏れる確率が高く、中性子連鎖反応への寄与が相対的に小さいため、実効増倍率への影響も相対的に小さい。その結果として、列の中心に近い燃料の中性子量を相対的に減少させた本発明によるバスケット(g1>g2>g3) の方が実効増倍率を小さくでき、臨界防止性能を高めることができる。 The operation of the present invention will be described below. FIG. 5 shows the relative neutron amounts in the third row, third column fuel, the second row, third column fuel, and the first row, third column fuel from the side closer to the center of the column. . In the case of the conventional example (g 1 = g 2 = g 3 ), it can be seen that the amount of neutron is closer to the center of the row. On the other hand, according to the present invention, the gap width of the lattice member disposed at a position close to the center of the row is relatively widened to enhance the neutron moderating effect in the gap portion, and neutrons are absorbed more effectively by the lattice member. However, under the condition that the cask outer diameter is constant, the gap width of the lattice member disposed between the fuels in the outer row is relatively narrowed, and the neutron absorption amount is reduced. Therefore, in the case of the basket according to the present invention (g 1 > g 2 > g 3 ), as shown in FIG. 5, the neutron amount of the fuel in the outer column (the fuel in the first row and the third column) is relatively To increase. However, neutrons generated from the fuel in the outer row have a high probability of leaking outside the cask, and the contribution to the neutron chain reaction is relatively small, so the effect on the effective multiplication factor is relatively small. As a result, the basket (g 1 > g 2 > g 3 ) according to the present invention in which the amount of neutrons in the fuel near the center of the row is relatively reduced can reduce the effective multiplication factor and improve the criticality prevention performance. Can do.

以上のように、本発明の本質は、中性子連鎖反応への寄与が相対的に小さい外側の列の燃料の中性子量を多くし、中性子連鎖反応への寄与が相対的に大きい列の中心に近い燃料の中性子量を減少させることにある。この現象が、列の中心に近い方に配置された格子部材の空隙部幅を相対的に広く、列の外側に配置された格子部材の空隙部幅を相対的に狭くすることで実現されるのは、ホウ素の、エネルギーの低い中性子ほど良く吸収するという性質のためである。すなわち、列の中心に近い位置で空隙部を広くすると、中性子の減速効果が高まり中性子エネルギーがより低くなるので、ホウ素による中性子吸収量が増えるためである。   As described above, the essence of the present invention is that the neutron amount of the fuel in the outer row that contributes relatively little to the neutron chain reaction is increased, and is close to the center of the row that contributes relatively much to the neutron chain reaction. The purpose is to reduce the neutron content of the fuel. This phenomenon is realized by relatively widening the gap width of the lattice members arranged closer to the center of the row and relatively narrowing the gap width of the lattice members arranged outside the row. This is because boron absorbs neutrons with lower energy better. That is, if the gap is widened at a position close to the center of the row, the neutron moderating effect is increased and the neutron energy is lowered, so that the amount of neutron absorption by boron increases.

図1の実施形態においては、格子部材としてホウ素を添加したステンレス板を用いたが、上記観点から考えれば、本発明の効果を得るためには格子部材としてステンレス板に限らないことは明らかである。例えば、格子部材としてホウ素を添加したアルミニウムを用いても良い。熱伝導性の良いアルミニウムを格子部材として用いることで、伝熱性を向上することができる。この場合でも、列の中心に近い方に配置された格子部材の空隙部幅を相対的に広く、列の外側に配置された格子部材の空隙部幅を相対的に狭くすることで、臨界防止性能を高めることができる。   In the embodiment of FIG. 1, a stainless steel plate added with boron is used as the lattice member. However, from the above viewpoint, it is obvious that the lattice member is not limited to the stainless steel plate in order to obtain the effects of the present invention. . For example, aluminum added with boron may be used as the lattice member. Heat conductivity can be improved by using aluminum with good thermal conductivity as a lattice member. Even in this case, criticality prevention is achieved by relatively widening the gap width of the lattice members arranged closer to the center of the row and relatively narrowing the gap width of the lattice members arranged outside the row. Performance can be increased.

また、伝熱性を向上させる観点から、熱伝導性の良いアルミニウムや銅などで構成される伝熱板を、格子部材の空隙部、または格子部材と燃料の間の少なくとも一部に配置する場合もある。このように伝熱板を配置した場合でも、図1に示す実施形態と同様に、列の中心に近い方に配置された格子部材の空隙部幅を相対的に広く、列の外側に配置された格子部材の空隙部幅を相対的に狭くすることで臨界防止性能を高めることが可能である。ここで、格子部材の空隙部に伝熱板を配置する場合は、伝熱板と格子部材の間の空隙部を格子部材の空隙部とする。また、臨界防止性能を向上させるために、伝熱板としてはホウ素を添加したアルミニウムや銅などを用いることも可能である。   In addition, from the viewpoint of improving heat transfer, a heat transfer plate made of aluminum, copper, or the like having good heat conductivity may be disposed in at least a part of the gap of the lattice member or between the lattice member and the fuel. is there. Even in the case where the heat transfer plates are arranged in this way, as in the embodiment shown in FIG. 1, the gap width of the lattice members arranged closer to the center of the row is relatively wide and arranged outside the row. The criticality prevention performance can be enhanced by relatively narrowing the gap width of the lattice member. Here, when arrange | positioning a heat exchanger plate in the space | gap part of a lattice member, let the space | gap part between a heat exchanger plate and a lattice member be the space | gap part of a lattice member. In order to improve the criticality prevention performance, aluminum or copper to which boron is added can be used as the heat transfer plate.

さらには、中性子吸収材としてはホウ素に限らず、エネルギーの低い中性子ほど良く吸収する性質を持つ物質であれば、本発明の効果を得ることも明らかである。例えば、中性子吸収材として原子炉ウラン燃料に添加されるガドリニウムは、エネルギーの低い中性子ほど良く吸収することが知られている。従って、例えばガドリニウムを添加した合金板や、ガドリニウムあるいはガドリニウム合金をステンレス鋼で挟んだ構成とする板状部材を格子部材として用いても本発明の効果を得ることができる。   Furthermore, the neutron absorbing material is not limited to boron, and it is clear that the effect of the present invention can be obtained as long as it has a property of absorbing better neutrons with lower energy. For example, it is known that gadolinium added to nuclear reactor uranium fuel as a neutron absorber absorbs neutrons with lower energy better. Therefore, for example, the effect of the present invention can be obtained even when an alloy plate to which gadolinium is added or a plate-like member in which gadolinium or a gadolinium alloy is sandwiched between stainless steels is used as the lattice member.

ところで、図1の実施形態では、格子部材の空隙部幅がキャスク軸方向およびキャスク径方向について一定である例を示したが、本発明の適用対象はこれに限らない。格子部材の空隙部幅がキャスク軸方向または径方向のどちらか、あるいは両方で一定でない場合についても、空隙部幅平均値を求め、列の外側に配置された格子部材の空隙部幅平均値を相対的に狭くすることで臨界防止性能を高めることが可能である。ここで、ある格子部材の空隙部幅平均値は例えば次のようにして計算される。   Incidentally, in the embodiment of FIG. 1, an example in which the gap width of the lattice member is constant in the cask axial direction and the cask radial direction is shown, but the application target of the present invention is not limited thereto. Even when the gap width of the lattice member is not constant in either the cask axial direction, the radial direction, or both, the average gap width value is obtained, and the average gap width value of the lattice members arranged outside the row is calculated. It is possible to improve the criticality prevention performance by making it relatively narrow. Here, the average value of the gap width of a certain lattice member is calculated as follows, for example.

Figure 2005241314
Figure 2005241314

ここで、daは空隙部に面する格子部材の微小面積を表し、g(a)は前記微小面積間での空隙部幅を表す。積分は空隙部に面する格子部材の全てにわたり実施する。   Here, da represents the minute area of the lattice member facing the gap, and g (a) represents the gap width between the minute areas. Integration is performed over all of the grid members facing the void.

本発明の他の実施形態における使用済燃料収納用バスケットを図6に示す。本実施形態におけるバスケットはg1=g2>g3 とした例である。すなわち、最も外側の列の燃料とその内側の列の燃料との間に配置した格子部材の空隙部幅のみを相対的に狭め、他の格子部材の空隙部幅を同じとしたものである。g1=g2>g3 とした場合でも、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、本発明による効果を得ることができる。図3には、図6の実施形態におけるバスケットを用いた場合の実効増倍率の変化も示している。解析条件は図1の実施形態の場合と同様に、ウラン濃縮度4.2wt% 、格子部材を構成する板状部材は板厚15mm、ボロン添加濃度1wt%のステンレス鋼で、キャスク外径を一定としている。図3から分かるように、g1=g2>g3 とした場合でも、g1 およびg2 をg3 よりも大きくすることで実効増倍率を小さくできる。 A spent fuel storage basket according to another embodiment of the present invention is shown in FIG. The basket in this embodiment is an example in which g 1 = g 2 > g 3 . That is, only the gap width of the lattice member disposed between the fuel in the outermost row and the fuel in the innermost row is relatively narrowed, and the gap widths of the other lattice members are made the same. Even when g 1 = g 2 > g 3, it is possible to increase the neutron amount of the fuel in the outer row where the neutron leakage is relatively large and to reduce the neutron amount of the fuel near the center of the row. The effect by can be acquired. FIG. 3 also shows the change in effective multiplication factor when the basket in the embodiment of FIG. 6 is used. The analysis conditions are the same as in the embodiment of FIG. 1, the uranium enrichment is 4.2 wt%, the plate member constituting the lattice member is stainless steel with a plate thickness of 15 mm and the boron addition concentration of 1 wt%, and the cask outer diameter is constant. It is said. As can be seen from FIG. 3, even when g 1 = g 2 > g 3 , the effective multiplication factor can be reduced by making g 1 and g 2 larger than g 3 .

図1および図6の実施形態においては、列の中心に近い方に配置する格子部材の空隙部幅をより広くするか(図1の実施形態)、あるいは同じとした(図6の実施形態)が、実効増倍率を小さくするためには以上の条件は必ずしも必要ではなく、少なくとも最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を他の格子部材の空隙部幅よりも小さくするだけで良い。図3に、g2>g1>g3 とした場合の実効増倍率の変化を示した。g2>g1>g3 とした場合は、g1>g2>g3 とした場合やg1=g2>g3 とした場合と比較して効果は小さくなるが、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、従来例よりも中性子実効増倍率を小さくすることができる。 In the embodiment of FIG. 1 and FIG. 6, the gap width of the lattice members arranged closer to the center of the row is made wider (the embodiment of FIG. 1) or the same (the embodiment of FIG. 6). However, in order to reduce the effective multiplication factor, the above conditions are not necessarily required. At least the gap width of the lattice member disposed between the fuel in the outermost row and the fuel in the innermost row is set to another lattice. It is only necessary to make it smaller than the gap width of the member. FIG. 3 shows the change in effective multiplication factor when g 2 > g 1 > g 3 . When g 2 > g 1 > g 3 , the effect is smaller than when g 1 > g 2 > g 3 or g 1 = g 2 > g 3 , but the neutron leakage is relative. Since the amount of neutrons in the outer row of fuels can be increased and the amount of neutrons in the fuel near the center of the row can be reduced, the neutron effective multiplication factor can be made smaller than in the conventional example.

ところで、図3に示すように、最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅g3 と、それ以外の格子部材の空隙部幅で最も狭いもの、すなわちg1とg2で小さい方をg′とすると、以下の範囲において特に実効増倍率を小さくできることが分かった。 By the way, as shown in FIG. 3, the gap width g 3 of the lattice member disposed between the fuel in the outermost row and the fuel in the inner row and the gap width of the other lattice members are the narrowest. It was found that the effective multiplication factor can be reduced particularly in the following range, where g ′ is the smaller of g 1 and g 2 .

0.4<g/g′<0.8
従って、本発明においては、好ましくは格子部材の空隙部を上記関係を満たすようなバスケット構造とする。
0.4 <g / g ′ <0.8
Therefore, in the present invention, it is preferable that the gap portion of the lattice member has a basket structure that satisfies the above relationship.

図1および図6の実施形態は、2枚の板状部材を対面状に並べ、前記板状部材の間に間隔を設けて空隙部を構成した格子部材を用いたバスケットの例であるが、特許第3150676 号公報に示されるように、内部に空洞を有する角管状部材を用いたバスケットの場合にも本発明を適用できる。角管状部材により構成されるバスケットに本発明を適用した実施形態を図9に示す。図9はバスケットの軸方向断面を示した図である。図9に示すように、角管状部材の空洞部の水平方向幅を列の中心部に近い方に配置したものからg1,g2
3 とすれば、
1>g2>g3
とすることで本発明の効果が得られる。このような空洞部を持つバスケットは、例えば、凸部の水平方向長さdおよびd′(図8に示す)が、d+d′=g1,g2およびg3 となるような板状部材の組み合わせを用意し、それぞれを貼り合わせて空洞部の水平方向幅がそれぞれg1,g2,g3 となるような角管状部材を作り、図7に示すように菓子折状に組み合わせることで実現できる。
The embodiment of FIGS. 1 and 6 is an example of a basket using a lattice member in which two plate-like members are arranged in a face-to-face manner and a gap is formed by providing a gap between the plate-like members. as shown in Patent No. 3150676 publication, in the case of a basket using the angular tubular member having a cavity therein applicability of the present invention. FIG. 9 shows an embodiment in which the present invention is applied to a basket constituted by square tubular members. FIG. 9 is a view showing an axial cross section of the basket. As shown in FIG. 9, the horizontal width of the hollow portion of the rectangular tubular member is arranged closer to the center portion of the row to g 1 , g 2 ,
If g 3
g 1 > g 2 > g 3
Thus, the effect of the present invention can be obtained. The basket having such a hollow portion is, for example, a plate-shaped member in which the horizontal lengths d and d ′ (shown in FIG. 8) of the convex portions are d + d ′ = g 1 , g 2 and g 3 . A combination is prepared, and each is bonded to create a rectangular tubular member whose horizontal widths are g 1 , g 2 , and g 3, and combined into a confectionery shape as shown in FIG. it can.

また、図6の実施形態と同様に、最も外側の列の燃料とその内側の列の燃料との間に配置した角管状部材の空洞部のみ狭めてg1=g2>g3 とした場合でも本発明の効果を得ることができる。さらに、g2>g1>g3 とした場合でも、g1>g2>g3 とした場合や
1=g2>g3 とした場合と比較して効果は小さくなるが、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、従来例(g1=g2=g3)よりも中性子実効増倍率を小さくすることができる。
Similarly to the embodiment of FIG. 6, when only the hollow portion of the rectangular tubular member disposed between the fuel in the outermost row and the fuel in the inner row is narrowed to satisfy g 1 = g 2 > g 3 However, the effect of the present invention can be obtained. Furthermore, even when g 2 > g 1 > g 3 , the effect is less than when g 1 > g 2 > g 3 or g 1 = g 2 > g 3 , but neutron leakage Since the neutron content of the fuel in the outer row with a relatively large number can be increased and the neutron content in the fuel near the center of the row can be reduced, the effective neutron increase compared to the conventional example (g 1 = g 2 = g 3 ) The magnification can be reduced.

以上で説明した実施形態は、使用済燃料を24体収納するバスケットの例であるが、これ以外の収納体数の場合にも本発明を適用できる。図10は使用済燃料を32体収納するバスケットに本発明を適用した例であり、図11は使用済燃料を37体収納するバスケットに本発明を適用した例である。使用済燃料を32体および37体収納するバスケットの場合も同様に、列の中心部に近い方に配置した格子部材の空隙部幅をより広く、列の外側に配置した格子部材の空隙部幅をより狭くし、g1>g2>g3 とすることで臨界防止性能を高めることが可能である。また、少なくとも最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を他の格子部材の空隙部幅よりも小さくし、例えばg1=g2>g3あるいはg2>g1>g3とすれば、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、本発明による効果を得ることができる。 The embodiment described above is an example of a basket that stores 24 spent fuels, but the present invention can be applied to other storage units. FIG. 10 shows an example in which the present invention is applied to a basket for storing 32 spent fuels, and FIG. 11 shows an example in which the present invention is applied to a basket for storing 37 spent fuels. Similarly, in the case of baskets storing 32 and 37 spent fuels, the gap width of the lattice member arranged closer to the center of the row is wider and the gap width of the lattice member arranged outside the row. Can be made narrower and g 1 > g 2 > g 3 to improve the criticality prevention performance. In addition, the gap width of the lattice member disposed at least between the fuel in the outermost row and the fuel in the innermost row is made smaller than the gap width of the other lattice members, for example, g 1 = g 2 > g If 3 or g 2 > g 1 > g 3 , the amount of neutrons in the outer row of fuel with relatively high neutron leakage can be increased and the amount of neutrons in the fuel near the center of the row can be reduced. The effects of the invention can be obtained.

ところで、以上で示した実施形態は全て、バスケットを4分の1回転対称な形状とした例を示した。24,32,37体の燃料を略円筒状の容器に収納する場合、容器の内径を最も小さくするためには縦横の列数が同じになるように配置する。このとき、縦横の格子部材を対称になるように、すなわち、例えば図1に示した実施形態のように、第3行と第4行の燃料間に配置する格子部材と第3列と第4列の燃料間に配置する格子部材の空隙部幅を同じにする。このようにすることで、それぞれの列間に配置する格子部材が縦横で一種類となり、バスケットを構成するための板状部材の種類数が従来例と同じになるので、バスケットの製造コストの増加を抑えることができる。しかしながら、本発明の効果を得るためには、必ずしも4分の1回転対称とする必要はない。図14に示すように、全ての格子部材の空隙部を異なる幅にしても、列の中心部に近い方に配置した格子部材の空隙部幅をより広く、列の外側に配置した格子部材の空隙部幅をより狭くすれば臨界防止性能を高めることが可能である。また、少なくとも最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を他の格子部材の空隙部幅よりも小さくすれば、本発明の効果を得ることができる。すなわち、図14に示した例において、少なくとも、g4 およびg5 をg1,g2,g3よりも狭め、かつg4′およびg5′をg1′,g2′,g3′よりも狭めることで臨界防止性能を高めることが可能である。ここでg4とg5の大小およびg4′とg5′の大小は任意である。 By the way, all the embodiment shown above showed the example which made the basket a 1/4 rotation symmetrical shape. When 24, 32, and 37 fuels are stored in a substantially cylindrical container, in order to make the inner diameter of the container the smallest, the number of rows in the vertical and horizontal directions is the same. At this time, the vertical and horizontal lattice members are symmetrical, that is, for example, as in the embodiment shown in FIG. 1, the lattice members, the third column, and the fourth row arranged between the fuels in the third row and the fourth row. The gap widths of the lattice members arranged between the fuels in the row are made the same. By doing so, the number of grid members arranged between each row becomes one type in the vertical and horizontal directions, and the number of types of plate-like members for constituting the basket becomes the same as the conventional example, which increases the manufacturing cost of the basket. Can be suppressed. However, in order to obtain the effect of the present invention, it is not always necessary to have a 1/4 rotation symmetry. As shown in FIG. 14, even if the gap portions of all the lattice members have different widths, the gap portion width of the lattice members arranged closer to the center of the row is wider, and the lattice members arranged outside the row If the gap width is narrower, the criticality prevention performance can be improved. Further, the effect of the present invention can be obtained if the gap width of the lattice member disposed at least between the fuel in the outermost row and the fuel in the inner row is made smaller than the gap width of the other lattice members. Can do. That is, in the example shown in FIG. 14, at least g 4 and g 5 are narrower than g 1 , g 2 and g 3 , and g 4 ′ and g 5 ′ are g 1 ′, g 2 ′ and g 3 ′. It is possible to increase the criticality prevention performance by narrowing it. Here, the magnitudes of g 4 and g 5 and the magnitudes of g 4 ′ and g 5 ′ are arbitrary.

また、例えば燃料体数が26体の場合のように、容器の内径を最も小さくするために、縦横の列数が異なる配置となる場合にも本発明を適用できる。図12に収納体数が26体の場合に本発明を適用した例を示す。収納体数が26体の場合は、縦横の最大列数が5列と6列になるように配置するのが良い。図12では、縦に5列、横に6列配置した例を示している。ここで、図12において、縦横に並んだ燃料の縦の列を左側から第1列,第2列,…第6列と呼び、横の列を上から第1行,第2行,…第5行と呼ぶことにする。このとき、第1行第2列および第5列,第2行第1列および第6列,第4行第1列および第6列,第5行第2列および第5列の8体の燃料が容器の内径に接するように格子部材を配置すると、同じ容器内径の条件で格子部材の間隙部を平均的に大きくし、臨界防止性能を高めることができる。この場合、必然的に列数の少ない縦方向の空隙部幅が平均的に大きくなるが、縦横それぞれにおいて、列の中心部に近い方に配置した格子部材の空隙部幅をより広く、列の外側に配置した格子部材の空隙部幅をより狭くし、g1>g2かつG1>G2>G3 とすれば本発明の効果を得ることができる。また、縦横それぞれにおいて、少なくとも最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を他の格子部材の空隙部幅よりも小さくし、例えばg1>g2かつG1=G2>G3、あるいはg1>g2かつG2>G1>G3とすれば、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、本発明による効果を得ることができる。このようにした場合でも、バスケットを構成するための板状部材の種類数が従来例(g1=g2 かつG1=G2=G3)と同じになるため、バスケットの製造コストの増加を抑えることができる。なお、図14で示した例と同様に、臨界防止性能を高める観点からは、全ての空隙部の幅が異なっていても、少なくとも最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を他の格子部材の空隙部幅よりも小さくすれば良い。 Further, the present invention can be applied to a case where the number of rows and columns is different in order to minimize the inner diameter of the container, for example, when the number of fuel bodies is 26. FIG. 12 shows an example in which the present invention is applied when the number of housings is 26. When the number of housings is 26, it is preferable that the maximum number of columns in the vertical and horizontal directions is 5 and 6. FIG. 12 shows an example in which 5 columns are arranged vertically and 6 columns are arranged horizontally. Here, in FIG. 12, the vertical columns of fuel arranged vertically and horizontally are called the first column, the second column,..., The sixth column from the left side, and the horizontal columns are the first row, the second row,. Let's call it 5 lines. At this time, eight bodies of the first row, the second column and the fifth column, the second row, the first column and the sixth column, the fourth row, the first column and the sixth column, the fifth row, the second column, and the fifth column. If the lattice member is arranged so that the fuel is in contact with the inner diameter of the container, the gap portion of the lattice member can be increased on average under the condition of the same container inner diameter, and the criticality prevention performance can be enhanced. In this case, the gap width in the vertical direction with a small number of rows inevitably increases on average, but in each of the vertical and horizontal directions, the gap portion width of the lattice member arranged closer to the center of the row is wider, The effect of the present invention can be obtained if the gap width of the lattice member disposed outside is made narrower and g 1 > g 2 and G 1 > G 2 > G 3 . Further, in each of the vertical and horizontal directions, the gap width of the lattice member disposed at least between the fuel in the outermost row and the fuel in the inner row is made smaller than the gap width of the other lattice members, for example, g 1 > If g 2 and G 1 = G 2 > G 3 , or g 1 > g 2 and G 2 > G 1 > G 3 , then the amount of neutrons in the outer row of fuel with relatively high neutron leakage is increased, Since the amount of fuel neutrons close to the center of the row can be reduced, the effect of the present invention can be obtained. Even in this case, since the number of types of plate members for constituting the basket is the same as that of the conventional example (g 1 = g 2 and G 1 = G 2 = G 3 ), the manufacturing cost of the basket is increased. Can be suppressed. Similarly to the example shown in FIG. 14, from the viewpoint of enhancing the criticality prevention performance, at least between the fuel in the outermost row and the fuel in the inner row, even if all the gaps have different widths. What is necessary is just to make the space | gap part width | variety of the lattice member arrange | positioned to be smaller than the space | gap part width of another lattice member.

ところで、本発明による効果は、図5に示すように、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことにより得られるので、実施形態は以上に述べたものに限らない。図15に示した実施形態では、縦の列間に配置する格子部材については、列の中心に近い方に配置する格子部材ほど空隙部幅を広くし、横の列間に配置する格子部材については空隙部幅が一定である。このような構成でも、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、臨界防止性能を高めることができる。また、図16に示した実施形態では、縦の列間に配置する格子部材については、列の中心に配置する格子部材の空隙部幅のみを他よりも広くし、横の列間に配置する格子部材については空隙部幅が一定である。このように、列の中心から近い位置にある第一の格子部材群と外側の列に近い位置にある第二の格子部材群に分けた場合、第二の格子部材群の空隙部の幅の平均値を、第一の格子部材群の空隙部の幅の平均値よりも狭めることによっても、中性子漏れが相対的に多い外側の列の燃料の中性子量を多くし、列の中心に近い燃料の中性子量を減らすことができるので、臨界防止性能を高めることができる。   By the way, the effect of the present invention can be obtained by increasing the neutron amount of the fuel in the outer row where the neutron leakage is relatively large and reducing the neutron amount of the fuel near the center of the row as shown in FIG. The embodiments are not limited to those described above. In the embodiment shown in FIG. 15, with respect to the lattice members disposed between the vertical rows, the lattice members disposed closer to the center of the row have a larger gap width and the lattice members disposed between the horizontal rows. Has a constant gap width. Even in such a configuration, the neutron amount of the fuel in the outer row where the neutron leakage is relatively large can be increased and the neutron amount of the fuel close to the center of the row can be reduced, so that the criticality prevention performance can be improved. Further, in the embodiment shown in FIG. 16, with respect to the lattice members arranged between the vertical rows, only the gap width of the lattice members arranged at the center of the rows is made wider than the others, and arranged between the horizontal rows. The gap width is constant for the lattice member. Thus, when divided into the first lattice member group located near the center of the row and the second lattice member group located near the outer row, the width of the gap portion of the second lattice member group By making the average value narrower than the average value of the width of the gap portion of the first lattice member group, the amount of neutrons in the outer row of fuel with relatively high neutron leakage is increased, and the fuel near the center of the row is increased. Since the amount of neutrons can be reduced, the criticality prevention performance can be enhanced.

本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 従来型バスケット構造を示す図である。It is a figure which shows the conventional basket structure. 本発明による効果を示す図である。It is a figure which shows the effect by this invention. 本発明を構成する板状部材の例を示す図である。It is a figure which shows the example of the plate-shaped member which comprises this invention. 異なる燃料位置における相対中性子量を示す図である。It is a figure which shows the relative neutron amount in a different fuel position. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 角管状のバスケット構成部材を示す図である。It is a figure which shows a square tubular basket structural member. 角管状のバスケット構成部材を示す図である。It is a figure which shows a square tubular basket structural member. 本発明によるバスケット構造を示す図であるFIG. 3 shows a basket structure according to the present invention. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 従来型バスケット構造を示す図である。It is a figure which shows the conventional basket structure. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention. 本発明によるバスケット構造を示す図である。It is a figure which shows the basket structure by this invention.

符号の説明Explanation of symbols

1…格子部材、1a…板状部材、2,2a,2b,2c…空隙部、3…燃料、4…格納容器、5…嵌め合いスリット、6…空洞部。   DESCRIPTION OF SYMBOLS 1 ... Lattice member, 1a ... Plate-shaped member, 2, 2a, 2b, 2c ... Cavity part, 3 ... Fuel, 4 ... Containment container, 5 ... Fit slit, 6 ... Cavity part.

Claims (13)

使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、
格子部材を組み合わせることによって使用済燃料を収納するための区画を設けた使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空隙部を有し、
前記使用済燃料容器中の中心側にある第1の格子部材の空隙部と比較して、該第1の格子部材より前記使用済燃料容器中の外側にある第2の格子部材の空隙部を狭めたことを特徴とする使用済燃料収納用バスケット。
Provided in a spent fuel container for storing or transporting spent fuel;
In a spent fuel storage basket provided with a compartment for storing spent fuel by combining lattice members,
The lattice member has a gap inside,
Compared to the gap of the first grid member on the center side in the spent fuel container, the gap of the second grid member located outside the spent fuel container from the first grid member. A spent fuel storage basket that is narrowed.
請求項1の使用済燃料収納用バスケットにおいて、
前記格子部材は2枚の板状部材を対面状に並べ、前記2枚の板状部材の間に間隔を設けて前記空隙部を構成することを特徴とする使用済燃料収納用バスケット。
The spent fuel storage basket according to claim 1,
2. The spent fuel storage basket according to claim 1, wherein the lattice member includes two plate-like members arranged in a face-to-face manner, and the gap is formed by providing an interval between the two plate-like members.
請求項1の使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空洞を有する角管状部材であることを特徴とする使用済燃料収納用バスケット。
The spent fuel storage basket according to claim 1,
The spent fuel storage basket, wherein the lattice member is a rectangular tubular member having a cavity inside.
請求項1から請求項3のうちの一つの使用済燃料収納用バスケットにおいて、
前記第2の格子部材は前記使用済燃料容器の中心部から最も外側に置かれた燃料と、該燃料よりも内側に置かれた燃料との間に配置したことを特徴とする使用済燃料収納用バスケット。
The spent fuel storage basket according to any one of claims 1 to 3,
The second grid member is disposed between the fuel placed on the outermost side from the center of the spent fuel container and the fuel placed on the inner side of the fuel. For baskets.
請求項1から請求項4のうちの一つの使用済燃料収納用バスケットにおいて、
前記使用済燃料容器の中心部に近い方に配置された格子部材のものからg1,g2,…
n-1,gnとすると、以下の関係を満たすことを特徴とする使用済燃料収納用バスケット。
1>=g2>=…>=gn-1>gn
ただし、gn は前記使用済燃料容器の中心部から最も外側の燃料とその内側の燃料との間に配置する格子部材の空隙部幅を示す。
The spent fuel storage basket according to any one of claims 1 to 4,
From the lattice members disposed closer to the center of the spent fuel container, g 1 , g 2 ,.
A spent fuel storage basket satisfying the following relationship when g n-1 and g n are satisfied.
g 1 > = g 2 > = ...> = g n-1 > g n
However, g n denotes an air gap width of the grid members disposed between the outermost fuel and fuel inside from the center of the spent fuel container.
使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、格子部材を縦横に組み合わせることによって使用済燃料を収納するための格子状の区画を設けた使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空隙部を有し、縦の列および横の列の少なくとも一方において、列の中心から近い位置にある第一の格子部材群と外側の列に近い位置にある第二の格子部材群に分けた場合、第二の格子部材群の空隙部の幅の平均値を、第一の格子部材群の空隙部の幅の平均値よりも狭めたことを特徴とする使用済燃料収納用バスケット。
In a spent fuel storage basket provided in a spent fuel container for storing or transporting spent fuel and provided with a grid-like section for storing spent fuel by combining grid members vertically and horizontally,
The lattice member has a gap inside, and in at least one of the vertical row and the horizontal row, the first lattice member group located near the center of the row and the second row located near the outer row. Spent fuel characterized in that, when divided into lattice member groups, the average value of the width of the gap portion of the second lattice member group is narrower than the average value of the width of the gap portion of the first lattice member group Storage basket.
使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、格子部材を縦横に組み合わせることによって使用済燃料を収納するための格子状の区画を設けた使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空隙部を有し、縦の列および横の列の少なくとも一方において、それぞれの列で最も幅の狭い空隙部を有する前記格子部材を、最も外側の列の燃料とその内側の列の燃料との間に配置したことを特徴とする使用済燃料収納用バスケット。
In a spent fuel storage basket provided in a spent fuel container for storing or transporting spent fuel and provided with a grid-like section for storing spent fuel by combining grid members vertically and horizontally,
The lattice member has a gap inside, and in at least one of the vertical row and the horizontal row, the lattice member having the narrowest gap in each row is arranged with the fuel in the outermost row and the inside thereof. A spent fuel storage basket, which is disposed between the fuel in a row of the fuel.
使用済燃料を貯蔵または輸送するための使用済燃料容器内に設けられ、格子部材を縦横に組み合わせることによって使用済燃料を収納するための格子状の区画を設けた使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空隙部を有し、縦の列および横の列それぞれにおいて、最も幅の狭い空隙部を有する前記格子部材を、最も外側の列の燃料とその内側の列の燃料との間に配置したことを特徴とする使用済燃料収納用バスケット。
In a spent fuel storage basket provided in a spent fuel container for storing or transporting spent fuel and provided with a grid-like section for storing spent fuel by combining grid members vertically and horizontally,
The lattice member has a gap inside, and in each of the vertical row and the horizontal row, the lattice member having the narrowest gap portion is divided into an outermost row fuel and an inner row fuel. A spent fuel storage basket, which is arranged in between.
請求項7から8のいずれかに記載の使用済燃料収納用バスケットにおいて、
前記空隙部の幅を、縦の列および横の列の少なくとも一方において、列の中心に近い方に配置された格子部材のものからg1,g2,…gn-1,gnとすると、以下の関係を満たすことを特徴とする使用済燃料収納用バスケット。
1>=g2>=…>=gn-1>gn
ただし、gn は最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅を示す。
The spent fuel storage basket according to any one of claims 7 to 8,
The width of the gap portion, at least one of the vertical columns and horizontal rows, g 1, g 2 from those of the grid member disposed closer to the center of the column, ... When g n-1, g n A spent fuel storage basket satisfying the following relationship:
g 1 > = g 2 > = ...> = g n-1 > g n
However, g n denotes an air gap width of the grid member disposed between the fuel outermost fuel and columns in the inner row.
請求項7から9のいずれかに記載の使用済燃料収納用バスケットにおいて、
最も外側の列の燃料とその内側の列の燃料との間に配置する格子部材の空隙部幅をg、それ以外の格子部材の空隙部幅で最も狭いものをg′とすると、縦の列および横の列の少なくとも一方において、以下の関係を満たすことを特徴とする使用済燃料収納用バスケット。
0.4<g/g′<0.8
The spent fuel storage basket according to any one of claims 7 to 9,
When the gap width of the lattice member disposed between the fuel in the outermost row and the fuel in the innermost row is g, and g ′ is the narrowest gap width of the other lattice members, the vertical row And a spent fuel storage basket characterized by satisfying the following relationship in at least one of the horizontal rows.
0.4 <g / g ′ <0.8
請求項6から10のいずれかに記載の使用済燃料収納用バスケットにおいて、
前記格子部材は2枚の板状部材を対面状に並べ、前記2枚の板状部材の間に間隔を設けて前記空隙部を構成することを特徴とする使用済燃料収納用バスケット。
The spent fuel storage basket according to any one of claims 6 to 10,
2. The spent fuel storage basket according to claim 1, wherein the lattice member includes two plate-like members arranged in a face-to-face manner, and the gap is formed by providing an interval between the two plate-like members.
請求項6から11のいずれかに記載の使用済燃料収納用バスケットにおいて、
前記格子部材は内部に空洞を有する角管状部材であることを特徴とする使用済燃料収納用バスケット。
The spent fuel storage basket according to any one of claims 6 to 11,
The spent fuel storage basket, wherein the lattice member is a rectangular tubular member having a cavity inside.
請求項6から12のいずれかに記載の使用済燃料収納用バスケットを設置したことを特徴とする使用済燃料容器。
A spent fuel container comprising the spent fuel storage basket according to any one of claims 6 to 12.
JP2004048895A 2004-02-25 2004-02-25 Spent fuel storing basket and spent fuel container Pending JP2005241314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048895A JP2005241314A (en) 2004-02-25 2004-02-25 Spent fuel storing basket and spent fuel container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048895A JP2005241314A (en) 2004-02-25 2004-02-25 Spent fuel storing basket and spent fuel container

Publications (1)

Publication Number Publication Date
JP2005241314A true JP2005241314A (en) 2005-09-08

Family

ID=35023209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048895A Pending JP2005241314A (en) 2004-02-25 2004-02-25 Spent fuel storing basket and spent fuel container

Country Status (1)

Country Link
JP (1) JP2005241314A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212385A (en) * 2006-02-13 2007-08-23 Toshiba Corp Basket for spent nuclear fuel storage cask
WO2007132863A1 (en) * 2006-05-15 2007-11-22 Mitsubishi Heavy Industries, Ltd. Basket for containing recycled fuel assembly and container for containing recycled fuel assembly
JP2011117774A (en) * 2009-12-01 2011-06-16 Kobe Steel Ltd Basket of spent fuel transportation and storage cask
WO2014010386A1 (en) * 2012-07-11 2014-01-16 株式会社 日立製作所 Basket and cask
JP2017072471A (en) * 2015-10-07 2017-04-13 株式会社神戸製鋼所 Basket and radioactive material transportation storage container

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212385A (en) * 2006-02-13 2007-08-23 Toshiba Corp Basket for spent nuclear fuel storage cask
WO2007132863A1 (en) * 2006-05-15 2007-11-22 Mitsubishi Heavy Industries, Ltd. Basket for containing recycled fuel assembly and container for containing recycled fuel assembly
JPWO2007132863A1 (en) * 2006-05-15 2009-09-24 三菱重工業株式会社 Recycled fuel assembly storage basket and recycled fuel assembly storage container
JP4865789B2 (en) * 2006-05-15 2012-02-01 三菱重工業株式会社 Recycled fuel assembly storage basket and recycled fuel assembly storage container
JP2011117774A (en) * 2009-12-01 2011-06-16 Kobe Steel Ltd Basket of spent fuel transportation and storage cask
WO2014010386A1 (en) * 2012-07-11 2014-01-16 株式会社 日立製作所 Basket and cask
JP2014016323A (en) * 2012-07-11 2014-01-30 Hitachi-Ge Nuclear Energy Ltd Basket and cask
JP2017072471A (en) * 2015-10-07 2017-04-13 株式会社神戸製鋼所 Basket and radioactive material transportation storage container

Similar Documents

Publication Publication Date Title
US20180025796A1 (en) Apparatus for supporting radioactive fuel assemblies and methods of manufacturing the same
US10438710B2 (en) Systems and methods for dry storage and/or transport of consolidated nuclear spent fuel rods
EP2112665B1 (en) Spent fuel storage rack
JP4865789B2 (en) Recycled fuel assembly storage basket and recycled fuel assembly storage container
WO2013096966A1 (en) Storage system for nuclear fuel
JP2006349469A (en) Used fuel storage basket, and used fuel storage container
KR100315869B1 (en) Nuclear Fuel Assembly Rack
JP2023517308A (en) High temperature hydride moderators to enable compact and higher power density cores in microreactors
JP5894877B2 (en) Baskets and casks
US6327321B1 (en) Borated aluminum rodlets for use in spent nuclear fuel assemblies
JP2019158398A (en) Spent fuel storage container
JP2005241314A (en) Spent fuel storing basket and spent fuel container
JP2010014681A (en) Spent fuel storage rack and manufacturing method therefor
JP2019158399A (en) Spent fuel storage container
JP5150083B2 (en) Basket, design method and manufacturing method thereof, and basket design program
JP4180776B2 (en) Fuel assembly storage device
JP4704695B2 (en) Basket and spent fuel cask for PWR using the same
JPH08136695A (en) Container basket for transportation/storage cask for spent nuclear fuel
JP4488580B2 (en) Recycled fuel transport storage container basket
JP6933593B2 (en) Support structure of spent nuclear fuel, manufacturing method of support structure and spent nuclear fuel container
JP2007033242A (en) Spent fuel storage container
JP7195214B2 (en) Spent fuel container
JP2007010434A (en) Irradiated fuel storage rack
KR20140082104A (en) Cask for storaging nuclear fuel rod
JP5597523B2 (en) Fuel assembly storage method and fuel assembly storage body