JP4856838B2 - Nitrogen-containing carbon-based porous body and method for producing the same - Google Patents

Nitrogen-containing carbon-based porous body and method for producing the same Download PDF

Info

Publication number
JP4856838B2
JP4856838B2 JP2002335519A JP2002335519A JP4856838B2 JP 4856838 B2 JP4856838 B2 JP 4856838B2 JP 2002335519 A JP2002335519 A JP 2002335519A JP 2002335519 A JP2002335519 A JP 2002335519A JP 4856838 B2 JP4856838 B2 JP 4856838B2
Authority
JP
Japan
Prior art keywords
nitrogen
porous body
containing carbon
carbon
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335519A
Other languages
Japanese (ja)
Other versions
JP2004168587A (en
Inventor
徳彦 瀬戸山
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002335519A priority Critical patent/JP4856838B2/en
Publication of JP2004168587A publication Critical patent/JP2004168587A/en
Application granted granted Critical
Publication of JP4856838B2 publication Critical patent/JP4856838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、含窒素炭素系多孔体及びその製造方法に関する。
【0002】
【従来の技術】
従来、多孔体に関する様々な研究がなされており、その吸着性を利用して、吸着剤、分離剤、触媒担体等、様々な用途への適用が検討されている。特に、排ガスや廃水等に含まれる有害物質を除去する技術として、多孔体を用いた有害物質の吸着除去技術が幅広く用いられている。このような用途に使用されている多孔体としては様々なものが知られているが、代表的な多孔体の一つとして活性炭が挙げられる。
【0003】
このような活性炭は、炭素原子により骨格が形成されている多孔体であり、高い比表面積を有しているが、この高い比表面積は従来、製造工程において賦活処理を行い、活性炭となる材料の表面に細孔を形成せしめることによって得られていた。この賦活処理としては、例えば、原料組成物を水蒸気、二酸化炭素等の雰囲気中で600〜1000℃に加熱するか、又は、原料組成物に塩化亜鉛、水酸化カリウム等を混合して不活性雰囲気下で加熱すること等が知られている。この賦活処理の過程において、活性炭となる材料の表面には多数の細孔が形成され、その結果比表面積の高い活性炭が得られるが、比表面積の向上のみでは吸着性の向上に限界があり、未だ十分なものではなかった。
【0004】
一方、比表面積を高めること以外で活性炭の吸着性を向上する方法についても検討されており、特開平5−64789号公報(特許文献1)には、水質汚濁性有機物質含有廃液を活性炭素材料の存在下で処理する方法において、活性炭素材料として、窒素1〜5重量%、酸素3〜30重量%、炭素40〜95重量%を含有し、かつ、平均細孔半径が1.5〜3.0nmであるものを使用することが記載されている。
【0005】
【特許文献1】
特開平5−64789号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特開平5−64789号公報(特許文献1)に記載の活性炭素材料においても賦活処理によって比表面積が高められており、このように賦活度を高めることで多孔体は高比表面積化するが、同時に多孔体の骨格中に存在していた窒素原子も失われてしまい、窒素含有量の低いものしか得られなかった。実際、上記公報において実施例等で実質的に記載されているものは、窒素原子と炭素原子との原子比(N/C)が0.042程度以下の窒素含有量の低い活性炭素材料のみであり、その吸着性は未だ十分なものではなかった。
【0007】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、比表面積及び窒素原子と炭素原子との原子比(N/C)の両方がバランス良く高水準に維持され、高比表面積による吸着性の向上と、高窒素含有率による吸着性の向上が同時に十分に達成された含窒素炭素系多孔体、及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料からなり、600m2/g以上の比表面積と、1〜5nmの平均細孔径を有する含窒素炭素系多孔体において、窒素原子と炭素原子との原子比(N/C)を0.08〜0.3とすることによって、特に吸着性に優れた含窒素炭素系多孔体が得られることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明の含窒素炭素系多孔体は、炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料からなる多孔体であって、比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3であること、を特徴とするものである。
【0010】
また、本発明の含窒素炭素系多孔体の製造方法は、金属酸化物多孔体の細孔内に含窒素有機化合物を導入し、前記含窒素有機化合物を熱分解せしめることによって前記細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめる析出工程と、前記金属酸化物多孔体を溶解除去することによって含窒素炭素系材料からなる多孔体を得る除去工程と、を含むことを特徴とする、比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3である含窒素炭素系多孔体の製造方法である。
【0011】
上記本発明の含窒素炭素系多孔体の製造方法においては、上記金属酸化物多孔体がシリカメソ多孔体であることが好ましい。また、上記本発明の含窒素炭素系多孔体の製造方法においては、上記金属酸化物多孔体がキュービックの細孔配列構造を有する多孔体であることが好ましい。更に、上記本発明の含窒素炭素系多孔体の製造方法においては、上記含窒素有機化合物が含窒素複素環式化合物であることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明をその好適な実施形態に即して詳細に説明する。
【0013】
(含窒素炭素系多孔体)
本発明の含窒素炭素系多孔体は、炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料からなる多孔体であり、窒素原子と炭素原子との原子比(N/C)は、0.08〜0.3であることが必要である。このような原子比で炭素原子及び窒素原子により多孔体の骨格を形成することによって、多孔体表面に窒素原子を含む表面官能基を十分に形成せしめ、被吸着物と相互作用することが可能な吸着サイトを付与することができる。そして、この特異な吸着性を有する吸着サイトと、多孔体の高い比表面積及び特定の範囲の平均細孔径によって得られる物理的吸着作用との相乗効果によって、優れた吸着性を示すことが可能となると本発明者らは推察する。特に、被吸着物が重金属イオン等のイオン性可溶成分である場合には、上記吸着サイトの相互作用によって、従来の多孔体では得られなかった優れた吸着性を示すことが可能となる。また、上記窒素原子と炭素原子との原子比(N/C)の上限値は0.3であり、0.2であることがより好ましく、0.15であることが更に好ましい。一方、その下限値は0.08であり、0.09であることがより好ましい。窒素原子と炭素原子との原子比(N/C)が0.08未満の場合には、窒素原子を含む表面官能基が減少し、被吸着物と相互作用することが可能な吸着サイトとしての機能が低下するため、十分な吸着性が得られない。また、窒素原子と炭素原子との原子比(N/C)が0.3を超える場合には、多孔体の炭素骨格の強度が低下し、細孔構造を維持することが困難となるため、比表面積の低下を招き、吸着性が低下してしまう。
【0014】
なお、本発明にかかる多孔体の窒素原子と炭素原子との原子比(N/C)は、CHN元素分析によって求めることができる。
【0015】
また、上記含窒素炭素系多孔体の骨格は、少なくとも炭素原子及び窒素原子により形成されていればよく、その他の原子として水素原子や酸素原子等を含んでいてもよい。その場合、その他の原子と炭素原子及び窒素原子との原子比((その他の原子)/(C+N))は0.3以下であることが好ましい。
【0016】
上記含窒素炭素系多孔体の比表面積は、600m2/g以上であることが必要であり、700m2/g以上であることがより好ましく、800〜1500m2/gであることが更に好ましい。比表面積が600m2/g未満の場合には、被吸着物との接触面積の低下及び被吸着物を取り込む細孔の減少が生じ、吸着性が極端に低いものとなってしまう。
【0017】
また、上記含窒素炭素系多孔体の平均細孔径は、1〜5nmであることが必要であり、2〜3nmであることがより好ましい。平均細孔径が1nm未満の場合には、細孔の大きさが被吸着物の大きさよりも小さくなることが多くなり、吸着性が低下してしまう。また、平均細孔径が5nmを超える場合には、比表面積の低下を招き、吸着性が低下してしまう。
【0018】
更に、上記含窒素炭素系多孔体の細孔容量は、上記比表面積及び平均細孔径によっても変動するため特に制限されないが、0.3〜1.2ml/gであることが好ましい。
【0019】
本発明にかかる多孔体の比表面積、平均細孔径及び細孔容量は、以下に述べる方法により求めることができる。すなわち、多孔体を所定の容器に入れて液体窒素温度(−196℃)に冷却し、容器内に窒素ガスを導入して定容量法又は重量法によりその吸着量を求める。次いで、導入する窒素ガスの圧力を徐々に増加させ、各平衡圧に対する窒素ガスの吸着量をプロットして窒素吸着等温線を得る。この窒素吸着等温線を用い、SPE(Subtracting Pore Effect)法により比表面積、平均細孔径及び細孔容量を算出することができる(K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Carbon 30, 1075, 1986)。上記SPE法とは、αS−プロット法、t−プロット法等によってミクロ細孔解析を行い、ミクロ細孔の強いポテンシャル場の効果を取り除いて比表面積等を算出する方法であり、ミクロ細孔性多孔体の比表面積等の算出においてBET法よりも精度の高い方法である。
【0020】
本発明の含窒素炭素系多孔体の細孔形状は特に制限されず、例えば、多孔体表面のみに細孔が形成されていても、表面のみならず内部にも細孔が形成されていてもよく、内部にも細孔が形成されている場合には、例えば、トンネル状に貫通したものであってもよく、また、球状又は六角柱状等の多角形状の空洞が互いに連結したような形状を有していてもよい。
【0021】
また、上記含窒素炭素系多孔体の細孔配列構造は特に制限されないが、後述する本発明の製造方法によって含窒素炭素系多孔体を製造する場合には、使用する金属酸化物多孔体の細孔配列構造を反映した構造をとる。
【0022】
(含窒素炭素系多孔体の製造方法)
本発明の含窒素炭素系多孔体を得る方法として好適な、本発明の含窒素炭素系多孔体の製造方法について以下に説明する。
【0023】
本発明の含窒素炭素系多孔体の製造方法は、金属酸化物多孔体の細孔内に含窒素有機化合物を導入し、前記含窒素有機化合物を熱分解せしめることによって前記細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめる析出工程と、前記金属酸化物多孔体を溶解除去することによって含窒素炭素系材料からなる多孔体を得る除去工程と、を含むことを特徴とする、比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3である含窒素炭素系多孔体の製造方法である。
【0024】
本発明の含窒素炭素系多孔体の製造方法にかかる金属酸化物多孔体としては、金属酸化物及び複合金属酸化物等からなる多孔体が挙げられ、例えば、シリカメソ多孔体、ゼオライト、架橋粘土等が挙げられる。
【0025】
上記金属酸化物多孔体の細孔形状は特に制限されず、例えば、多孔体表面のみに細孔が形成されていても、表面のみならず内部にも細孔が形成されていてもよく、内部にも細孔が形成されている場合には、例えば、トンネル状に貫通したものであってもよく、また、球状又は六角柱状等の多角形状の空洞が互いに連結したような形状を有していてもよい。
【0026】
また、上記金属酸化物多孔体の細孔配列構造は特に制限されず、例えば、ヘキサゴナル構造、キュービック構造、ラメラ構造及び不規則構造等が挙げられる。
【0027】
本発明において、多孔体がヘキサゴナルの細孔配列構造を有するとは、多孔体中の細孔の配置が六方構造であることを意味する。ヘキサゴナルの細孔配列構造としては、2d−ヘキサゴナル(2次元ヘキサゴナル)及び3d−ヘキサゴナル(3次元ヘキサゴナル)が知られている。
【0028】
2次元ヘキサゴナルの細孔配列構造を有する多孔体は、六角柱状の細孔が互いに平行に規則的に配列しており、細孔断面の配置が六方構造になっているものであることを意味する(S. Inagaki, et al., J. Chem. Soc., Chem. Commun., 680, 1993 ; S. Inagaki, et al., Bull. Chem. Soc. Jpn., 69, 1449, 1996)。また、2次元ヘキサゴナルの細孔配列構造を有する多孔体における細孔の形状は、六角柱状に限られるわけではなく、細孔配列構造が2次元ヘキサゴナルであれば、例えば、多角柱状でも円柱状でもよい。
【0029】
一方、3次元ヘキサゴナルの細孔配列構造を有する多孔体は、細孔が3次元の周期性で六方構造をとるように配置しているものであることを意味する(Q. Huo et al., Science, 268, 1324, 1995)。
【0030】
多孔体がキュービックの細孔配列構造を有するとは、多孔体中の細孔の配置が立方構造であることを意味する(J. C. Vartuli et al., Chem. Mater., 6, 2317, 1994 ; Q. Huo et al., Nature, 368, 317, 1994)。また、前記キュービック構造は、Pm−3n対称性、Ia−3d対称性及びFm−3m対称性のうちの少なくとも一つの対称性を有するものであることが好ましい。なお、前記対称性とは、空間群の表記法に基づいて決定されるものである。
【0031】
なお、多孔体がヘキサゴナルやキュービック等の規則的細孔配列構造を有する場合は、細孔の全てがこれら規則的細孔配列構造である必要はないが、全ての細孔のうち80%以上がヘキサゴナルやキュービック等の規則的細孔配列構造となっていることが好ましい。
【0032】
更に、上記金属酸化物多孔体の比表面積、平均細孔径及び細孔容量は特に制限されないが、比表面積としては500〜1200m2/g、平均細孔径としては1〜100nm、細孔容量としては0.2〜1.5ml/gであることが好ましい。
【0033】
本発明の含窒素炭素系多孔体の製造方法にかかる金属酸化物多孔体としては、上述したような各種金属酸化物多孔体を単独若しくは2種以上を組み合わせて用いることができるが、中でもシリカメソ多孔体を用いることが好ましい。
【0034】
また、本発明の含窒素炭素系多孔体の製造方法にかかる金属酸化物多孔体としては、上述したような各種細孔配列構造を有する多孔体が挙げられ、このような多孔体を単独若しくは2種以上を組み合わせて用いることができるが、中でもキュービックの細孔配列構造を有する多孔体を用いることが好ましい。
【0035】
すなわち、本発明の含窒素炭素系多孔体の製造方法にかかる金属酸化物多孔体としては、キュービックの細孔配列構造を有するシリカメソ多孔体を用いることが最も好ましく、具体的には、MCM−48と称されるキュービックIa−3d細孔配列構造を有するシリカメソ多孔体等が挙げられる。このような金属酸化物多孔体は、含窒素炭素系多孔体を形成する際の鋳型として好適に働くため、析出工程においては含窒素炭素系材料が細孔内に析出しやすく、除去工程で金属酸化物多孔体を除去した際には、得られる含窒素炭素系多孔体が細孔構造を維持しやすい傾向がある。これによって、含窒素炭素系多孔体は高い比表面積を有し、優れた吸着性が得られる傾向がある。
【0036】
本発明の含窒素炭素系多孔体の製造方法にかかる含窒素有機化合物としては、窒素原子を含む有機化合物であれば特に制限はなく、例えば、含窒素複素環式化合物、アミン類、イミン類、ニトリル類等が挙げられる。
【0037】
上記含窒素複素環式化合物としては、含窒素複素単環化合物及び含窒素縮合複素環化合物が挙げられ、含窒素複素単環化合物としては、5員環化合物であるピロール及びその誘導体、ピラゾールやイミダゾール等のジアゾール類及びその誘導体、トリアゾール類及びその誘導体、並びに、6員環化合物であるピリジン及びその誘導体、ピリダジンやピリミジンやピラジン等のジアジン類及びその誘導体、トリアジン類及び、メラミンやシアヌル酸等のトリアジン類誘導体等が挙げられる。また、含窒素縮合複素環化合物としては、キノリン、フェナントロリン、プリン等が挙げられる。
【0038】
上記アミン類としては、第1級〜第3級アミン、ジアミン類、トリアミン類、ポリアミン類及びアミノ化合物等が挙げられる。第1級〜第3級アミンとしては、メチルアミン、エチルアミン、ジメチルアミン及びトリメチルアミン等の脂肪族アミン、並びに、アニリン等の芳香族アミン及びその誘導体等が挙げられ、ジアミン類としては、エチレンジアミン等が挙げられ、アミノ化合物としては、エタノールアミン等のアミノアルコール等が挙げられる。
【0039】
上記イミン類としては、ピロリジン及びエチレンイミン等が挙げられる。
【0040】
上記ニトリル類としては、アセトニトリル等の脂肪族ニトリル及びベンゾニトリル等の芳香族ニトリル等が挙げられる。
【0041】
その他の含窒素有機化合物としては、ナイロン等のポリアミド類、ガラクトサミン等のアミノ糖、ポリアクリロニトリル等の含窒素高分子化合物、アミノ酸及びポリイミド類等が挙げられる。
【0042】
本発明の含窒素炭素系多孔体の製造方法にかかる含窒素有機化合物としては、上述したような各種化合物を単独若しくは2種以上を組み合わせて用いることができるが、中でも含窒素複素環式化合物を用いることが好ましく、ピロール及び/又はピリジンを用いることがより好ましい。このような含窒素有機化合物を用いることで、より窒素含有量が高く、細孔構造を維持した状態で、含窒素炭素系多孔体が形成されやすい傾向がある。これによって、窒素原子と炭素原子との原子比(N/C)及び比表面積が高く、優れた吸着性を有する多孔体が得られる傾向がある。一方、特に窒素原子と炭素原子との原子比(N/C)の向上を目指す場合には、上記含窒素有機化合物の中でも、より窒素含有量が高いものを用いることが好ましい。
【0043】
以下、本発明の含窒素炭素系多孔体の製造方法にかかる各工程について説明する。
【0044】
先ず、本発明の含窒素炭素系多孔体の製造方法にかかる析出工程について説明する。析出工程は、金属酸化物多孔体の細孔内に含窒素有機化合物を導入し、前記含窒素有機化合物を熱分解せしめることによって前記細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめる工程である。このような工程を行う方法としては特に制限はなく、例えば、熱CVD法、プラズマCVD法等が挙げられるが、中でも熱CVD法が好ましい。以下、熱CVD法によって析出工程を行う手順を示す。
【0045】
先ず、反応管中に金属酸化物多孔体を設置し、窒素又はアルゴン等の不活性ガスを反応管内に導入しながら所定の温度まで加熱する。次に、加熱状態を維持したまま、気体状態の含窒素有機化合物を反応管内に導入することによって、金属酸化物多孔体の細孔内に含窒素有機化合物を導入せしめながら、所定時間のCVD反応を行う。これによって、金属酸化物多孔体の細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめることができる。
【0046】
上記熱CVD法による析出工程は、反応雰囲気が酸化雰囲気である場合には炭素の燃焼が起こるため、通常、窒素又はアルゴン等の不活性雰囲気で行われる。
【0047】
上記熱CVD法による析出工程において、含窒素有機化合物が常温で液体状態である場合には、バブラ、マスフローポンプ等を用い、蒸気蒸発によって含窒素有機化合物を気体状態として反応管内に導入することができる。また、このときに窒素又はアルゴン等をキャリヤガスとして用いて気体状態の含窒素有機化合物の導入を行うことが好ましい。更に、一度反応管内を流通させた気体が、反応管の出口側から逆流しないように、反応管出口側に流動パラフィン等を入れたバブラを設置する等して逆流を防ぐことが好ましい。
【0048】
上記含窒素有機化合物が常温で固体状態である場合には、加熱蒸発(昇華)器を反応管入口側に設置し、加熱によって含窒素有機化合物を気体状態として反応管へ導入することができる。また、このときの蒸発器の温度は、含窒素有機化合物が熱分解しない温度に調整する必要がある。
【0049】
また、上記含窒素有機化合物が重合性を有する場合には、予め金属酸化物多孔体の細孔内において重合を行っておき、その後、反応管中、不活性雰囲気下で熱分解するという方法をとることもできる。
【0050】
更に、上記含窒素有機化合物が加熱によって気化しないものである場合には、溶液吸着法や蒸発乾固法等によって、金属酸化物多孔体の細孔内に予め含窒素有機系化合物を導入し、これを不活性雰囲気下で熱分解することによって、金属酸化物多孔体の細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめることができる。
【0051】
上記熱CVD法による析出工程における反応温度は、含窒素有機化合物が熱分解及び炭素化する温度であれば特に制限されないが、500〜1000℃であることが好ましく、650〜700℃の範囲であることがより好ましい。反応温度が500℃未満の場合には、含窒素有機化合物の熱分解が起こりにくくなるため、含窒素炭素系材料の析出速度が遅くなってしまい、反応時間及びエネルギー消費が大きくなる傾向がある。また、反応温度が1000℃を超える場合には、含窒素炭素系材料の析出速度が早過ぎてしまい、金属酸化物多孔体表面等の細孔内以外の部分で析出が起こりやすくなる傾向がある。
【0052】
本発明の含窒素炭素系多孔体の製造方法にかかる析出工程において、金属酸化物多孔体の細孔内に析出させる含窒素炭素系材料の析出量は、金属酸化物多孔体1g当りの細孔容量をYmlとした場合、(0.2×Y)g以上であることが好ましく、(0.4×Y)〜(1.4×Y)gであることがより好ましい。含窒素炭素系材料の析出量が(0.2×Y)g未満の場合には、析出量が少ないため、この後に説明する除去工程で金属酸化物多孔体を除去した際に、含窒素炭素系多孔体が細孔構造を維持しにくくなる傾向がある。また、含窒素炭素系材料の析出量が(1.4×Y)gを超える場合には、金属酸化物多孔体の表面部分にまで含窒素炭素系材料が析出しやすい傾向があり、最終的に得られる含窒素炭素系多孔体の比表面積が低下してしまう傾向がある。
【0053】
また、上記析出量は、熱CVD法によって析出工程を行う場合、CVD反応時間と相関関係があり、CVD反応時間を調整することによって析出量をある程度制御することが可能となる。更に、上記析出量は、CVD反応温度、金属酸化物多孔体の種類、含窒素有機化合物の種類、及び含窒素有機化合物を導入する際の流量等によっても変化するが、それぞれの場合でCVD反応時間を適宜調整することによって析出量をある程度制御することが可能となる。
【0054】
次に、本発明の含窒素炭素系多孔体の製造方法にかかる除去工程について説明する。除去工程は、金属酸化物多孔体を溶解除去することによって含窒素炭素系材料からなる多孔体を得る工程である。除去工程においては、含窒素炭素系材料を溶解することなく金属酸化物多孔体のみを溶解除去することが必要であり、例えば、化学的に溶解させる方法として、フッ酸やアルカリ等を用いて処理する方法が挙げられる。処理方法としては、例えば、析出工程で得られた金属酸化物多孔体−含窒素炭素系材料複合体を上記処理溶液に分散させる方法が挙げられる。分散による処理時間としては特に制限されないが、6〜24時間であることが好ましい。これによって、金属酸化物多孔体のみを溶解除去し、含窒素炭素系材料からなる多孔体を得ることができる。また、処理溶液としてフッ酸を用いる場合には、エタノール等と混合して用いてもよい。このとき、フッ酸とエタノール等との混合比率としては特に制限されないが、体積比として1:2〜2:1であることが好ましい。
【0055】
また、上記除去工程において、金属酸化物多孔体を溶解除去した後に、必要に応じて、ろ過、洗浄及び乾燥を行ってもよい。洗浄液としては、例えば、水、エタノール及びそれらの混合溶液等を用いることができる。
【0056】
上記除去工程における処理温度は特に制限されず、通常、室温で行うことができる。
【0057】
本発明の含窒素炭素系多孔体の製造方法は、以上説明した析出工程及び除去工程によって、含窒素炭素系多孔体を製造する方法であり、この方法によって、比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3である含窒素炭素系多孔体を製造することができる。
【0058】
本発明により得られた含窒素炭素系多孔体の使用方法は特に制限されず、例えば、排ガスや廃水等に含まれる有害物質を除去する方法として、有害物質を含む気体又は液体と含窒素炭素系多孔体とをバッチ式あるいは連続的に接触させることによって、有害物質の吸着除去が達成される。また、本発明により得られた含窒素炭素系多孔体は上述のような吸着剤としての用途以外にも、その優れた吸着性を利用して、分離剤や触媒担体等、様々な用途への適用が可能である。
【0059】
【実施例】
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0060】
実施例1
先ず、図1に示すような熱CVD装置を用いて析出工程を行った。析出工程における反応雰囲気は全て窒素雰囲気とした。また、第1のバブラ4には含窒素有機化合物であるピロールが、第2のバブラ5には流動パラフィンがそれぞれ入れられている。キュービックIa−3d細孔配列構造を有するシリカメソ多孔体であるMCM−48をアルミナ製ボート3上に1g載せ、これを石英ガラス製の加熱反応管(石英反応管2)内に配置した。なお、MCM−48は J. Phys. Chem. B 103, 7435-7440 (1999) に記載の方法に従って作製した。次に、第1の三方コック13を第1の配管8とバイパス9側に開いた状態とし、第2の三方コック14を第2の配管10とバイパス9側に開いた状態として、流量300ml/minで窒素ガスを流通させながら700℃まで昇温加熱した。700℃まで昇温後、加熱状態を1時間維持した後、第1の三方コック13を配管8と第1のバブラ4側に開いた状態とし、第2の三方コック14を第2の配管10と第1のバブラ4側に開いた状態とした。次いで、窒素ガスをキャリヤガスとして流量300ml/minで第1のバブラ4に導入してピロールを蒸気蒸発させ、気体状態のピロールを含有する室温の窒素ガスを上記温度に維持した石英反応管2内に流通させながら、CVD反応を9時間進行せしめた。このとき、MCM−48における含窒素炭素系材料の析出量は1.2gであった。CVD反応後、再び第1の三方コック13を第1の配管8とバイパス9側に開いた状態とし、第2の三方コック14を第2の配管10とバイパス9側に開いた状態として、窒素ガスを流量300ml/minで流通させながら常温まで冷却した。
【0061】
次に、除去工程を行った。すなわち、上記析出工程で得られたシリカメソ多孔体−含窒素炭素系材料複合体を、46%フッ酸(和光純薬工業社製、特級)とエタノールとの混合溶液(体積比50:50)中に分散させ、25℃で12時間撹拌することによって、シリカメソ多孔体を溶解除去し、含窒素炭素系多孔体を得た。次いで、得られた含窒素炭素系多孔体を1時間吸引ろ過してから、ろ紙上で、水とエタノールとの混合溶液(体積比50:50)を用いて洗浄し、更に前記混合溶液中に含窒素炭素系多孔体を分散させ、25℃で12時間撹拌した。その後、再び含窒素炭素系多孔体を1時間吸引ろ過し、ろ紙上でエタノールを用いて洗浄してから70℃で24時間風乾することで、最終的な含窒素炭素系多孔体を得た。
【0062】
実施例2
実施例1において、析出工程におけるCVD反応時間を6時間とした以外は実施例1と同様にして、含窒素炭素系多孔体を得た。析出工程における含窒素炭素系材料の析出量は1.0gであった。
【0063】
実施例3
実施例1において、析出工程におけるCVD反応時間を3時間とした以外は実施例1と同様にして、含窒素炭素系多孔体を得た。析出工程における含窒素炭素系材料の析出量は0.4gであった。
【0064】
実施例4
実施例1において、析出工程における加熱温度を650℃とし、CVD反応時間を15時間とした以外は実施例1と同様にして、含窒素炭素系多孔体を得た。析出工程における含窒素炭素系材料の析出量は1.0gであった。
【0065】
(窒素原子の化学的状態の解析)
実施例1で得られた含窒素炭素系多孔体中の窒素原子の化学的状態を解析するために、アルバック・ファイ社製、5500MCを用いてX線光電子分光法による測定を行った。X線源はMgKα線を用い、分析領域は約800μmφとした。その結果を図2に示す。ピーク分離を行うと、主ピークとして401.1eV及び398.6eVの位置にピークが存在することがわかった。401.1eVの位置のピークは、四環系縮合複素環中のクオータナリー(quaternary)状態の窒素原子に対応しており、398.6eVの位置のピークは、三環系縮合複素環中のピリジニック(pyridinic)状態の窒素原子に対応している。この結果から、含窒素炭素系多孔体中の窒素原子は、骨格中から失われることなく、2種類の化学的状態で炭素原子と共に骨格を形成していることが確認された。
【0066】
(細孔配列構造の解析)
実施例1〜3で得られた含窒素炭素系多孔体のX線回折パターンを図3に示す。X線回折パターンの測定は、理学電機社製、RINT−2200を用いて行った。X線源はCuKα線を用いた。この結果によると、全ての多孔体に共通して回折角2θ=2.4°にピークが見られるが、これはシリカメソ多孔体に通常見られる周期的に配列した細孔配列構造に由来するピークと同じものであり、実施例1〜3で得られた含窒素炭素系多孔体中の細孔が、周期的構造を有していることを示している。また、この周期長は、細孔の鋳型としたシリカメソ多孔体の周期細孔の周期長とほぼ同じであり、実施例1〜3で得られた含窒素炭素系多孔体の細孔がシリカメソ多孔体の細孔配列構造を忠実に反映していることが確認された。
【0067】
(含窒素炭素系材料の析出量)
実施例1〜4の析出工程における、CVD反応時間と含窒素炭素系材料の析出量との関係を図4に示す。この結果によると、CVD反応時間の経過に伴い、ほぼ直線的に含窒素炭素系材料の析出量が増加しており、また、CVD反応温度によって析出速度が異なることがわかった。このようなCVD法によって析出する含窒素炭素系材料は、通常、アモルファス状態の炭素であり、その密度は約1.5g/mlとなる。また、実施例1〜4で鋳型として用いたMCM−48は、細孔容量が1g当り約1.0ml/gであるから、その細孔内に析出可能な含窒素炭素系材料の最大量は約1.5gとなる。実施例1では、含窒素炭素系材料の析出量が1.2gであり、最大析出量に近い量がMCM−48の細孔内に析出していることが確認された。
【0068】
(シリカメソ多孔体−含窒素炭素系材料複合体の窒素吸着等温線)
MCM−48、MCM−48を空気中700℃で6時間焼成したもの(以下、MCM−700℃という)、及び実施例1〜3の析出工程において得られたシリカメソ多孔体−含窒素炭素系材料複合体の窒素吸着等温線を図5に示す。本発明において窒素吸着等温線は、Quantachrome社製、AUTOSORB−1を用いて測定した。この結果から、MCM−700℃の窒素吸着量が、焼成前のMCM−48に比べて減少していることが確認された。すなわち、MCM−48は焼成によって細孔径及び細孔容量が低下し、細孔容量としては0.91ml/gにまで低下していることが確認された。この細孔容量の数値から、上述したMCM−48の細孔内に析出可能な含窒素炭素系材料の最大量を算出すると、約1.35gとなり、実施例1ではMCM−48の細孔内をほぼ充填する量が析出していることが確認された。また、図5における実施例1〜3の窒素吸着量の結果からは、含窒素炭素系材料の析出量の増加に伴い、窒素吸着量が減少していることが確認された。ここで、最も析出量の少ない実施例3とMCM−48、及びMCM−700℃の窒素吸着等温線を見ると、何れの場合でも相対圧力が0.3〜0.4の領域において、メソ細孔への毛細管凝縮に対応した吸着量の立ち上がりが観察される。それが最も低圧側に見られるのは実施例3であり、表面と吸着質の接触角がシリカと炭素の表面で変わらないと仮定すると、実施例3の細孔径は、MCM−48やMCM−700℃よりも小さいことになる。これは、MCM−48の細孔内部に含窒素炭素系材料が析出し、徐々にその細孔を埋めていっていることを裏付けるものである。よって、更に析出量を増やした実施例1、2でほとんど窒素吸着が見られないのは、細孔内部が含窒素炭素系材料によって完全に充填されたためと考えられ、本発明の析出工程では、鋳型となる金属酸化物多孔体の細孔内に、確実に含窒素炭素系材料が析出していることが確認された。
【0069】
比較例1
実施例1において、含窒素有機化合物であるピロールに代えて、窒素原子を含まない有機化合物であるベンゼンを使用し、析出工程におけるCVD反応時間を12時間とした以外は実施例1と同様にして、炭素系多孔体を得た。析出工程における炭素系材料の析出量は1.1gであった。
【0070】
比較例2
ポリアクリロニトリル粉末を、空気中200℃で1時間酸化反応を行い、ポリアクリロニトリルの酸化粉末を得た。その後、反応雰囲気をアルゴン雰囲気に切り替え、得られた酸化粉末を昇温速度250℃/hで200℃〜900℃まで加熱することで炭素化を行った。更に、加熱状態を維持したまま、二酸化炭素雰囲気に切り替え、ガス賦活処理を900℃で2時間行った。その後、アルゴン雰囲気に切り替え、常温まで冷却し、含窒素炭素系多孔体を得た。
【0071】
比較例3
比較例2において、ガス賦活処理を4時間行った以外は比較例2と同様にして、含窒素炭素系多孔体を得た。
【0072】
比較例4
比較例2において、ガス賦活処理を8時間行った以外は比較例2と同様にして、含窒素炭素系多孔体を得た。
【0073】
(比表面積、平均細孔径及び細孔容量の測定)
実施例1〜4及び比較例1〜4で得られた多孔体について、吸着側及び脱着側の窒素吸着等温線を測定し、SPE法により比表面積、平均細孔径及び細孔容量を算出した。その結果を表1に示す。また、実施例1〜3で得られた含窒素炭素系多孔体の窒素吸着等温線を図6に示す。
【0074】
【表1】

Figure 0004856838
【0075】
(窒素原子と炭素原子との原子比(N/C)の測定)
実施例1〜4及び比較例1〜4で得られた多孔体について、Elementar社製、VarioELを用いてCHN元素分析を行い、窒素原子と炭素原子との原子比(N/C)を測定した。その結果を表2に示す。
【0076】
【表2】
Figure 0004856838
【0077】
(重金属イオン吸着性の測定)
実施例1、4及び比較例1〜4で得られた多孔体について、以下の方法により重金属イオン吸着性の測定を行った。
【0078】
先ず、実施例1、4及び比較例1〜4で得られた多孔体0.5g(乾燥重量)を、1mmol/Lの濃度に調整した硝酸銅(II)水溶液100mLに加え、25℃で48時間振とうを行った。その後、溶液をろ別し、ろ液中の銅イオン濃度を、島津製作所社製、ICPS−2000を用いてICP発光分光分析によって定量した。硝酸銅(II)水溶液の初期濃度とろ液の銅イオン濃度との差から、多孔体への銅イオン吸着量を求めた。その結果を表3に示す。
【0079】
【表3】
Figure 0004856838
【0080】
以上の結果から明らかなように、本発明の含窒素炭素系多孔体(実施例1、4)は、比較例1〜4の多孔体と比較して高い吸着性を示すことが確認された。
【0081】
【発明の効果】
以上説明したように、本発明によれば、比表面積及び窒素原子と炭素原子との原子比(N/C)の両方がバランス良く高水準に維持され、高比表面積による吸着性の向上と、高窒素含有率による吸着性の向上が同時に十分に達成された含窒素炭素系多孔体を得ることができる。また、その優れた吸着性を利用して、吸着剤、分離剤、触媒担体等の様々な用途への適用が可能である。
【図面の簡単な説明】
【図1】実施例及び比較例で用いる熱CVD装置の概略図である。
【図2】実施例1で得られた含窒素炭素系多孔体のX線光電子分光法による測定結果を示すグラフである。
【図3】実施例1〜3で得られた含窒素炭素系多孔体のX線回折パターンを示すグラフである。
【図4】実施例1〜4の析出工程におけるCVD反応時間と含窒素炭素系材料の析出量との関係を示すグラフである。
【図5】実施例1〜3の析出工程において得られたシリカメソ多孔体−含窒素炭素系材料複合体、MCM−48及びMCM−700℃の窒素吸着等温線を示すグラフである。
【図6】実施例1〜3で得られた含窒素炭素系多孔体中の窒素吸着等温線を示すグラフである。
【符号の説明】
1・・・電気炉、2・・・石英反応管、3・・・アルミナ製ボート、4・・・第1のバブラ、5・・・第2のバブラ、6・・・原料有機化合物、7・・・流動パラフィン、8・・・第1の配管、9・・・バイパス、10・・・第2の配管、11・・・第3の配管、12・・・第4の配管、13・・・第1の三方コック、14・・・第2の三方コック。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrogen-containing carbon-based porous body and a method for producing the same.
[0002]
[Prior art]
Conventionally, various studies on porous bodies have been made, and application to various uses such as an adsorbent, a separating agent, a catalyst carrier, etc. has been studied using the adsorptivity thereof. In particular, as a technique for removing harmful substances contained in exhaust gas, waste water, etc., a harmful substance adsorption removal technique using a porous body is widely used. Various porous bodies are known for such applications, and activated carbon is one of typical porous bodies.
[0003]
Such activated carbon is a porous body having a skeleton formed of carbon atoms, and has a high specific surface area. This high specific surface area has been conventionally activated in the production process, and is a material that becomes activated carbon. It was obtained by forming pores on the surface. As this activation treatment, for example, the raw material composition is heated to 600 to 1000 ° C. in an atmosphere of water vapor, carbon dioxide or the like, or the raw material composition is mixed with zinc chloride, potassium hydroxide or the like, and the inert atmosphere. Heating under is known. In the process of this activation treatment, a large number of pores are formed on the surface of the material to be activated carbon, and as a result activated carbon with a high specific surface area is obtained, but there is a limit to the improvement in adsorptivity only by improving the specific surface area, It was not enough yet.
[0004]
On the other hand, a method for improving the adsorptivity of activated carbon other than increasing the specific surface area has also been studied. Japanese Patent Application Laid-Open No. 5-64789 (Patent Document 1) discloses a water-polluting organic substance-containing waste liquid as an activated carbon material. In the method of treating in the presence of, the active carbon material contains 1 to 5 wt% nitrogen, 3 to 30 wt% oxygen, 40 to 95 wt% carbon, and an average pore radius of 1.5 to 3 It is described to use one that is 0.0 nm.
[0005]
[Patent Document 1]
JP-A-5-64789
[0006]
[Problems to be solved by the invention]
However, even in the activated carbon material described in JP-A-5-64789 (Patent Document 1), the specific surface area is increased by the activation treatment, and thus the porous body has a high specific surface area by increasing the activation degree. However, at the same time, nitrogen atoms present in the skeleton of the porous body were lost, and only a low nitrogen content was obtained. In fact, what is substantially described in the examples in the above publication is only an activated carbon material having a low nitrogen content with an atomic ratio (N / C) of nitrogen atoms to carbon atoms of about 0.042 or less. The adsorptivity was still not sufficient.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and both the specific surface area and the atomic ratio (N / C) of nitrogen atoms to carbon atoms are maintained at a high level in a well-balanced manner. An object of the present invention is to provide a nitrogen-containing carbon-based porous body in which the improvement of the adsorptivity by adsorption and the improvement of the adsorptivity by the high nitrogen content are simultaneously achieved, and a production method thereof.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors of the present invention are made of a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms. 2 In a nitrogen-containing carbon-based porous material having a specific surface area of at least / g and an average pore diameter of 1 to 5 nm, the atomic ratio (N / C) of nitrogen atoms to carbon atoms is 0.08 to 0.3. As a result, it was found that a nitrogen-containing carbon-based porous body particularly excellent in adsorptivity was obtained, and the present invention was completed.
[0009]
That is, the nitrogen-containing carbon-based porous body of the present invention is a porous body made of a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms, and has a specific surface area of 600 m. 2 / G or more, the average pore diameter is 1 to 5 nm, and the atomic ratio (N / C) of nitrogen atom to carbon atom is 0.08 to 0.3. is there.
[0010]
In the method for producing a nitrogen-containing carbon-based porous body of the present invention, a nitrogen-containing organic compound is introduced into the pores of the metal oxide porous body, and the nitrogen-containing organic compound is thermally decomposed into the pores. A precipitation step of precipitating a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms; and a removal step of obtaining a porous body made of a nitrogen-containing carbon-based material by dissolving and removing the metal oxide porous body. The specific surface area is 600 m 2 Of nitrogen-containing carbon-based porous material having an average pore diameter of 1 to 5 nm and an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.08 to 0.3. Is the method.
[0011]
In the method for producing a nitrogen-containing carbon-based porous body of the present invention, the metal oxide porous body is preferably a silica mesoporous body. In the method for producing a nitrogen-containing carbon-based porous body of the present invention, the metal oxide porous body is preferably a porous body having a cubic pore arrangement structure. Furthermore, in the method for producing a nitrogen-containing carbon-based porous body of the present invention, the nitrogen-containing organic compound is preferably a nitrogen-containing heterocyclic compound.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[0013]
(Nitrogen-containing carbon-based porous material)
The nitrogen-containing carbon-based porous body of the present invention is a porous body made of a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms, and the atomic ratio (N / C) of nitrogen atoms to carbon atoms is , 0.08 to 0.3. By forming the skeleton of the porous body with carbon atoms and nitrogen atoms at such an atomic ratio, it is possible to sufficiently form surface functional groups containing nitrogen atoms on the surface of the porous body and interact with the adsorbate. An adsorption site can be provided. And, it is possible to show excellent adsorptivity by the synergistic effect of the adsorption site having this unique adsorptivity and the physical adsorption action obtained by the high specific surface area of the porous material and the average pore diameter in a specific range. Then, the present inventors speculate. In particular, when the object to be adsorbed is an ionic soluble component such as a heavy metal ion, it is possible to exhibit excellent adsorptivity that cannot be obtained by a conventional porous body due to the interaction of the adsorption sites. The upper limit of the atomic ratio (N / C) between the nitrogen atom and the carbon atom is 0.3, more preferably 0.2, and further preferably 0.15. On the other hand, the lower limit is 0.08, more preferably 0.09. When the atomic ratio (N / C) of nitrogen atoms to carbon atoms is less than 0.08, the surface functional groups containing nitrogen atoms are reduced, and the adsorption sites that can interact with the adsorbent Since the function is lowered, sufficient adsorptivity cannot be obtained. Moreover, when the atomic ratio (N / C) of the nitrogen atom to the carbon atom exceeds 0.3, the strength of the carbon skeleton of the porous body is reduced, and it becomes difficult to maintain the pore structure. The specific surface area is reduced and the adsorptivity is reduced.
[0014]
In addition, the atomic ratio (N / C) of the nitrogen atom of the porous body concerning this invention and a carbon atom (N / C) can be calculated | required by CHN elemental analysis.
[0015]
Further, the skeleton of the nitrogen-containing carbon-based porous body only needs to be formed of at least carbon atoms and nitrogen atoms, and may contain hydrogen atoms, oxygen atoms, and the like as other atoms. In that case, the atomic ratio ((other atoms) / (C + N)) of other atoms to carbon atoms and nitrogen atoms is preferably 0.3 or less.
[0016]
The specific surface area of the nitrogen-containing carbon-based porous body is 600 m. 2 / G or more, 700m 2 / G or more is preferable, 800-1500m 2 More preferably, it is / g. Specific surface area is 600m 2 If it is less than / g, the contact area with the object to be adsorbed and the pores taking in the object to be adsorbed are reduced, and the adsorptivity becomes extremely low.
[0017]
The average pore diameter of the nitrogen-containing carbon-based porous body is required to be 1 to 5 nm, and more preferably 2 to 3 nm. When the average pore diameter is less than 1 nm, the pore size is often smaller than the size of the object to be adsorbed, and the adsorptivity is reduced. Moreover, when an average pore diameter exceeds 5 nm, the fall of a specific surface area will be caused and adsorptivity will fall.
[0018]
Further, the pore volume of the nitrogen-containing carbon-based porous body is not particularly limited because it varies depending on the specific surface area and the average pore diameter, but is preferably 0.3 to 1.2 ml / g.
[0019]
The specific surface area, average pore diameter and pore volume of the porous body according to the present invention can be determined by the method described below. That is, the porous body is put in a predetermined container, cooled to liquid nitrogen temperature (−196 ° C.), nitrogen gas is introduced into the container, and the adsorption amount is obtained by a constant volume method or a weight method. Next, the pressure of the introduced nitrogen gas is gradually increased, and the amount of nitrogen gas adsorbed with respect to each equilibrium pressure is plotted to obtain a nitrogen adsorption isotherm. Using this nitrogen adsorption isotherm, the specific surface area, average pore diameter and pore volume can be calculated by the SPE (Subtracting Pore Effect) method (K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Carbon 30, 1075, 1986). The SPE method is α S -A micropore analysis is performed by a plot method, a t-plot method, etc., and the effect of the strong potential field of the micropore is removed to calculate the specific surface area, etc. This method is more accurate than the BET method in calculation.
[0020]
The pore shape of the nitrogen-containing carbon-based porous body of the present invention is not particularly limited. For example, even if pores are formed only on the surface of the porous body, pores are formed not only on the surface but also on the inside. Well, when pores are also formed inside, for example, it may be tunnel-shaped, and a shape in which polygonal cavities such as a spherical shape or a hexagonal column shape are connected to each other. You may have.
[0021]
Further, the pore arrangement structure of the nitrogen-containing carbon-based porous body is not particularly limited, but when the nitrogen-containing carbon-based porous body is manufactured by the manufacturing method of the present invention described later, the metal oxide porous body to be used is fine. The structure reflects the hole arrangement structure.
[0022]
(Method for producing nitrogen-containing carbon-based porous material)
A method for producing the nitrogen-containing carbon-based porous material of the present invention, which is suitable as a method for obtaining the nitrogen-containing carbon-based porous material of the present invention, will be described below.
[0023]
The method for producing a nitrogen-containing carbon-based porous body according to the present invention introduces a nitrogen-containing organic compound into the pores of a metal oxide porous body, and thermally decomposes the nitrogen-containing organic compound, thereby carbon atoms in the pores. And a precipitation step of depositing a nitrogen-containing carbon-based material having a skeleton formed by nitrogen atoms, and a removal step of obtaining a porous body made of the nitrogen-containing carbon-based material by dissolving and removing the metal oxide porous material. The specific surface area is 600 m. 2 Of nitrogen-containing carbon-based porous material having an average pore diameter of 1 to 5 nm and an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.08 to 0.3. Is the method.
[0024]
Examples of the metal oxide porous body according to the method for producing a nitrogen-containing carbon-based porous body of the present invention include a porous body made of a metal oxide and a composite metal oxide, for example, a silica mesoporous body, a zeolite, a crosslinked clay, etc. Is mentioned.
[0025]
The pore shape of the metal oxide porous body is not particularly limited. For example, pores may be formed only on the surface of the porous body, or pores may be formed not only on the surface but also on the inside. In the case where pores are also formed, for example, it may be tunnel-shaped, and it has a shape in which polygonal cavities such as spherical or hexagonal columns are connected to each other. May be.
[0026]
Moreover, the pore arrangement | sequence structure in particular of the said metal oxide porous body is not restrict | limited, For example, a hexagonal structure, a cubic structure, a lamella structure, an irregular structure, etc. are mentioned.
[0027]
In the present invention, the porous body having a hexagonal pore arrangement structure means that the arrangement of the pores in the porous body is a hexagonal structure. As the pore arrangement structure of hexagonal, 2d-hexagonal (two-dimensional hexagonal) and 3d-hexagonal (three-dimensional hexagonal) are known.
[0028]
A porous body having a two-dimensional hexagonal pore arrangement structure means that hexagonal columnar pores are regularly arranged in parallel to each other, and the arrangement of the pore cross section has a hexagonal structure. (S. Inagaki, et al., J. Chem. Soc., Chem. Commun., 680, 1993; S. Inagaki, et al., Bull. Chem. Soc. Jpn., 69, 1449, 1996). In addition, the shape of the pores in the porous body having a two-dimensional hexagonal pore arrangement structure is not limited to a hexagonal columnar shape. If the pore arrangement structure is a two-dimensional hexagonal, for example, a polygonal columnar shape or a cylindrical shape may be used. Good.
[0029]
On the other hand, a porous body having a three-dimensional hexagonal pore arrangement structure means that the pores are arranged so as to have a hexagonal structure with a three-dimensional periodicity (Q. Huo et al., Science, 268, 1324, 1995).
[0030]
A porous material having a cubic pore arrangement structure means that the arrangement of pores in the porous material is a cubic structure (JC Vartuli et al., Chem. Mater., 6, 2317, 1994; Q Huo et al., Nature, 368, 317, 1994). The cubic structure preferably has at least one of Pm-3n symmetry, Ia-3d symmetry, and Fm-3m symmetry. The symmetry is determined based on the space group notation.
[0031]
In addition, when the porous body has a regular pore arrangement structure such as hexagonal or cubic, it is not necessary that all the pores have these regular pore arrangement structures, but more than 80% of all the pores It is preferable to have a regular pore arrangement structure such as hexagonal or cubic.
[0032]
Further, the specific surface area, average pore diameter and pore volume of the metal oxide porous body are not particularly limited, but the specific surface area is 500 to 1200 m. 2 / G, the average pore diameter is preferably 1 to 100 nm, and the pore volume is preferably 0.2 to 1.5 ml / g.
[0033]
As the metal oxide porous body according to the method for producing a nitrogen-containing carbon-based porous body of the present invention, various metal oxide porous bodies as described above can be used alone or in combination of two or more kinds. It is preferable to use a body.
[0034]
Moreover, as a metal oxide porous body concerning the manufacturing method of the nitrogen-containing carbon-type porous body of this invention, the porous body which has the above various pore arrangement | sequence structures is mentioned, Such a porous body is independent or 2 More than one species can be used in combination, but among these, it is preferable to use a porous body having a cubic pore arrangement structure.
[0035]
That is, as the metal oxide porous body according to the method for producing the nitrogen-containing carbon-based porous body of the present invention, it is most preferable to use a silica mesoporous body having a cubic pore arrangement structure, specifically, MCM-48. And a silica mesoporous material having a cubic Ia-3d pore arrangement structure. Since such a metal oxide porous body suitably works as a template when forming a nitrogen-containing carbon-based porous body, the nitrogen-containing carbon-based material is likely to precipitate in the pores in the precipitation step, and the metal is removed in the removal step. When the oxide porous body is removed, the resulting nitrogen-containing carbon-based porous body tends to maintain the pore structure. Accordingly, the nitrogen-containing carbon-based porous body has a high specific surface area and tends to obtain excellent adsorptivity.
[0036]
The nitrogen-containing organic compound according to the method for producing a nitrogen-containing carbon-based porous body of the present invention is not particularly limited as long as it is an organic compound containing a nitrogen atom. For example, nitrogen-containing heterocyclic compounds, amines, imines, Nitriles and the like can be mentioned.
[0037]
Examples of the nitrogen-containing heterocyclic compound include a nitrogen-containing heterocyclic monocyclic compound and a nitrogen-containing condensed heterocyclic compound, and examples of the nitrogen-containing heterocyclic monocyclic compound include pyrrole and its derivatives, pyrazole and imidazole which are 5-membered ring compounds. Such as diazoles and derivatives thereof, triazoles and derivatives thereof, pyridine and derivatives thereof as 6-membered ring compounds, diazines and derivatives thereof such as pyridazine, pyrimidine and pyrazine, triazines and melamine and cyanuric acid And triazine derivatives. Examples of the nitrogen-containing condensed heterocyclic compound include quinoline, phenanthroline, and purine.
[0038]
Examples of the amines include primary to tertiary amines, diamines, triamines, polyamines, and amino compounds. Examples of primary to tertiary amines include aliphatic amines such as methylamine, ethylamine, dimethylamine and trimethylamine, and aromatic amines such as aniline and derivatives thereof. Examples of diamines include ethylenediamine. Examples of the amino compound include amino alcohols such as ethanolamine.
[0039]
Examples of the imines include pyrrolidine and ethyleneimine.
[0040]
Examples of the nitriles include aliphatic nitriles such as acetonitrile and aromatic nitriles such as benzonitrile.
[0041]
Examples of other nitrogen-containing organic compounds include polyamides such as nylon, amino sugars such as galactosamine, nitrogen-containing polymer compounds such as polyacrylonitrile, amino acids, and polyimides.
[0042]
As the nitrogen-containing organic compound according to the method for producing a nitrogen-containing carbon-based porous body of the present invention, various compounds as described above can be used alone or in combination of two or more, and among them, a nitrogen-containing heterocyclic compound is used. It is preferable to use pyrrole and / or pyridine. By using such a nitrogen-containing organic compound, the nitrogen-containing carbon-based porous body tends to be easily formed in a state where the nitrogen content is higher and the pore structure is maintained. This tends to provide a porous body having a high atomic ratio (N / C) and specific surface area between nitrogen atoms and carbon atoms and having excellent adsorptivity. On the other hand, when aiming at the improvement of the atomic ratio (N / C) between a nitrogen atom and a carbon atom, it is preferable to use one having a higher nitrogen content among the above nitrogen-containing organic compounds.
[0043]
Hereafter, each process concerning the manufacturing method of the nitrogen-containing carbon type porous body of this invention is demonstrated.
[0044]
First, the precipitation process concerning the manufacturing method of the nitrogen-containing carbon-type porous body of this invention is demonstrated. In the precipitation step, a skeleton is formed by carbon atoms and nitrogen atoms in the pores by introducing a nitrogen-containing organic compound into the pores of the metal oxide porous body and thermally decomposing the nitrogen-containing organic compound. This is a step of depositing a nitrogen-containing carbon-based material. There is no restriction | limiting in particular as a method of performing such a process, For example, although thermal CVD method, plasma CVD method, etc. are mentioned, Thermal CVD method is especially preferable. Hereinafter, the procedure for performing the deposition step by the thermal CVD method is shown.
[0045]
First, a metal oxide porous body is placed in a reaction tube, and heated to a predetermined temperature while introducing an inert gas such as nitrogen or argon into the reaction tube. Next, while maintaining the heated state, a nitrogen-containing organic compound in a gaseous state is introduced into the reaction tube, so that the nitrogen-containing organic compound is introduced into the pores of the metal oxide porous body, and a CVD reaction is performed for a predetermined time. I do. Thereby, a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms in the pores of the metal oxide porous body can be deposited.
[0046]
The deposition step by the thermal CVD method is usually performed in an inert atmosphere such as nitrogen or argon because carbon combustion occurs when the reaction atmosphere is an oxidizing atmosphere.
[0047]
In the deposition step by the thermal CVD method, when the nitrogen-containing organic compound is in a liquid state at room temperature, the nitrogen-containing organic compound can be introduced into the reaction tube as a gas state by vapor evaporation using a bubbler, a mass flow pump, or the like. it can. At this time, it is preferable to introduce a nitrogen-containing organic compound in a gaseous state using nitrogen or argon as a carrier gas. Furthermore, it is preferable to prevent backflow by installing a bubbler containing liquid paraffin or the like on the reaction tube outlet side so that the gas once circulated in the reaction tube does not flow back from the reaction tube outlet side.
[0048]
When the nitrogen-containing organic compound is in a solid state at room temperature, a heating evaporator (sublimation) can be installed on the inlet side of the reaction tube, and the nitrogen-containing organic compound can be introduced into the reaction tube as a gas state by heating. Moreover, the temperature of the evaporator at this time needs to be adjusted to a temperature at which the nitrogen-containing organic compound is not thermally decomposed.
[0049]
In addition, when the nitrogen-containing organic compound has polymerizability, a method in which the polymerization is performed in advance in the pores of the metal oxide porous body, and then thermally decomposed in an inert atmosphere in a reaction tube. It can also be taken.
[0050]
Furthermore, when the nitrogen-containing organic compound is not vaporized by heating, a nitrogen-containing organic compound is introduced in advance into the pores of the metal oxide porous body by a solution adsorption method or an evaporation to dryness method, By thermally decomposing this in an inert atmosphere, a nitrogen-containing carbon-based material in which a skeleton is formed by carbon atoms and nitrogen atoms in the pores of the metal oxide porous body can be precipitated.
[0051]
The reaction temperature in the precipitation step by the thermal CVD method is not particularly limited as long as the nitrogen-containing organic compound is thermally decomposed and carbonized, but is preferably 500 to 1000 ° C, and is in the range of 650 to 700 ° C. It is more preferable. When the reaction temperature is less than 500 ° C., thermal decomposition of the nitrogen-containing organic compound is difficult to occur, so that the deposition rate of the nitrogen-containing carbon-based material becomes slow, and the reaction time and energy consumption tend to increase. In addition, when the reaction temperature exceeds 1000 ° C., the deposition rate of the nitrogen-containing carbon-based material is too fast, and precipitation tends to occur easily in portions other than the inside of the pores such as the metal oxide porous body surface. .
[0052]
In the precipitation step according to the method for producing a nitrogen-containing carbon-based porous body of the present invention, the amount of nitrogen-containing carbon-based material deposited in the pores of the metal oxide porous body is the pores per 1 g of the metal oxide porous body. When the capacity is Yml, it is preferably (0.2 × Y) g or more, and more preferably (0.4 × Y) to (1.4 × Y) g. When the amount of precipitation of the nitrogen-containing carbon-based material is less than (0.2 × Y) g, the amount of precipitation is small, and therefore when the porous metal oxide is removed in the removal step described later, the nitrogen-containing carbon There exists a tendency for a system porous body to become difficult to maintain a pore structure. Moreover, when the precipitation amount of a nitrogen-containing carbon-type material exceeds (1.4 * Y) g, there exists a tendency for a nitrogen-containing carbon-type material to precipitate easily to the surface part of a metal oxide porous body, and is final. There is a tendency for the specific surface area of the nitrogen-containing carbon-based porous body obtained to be reduced.
[0053]
In addition, when the deposition step is performed by the thermal CVD method, the deposition amount has a correlation with the CVD reaction time, and the deposition amount can be controlled to some extent by adjusting the CVD reaction time. Further, the amount of precipitation varies depending on the CVD reaction temperature, the type of porous metal oxide, the type of nitrogen-containing organic compound, the flow rate when introducing the nitrogen-containing organic compound, etc., but in each case the CVD reaction By adjusting the time appropriately, the amount of precipitation can be controlled to some extent.
[0054]
Next, the removal process concerning the manufacturing method of the nitrogen-containing carbon type porous body of this invention is demonstrated. The removing step is a step of obtaining a porous body made of a nitrogen-containing carbon-based material by dissolving and removing the metal oxide porous body. In the removal step, it is necessary to dissolve and remove only the metal oxide porous body without dissolving the nitrogen-containing carbon-based material. For example, as a method of chemically dissolving, treatment with hydrofluoric acid or alkali is used. The method of doing is mentioned. Examples of the treatment method include a method of dispersing the metal oxide porous material-nitrogen-containing carbon-based material composite obtained in the precipitation step in the treatment solution. Although it does not restrict | limit especially as processing time by dispersion | distribution, It is preferable that it is 6 to 24 hours. Thereby, only the metal oxide porous body can be dissolved and removed to obtain a porous body made of a nitrogen-containing carbon-based material. Further, when hydrofluoric acid is used as the treatment solution, it may be mixed with ethanol or the like. At this time, the mixing ratio of hydrofluoric acid and ethanol is not particularly limited, but the volume ratio is preferably 1: 2 to 2: 1.
[0055]
Moreover, in the said removal process, after dissolving and removing a metal oxide porous body, you may perform filtration, washing | cleaning, and drying as needed. As the cleaning liquid, for example, water, ethanol, a mixed solution thereof or the like can be used.
[0056]
The treatment temperature in the removal step is not particularly limited, and can usually be performed at room temperature.
[0057]
The method for producing a nitrogen-containing carbon-based porous material of the present invention is a method for producing a nitrogen-containing carbon-based porous material by the precipitation step and the removing step described above, and this method has a specific surface area of 600 m. 2 A nitrogen-containing carbon-based porous material having an average pore diameter of 1 to 5 nm and an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.08 to 0.3. can do.
[0058]
The method of using the nitrogen-containing carbon-based porous material obtained by the present invention is not particularly limited. For example, as a method for removing harmful substances contained in exhaust gas or waste water, a gas or liquid containing harmful substances and a nitrogen-containing carbon-based material are used. Adsorption removal of harmful substances is achieved by contacting the porous body batchwise or continuously. Moreover, the nitrogen-containing carbon-based porous material obtained by the present invention can be used for various uses such as a separating agent and a catalyst carrier in addition to the use as an adsorbent as described above. Applicable.
[0059]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
[0060]
Example 1
First, a deposition process was performed using a thermal CVD apparatus as shown in FIG. The reaction atmosphere in the precipitation process was all nitrogen atmosphere. The first bubbler 4 contains pyrrole, which is a nitrogen-containing organic compound, and the second bubbler 5 contains liquid paraffin. 1 g of MCM-48, which is a silica mesoporous material having a cubic Ia-3d pore arrangement structure, was placed on an alumina boat 3 and placed in a heated reaction tube (quartz reaction tube 2) made of quartz glass. MCM-48 was prepared according to the method described in J. Phys. Chem. B 103, 7435-7440 (1999). Next, the first three-way cock 13 is opened to the first pipe 8 and the bypass 9 side, and the second three-way cock 14 is opened to the second pipe 10 and the bypass 9 side. The mixture was heated to 700 ° C. while flowing nitrogen gas at a rate of min. After heating up to 700 ° C. and maintaining the heating state for 1 hour, the first three-way cock 13 is opened to the pipe 8 and the first bubbler 4 side, and the second three-way cock 14 is set to the second pipe 10. And opened to the first bubbler 4 side. Next, nitrogen gas is introduced into the first bubbler 4 as a carrier gas at a flow rate of 300 ml / min to vaporize pyrrole, and the room temperature nitrogen gas containing pyrrole in a gaseous state is maintained at the above temperature. The CVD reaction was allowed to proceed for 9 hours. At this time, the precipitation amount of the nitrogen-containing carbon-based material in MCM-48 was 1.2 g. After the CVD reaction, the first three-way cock 13 is again opened to the first pipe 8 and the bypass 9 side, and the second three-way cock 14 is opened to the second pipe 10 and the bypass 9 side. The gas was cooled to room temperature while flowing at a flow rate of 300 ml / min.
[0061]
Next, the removal process was performed. That is, in the mixed solution (volume ratio 50:50) of 46% hydrofluoric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and ethanol, the silica mesoporous material-nitrogen-containing carbon-based material composite obtained in the above precipitation step. The silica mesoporous material was dissolved and removed by stirring at 25 ° C. for 12 hours to obtain a nitrogen-containing carbon-based porous material. Next, the obtained nitrogen-containing carbon-based porous body is subjected to suction filtration for 1 hour, then washed on a filter paper with a mixed solution of water and ethanol (volume ratio 50:50), and further into the mixed solution. The nitrogen-containing carbon-based porous material was dispersed and stirred at 25 ° C. for 12 hours. Thereafter, the nitrogen-containing carbon-based porous material was again suction filtered for 1 hour, washed with ethanol on the filter paper, and then air-dried at 70 ° C. for 24 hours to obtain a final nitrogen-containing carbon-based porous material.
[0062]
Example 2
In Example 1, a nitrogen-containing carbon-based porous material was obtained in the same manner as in Example 1 except that the CVD reaction time in the precipitation step was 6 hours. The amount of nitrogen-containing carbon-based material deposited in the precipitation process was 1.0 g.
[0063]
Example 3
In Example 1, a nitrogen-containing carbon-based porous material was obtained in the same manner as in Example 1 except that the CVD reaction time in the precipitation step was 3 hours. The amount of nitrogen-containing carbon-based material deposited in the precipitation process was 0.4 g.
[0064]
Example 4
In Example 1, a nitrogen-containing carbon-based porous material was obtained in the same manner as in Example 1 except that the heating temperature in the precipitation step was 650 ° C. and the CVD reaction time was 15 hours. The amount of nitrogen-containing carbon-based material deposited in the precipitation process was 1.0 g.
[0065]
(Analysis of chemical state of nitrogen atom)
In order to analyze the chemical state of the nitrogen atom in the nitrogen-containing carbon-based porous material obtained in Example 1, measurement by X-ray photoelectron spectroscopy was performed using 5500MC manufactured by ULVAC-PHI. The X-ray source was MgKα ray, and the analysis area was about 800 μmφ. The result is shown in FIG. When peak separation was performed, it was found that peaks exist at positions of 401.1 eV and 398.6 eV as main peaks. The peak at 401.1 eV corresponds to the quaternary nitrogen atom in the tetracyclic fused heterocycle, and the peak at 398.6 eV is the pyridinic in the tricyclic fused heterocycle. Corresponds to the nitrogen atom in the (pyridinic) state. From this result, it was confirmed that the nitrogen atoms in the nitrogen-containing carbon-based porous body formed a skeleton together with the carbon atoms in two chemical states without being lost from the skeleton.
[0066]
(Analysis of pore arrangement structure)
The X-ray diffraction pattern of the nitrogen-containing carbon-based porous material obtained in Examples 1 to 3 is shown in FIG. The X-ray diffraction pattern was measured using RINT-2200 manufactured by Rigaku Corporation. CuKα ray was used as the X-ray source. According to this result, a peak is observed at a diffraction angle 2θ = 2.4 ° common to all porous bodies, which is a peak derived from the periodically arranged pore arrangement structure normally found in silica mesoporous bodies. It shows that the pores in the nitrogen-containing carbon-based porous material obtained in Examples 1 to 3 have a periodic structure. This period length is substantially the same as the period length of the periodic pores of the silica mesoporous material used as the pore template, and the pores of the nitrogen-containing carbon-based porous material obtained in Examples 1 to 3 are silica mesoporous. It was confirmed that the pore arrangement structure of the body was faithfully reflected.
[0067]
(Deposition amount of nitrogen-containing carbon-based material)
FIG. 4 shows the relationship between the CVD reaction time and the amount of nitrogen-containing carbon-based material deposited in the deposition steps of Examples 1 to 4. According to this result, it was found that the deposition amount of the nitrogen-containing carbon-based material increased almost linearly with the passage of the CVD reaction time, and the deposition rate varied depending on the CVD reaction temperature. The nitrogen-containing carbon-based material deposited by such a CVD method is usually amorphous carbon, and its density is about 1.5 g / ml. In addition, since MCM-48 used as a template in Examples 1 to 4 has a pore volume of about 1.0 ml / g per gram, the maximum amount of nitrogen-containing carbon-based material that can be precipitated in the pores is About 1.5 g. In Example 1, the precipitation amount of the nitrogen-containing carbon-based material was 1.2 g, and it was confirmed that an amount close to the maximum precipitation amount was precipitated in the pores of MCM-48.
[0068]
(Nitrogen adsorption isotherm of silica mesoporous material-nitrogen-containing carbon-based material composite)
MCM-48, MCM-48 calcined in air at 700 ° C. for 6 hours (hereinafter referred to as MCM-700 ° C.), and silica mesoporous material-nitrogen-containing carbon-based material obtained in the precipitation steps of Examples 1 to 3 The nitrogen adsorption isotherm of the composite is shown in FIG. In the present invention, the nitrogen adsorption isotherm was measured by using AUTOSORB-1 manufactured by Quantachrome. From this result, it was confirmed that the nitrogen adsorption amount at MCM-700 ° C. was decreased as compared with MCM-48 before firing. That is, it was confirmed that the pore size and pore volume of MCM-48 were reduced by firing, and the pore volume was reduced to 0.91 ml / g. When the maximum amount of the nitrogen-containing carbon-based material that can be precipitated in the pores of the MCM-48 is calculated from the numerical value of the pore volume, it is about 1.35 g. It was confirmed that the amount which almost filled was deposited. Moreover, from the result of the nitrogen adsorption amount of Examples 1 to 3 in FIG. 5, it was confirmed that the nitrogen adsorption amount was decreased with an increase in the precipitation amount of the nitrogen-containing carbon-based material. Here, looking at the nitrogen adsorption isotherm of Example 3 with the least amount of precipitation and MCM-48 and MCM-700 ° C., in any case, in the region where the relative pressure is 0.3-0.4, A rise in the amount of adsorption corresponding to capillary condensation in the pores is observed. It is in Example 3 that it is seen on the lowest pressure side, and assuming that the contact angle between the surface and the adsorbate does not change on the surface of silica and carbon, the pore diameter of Example 3 is MCM-48 or MCM-. It will be less than 700 ° C. This confirms that the nitrogen-containing carbon-based material is deposited inside the pores of MCM-48 and gradually fills the pores. Therefore, it is considered that the nitrogen adsorption was hardly seen in Examples 1 and 2 in which the precipitation amount was further increased because the inside of the pores was completely filled with the nitrogen-containing carbon-based material. In the precipitation step of the present invention, It was confirmed that the nitrogen-containing carbon-based material was surely deposited in the pores of the metal oxide porous body serving as the template.
[0069]
Comparative Example 1
In Example 1, instead of pyrrole, which is a nitrogen-containing organic compound, benzene, which is an organic compound that does not contain a nitrogen atom, is used, and the CVD reaction time in the precipitation step is set to 12 hours, in the same manner as in Example 1. A carbon-based porous material was obtained. The amount of carbon-based material deposited in the deposition process was 1.1 g.
[0070]
Comparative Example 2
The polyacrylonitrile powder was subjected to an oxidation reaction in air at 200 ° C. for 1 hour to obtain an oxidized powder of polyacrylonitrile. Thereafter, the reaction atmosphere was switched to an argon atmosphere, and the resulting oxidized powder was heated to 200 ° C. to 900 ° C. at a temperature rising rate of 250 ° C./h to perform carbonization. Further, while maintaining the heating state, the atmosphere was switched to a carbon dioxide atmosphere, and the gas activation treatment was performed at 900 ° C. for 2 hours. Then, it switched to argon atmosphere and cooled to normal temperature, and obtained the nitrogen-containing carbon type porous body.
[0071]
Comparative Example 3
In Comparative Example 2, a nitrogen-containing carbon-based porous material was obtained in the same manner as Comparative Example 2 except that the gas activation treatment was performed for 4 hours.
[0072]
Comparative Example 4
In Comparative Example 2, a nitrogen-containing carbon-based porous material was obtained in the same manner as in Comparative Example 2 except that the gas activation treatment was performed for 8 hours.
[0073]
(Measurement of specific surface area, average pore diameter and pore volume)
For the porous bodies obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the adsorption side and desorption side nitrogen adsorption isotherms were measured, and the specific surface area, average pore diameter and pore volume were calculated by the SPE method. The results are shown in Table 1. Moreover, the nitrogen adsorption isotherm of the nitrogen-containing carbon-based porous material obtained in Examples 1 to 3 is shown in FIG.
[0074]
[Table 1]
Figure 0004856838
[0075]
(Measurement of atomic ratio (N / C) of nitrogen atom to carbon atom)
The porous bodies obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were subjected to CHN elemental analysis using VarioEL manufactured by Elementar, and the atomic ratio (N / C) of nitrogen atoms to carbon atoms was measured. . The results are shown in Table 2.
[0076]
[Table 2]
Figure 0004856838
[0077]
(Measurement of heavy metal ion adsorption)
About the porous body obtained in Examples 1 and 4 and Comparative Examples 1-4, the heavy metal ion adsorptivity was measured with the following method.
[0078]
First, 0.5 g (dry weight) of the porous body obtained in Examples 1 and 4 and Comparative Examples 1 to 4 was added to 100 mL of an aqueous copper (II) nitrate solution adjusted to a concentration of 1 mmol / L, and the mixture was 48 at 25 ° C. Shake time. Thereafter, the solution was filtered, and the copper ion concentration in the filtrate was quantified by ICP emission spectroscopic analysis using ICPS-2000 manufactured by Shimadzu Corporation. From the difference between the initial concentration of the copper nitrate (II) aqueous solution and the copper ion concentration of the filtrate, the adsorption amount of copper ions on the porous body was determined. The results are shown in Table 3.
[0079]
[Table 3]
Figure 0004856838
[0080]
As is clear from the above results, it was confirmed that the nitrogen-containing carbon-based porous body of the present invention (Examples 1 and 4) exhibited higher adsorptivity than the porous bodies of Comparative Examples 1 to 4.
[0081]
【Effect of the invention】
As described above, according to the present invention, both the specific surface area and the atomic ratio of nitrogen atom to carbon atom (N / C) are maintained in a well-balanced and high level, and the adsorptivity is improved by the high specific surface area. It is possible to obtain a nitrogen-containing carbon-based porous body in which the improvement in adsorptivity due to the high nitrogen content is simultaneously achieved sufficiently. Moreover, it can be applied to various uses such as an adsorbent, a separating agent, and a catalyst carrier by utilizing its excellent adsorptivity.
[Brief description of the drawings]
FIG. 1 is a schematic view of a thermal CVD apparatus used in examples and comparative examples.
2 is a graph showing measurement results of the nitrogen-containing carbon-based porous material obtained in Example 1 by X-ray photoelectron spectroscopy. FIG.
3 is a graph showing X-ray diffraction patterns of nitrogen-containing carbon-based porous materials obtained in Examples 1 to 3. FIG.
4 is a graph showing the relationship between the CVD reaction time and the amount of nitrogen-containing carbon-based material deposited in the deposition steps of Examples 1 to 4. FIG.
FIG. 5 is a graph showing nitrogen adsorption isotherms of silica mesoporous material-nitrogen-containing carbon-based material composite, MCM-48 and MCM-700 ° C. obtained in the precipitation steps of Examples 1 to 3.
6 is a graph showing nitrogen adsorption isotherms in nitrogen-containing carbon-based porous materials obtained in Examples 1 to 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electric furnace, 2 ... Quartz reaction tube, 3 ... Alumina boat, 4 ... 1st bubbler, 5 ... 2nd bubbler, 6 ... Raw material organic compound, 7 ... liquid paraffin, 8 ... first pipe, 9 ... bypass, 10 ... second pipe, 11 ... third pipe, 12 ... fourth pipe, 13. ..First three-way cock, 14 ... second three-way cock.

Claims (5)

炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料からなる多孔体であって、
比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3であること、を特徴とする含窒素炭素系多孔体。
A porous body made of a nitrogen-containing carbon-based material having a skeleton formed of carbon atoms and nitrogen atoms,
The specific surface area is 600 m 2 / g or more, the average pore diameter is 1 to 5 nm, and the atomic ratio (N / C) of nitrogen atoms to carbon atoms is 0.08 to 0.3. A characteristic nitrogen-containing carbon-based porous material.
金属酸化物多孔体の細孔内に含窒素有機化合物を導入し、前記含窒素有機化合物を熱分解せしめることによって前記細孔内に炭素原子及び窒素原子により骨格が形成されている含窒素炭素系材料を析出せしめる析出工程と、
前記金属酸化物多孔体を溶解除去することによって含窒素炭素系材料からなる多孔体を得る除去工程と、
を含むことを特徴とする、
比表面積が600m2/g以上であり、平均細孔径が1〜5nmであり、かつ、窒素原子と炭素原子との原子比(N/C)が0.08〜0.3である含窒素炭素系多孔体の製造方法。
A nitrogen-containing carbon system in which a skeleton is formed by carbon atoms and nitrogen atoms in the pores by introducing a nitrogen-containing organic compound into the pores of the metal oxide porous body and thermally decomposing the nitrogen-containing organic compound A deposition step for depositing the material;
A removal step of obtaining a porous body made of a nitrogen-containing carbon-based material by dissolving and removing the metal oxide porous body,
Including,
Nitrogen-containing carbon having a specific surface area of 600 m 2 / g or more, an average pore diameter of 1 to 5 nm, and an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.08 to 0.3 A method for producing a porous body.
前記金属酸化物多孔体がシリカメソ多孔体であることを特徴とする請求項2記載の含窒素炭素系多孔体の製造方法。The method for producing a nitrogen-containing carbon-based porous body according to claim 2, wherein the metal oxide porous body is a silica mesoporous body. 前記金属酸化物多孔体がキュービックの細孔配列構造を有する多孔体であることを特徴とする請求項2又は3記載の含窒素炭素系多孔体の製造方法。4. The method for producing a nitrogen-containing carbon-based porous body according to claim 2, wherein the metal oxide porous body is a porous body having a cubic pore arrangement structure. 前記含窒素有機化合物が含窒素複素環式化合物であることを特徴とする請求項2〜4のうちいずれか一項に記載の含窒素炭素系多孔体の製造方法。The method for producing a nitrogen-containing carbon-based porous body according to any one of claims 2 to 4, wherein the nitrogen-containing organic compound is a nitrogen-containing heterocyclic compound.
JP2002335519A 2002-11-19 2002-11-19 Nitrogen-containing carbon-based porous body and method for producing the same Expired - Fee Related JP4856838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335519A JP4856838B2 (en) 2002-11-19 2002-11-19 Nitrogen-containing carbon-based porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335519A JP4856838B2 (en) 2002-11-19 2002-11-19 Nitrogen-containing carbon-based porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004168587A JP2004168587A (en) 2004-06-17
JP4856838B2 true JP4856838B2 (en) 2012-01-18

Family

ID=32699634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335519A Expired - Fee Related JP4856838B2 (en) 2002-11-19 2002-11-19 Nitrogen-containing carbon-based porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4856838B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587027B2 (en) * 2004-06-07 2010-11-24 株式会社豊田中央研究所 Nitrogen-containing carbon-based composite material
JP4844865B2 (en) * 2004-08-31 2011-12-28 株式会社豊田中央研究所 Carbon gel composite material
JP4941953B2 (en) * 2004-10-29 2012-05-30 独立行政法人物質・材料研究機構 Carbon nitride porous body and method for producing the same
JP4692921B2 (en) * 2005-02-09 2011-06-01 株式会社豊田中央研究所 Monodispersed spherical carbon porous body
JP2006335596A (en) * 2005-06-01 2006-12-14 Tohoku Univ Simple synthesizing method for microporous carbon having regularity and large surface area
CN101277900B (en) 2005-09-30 2013-01-23 旭化成化学株式会社 Nitrogenous carbon material and process for producing the same
JP4893918B2 (en) * 2005-11-15 2012-03-07 株式会社豊田中央研究所 Nitrogen-containing carbon-based electrode catalyst
JP4956733B2 (en) * 2006-06-08 2012-06-20 昭和電工株式会社 Porous material, method for producing the same, and use thereof
KR100801443B1 (en) 2006-12-07 2008-02-11 재단법인서울대학교산학협력재단 Heteropoly acid catalyst immobilized on nitrogen-containing mesoporous carbon, production method thereof and production method of methacrylic acid using said catalyst
EP2128083B1 (en) 2007-03-28 2018-10-17 Asahi Kasei Kabushiki Kaisha Nitrogenous carbon material and process for producing the same
CN101641810B (en) 2007-03-28 2012-01-25 旭化成化学株式会社 Electrode, lithium ion secondary battery using the same, electric double layer capacitor and fuel cell
JP5121290B2 (en) * 2007-04-17 2013-01-16 新日鐵住金株式会社 Catalyst for polymer electrolyte fuel cell electrode
JP5294234B2 (en) * 2007-05-10 2013-09-18 独立行政法人物質・材料研究機構 Nitrogen-doped mesoporous carbon (N-KIT-6) and method for producing the same
JP5414015B2 (en) * 2007-10-31 2014-02-12 独立行政法人産業技術総合研究所 Porous carbon membrane and method for producing the same
JP2010030844A (en) * 2008-07-30 2010-02-12 National Institute For Materials Science Method for manufacturing carbon nitride porous material (mcn)
JP5513774B2 (en) * 2008-10-20 2014-06-04 日産自動車株式会社 Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent, and hydrogen storage method using microporous carbon-based material
JP5468365B2 (en) * 2009-11-24 2014-04-09 旭化成ケミカルズ株式会社 Nitrogen-containing carbon porous body and method for producing the same
JP5678372B2 (en) * 2009-11-30 2015-03-04 独立行政法人産業技術総合研究所 Nitrogen-containing porous carbon material, method for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
JP5608595B2 (en) 2010-03-30 2014-10-15 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
TWI520751B (en) * 2013-02-22 2016-02-11 吳羽股份有限公司 Adsorbent for oral administration, and agent for treating renal or liver disease
TWI532508B (en) * 2013-02-22 2016-05-11 吳羽股份有限公司 Adsorbent for oral administration, and agent for treating renal or liver disease
JP6411808B2 (en) * 2014-07-31 2018-10-24 ダイハツ工業株式会社 Oxygen reduction catalyst
EP3249669A1 (en) * 2016-05-25 2017-11-29 Universiteit van Amsterdam Supercapacitor and nitrogen-doped porous carbon material
CN114832794B (en) * 2022-04-29 2023-09-05 国网河北省电力有限公司电力科学研究院 Adsorption filter material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004168587A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4856838B2 (en) Nitrogen-containing carbon-based porous body and method for producing the same
Ruparelia et al. Potential of carbon nanomaterials for removal of heavy metals from water
KR100884350B1 (en) Adsorbent for selective adsorption of carbon monoxide and process for preparation thereof
Hossain et al. Intraframework Metal Ion Adsorption in Ligand‐Functionalized Mesoporous Silica
JP3709267B2 (en) Mesopore carbon and method for producing the same
US8137650B2 (en) Nanoporous carbide derived carbon with tunable pore size
CN111266089B (en) Metal organic framework composite material and preparation method and application thereof
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
US20090036302A1 (en) Process for producing nanoporous carbide derived carbon with large specific surface area
JP4941953B2 (en) Carbon nitride porous body and method for producing the same
US20190169027A1 (en) Rod-shaped mesoporous carbon nitride materials and uses thereof
Nouri et al. Comparison of adsorption capacity of p-cresol & p-nitrophenol by activated carbon in single and double solute
US20160263549A1 (en) Surface Modified Carbon for Filtration Applications and Process for Making the Same
Zhang et al. Interfacial electronic effects of palladium nanocatalysts on the by-product ammonia selectivity during nitrite catalytic reduction
CN110813241A (en) Nitrogen-oxygen co-doped porous carbon material and preparation method and application thereof
JP4893918B2 (en) Nitrogen-containing carbon-based electrode catalyst
CN107207255B (en) Porous carbon body, method for producing same, ammonia adsorbent, carbon canister, and method for producing same
JP2009119423A (en) Active b-c-n material and method of manufacturing the same
JP2005343775A (en) Nitrogen-containing carbon-based composite material
Jasmeen Synthesis of Titanium Oxide Nanotube via Hydrothermal Method and Recovery of Palladium by means of it
EP3059011B1 (en) Carbon porous body, method for producing the same, and ammonia-adsorbing material
KR102128160B1 (en) Porous carbon-metal oxide composite for removal of heavy metal ions and manufacturing method thereof
WO2021146402A1 (en) Process for the large-scale manufacture of zeolite-templated carbon
RU2736950C1 (en) Method of producing modified sorbent carbon materials based on fas-e activated carbon and carbopon-active activated nonwoven material with fixed resorcinol-formaldehyde airgel granules
KR102651471B1 (en) Manufacturing method of ammonia adsorbent and ammonia adsorbent produced by this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees