JP4856886B2 - Ground fault section orientation system - Google Patents

Ground fault section orientation system Download PDF

Info

Publication number
JP4856886B2
JP4856886B2 JP2005073376A JP2005073376A JP4856886B2 JP 4856886 B2 JP4856886 B2 JP 4856886B2 JP 2005073376 A JP2005073376 A JP 2005073376A JP 2005073376 A JP2005073376 A JP 2005073376A JP 4856886 B2 JP4856886 B2 JP 4856886B2
Authority
JP
Japan
Prior art keywords
ground fault
phase
section
zero
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005073376A
Other languages
Japanese (ja)
Other versions
JP2006258485A (en
Inventor
一夫 中田
剛 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2005073376A priority Critical patent/JP4856886B2/en
Publication of JP2006258485A publication Critical patent/JP2006258485A/en
Application granted granted Critical
Publication of JP4856886B2 publication Critical patent/JP4856886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

配電自動化システムの開閉器に内蔵された零相電流計を用いて、配電線のどの区間に地絡が発生したかを検出する地絡区間標定システムに関するものである。   The present invention relates to a ground fault section locating system that detects in which section of a distribution line a ground fault has occurred using a zero-phase ammeter built in a switch of a distribution automation system.

配電用変電所の変圧器には、通常、複数の配電線が接続されており地絡が発生した場合、各配電線から一様に地絡点に向かって零相電流が流れ (図2参照)、各配電線の開閉器には、地絡点の向きと反対の向きにある区間の対地静電容量を合計した値に相当する零相電流が流れる。
例えば、配電線1の第1自動開閉器と第2自動開閉器の間の区間に地絡点が存在する図2の例では、配電線2の第2自動開閉器には、
地絡点の地絡電流×(C2-2+C2-3+C2-4)/ΣCn-k
の零相電流が流れる。
当該地絡時の零相電流の値Iを数式に表すと下記数式(1)の通り概算できる。
A transformer in a distribution substation is usually connected to multiple distribution lines, and when a ground fault occurs, a zero-phase current flows uniformly from each distribution line toward the ground fault point (see Figure 2). ), A zero-phase current corresponding to the sum of the ground capacitances of the sections in the direction opposite to the direction of the ground fault point flows through the switch of each distribution line.
For example, in the example of FIG. 2 where a ground fault exists in the section between the first automatic switch and the second automatic switch of the distribution line 1, the second automatic switch of the distribution line 2 includes
Ground fault current at ground fault point x (C 2-2 + C 2-3 + C 2-4 ) / ΣC nk
Zero-phase current flows.
When the value I of the zero-phase current at the time of the ground fault is expressed by a mathematical formula, it can be estimated as the following mathematical formula (1).

Figure 0004856886
Figure 0004856886

従来、配電線における各区間の対地静電容量が相互に略等しい場合では、地絡区間の負荷側の開閉器を流れる地絡電流値と、電源側の開閉器を流れる地絡電流値との差が最も大きくなるという現象を利用して、自動開閉器の柱に設置した地絡電流測定機能を有する子局が測定した地絡電流データを通信手段を介して親局に伝送し、各子局の地絡電流データを親局にて分析することによって、隣り合う自動開閉器の地絡電流差が最大となる監視区間を地絡区間と標定していた(例えば、特許文献1参照)。   Conventionally, when the ground capacitance of each section of the distribution line is substantially equal to each other, the ground fault current value flowing through the load-side switch in the ground fault section and the ground fault current value flowing through the power-side switch By utilizing the phenomenon that the difference becomes the largest, the earth fault current data measured by the slave station having the earth fault current measuring function installed on the pillar of the automatic switch is transmitted to the master station via the communication means, and each slave By analyzing the ground fault current data of the station at the master station, the monitoring section where the ground fault current difference between the adjacent automatic switches is maximized is determined as the ground fault section (see, for example, Patent Document 1).

ところが、上記従来の手段は、地絡電流の流れる方向を考慮せず、当該方向とは無関係に電流量のみを情報として表芸を行っていた為に、隣接する自動開閉器の地絡電流の差が最大となる組み合わせの区間を地絡点と標定したとしても、例えば、地絡区間の負荷側の区間に長いケーブル区間が存在する等によって平素より対地静電容量が大きい傾向を持つ配電線である場合等、自動開閉器に対して地絡点の負荷側についても電源側と同程度の大きな地絡電流が流れる環境にある区間が存在する配電線などにあっては、地絡区間の標定が困難を極めることとなる場合もある。   However, the above-mentioned conventional means does not consider the direction in which the ground fault current flows, and performs the display using only the current amount as information regardless of the direction, so that the ground fault current of the adjacent automatic switch is Even if the section of the combination with the largest difference is determined as the ground fault point, for example, the distribution line tends to have a larger ground capacitance than normal due to the presence of a long cable section in the load side section of the ground fault section, etc. In the case of distribution lines, etc., where there is a section in the environment where a large ground fault current on the load side of the ground fault point with respect to the automatic switch is the same as that on the power supply side, The orientation may be extremely difficult.

そこで、配電線に複数個設けた自動開閉器と対となる子局と伝送路を介して通信する親局を有する配電線システムであって、複数の子局から収集した各配電線における地絡時の零相電流の大きさおよび前記零相電流と電源電圧の位相差より事故区間を判定する演算装置を前記親局に備えた配電線システムが案出されることとなった。例えば、特許文献2に開示の技術は、複数の子局から得た地絡時の零相電流の位相差を比較して当該位相差が大きく変化している区間で事故が発生していると判定するシステムがそれである。   Therefore, a distribution line system having a master station that communicates via a transmission line with a slave station that is paired with a plurality of automatic switches provided on the distribution line, and a ground fault in each distribution line collected from the plurality of slave stations. A distribution line system is devised in which the master station has an arithmetic unit for determining an accident section from the magnitude of the zero-phase current and the phase difference between the zero-phase current and the power supply voltage. For example, the technique disclosed in Patent Document 2 compares the phase difference of the zero-phase current at the time of the ground fault obtained from a plurality of slave stations, and an accident has occurred in a section where the phase difference has greatly changed. That is the system that judges.

特開平7−298486号公報Japanese Unexamined Patent Publication No. 7-298486 特開平5−80109号公報JP-A-5-80109

しかしながら、前記の通り地絡時の零相電流は対地静電容量に大きく影響を受けるものであるから、単に各配電線における零相電流と電圧の位相差が限局的に大きく変化する区間と言うだけでは複数の地絡区間が導かれる例が避けられない。また、この様に単に地絡時の零相電流の位相差を比較するのみのシステムでは、後述する、地絡電流を抑制するために配電線に一線地絡電流補償リアクトル(以下、リアクトルと記す。)を分散して配置している場合には、地絡が発生していない配電線の区間を地絡区間との誤判定が発生すると言う問題もある。   However, as described above, the zero-phase current at the time of the ground fault is greatly affected by the capacitance to the ground. Therefore, it is simply an interval in which the phase difference between the zero-phase current and the voltage in each distribution line greatly changes locally. Inevitably, an example in which a plurality of ground fault sections are derived cannot be avoided. Further, in such a system that simply compares the phase difference of the zero-phase current at the time of the ground fault, a single-line ground fault current compensating reactor (hereinafter referred to as a reactor) is applied to the distribution line in order to suppress the ground fault current, which will be described later. .) Is distributed, there is also a problem that erroneous determination of a section of a distribution line in which a ground fault has not occurred as a ground fault section occurs.

前記リアクトルは、地絡発生時に、地絡電流と逆位相の電流を配電線に流し込み、地絡電流を抑制する働きをする。各配電線に設置される前記リアクトルの容量は、変電所での地絡リレーが正常に動作するために、各配電線の対地静電容量による地絡電流以上の電流を流し込まない容量に制限している。しかし、配電線の各区間ごとには、リアクトルを設置するスペースが無い等の理由により、配電線の一つの区間の対地静電容量より大きなリアクトルを設置する場合がある。前記の場合の例を図5に示す。この場合には、他の配電線で地絡が発生しているにもかかわらず、リアクトルを設置した配電線で地絡時の零相電流の位相が大きく変化する区間が発生し、地絡区間と誤判定することになる。   The reactor functions to suppress a ground fault current by flowing a current having an opposite phase to the ground fault current into the distribution line when a ground fault occurs. The capacity of the reactor installed in each distribution line is limited to a capacity that does not allow a current greater than the ground fault current due to the ground capacitance of each distribution line to operate normally in a ground fault relay at the substation. ing. However, for each section of the distribution line, there may be a case where a reactor larger than the ground capacitance of one section of the distribution line is installed because there is no space for installing the reactor. An example of the above case is shown in FIG. In this case, there is a section in which the phase of the zero-phase current at the time of ground fault changes greatly in the distribution line with the reactor installed even though the ground fault has occurred in other distribution lines. It will be erroneously determined.

本発明は、以上の如く対地静電容量やリアクトルの設置の有無に大きく影響を受ける地絡現象の実情に鑑み、配電線が置かれた種々の環境に応じて適切な地絡点の標定を行うことが出来る正確で簡素な地絡区間標定システムの提供を目的とするものである。   In view of the actual situation of the ground fault phenomenon that is greatly affected by the presence of the ground capacitance and the presence of the reactor as described above, the present invention determines the appropriate ground fault point according to the various environments where the distribution lines are placed. It is intended to provide an accurate and simple ground fault section location system that can be performed.

上記課題を解決するために為された本発明による地絡区間標定システムは、各々が自動開閉器を具備した配電線の各監視箇所に対として設置された零相電流検出手段及び電源電圧検出手段と、前記各監視箇所の零相電流検出手段により配電線から取り込んだ零相電流の大きさを所定の閾レベルと比較して地絡事故の有無を判定すると共に、地絡事故と判定した際の零相電流の値、及び地絡事故と判断する直前の電源電圧を同期保存する地絡検出部と、地絡事故と判定した各監視箇所の地絡検出部が保存した電源電圧と零相電流との位相差から各監視箇所において地絡相及び地絡点の向きを導く地絡相導出部と、前記地絡相導出部が導いた地絡相及び地絡点の向きに基づき前記監視箇所の前後の区間のうちから地絡区間を導く標定部とを備えることを特徴とする。   The ground fault section locating system according to the present invention made to solve the above problems is a zero-phase current detection means and a power supply voltage detection means installed as a pair at each monitoring point of a distribution line each equipped with an automatic switch. And the presence or absence of a ground fault by comparing the magnitude of the zero phase current taken from the distribution line by the zero phase current detection means of each monitoring point with a predetermined threshold level, and when determining a ground fault The zero-phase current value and the ground-fault detector that synchronizes and stores the power-supply voltage immediately before it is determined to be a ground fault, and the power-supply voltage and zero-phase that are stored by the ground-fault detector at each monitoring location that has been determined to be a ground fault The ground fault phase deriving unit for deriving the direction of the ground fault phase and the ground fault point at each monitoring point from the phase difference with the current, and the monitoring based on the direction of the ground fault phase and the ground fault point guided by the ground fault phase deriving unit. With an orientation section that guides the ground fault section from the sections before and after the location And wherein the door.

前記標定部は、各配電線の最電源側の子局について、地絡点の向きが電源側の場合には零相電流の符号を(−)とし、地絡点の向きが負荷側の場合には零相電流の符号を(+)としてそれらを加える処理を行うことで当該区間に集中する電流の総和を求め、1−CL/C(CL:配電線の一つの区間に設置されるリアクトルによる対地静電容量減算分,C:同一の変圧器に接続された配電線全体の対地静電容量)を乗じた値の絶対値をとる補正処理を施す流量算出モジュールを具備したものとしても良い。   For the slave station on the most power supply side of each distribution line, the orientation part has a zero-phase current sign (-) when the direction of the ground fault point is the power supply side, and the direction of the ground fault point is the load side Is obtained by adding the signs of zero-phase current as (+) to obtain the sum of currents concentrated in the section, 1-CL / C (CL: reactor installed in one section of the distribution line It is also possible to have a flow rate calculation module that performs a correction process that takes an absolute value of a value obtained by multiplying the ground capacitance by C, C: the ground capacitance of the entire distribution line connected to the same transformer) .

前記電源電圧にあっては、地絡区間を標定する際に用いる電源電圧が採取相の違いによって幾種類も取り得ることから、処理に際しては電源電圧の採取相を明確に把握することが必要となる。そうすれば、たとえ各監視箇所について各々電源電圧の採取相が異なっていたとしても、各監視箇所について採取相の相異に応じて適格な位相補正を施した標定処理を設定すれば、監視箇所毎に各監視箇所の間で比較可能な共通基準の地絡相及び地絡点の向きを正確に導くことができる。   In the power supply voltage, it is necessary to clearly grasp the sampling phase of the power supply voltage during processing because the power supply voltage used when locating the ground fault section can take various types depending on the difference in the sampling phase. Become. Then, even if the sampling phase of the power supply voltage is different for each monitoring location, if the orientation process with appropriate phase correction according to the difference in the sampling phase is set for each monitoring location, the monitoring location It is possible to accurately derive the ground fault phase and the ground fault point of the common reference that can be compared between the monitoring points every time.

前記標定部の処理形態としては、例えば、前記地絡検出部が保持した零相電流値と前記地絡相導出部が導いた地絡相及び地絡点の向きに基づき、隣接する監視箇所に挟まれた区間に集中する零相電流の総和が最も大きい区間を地絡区間と標定する処理形態が挙げられる。システムの構成としては、前記零相電流検出手段、電源電圧検出手段、地絡検出部、及び地絡相導出部を具備した子局と、前記標定部を具備した親局とを通信回線で結んでなる地絡区間標定システムが挙げられる。前記通信回線にあっては、有線回線或いは無線回線のいずれでも良い。   As the processing mode of the orientation unit, for example, based on the zero phase current value held by the ground fault detection unit and the direction of the ground fault phase and the ground fault point guided by the ground fault phase deriving unit, A processing form in which a section having the largest sum of zero-phase currents concentrated in the sandwiched section is determined as a ground fault section. As a system configuration, the zero-phase current detection means, the power supply voltage detection means, the ground fault detection unit, and the slave station including the ground fault phase deriving unit and the master station including the orientation unit are connected by a communication line. A ground fault section orientation system consisting of The communication line may be either a wired line or a wireless line.

本発明は、零相電流の大きさおよび,電源電圧と零相電流の位相差から地絡相と、地絡点が監視箇所の電源側と負荷側のいずれに存在するか(地絡点の向き)についての判定結果に基づき,適当な標定要件に基づいて地絡区間を標定する手法を用いることによって、地絡区間がたとえ前記第1自動開閉器の電源側の地絡であっても地絡区間の正確な標定が可能となる他、たとえ地絡点の負荷側の自動開閉器に電源側の自動開閉器と同程度の零相電流が流れる場合であったとしても地絡区間の正しい標定が可能となっている。   The present invention is based on the magnitude of the zero-phase current and the phase difference between the power supply voltage and the zero-phase current, and whether the ground fault phase and the ground fault point exist on the power source side or the load side of the monitoring location (the ground fault point By using a method for locating the ground fault section based on the appropriate orientation requirement based on the determination result for the orientation), even if the ground fault section is a ground fault on the power source side of the first automatic switch, In addition to being able to accurately pinpoint the fault section, even if a zero-phase current of the same level as the automatic switch on the power supply side flows through the automatic switch on the load side of the ground fault point, the fault section is correct. Orientation is possible.

また、地絡区間に集中する零相電流は、リアクトルにより流出する零相電流よりも明らかに大きいという配電線の実態を考慮し、隣接する監視箇所の間の区間に集中する零相電流の総和を比較することによって、リアクトルによる影響も含めた評価をしているので、配電線にリアクトルが存在しても、複数の地絡箇所が導かれることも無く正確な標定を実現できることとなる。   In addition, considering the actual situation of the distribution line that the zero-phase current concentrated in the ground fault section is clearly larger than the zero-phase current flowing out by the reactor, the sum of the zero-phase current concentrated in the section between adjacent monitoring points Since the evaluation including the influence of the reactor is made by comparing the two, even if there is a reactor on the distribution line, a plurality of ground fault locations are not led and an accurate orientation can be realized.

以下、本発明による地絡区間標定システムの実施の形態を図面に基づき説明する。
当該例は、各配電線に設けられた自動開閉器に、当該自動開閉器に内蔵された零相電流計(ZCT)、及び前記零相電流計からの信号を検出する子局を適宜設け、当該子局に、零相電流検出手段1、電源電圧検出手段2、演算手段7、及び通信手段8を付設すると共に、当該子局が測定した地絡事故に関するデータ(以下、地絡データと記す。)を、前記通信手段8を介して親局に伝送し、各子局の地絡データを親局にて分析することにより地絡区間を標定するシステムである(図1参照)。
Hereinafter, an embodiment of a ground fault section orientation system according to the present invention will be described with reference to the drawings.
In this example, an automatic switch provided in each distribution line is appropriately provided with a zero-phase ammeter (ZCT) built in the automatic switch, and a slave station that detects a signal from the zero-phase ammeter, The slave station is provided with zero-phase current detection means 1, power supply voltage detection means 2, calculation means 7, and communication means 8, and data relating to a ground fault measured by the slave station (hereinafter referred to as ground fault data). .) Is transmitted to the master station via the communication means 8, and the ground fault interval is determined by analyzing the ground fault data of each slave station at the master station (see FIG. 1).

当該例においては、各子局の前記零相電流検出手段1は、地絡時の零相電流の検出を目的として前記自動開閉器に内蔵された単一のZCTを用いて三相交流配電線路の零相電流の一括サンプリングを常時行い信号ケーブルを介して前記演算手段7の地絡検出部へ出力する。例えば、配電線の三相それぞれに電流計(CT)を付設して各相の電流を測定し、それらを合成して地絡電流を算出する方法では、地絡事故以外においても零相電流が誤検出される場合が多いからである。前記零相電流のサンプリングは、フィルタ等を介在して交流成分のノイズを除去しつつ行う。また、各子局の前記電源電圧検出手段2は、各子局ごとに定められた所定二相間の電源電圧(以下、二相間電源電圧と記す。)のサンプリングを常時行い、変圧器を以って降圧し(例えば、6600Vから100V)前記演算手段7へ出力する。   In this example, the zero-phase current detecting means 1 of each slave station uses a single ZCT built in the automatic switch for the purpose of detecting a zero-phase current at the time of a ground fault. The zero-phase currents are collectively sampled and output to the ground fault detector of the arithmetic means 7 via a signal cable. For example, in a method in which an ammeter (CT) is attached to each of the three phases of the distribution line and the current of each phase is measured and the ground fault current is calculated by combining them, the zero-phase current is not limited to a ground fault. This is because there are many cases of erroneous detection. The sampling of the zero-phase current is performed while removing AC component noise through a filter or the like. The power supply voltage detection means 2 of each slave station always samples a power supply voltage between two predetermined phases (hereinafter referred to as a power supply voltage between two phases) determined for each slave station, and uses a transformer. The voltage is stepped down (for example, 6600V to 100V) and output to the calculation means 7.

当該演算手段7は、地絡検出部3、及び地絡相導出部4からなる。
前記地絡検出部3は、所定データ量(例えば、サンプリング数等)毎に零相電流値を積算し、基準の閾レベルを超えているかを判定する。そして、更に、当該閾レベルを超えた継続時間が、基準の閾時間を超えているか否かを判定し、超えたと判定した場合に地絡事故の発生と位置づけ、地絡事故と判断した際の零相電流の最大値(以下、最大電流と記す。)と、当該最大電流のサンプリングと同期してサンプリングした当該地絡事故と判断する直前の前記二相間電源電圧(以下、直前電源電圧と記す。)を保存する。
The calculation means 7 includes a ground fault detection unit 3 and a ground fault phase deriving unit 4.
The ground fault detection unit 3 integrates the zero-phase current value for each predetermined amount of data (for example, the number of samplings) and determines whether the reference threshold level is exceeded. In addition, it is determined whether or not the duration time exceeding the threshold level exceeds the reference threshold time, and when it is determined that it has exceeded, it is positioned as the occurrence of a ground fault, and when the ground fault is determined The maximum value of the zero-phase current (hereinafter referred to as the maximum current) and the power supply voltage between the two phases immediately before judging the ground fault accident sampled in synchronization with the sampling of the maximum current (hereinafter referred to as the immediately preceding power supply voltage). .).

上記の如く前記最大電流と直前電源電圧を採取した演算手段7は、最大電流と直前電源電圧の位相差から地絡相(“R”,“S”,“T”)、及び地絡点の向き(地絡相が各自動開閉器の負荷側にある場合には“+”、地絡相が各自動開閉器の電源側にある場合には“−”)を導出する。   As described above, the calculation means 7 that has collected the maximum current and the immediately preceding power supply voltage calculates the ground fault phase ("R", "S", "T") and the ground fault point from the phase difference between the maximum current and the immediately preceding power supply voltage. The direction (“+” when the ground fault phase is on the load side of each automatic switch, “−” when the ground fault phase is on the power source side of each automatic switch) is derived.

地絡相の検出は、前記地絡相導出部により行われ、前記直前電源電圧を採取した二つの相を予め確認した上で、前記直前電源電圧及び最大電流について、電源周波数の基本波のみを抽出するバンドパスフィルタを通過させた波形を演算処理する。即ち、以下の数式(2)乃至(7)で第1次高調波についてフーリエ変換し、それらのベクトルの位相を算出する演算処理を行う。また、バンドパスフィルタ通過後の前記直前電源電圧及び最大電流波形のゼロと交わる点の時間差から求める方法もある。   The detection of the ground fault phase is performed by the ground fault phase deriving unit, and after confirming in advance the two phases from which the previous power supply voltage is sampled, only the fundamental frequency of the power supply frequency is obtained for the previous power supply voltage and the maximum current. A waveform that has passed through the band-pass filter to be extracted is processed. That is, arithmetic processing is performed to perform Fourier transform on the first harmonic by the following mathematical formulas (2) to (7) and to calculate the phase of those vectors. There is also a method of obtaining from the time difference of the point where the immediately preceding power supply voltage after passing through the band-pass filter and zero of the maximum current waveform intersect.

尚、前記相の確認を行う理由は、直前電源電圧の採取相の相異によって、当然に前記直前電源電圧と最大電流との位相差が相異する点を、当該ベクトルの位相を算出する際、又は後の地絡相導出部による処理を行う際のいずれかにおいて補正する必要があるからである。例えば、電源電圧をR−S相から採取した場合とS−T相およびT−R相から採取した場合では、それぞれ+240度進む分および+120度進む分を算入する必要がある。   The reason for confirming the phase is that when the phase of the vector is calculated, the phase difference between the immediately preceding power supply voltage and the maximum current is naturally different depending on the difference in the sampling phase of the immediately preceding power supply voltage. This is because it is necessary to correct in any of the following when performing the process by the ground fault phase deriving unit. For example, when the power supply voltage is collected from the R-S phase and from the S-T phase and the T-R phase, it is necessary to include the amount advanced by +240 degrees and the amount advanced by +120 degrees, respectively.

Figure 0004856886
Figure 0004856886

Figure 0004856886
Figure 0004856886

当該演算手段7の地絡相導出部4は、上記の如く最大電流及び直前電源電圧のベクトルの位相差を算出すると共に、直前電源電圧を採取する相、及び前記配電線の実態に則した前記位相差の要件と、地絡相並びに地絡点の向きを対応させたテーブルを参照し、それに基づいて地絡相及び地絡点の向きを導出する。   The ground fault phase deriving unit 4 of the calculation means 7 calculates the phase difference between the vector of the maximum current and the immediately preceding power supply voltage as described above, and the phase in which the immediately preceding power supply voltage is sampled and the actual state of the distribution line. A table in which the requirements of the phase difference are associated with the ground fault phase and the direction of the ground fault point is derived, and the direction of the ground fault phase and the ground fault point is derived based on the table.

一般的に、配電線に地絡が発生すると、地絡相の相電圧(3.810V,ただし、正規の電源に対して位相が180度異なる)を電源として、地絡回路に零相電流が流れる。地絡回路は、対地静電容量と地絡抵抗のみの回路として単純化できる(図3参照)。当該単純化された地絡回路に基づいて計算すると、通常の配電系統(同一変圧器に接続された配電線全体の対地静電容量が約9μF)では、地絡抵抗が200Ω以上の場合で、地絡点が当該監視箇所の負荷側の場合は、地絡時の零相電流の位相は地絡相電圧の位相に対して約180度から240度進んだ範囲内となる。また、地絡時の零相電流は、地絡点の電源側と負荷側で180度位相が異なるため、地絡点を挟んだ反対側では、地絡相電圧の位相から約0度から60度進んだ範囲内に地絡時の零相電流の位相が存在することともなる(図4参照)。   In general, when a ground fault occurs in a distribution line, a zero-phase current flows in the ground fault circuit using the phase voltage of the ground fault phase (3.810 V, but the phase is 180 degrees different from the normal power source) as the power source. . The ground fault circuit can be simplified as a circuit having only a ground capacitance and a ground fault resistance (see FIG. 3). When calculated based on the simplified ground fault circuit, in a normal distribution system (the ground capacitance of the entire distribution line connected to the same transformer is about 9 μF), when the ground fault resistance is 200Ω or more, When the ground fault point is on the load side of the monitoring location, the phase of the zero-phase current at the time of the ground fault is in a range advanced from about 180 degrees to 240 degrees with respect to the phase of the ground fault phase voltage. In addition, since the phase of the zero-phase current at the time of the ground fault is 180 degrees different between the power supply side and the load side of the ground fault point, on the opposite side across the ground fault point, the phase of the ground fault phase voltage is about 0 to 60 degrees. The phase of the zero-phase current at the time of the ground fault exists within the advanced range (see FIG. 4).

例えば、下記表1、表2、及び表3は、電源電圧がR−S相、S−T相及びT−R相それぞれの場合の直前電源電圧と地絡時の零相電流を採取した場合の地絡相導出要件を示したものである。地絡相及び地絡点の向きの導出処理において参照されるテーブルには、当該表の左欄に示された前記位相差と、右欄に示された地絡相及び地絡点の向きが対応させて記録されており、例えば、R相地絡で地絡点が各自動開閉器の負荷側に存在する場合は、最大電流の位相はR−S相の直前電源電圧に対して150度〜210度進む範囲となる等、前記配電線での実態が処理に反映されることとなる(図4参照)。   For example, the following Table 1, Table 2, and Table 3 show the case where the immediately preceding power supply voltage and the zero-phase current at the time of ground fault are collected when the power supply voltage is R-S phase, ST phase, and TR phase, respectively. It shows the ground fault phase derivation requirements. The table referred to in the process of deriving the direction of the ground fault phase and the ground fault point includes the phase difference shown in the left column of the table and the direction of the ground fault phase and the ground fault point shown in the right column. For example, when a ground fault point exists on the load side of each automatic switch due to an R-phase ground fault, the maximum current phase is 150 degrees with respect to the power supply voltage immediately before the RS phase. The actual state of the distribution line is reflected in the process, such as a range of ~ 210 degrees (see FIG. 4).

Figure 0004856886
Figure 0004856886

Figure 0004856886
Figure 0004856886

Figure 0004856886
Figure 0004856886

各子局にて導かれた地絡相及び地絡点の向きについては、地絡の状況に応じて地絡波形が正弦波以外の形で現れることがあり、また,地絡抵抗が極めて小さい場合にあっては、最大電流の位相が電源電圧よりも更に進むことともなる結果、配電線に設けられた複数の子局から、地絡区間として二つ以上の地絡相を示す地絡データが送出されてしまう場合もあり得る。   As for the direction of the ground fault phase and ground fault point introduced by each slave station, the ground fault waveform may appear in a form other than a sine wave depending on the ground fault situation, and the ground fault resistance is extremely small In some cases, the ground fault data indicating two or more ground fault phases as a ground fault section from a plurality of slave stations provided on the distribution line as a result of the phase of the maximum current further proceeding than the power supply voltage. May be sent out.

万が一その様な場合には、最大の地絡電流を検出した監視箇所の地絡相を目処として、親局に送信された地絡データが全て同一の相を地絡相として示す状態となるように、±60度以内で位相差の調整を試みる地絡相補正処理を各子局の地絡データに適宜施す前処理部を判定手段に設けても良い。これは、実質的には、各子局が導いた前記地絡相及び地絡点の向きの判定を、親局において前記表1の一段上、若しくは一段下の判定に適宜シフトさせることに相当する。   In such a case, all the ground fault data transmitted to the master station will indicate the same phase as the ground fault phase, with the ground fault phase of the monitoring location that detected the maximum ground fault current as the target. In addition, a pre-processing unit that appropriately performs ground fault phase correction processing that attempts to adjust the phase difference within ± 60 degrees on the ground fault data of each slave station may be provided in the determination means. This is substantially equivalent to appropriately shifting the determination of the direction of the ground fault phase and the ground fault point led by each slave station to the determination of one step above or one step below in Table 1. To do.

各子局は、前記の如く地絡事故の発生を検出すると、以上の如く採取された前記最大電流と直前電源電圧、並びに導出された地絡相及び地絡点の向き示すデータを含んだ地絡データを構成し親局に地絡事故が発生した旨の地絡データを通信手段8、及び有線又は無線の通信ネットワークを通じて親局へその送出する。尚、当該例では、地絡事故の発生を検出しない子局については、親局に対して地絡データを送出しない。   When each of the slave stations detects the occurrence of the ground fault as described above, the ground current including the maximum current and the immediately preceding power source voltage collected as described above, and the ground fault phase and the data indicating the direction of the ground fault point are included. The fault data is constituted and ground fault data indicating that a ground fault has occurred in the master station is transmitted to the master station through the communication means 8 and a wired or wireless communication network. In this example, for the slave station that does not detect the occurrence of a ground fault, ground fault data is not sent to the master station.

なお、前記地絡相導出部4における処理は、同一変圧器に接続された配電線全体の対地静電容量が9μFで地絡抵抗200Ω以上の場合には上記表を例として示された地絡相導出要件で地絡相及び地絡点の向きを比較的正確に導くことが出来るが、地絡抵抗が200Ω未満の場合は、最大電流から地絡抵抗(Rg)を概算し、前記地絡相及び地絡点の向きを補正する処理を、標定部6において行った方が精度が増すこととなる場合もある。   The ground fault phase deriving unit 4 performs the ground fault shown in the above table as an example when the ground capacitance of the entire distribution line connected to the same transformer is 9 μF and the ground fault resistance is 200Ω or more. The direction of the ground fault phase and the ground fault point can be derived relatively accurately by the phase derivation requirements, but when the ground fault resistance is less than 200Ω, the ground fault resistance (Rg) is estimated from the maximum current, and the ground fault In some cases, the accuracy may be increased by performing the process of correcting the orientation of the phase and the ground fault point in the orientation unit 6.

その際、前記標定部6は、地絡抵抗(Rg)、及びその時の地絡相電圧(3.810V)に対するRg算出用地絡電流の位相の進み(Ф)を、以下の数式(8)(9)による演算処理を以って導出する。   At that time, the orientation unit 6 determines the advance (Ф) of the phase of the ground fault current for Rg calculation with respect to the ground fault resistance (Rg) and the ground fault phase voltage (3.810 V) at that time (9) (9) Derived by the arithmetic processing by

Figure 0004856886
Figure 0004856886

尚、前記標定部6による地絡抵抗(Rg)算出用地絡電流を求める演算処理は、以下の通りに行われる。   In addition, the calculation process which calculates | requires the ground fault current for ground fault resistance (Rg) calculation by the said orientation part 6 is performed as follows.

Figure 0004856886
Figure 0004856886

前記標定部6は、上記の如く導出されたRg算出用地絡電流の位相の進み(Ф)が60度を超える場合を、地絡抵抗(Rg)が小さい場合と判定し、その様な場合について前記位相差から30度を減じる演算処理を施すと言う態様で各子局からの地絡相および地絡向きデータの修正を行なう。また、前記直前電源電圧を採取する相、並びに、上記の様な配電線の実態に則した前記位相差の要件と地絡相並びに地絡点の向きを対応させたテーブルを参照し、それに基づいて地絡相及び地絡点の向きを導出する。なお、前記地絡抵抗が小さい場合の補正を省略しても、地絡向きの変更点に関するデータを用いれば、地絡区間の標定は可能である。   The orientation unit 6 determines that the ground fault resistance (Rg) is small when the phase advance (Ф) of the ground fault current for Rg calculation derived as described above exceeds 60 degrees. The ground fault phase and the ground fault direction data from each slave station are corrected in such a manner that a calculation process of subtracting 30 degrees from the phase difference is performed. In addition, referring to the phase in which the immediately preceding power supply voltage is sampled and the phase difference requirement in accordance with the actual condition of the distribution line as described above, the ground fault phase, and the direction of the ground fault point are referred to, and based on the table. To derive the direction of the ground fault phase and the ground fault point. In addition, even if correction | amendment when the said ground fault resistance is small, if the data regarding the change point of a ground fault direction are used, the ground fault area can be determined.

前記親局は、通信手段9、及び判定手段10で構成され、前記通信手段9を介して受信した最大電流(地絡時の零相電流)の大きさ、地絡相、及び地絡点の向きに関する地絡データ、並びに上記の如く修正が加えられたものについては当該修正が加わった地絡データを用い、前記判定手段10の標定部6による地絡相及び地絡点の向きに基づいた単一の地絡区間への絞込み処理からなる標定処理を、例えば、図7に示す標定手続きに基づいて行う(図7参照)。   The master station is composed of a communication unit 9 and a determination unit 10, and the magnitude of the maximum current (zero phase current at the time of ground fault) received through the communication unit 9, the ground fault phase, and the ground fault point The ground fault data relating to the direction and the ground fault data with the correction as described above are used, and based on the ground fault phase and the direction of the ground fault point by the orientation unit 6 of the determination means 10. For example, orientation processing including narrowing down processing to a single ground fault section is performed based on the orientation procedure shown in FIG. 7 (see FIG. 7).

当該例における絞込み処理は、前記標定部6によって、前記子局の地絡検出部が保持した零相電流値と前記地絡相導出部が導いた地絡相及び地絡点の向きに基づき、監視箇所に挟まれた区間に集中する零相電流の総和が最も大きい区間を地絡区間と標定するものである。   The narrowing-down process in this example is based on the zero phase current value held by the ground fault detection unit of the slave station and the direction of the ground fault phase and the ground fault point guided by the ground fault phase deriving unit by the orientation unit 6. The section having the largest sum of the zero-phase currents concentrated in the section sandwiched between the monitoring locations is determined as the ground fault section.

当該例においては、地絡検出した子局(以下、地絡検出局と記す。)で判定された地絡点の向きが、隣り合う二つの地絡検出局で等しい場合には両地絡検出局の零相電流の差を求め、地絡点の向きが異なる場合には、両地絡検出局の零相電流の和を求める形で、分岐区間をも含む隣り合う二つ以上の地絡検出局に挟まれた全ての区間に集中する電流の総和を流量算出モジュール11により求める。   In this example, both ground faults are detected when the direction of the ground fault point determined by a slave station that has detected a ground fault (hereinafter referred to as a ground fault detection station) is equal between two adjacent ground fault detection stations. If the difference between the zero-phase currents of the stations is different and the direction of the ground fault point is different, calculate the sum of the zero-phase currents of the two ground fault detection stations to obtain two or more adjacent ground faults including the branch section. The flow rate calculation module 11 calculates the sum of currents concentrated in all the sections sandwiched between the detection stations.

場合に応じて、地絡検出局以外の全ての子局(以下、非地絡検出局と記す。)を含めた隣り合う二つの子局について、非地絡検出局の零相電流をゼロ(地絡点の向き:無し)として、先の演算処理と同様に、分岐区間をも含む隣り合う二つ以上の地絡検出局及び非地絡検出局に挟まれた全ての区間に集中する零相電流の総和を流量算出モジュール11により求めても良い。   In some cases, the zero phase current of the non-ground fault detection station is zero (zero) for two adjacent slave stations including all the slave stations other than the ground fault detection station (hereinafter referred to as non-ground fault detection stations). As for the direction of the ground fault point: None), as in the previous calculation process, zero concentrated in all sections sandwiched between two or more adjacent ground fault detection stations and non-ground fault detection stations including the branch section The sum of the phase currents may be obtained by the flow rate calculation module 11.

上記絞込み処理によれば、たとえ配電線にリアクトルが存在しようとも、配電線における地絡点の標定を正確に行うことができる。しかしながら、上記の如く導かれた各区間に集中する零相電流の総和を比較するのみでは、例えば、地絡検出局が単一の配電線のみに存在する場合において、以下の通り標定上の問題が生じる。   According to the narrowing-down process, the ground fault point in the distribution line can be accurately determined even if the reactor exists in the distribution line. However, only by comparing the sum of the zero-phase currents concentrated in each section derived as described above, for example, in the case where the ground fault detection station exists only in a single distribution line, the following problem in orientation Occurs.

地絡時に各子局で検出される零相電流は,地絡抵抗が大きくなるに従い小さくなる(式1参照)。このため、地絡抵抗が比較的大きい場合、地絡区間を含む配電線における地絡区間の電源側に存在する子局は、他の配電線からの零相電流を合わせた零相電流となるため地絡検出局になるが、他の配電線の最電源側子局は零相電流が小さいためにいずれも地絡検出子局とならない事態が考えられる。この場合、地絡区間を含む配電線の最電源側子局における零相電流が最電源側区間に集中する零相電流の総和そのものとなり、例えば、図6(A)の例では、リアクトルの影響で第1子局と第2子局に挟まれた零相電流が最電源側区間に集中する零相電流より小さくなることから最電源側区間を地絡区間と誤判定すると言う問題が生じる。   The zero-phase current detected at each slave station during a ground fault decreases as the ground fault resistance increases (see Equation 1). For this reason, when the ground fault resistance is relatively large, the slave station existing on the power source side of the ground fault section in the distribution line including the ground fault section becomes a zero phase current obtained by adding the zero phase currents from other distribution lines. Therefore, although it becomes a ground fault detection station, since the zero-phase current is small in the most power source side slave stations of other distribution lines, it is conceivable that none of them is a ground fault detection slave station. In this case, the zero phase current in the most power supply side slave station of the distribution line including the ground fault section becomes the total sum of the zero phase currents concentrated in the most power supply side section. For example, in the example of FIG. As a result, the zero-phase current sandwiched between the first slave station and the second slave station is smaller than the zero-phase current concentrated in the most power-supply side section, which causes a problem that the most power-supply side section is erroneously determined as a ground fault section.

よって、図2に示す様な最も電源側(以下、最電源側と記す。)の区間についても正確な地絡点の標定を必要とする場合には、別途以下の様な補正処理を施した演算処理を行うことが必要となる。   Therefore, when the correct ground fault point is required for the section on the most power supply side (hereinafter referred to as the most power supply side) as shown in FIG. It is necessary to perform arithmetic processing.

即ち、最電源側区間については、集中する零相電流の総和を求める際に、各配電線の最電源側の子局について、地絡点の向き電源側の場合には零相電流の符号を(−)とし、地絡点の向きが負荷側の場合には零相電流の符号を(+)としてそれらを加える処理を行うことで当該区間に集中する電流の総和を求め、更に、当該演算によって導かれた値に(1−CL/C)を乗じた値の絶対値をとる補正処理を施した補正値を流量算出モジュール11により求め、当該補正値を用いて絞り込み処理を行うこととする。尚、CLは、配電線の一つの区間に設置されるリアクトルによる対地静電容量減算分であり、Cは、同一変圧器に接続された配電線全体の対地静電容量である(図7参照)。   That is, when calculating the sum of concentrated zero-phase currents for the most power-supply side section, the sign of the zero-phase current is assigned to the slave station on the most power-supply side of each distribution line in the case of the power supply side facing the ground fault point. When the direction of the ground fault point is on the load side, the sum of the currents concentrated in the section is obtained by performing a process of adding them with the sign of the zero-phase current as (+), and further calculating the calculation A correction value obtained by performing a correction process that takes the absolute value of a value obtained by multiplying the value derived from (1−CL / C) by the flow rate calculation module 11 is obtained, and the narrowing process is performed using the correction value. . In addition, CL is a part for earth capacitance subtraction by the reactor installed in one section of the distribution line, and C is the earth capacitance of the whole distribution line connected to the same transformer (see FIG. 7). ).

当該流量算出モジュール11による、最電源区間に集中する零相電流の算出処理によれば、たとえ前記最電源側区間で地絡が発生したとしても、最電源側区間に集中する零相電流の総和に比較して、地絡区間以外の各配電線の各区間に集中する零相電流の総和が顕著に小さいことから、上記補正処理が地絡区間の標定に悪影響を及ぼすことはない。   According to the calculation process of the zero-phase current concentrated in the most power source section by the flow rate calculation module 11, even if a ground fault occurs in the most power source side section, the total sum of the zero phase currents concentrated in the most power source section. Compared to the above, since the total sum of the zero-phase currents concentrated in each section of each distribution line other than the ground fault section is remarkably small, the correction process does not adversely affect the orientation of the ground fault section.

上記演算処理は、配電線において各子局に挟まれた各区間について順次行われ、区間毎に算出された零相電流の総和及び前記補正値に基づき、地絡検出局に挟まれた全ての区間、又は非地絡検出局を含む全ての子局に挟まれた全ての区間のうちで、前記零相電流の総和又は前記補正値が最も大きく、最も零相電流が集中しているとされる区間を地絡区間として選択することによって、正確な標定を行うことができる。   The arithmetic processing is sequentially performed for each section sandwiched between each slave station in the distribution line, and based on the total zero-phase current calculated for each section and the correction value, all the sandwiched between ground fault detection stations Among the sections or all sections sandwiched between all slave stations including non-ground fault detection stations, the sum of the zero-phase currents or the correction value is the largest, and the zero-phase currents are most concentrated. It is possible to perform accurate orientation by selecting a section to be grounded as a ground fault section.

図6(A)の例では、第1子局と第2子局とで挟まれた区間には0.9A−0.8A=0.1A、第2子局と第3子局とで挟まれた区間には0.8A−0A=0.8A、第1子局の電源側の区間には、0.9A×0.75=0.675Aの零相電流がそれぞれ集中しており、その中で最も値の大きな第2子局と第3子局とで挟まれた区間を地絡点と標定することとなる。   In the example of FIG. 6 (A), 0.9A-0.8A = 0.1A in the section sandwiched between the first slave station and the second slave station, sandwiched between the second slave station and the third slave station. The zero-phase currents of 0.8A-0A = 0.8A and the 0.9A × 0.75 = 0.675A are concentrated in the section on the power supply side of the first slave station. The section between the second slave station and the third slave station having the largest value is determined as the ground fault point.

図6(B)の例では、第1子局と第2子局とで挟まれた区間には1.9A−0.2A=1.7A、第2子局と第3子局とで挟まれた区間には0.2A+0.2A=0.4A、第3子局と第4子局とで挟まれた区間には0.2A+0A=0.2A,最電源側区間には(1.9A−0.3A−0.3A−0.3A)×0.75=0.75Aの零相電流がそれぞれ集中しており、その中で最も値の大きな第1子局と第2子局とで挟まれた区間を地絡点と標定することとなる。   In the example of FIG. 6B, 1.9A−0.2A = 1.7A is sandwiched between the first slave station and the second slave station, and sandwiched between the second slave station and the third slave station. 0.2A + 0.2A = 0.4A in the divided section, 0.2A + 0A = 0.2A in the section sandwiched between the third and fourth slave stations, and (1.9A in the most power source section) -0.3A-0.3A-0.3A) × 0.75 = 0.75A of zero-phase currents are concentrated, and the largest value among the first and second slave stations The sandwiched section will be determined as the ground fault point.

図6(C)の例では、第1子局と第2子局とで挟まれた区間には1.0A+0.7A=1.7A、第2子局と第3子局とで挟まれた区間には0.7A−0.4A=0.3A、第3子局と第4子局とで挟まれた区間には0.4A−0.2A=0.2A、第4子局の負荷側の区間には0.2A,最電源側区間には(1.0A−0.2A−0.2A−0.3A)×0.72=0.216Aの零相電流がそれぞれ集中しており、その中で最も値の大きな第1子局と第2子局とで挟まれた区間を地絡点と標定することとなる。   In the example of FIG. 6C, the section sandwiched between the first slave station and the second slave station is 1.0A + 0.7A = 1.7A, sandwiched between the second slave station and the third slave station. 0.7A-0.4A = 0.3A in the section, 0.4A-0.2A = 0.2A in the section sandwiched between the third and fourth slave stations, the load of the fourth slave station The zero-phase current of 0.2A is concentrated in the section on the side and (1.0A-0.2A-0.2A-0.3A) x 0.72 = 0.216A is concentrated in the section on the most power source side. The section between the first slave station and the second slave station having the largest value is determined as the ground fault point.

本願地絡区間標定システムは、地絡時の零相電流の大きさ、並びに地絡相及び地絡点の向きに関するデータに基づき、多様な配電線の構成に柔軟に対応させることができるので、配電線路を構成するハードウエア資源等の質の更なる向上により、より緻密な地絡区間の標定を実現できる可能性がある。   The present ground fault section locating system can flexibly correspond to various distribution line configurations based on the data on the magnitude of the zero phase current at the time of the ground fault and the direction of the ground fault phase and the ground fault point. By further improving the quality of the hardware resources etc. that make up the distribution line, there is a possibility that a more precise ground fault section can be realized.

本発明による地絡区間標定システムの実施態様例を示す機能ブロック図である。It is a functional block diagram which shows the embodiment example of the ground fault area location system by this invention. 配電線を簡略化した一例を示す回路図である。It is a circuit diagram which shows an example which simplified the distribution line. 地絡回路を簡略化した一例を示す回路図である。It is a circuit diagram which shows an example which simplified the ground fault circuit. 電源電圧と地絡電流との位相関係の一例を示す説明図である。It is explanatory drawing which shows an example of the phase relationship of a power supply voltage and a ground fault current. 配電線を簡略化した一例を示す回路図である。It is a circuit diagram which shows an example which simplified the distribution line. 地絡回路を簡略化した一例を示す回路図である。It is a circuit diagram which shows an example which simplified the ground fault circuit. 本発明による地絡区間標定システムにおける標定処理一例を示すフローチャートである。It is a flowchart which shows an example of the orientation process in the ground fault area orientation system by this invention.

符号の説明Explanation of symbols

1 零相電流検出手段,2 電源電圧検出手段,3 地絡検出部,4地絡相導出部,
6 標定部,7 演算手段,8 通信手段(子局),9 通信手段(親局),
10 判定手段,11 流量算出モジュール,
1 zero phase current detection means, 2 power supply voltage detection means, 3 ground fault detection section, 4 ground fault phase deriving section,
6 orientation unit, 7 computing means, 8 communication means (slave station), 9 communication means (master station),
10 determination means, 11 flow rate calculation module,

Claims (4)

各々が自動開閉器を具備した配電線の各監視箇所に対として設置された零相電流検出手段(1)及び電源電圧検出手段(2)と、
前記各監視箇所の零相電流検出手段(1)により配電線から取り込んだ零相電流の大きさを所定の閾レベルと比較して地絡事故の有無を判定すると共に、地絡事故と判定した際の零相電流の値、及び地絡事故と判断する直前の電源電圧を同期保存する地絡検出部(3)と、
地絡事故と判定した各監視箇所の地絡検出部(3)が保存した電源電圧と零相電流との位相差から各監視箇所において地絡相及び地絡点の向きを導く地絡相導出部(4)と、
前記地絡相導出部(4)が導いた地絡相及び地絡点の向きに基づき前記監視箇所の前後の区間のうちから地絡区間を導く標定部(6)と、
を備える地絡区間標定システム。
Zero-phase current detection means (1) and power supply voltage detection means (2) installed in pairs at each monitoring point of the distribution line each equipped with an automatic switch,
The magnitude of the zero-phase current taken from the distribution line by the zero-phase current detection means (1) at each monitoring point is compared with a predetermined threshold level to determine the presence or absence of a ground fault and to determine a ground fault. A ground fault detection unit (3) for synchronously storing the value of the zero phase current at the time of the power supply and the power supply voltage immediately before the determination of the ground fault,
Deriving the ground fault phase that leads the direction of the ground fault phase and the ground fault point at each monitored location from the phase difference between the power supply voltage and the zero-phase current stored by the ground fault detection unit (3) at each monitored location determined as a ground fault accident Part (4),
An orientation section (6) for deriving a ground fault section from sections before and after the monitoring location based on the direction of the ground fault phase and the ground fault point led by the ground fault phase deriving section (4);
A ground fault section orientation system.
前記地絡検出部(3)が保持した零相電流値と前記地絡相導出部が導いた地絡相及び地絡点の向きに基づき、監視箇所に挟まれた区間に集中する零相電流の総和が最も大きい区間を地絡区間と標定する標定部(6)を備える前記請求項1に記載の地絡区間標定システム。   Based on the zero-phase current value held by the ground fault detection unit (3) and the direction of the ground fault phase and the ground fault point guided by the ground fault phase deriving unit, the zero phase current concentrated in the section between the monitoring points The ground fault section orientation system according to claim 1, further comprising an orientation section (6) that locates a section having the largest sum of the two as a ground fault section. 各配電線の最電源側の子局について、地絡点の向きが電源側の場合には零相電流の符号を(−)とし、地絡点の向きが負荷側の場合には零相電流の符号を(+)としてそれらを加える処理を行うことで当該区間に集中する電流の総和を求め、1−CL/C(CL:配電線の一つの区間に設置されるリアクトルによる対地静電容量減算分,C:同一の変圧器に接続された配電線全体の対地静電容量)を乗じた値の絶対値をとる補正処理を施す流量算出モジュール(11)を具備した前記標定部(6)を備える前記請求項1又は請求項2のいずれかに記載の地絡区間標定システム。   For the slave station on the most power supply side of each distribution line, the sign of the zero-phase current is (-) when the direction of the ground fault point is the power supply side, and the zero-phase current when the direction of the ground fault point is the load side The sum of currents concentrated in the section is obtained by performing a process of adding them with (+) as the sign of 1−CL / C (CL: ground capacitance by the reactor installed in one section of the distribution line Subtracting part, C: The orientation unit (6) provided with a flow rate calculation module (11) for performing a correction process for taking an absolute value of a value obtained by multiplying by the capacitance of the entire distribution line connected to the same transformer) The ground fault section orientation system according to any one of claims 1 and 2, further comprising: 前記零相電流検出手段(1)、電源電圧検出手段(2)、地絡検出部(3)、及び地絡相導出部(4)を具備した子局と、前記標定部(6)を具備した親局とを通信回線で結んでなる前記請求項1乃至請求項3のいずれかに記載の地絡区間標定システム。   A slave station comprising the zero-phase current detection means (1), a power supply voltage detection means (2), a ground fault detection section (3), and a ground fault phase deriving section (4), and the orientation section (6) The ground fault section locating system according to any one of claims 1 to 3, wherein the master station is connected to the master station via a communication line.
JP2005073376A 2005-03-15 2005-03-15 Ground fault section orientation system Expired - Fee Related JP4856886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073376A JP4856886B2 (en) 2005-03-15 2005-03-15 Ground fault section orientation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073376A JP4856886B2 (en) 2005-03-15 2005-03-15 Ground fault section orientation system

Publications (2)

Publication Number Publication Date
JP2006258485A JP2006258485A (en) 2006-09-28
JP4856886B2 true JP4856886B2 (en) 2012-01-18

Family

ID=37097930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073376A Expired - Fee Related JP4856886B2 (en) 2005-03-15 2005-03-15 Ground fault section orientation system

Country Status (1)

Country Link
JP (1) JP4856886B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081131B (en) * 2010-12-02 2013-11-20 国网河南省电力公司南阳供电公司 Grounding point finding method for low-current grounding system of urban power grid
CN102103180A (en) * 2010-12-02 2011-06-22 河南省电力公司南阳供电公司 Searching method for grounded point of low current grounding system of rural power grid
JP5615770B2 (en) * 2011-07-06 2014-10-29 株式会社日立製作所 Accident section judgment device and system in dendritic distribution system
JP2014075898A (en) * 2012-10-04 2014-04-24 Hitachi Ltd Monitoring/control system for dendritic distribution system and test power transmission order determination method of dendritic distribution system
CN105610137A (en) * 2015-09-25 2016-05-25 国网山东省电力公司济南供电公司 Centralized power-distribution-system single phase grounding fault elimination method
CN107526003A (en) * 2017-07-20 2017-12-29 北京天泰怡和科技有限公司 Intelligent distribution network automatic analysis system
WO2019058869A1 (en) * 2017-09-22 2019-03-28 株式会社デンソー Power supply system
JP6930505B2 (en) 2017-09-22 2021-09-01 株式会社デンソー Power system
CN109188191B (en) * 2018-07-24 2021-01-19 国网山西省电力公司电力科学研究院 Rapid fault phase selection method for half-wavelength alternating-current transmission line based on power mutation
JP2021063750A (en) * 2019-10-16 2021-04-22 中国電力株式会社 Earth fault point locating system
CN112240966A (en) * 2020-08-06 2021-01-19 许继集团有限公司 Fault current grounding judgment method
WO2024034004A1 (en) * 2022-08-09 2024-02-15 三菱電機株式会社 Power distribution system management device, power distribution system management method, and power distribution system management system

Also Published As

Publication number Publication date
JP2006258485A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4856886B2 (en) Ground fault section orientation system
CA2295342C (en) Fault-detection for powerlines
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
EP1992954B1 (en) Method for determining location of phase-to-earth fault
KR100473798B1 (en) Method for detecting line to ground fault location for power systems
EP2000811B1 (en) Method for determining location of phase-to-earth fault
US20180284180A1 (en) Fault location detection and distance protection apparatus and associated method
US8680872B2 (en) Identification of false positives in high impedance fault detection
CN102484365A (en) A method of fault phase selection and fault type determination
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
CN106569160B (en) AuCT output voltage sensor method for diagnosing faults and fault tolerant control method
CN106443292A (en) Overhead line single-phase earth fault detection method based on zero sequence current measurement
US20100134117A1 (en) Method and Device for Capturing a Fault in an Electrical Supply Grid
US8045307B2 (en) Faulted phase decision method between current and voltage based delta phase selectors
JP2016114437A (en) Leakage spot survey method, and device therefor
JP6888346B2 (en) Partial discharge detection device and partial discharge detection method
Khan et al. An accurate algorithm of PMU-based wide area measurements for fault detection using positive-sequence voltage and unwrapped dynamic angles
KR100425417B1 (en) Method for detecting line to line fault location for power systems
CN108369254B (en) Method of locating a fault in a power transmission medium
JP2002090395A (en) Leakage current detecting device
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
TWI408383B (en) Saturation detectors and measuring devices
JP3274607B2 (en) Transmission line failure monitoring method and device
KR101451818B1 (en) System for detecting ground fault using voltage regulation and harmonic analysis
JP7341070B2 (en) Ground fault location system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4856886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees