JP4855263B2 - Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode - Google Patents

Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode Download PDF

Info

Publication number
JP4855263B2
JP4855263B2 JP2006534792A JP2006534792A JP4855263B2 JP 4855263 B2 JP4855263 B2 JP 4855263B2 JP 2006534792 A JP2006534792 A JP 2006534792A JP 2006534792 A JP2006534792 A JP 2006534792A JP 4855263 B2 JP4855263 B2 JP 4855263B2
Authority
JP
Japan
Prior art keywords
anode
zinc
thin layer
aluminum
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006534792A
Other languages
Japanese (ja)
Other versions
JP2007508672A (en
Inventor
エマニュエル、ダメリ
ディディエ、マルサク
クリステル、ルー
マクス、ペラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of JP2007508672A publication Critical patent/JP2007508672A/en
Application granted granted Critical
Publication of JP4855263B2 publication Critical patent/JP4855263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24008Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
    • Y10T428/24017Hook or barb

Description

発明の背景Background of the Invention

本発明は、アルミニウムおよび亜鉛を各々含有した少なくとも第一および第二薄層を含んでなるアノードが上に配置された、少なくとも1つの電解質を含んでなるアルカリ燃料電池に関する。
本発明は、このようなアルカリ燃料電池のアノードの製造方法にも関する。
The present invention relates to an alkaline fuel cell comprising at least one electrolyte, on which an anode comprising at least first and second thin layers, each containing aluminum and zinc, is disposed.
The present invention also relates to a method for producing such an alkaline fuel cell anode.

技術水準Technical level

アルカリ燃料電池は通常一次、即ち再充電不可能な、電池であり、それらは携帯電子機器で通常用いられている。それらは:
‐下記反応による金属アノードの酸化反応:
M → Mn+ + ne
‐および、下記反応による、アルカリ環境下、空気の酸素の還元反応:
1/2O+ HO + 2e→ 2OH
のシートである。そのため、このタイプの電池の駆動バランスは以下である:
2M + n/2O+ nHO ⇔ 2M(OH)
上記においてMはアノードの金属を表わし、nは金属Mの酸化度を表わしている。
Alkaline fuel cells are usually primary, ie non-rechargeable, batteries, which are commonly used in portable electronic devices. They are:
-Metal anode oxidation reaction by the following reaction:
M → M n + + ne
-And the reduction reaction of air oxygen in an alkaline environment by the following reaction:
1 / 2O 2 + H 2 O + 2e → 2OH
This is a sheet. Therefore, the driving balance of this type of battery is:
2M + n / 2O 2 + nH 2 O ⇔ 2M (OH) n
In the above, M represents the metal of the anode, and n represents the degree of oxidation of the metal M.

しかしながら、アノードに用いられている金属に応じて、腐蝕が燃料電池の駆動を制限することがある。そのため、アルミニウムアノードは、非常に多く腐蝕を受けやすいことからほとんど用いられていない。水性環境下でアルミニウムの高い電気陰性ポテンシャルは、水素への水の分解とアルミニウムの自然溶解を実際に誘導する。更に、アルミニウムの自然不動態化層はアルカリ環境下で不安定である。   However, depending on the metal used for the anode, corrosion can limit the drive of the fuel cell. Therefore, aluminum anodes are rarely used because they are very susceptible to corrosion. The high electronegative potential of aluminum in an aqueous environment actually induces the decomposition of water into hydrogen and the spontaneous dissolution of aluminum. Furthermore, the natural passivation layer of aluminum is unstable in an alkaline environment.

WO‐A‐9607765は、0.0005〜1%のアルミニウム、0.0001〜2%のビスマス、インジウムおよびガリウムから選択される少なくとも1種の元素、マグネシウム、ストロンチウム、バリウムおよび希土類金属から選択される少なくとも1種の元素を含有した亜鉛粉末を含んでなるアルカリ電池について記載している。該元素はアノードの腐蝕を抑制するためにある。しかしながら、該粉末に含まれるアルミニウムは電解質と接触しており、そのため腐蝕を受けることがある。   WO-A-9607765 is selected from at least one element selected from 0.0005 to 1% aluminum, 0.0001 to 2% bismuth, indium and gallium, magnesium, strontium, barium and rare earth metals An alkaline battery comprising zinc powder containing at least one element is described. The element is for suppressing the corrosion of the anode. However, the aluminum contained in the powder is in contact with the electrolyte and may thus be corroded.

アノードの腐蝕を抑制するために、アノードを腐蝕から防げる薄層をアノードと電解質との間に配置することも知られている。保護層は電池の駆動には通常関与しないため、電気化学反応に対するシールドを形成することがある。そこで、電池を十分に駆動させるために、電池の駆動時に活性な元素を保護層へ加えることで、保護層が孔質にされる。   In order to suppress the corrosion of the anode, it is also known to place a thin layer between the anode and the electrolyte that protects the anode from corrosion. Since the protective layer is not normally involved in driving the battery, it may form a shield against electrochemical reactions. Therefore, in order to sufficiently drive the battery, the protective layer is made porous by adding an active element to the protective layer when the battery is driven.

JP4,104,464では、陰極は亜鉛または亜鉛合金からなり、0.1〜15重量%のアルミニウムを含有したガリウム合金で被覆されている。電池が駆動しているときは、ガリウム合金中に低率で含有されたアルミニウムが溶解し、ガリウムコーティングに小孔を形成して、亜鉛電極を駆動させうる。しかしながら、このような電池はアルミニウムアノードを含んでなる電池より低い効率を有し、しかもガリウム保護層は比較的コスト高である。実際には、アルミニウムアノードの場合に理論的質量エネルギーは8050Wh/kgであり、一方亜鉛アノードの場合では2360Wh/kgである。   In JP 4,104,464, the cathode is made of zinc or a zinc alloy and is covered with a gallium alloy containing 0.1 to 15% by weight of aluminum. When the battery is driven, aluminum contained at a low rate in the gallium alloy is dissolved, and a small hole is formed in the gallium coating, so that the zinc electrode can be driven. However, such a battery has a lower efficiency than a battery comprising an aluminum anode, and the gallium protective layer is relatively expensive. In practice, the theoretical mass energy is 8050 Wh / kg for the aluminum anode, while it is 2360 Wh / kg for the zinc anode.

米国特許US‐A‐5,316,632は、電解質水溶液に浸漬されたアルミニウム電極の溶解および抑止を選択的かつ周期的に制御することにより、電気化学セルの効率を向上させるための方法について記載している。電気化学セルが不活性であるときには、不動態化層が鉛、ニッケルまたは亜鉛の沈殿によりアルミニウム電極上に付着される。次いでセルの駆動のために、不動態化層が電気化学的に除去されて、スズ、インジウム、ガリウムまたは銅の沈殿により得られる活性化層の付着を電極の表面で行う。セルの駆動時期の最後に、新たな不動態化層の付着を行うために活性化層が除去される。このような方法では電気化学セルが駆動していないときにアルミニウム電極を腐蝕から保護しうるが、この方法は不動態化および活性化層の沈殿による付着および電気化学的除去に関する多数の工程を必要とするため、それは実施が難しいと判明している。   US Pat. No. 5,316,632 describes a method for improving the efficiency of an electrochemical cell by selectively and periodically controlling the dissolution and inhibition of an aluminum electrode immersed in an aqueous electrolyte solution. is doing. When the electrochemical cell is inert, a passivation layer is deposited on the aluminum electrode by precipitation of lead, nickel or zinc. Then, for driving the cell, the passivation layer is removed electrochemically and the activation layer obtained by precipitation of tin, indium, gallium or copper is deposited on the surface of the electrode. At the end of the cell drive period, the activation layer is removed to deposit a new passivation layer. Although such a method can protect the aluminum electrode from corrosion when the electrochemical cell is not operating, this method requires a number of steps related to passivation and electrochemical removal by deposition of the activated layer. As such, it has proved difficult to implement.

発明の目的Object of the invention

先行技術の欠点を克服した、更に詳しくは、電池が高い効率を有するよう確保しながら、アノードが腐蝕から一時的に保護される、アルカリ燃料電池を提供することが、本発明の目的である。   It is an object of the present invention to overcome the disadvantages of the prior art and more particularly to provide an alkaline fuel cell in which the anode is temporarily protected from corrosion while ensuring that the cell has high efficiency.

本発明によると、第一薄層がアルミニウムまたはアルミニウム合金からなり、第二薄層が第一薄層と電解質との間に置かれるという事実により、この目的が達成されている。   According to the invention, this object is achieved by the fact that the first thin layer consists of aluminum or an aluminum alloy and the second thin layer is placed between the first thin layer and the electrolyte.

本発明の発展によると、第二薄層は亜鉛または亜鉛合金からなる。   According to a development of the invention, the second thin layer consists of zinc or a zinc alloy.

本発明の一特徴によると、アノードは第一および第二薄層の繰返しからなる。   According to one characteristic of the invention, the anode consists of a repetition of first and second thin layers.

実施しやすく安価であるこのような燃料電池のアノードを製造するための方法を提供することが、本発明の他の目的である。   It is another object of the present invention to provide a method for manufacturing such fuel cell anodes that is easy to implement and inexpensive.

本発明によると、該方法が、アルミニウムまたはアルミニウム合金製の第一薄層で形成された基板上に、電解質と接触するように設計され、かつ亜鉛を含んでなる、少なくとも1つの第二薄層を、物理的蒸着で付着させることからなる、という事実により、この目的が達成されている。   According to the invention, the method comprises at least one second thin layer designed to be in contact with the electrolyte and comprising zinc on a substrate formed of a first thin layer made of aluminum or an aluminum alloy. This object is achieved by the fact that it consists of depositing by physical vapor deposition.

具体的態様の説明Description of specific aspects

図1で示された第一態様によると、アルカリ燃料電池は少なくとも1つの電解質1を含んでなり、その上にアノード2が配置されている。アノード2は第一薄層3および第二薄層4の積重ねからなり、該第二薄層は電解質1と第一薄層3との間に配置されている。第一薄層3はアルミニウムまたはアルミニウム合金からなり、一方第二薄層4は亜鉛または亜鉛合金からなる。   According to the first embodiment shown in FIG. 1, the alkaline fuel cell comprises at least one electrolyte 1 on which an anode 2 is arranged. The anode 2 is formed by stacking a first thin layer 3 and a second thin layer 4, and the second thin layer is disposed between the electrolyte 1 and the first thin layer 3. The first thin layer 3 is made of aluminum or an aluminum alloy, while the second thin layer 4 is made of zinc or a zinc alloy.

アルミニウム合金とは少なくとも75重量%のアルミニウムを含んでなる合金を意味し、亜鉛合金とは少なくとも75重量%の亜鉛を含んでなる合金を意味する。   An aluminum alloy means an alloy comprising at least 75% by weight of aluminum, and a zinc alloy means an alloy comprising at least 75% by weight of zinc.

第一および第二薄層は好ましくは10nm〜100μmの厚さを有し、第二薄層は好ましくは第一薄層の場合より小さな厚みを有している。   The first and second thin layers preferably have a thickness of 10 nm to 100 μm, and the second thin layer preferably has a smaller thickness than that of the first thin layer.

亜鉛溶解速度がアルミニウムの場合より遅く、亜鉛または亜鉛合金の第二薄層を電解質とアルミニウムまたはアルミニウム合金の第一薄層との間に配置していることから、高い駆動効率を保ちながら、一時的に腐蝕から第一層を保護しうるのである。第二薄層が犠牲層の役割を果たしているため、それも実際上酸化され、したがって第一薄層を腐蝕から一時的に保護しながら、その溶解により、アルカリ燃料電池の駆動に関与している。こうして、アルカリ燃料電池が駆動しているとき、第二薄層の亜鉛は次の反応Zn+1/2O+HO⇔Zn(OH)に従い次第に溶解して小孔を形成し、それが電流を発生させているのである。亜鉛の溶解は、後者が全部消失するまで続くかもしれない。次いで、第一薄層のアルミニウムが次の反応2Al+3/2O+3HO⇔2Al(OH)に従い消費される。 The zinc dissolution rate is slower than that of aluminum, and the second thin layer of zinc or zinc alloy is disposed between the electrolyte and the first thin layer of aluminum or aluminum alloy. Thus, the first layer can be protected from corrosion. Since the second thin layer plays the role of a sacrificial layer, it is also effectively oxidized and thus is involved in driving the alkaline fuel cell by its dissolution, while temporarily protecting the first thin layer from corrosion . Thus, when the alkaline fuel cell is operating, the second thin layer of zinc gradually dissolves according to the following reaction Zn + 1 / 2O 2 + H 2 O⇔Zn (OH) 2 to form small holes, It is generated. Zinc dissolution may continue until all of the latter has disappeared. The first thin layer of aluminum is then consumed according to the following reaction 2Al + 3 / 2O 2 + 3H 2 O 2 Al (OH) 3 .

アルミニウムまたはアルミニウム合金製の第一薄層3で形成された基板上に、電解質1と接触するように、第二薄層4を物理的蒸着で付着させることにより、アルカリ燃料電池のアノード2が好ましくは得られる。   The anode 2 of the alkaline fuel cell is preferably formed by depositing the second thin layer 4 by physical vapor deposition so as to contact the electrolyte 1 on the substrate formed of the first thin layer 3 made of aluminum or aluminum alloy. Is obtained.

このような燃料電池は、アノードの形態を燃料電池の既定消費特性に合わせられる、という利点を発揮する。そこで、第一および第二薄層の厚さを変えることにより、燃料電池の持続時間が調整されうる。例えば、電池の非使用時に消費される亜鉛層が0.8mA/cmの腐蝕電流に曝されるとすれば、この層が100μmの厚さを有する場合、電池の持続時間は72時間であり、一方厚さ10nmの亜鉛層の場合には持続時間が26秒間である。 Such a fuel cell exhibits the advantage that the anode configuration can be matched to the predetermined consumption characteristics of the fuel cell. Thus, the duration of the fuel cell can be adjusted by changing the thickness of the first and second thin layers. For example, if the zinc layer consumed when the battery is not in use is exposed to a corrosion current of 0.8 mA / cm 2 , the battery has a duration of 72 hours if this layer has a thickness of 100 μm. On the other hand, in the case of a 10 nm thick zinc layer, the duration is 26 seconds.

代替態様において、アノード2は、図2で表わされているように、各々アルミニウムまたはアルミニウム合金製および亜鉛または亜鉛合金製の、第一および第二薄層3および4の繰返しにより形成され、第二薄層4は必ず電解質1と接触している。この場合に、アルミニウムまたはアルミニウム合金基板上に既に付着された第二薄層4上に、第一および第二薄層3および4の繰返しを物理的蒸着で付着させることにより、アノードが好ましくは得られる。更に、第一薄層3の厚さおよび/または第二薄層4の厚さは異なってもよい。   In an alternative embodiment, the anode 2 is formed by repetition of first and second thin layers 3 and 4, each made of aluminum or aluminum alloy and zinc or zinc alloy, as represented in FIG. The two thin layers 4 are always in contact with the electrolyte 1. In this case, the anode is preferably obtained by depositing a repetition of the first and second thin layers 3 and 4 on the second thin layer 4 already deposited on the aluminum or aluminum alloy substrate by physical vapor deposition. It is done. Furthermore, the thickness of the first thin layer 3 and / or the thickness of the second thin layer 4 may be different.

このように、図2において、アノードは2つの第一薄層および2つの第二薄層の繰返しにより形成された4つの薄層の連続積重ねからなる。こうして、亜鉛または亜鉛合金第二薄層4aが電解質1とアルミニウムまたはアルミニウム合金第一薄層3aとの間に配置されている。第二薄層4aと同タイプで、好ましくはそれより厚い、追加の第二薄層4bが、第一薄層3aと、該第一薄層3aと同タイプで、好ましくはそれより厚い、追加の第一薄層3bとの間に配置されている。加えて、各第二薄層4aまたは4bの厚さは、好ましくは対応第一薄層3aまたは3bの厚さより小さい。   Thus, in FIG. 2, the anode consists of a continuous stack of four thin layers formed by repetition of two first thin layers and two second thin layers. Thus, the zinc or zinc alloy second thin layer 4a is disposed between the electrolyte 1 and the aluminum or aluminum alloy first thin layer 3a. An additional second thin layer 4b of the same type as the second thin layer 4a, preferably thicker, is added to the first thin layer 3a and the same type as the first thin layer 3a, preferably thicker. Between the first thin layer 3b. In addition, the thickness of each second thin layer 4a or 4b is preferably smaller than the thickness of the corresponding first thin layer 3a or 3b.

このような代替態様によれば、より複雑な消費特性を得られる。こうして、アノードが第一および第二層の繰返しを含んでなる、例えばデータを送れるように毎時ハイパワーを要する電池の場合、亜鉛製の第二層は1時間の電力消費分を供給するように選択され、アルミニウム製の第一層はデータ伝送に必要な電力を供給する。そのため、24時間駆動する電池は、好ましくは24の第一層と24の第二層の繰返しを含んでなる。同様に、1週間の駆動型は、異なる厚さの層を用いて、1時間または1日の使用期間で検討することができる。   According to such an alternative aspect, more complex consumption characteristics can be obtained. Thus, if the anode comprises a repetition of the first and second layers, for example a battery that requires high power per hour to be able to send data, the second layer made of zinc will supply one hour of power consumption. Selected, the first layer of aluminum provides the power necessary for data transmission. Thus, a battery that operates for 24 hours preferably comprises a repetition of 24 first layers and 24 second layers. Similarly, the one week drive type can be considered with a 1 hour or 1 day service period using layers of different thickness.

他の利点および特徴は、単に非制限例として挙げられ、添付図面で表された、本発明の具体的態様の以下の記載からより明らかになるであろう。
断面で、本発明による燃料電池の第一態様を表わしている。 断面で、本発明による燃料電池の代替態様を表わしている。
Other advantages and features will become more apparent from the following description of specific embodiments of the invention, given by way of non-limiting example only and represented in the accompanying drawings.
In section, the first embodiment of the fuel cell according to the invention is represented. In cross section, an alternative embodiment of the fuel cell according to the invention is represented.

Claims (5)

各々がアルミニウムおよび亜鉛を含有した、少なくとも第一および第二薄層(3、4)を含んでなるアノード(2)が上に配置された、少なくとも1つの電解質(1)を含んでなるアルカリ燃料電池であって、
第一薄層(3)がアルミニウムまたはアルミニウム合金からなり、第二薄層(4)が亜鉛または亜鉛合金からなり、第一薄層(3)と電解質(1)との間に配置されていることを特徴とする、電池。
Alkaline fuel comprising at least one electrolyte (1), on which an anode (2) comprising at least first and second thin layers (3, 4), each containing aluminum and zinc, is disposed. A battery,
The first thin layer (3) is made of aluminum or an aluminum alloy, the second thin layer (4) is made of zinc or a zinc alloy, and is disposed between the first thin layer (3) and the electrolyte (1). A battery characterized by that.
各薄層(3、4)の厚さが10nm〜100μmである、請求項1に記載の燃料電池。2. The fuel cell according to claim 1, wherein the thickness of each thin layer (3, 4) is 10 nm to 100 [mu] m. アノード(2)が第一および第二薄層(3a、3bおよび4a、4b)の繰返しからなる、請求項1または2に記載の燃料電池。The fuel cell according to claim 1 or 2 , wherein the anode (2) consists of a repetition of first and second thin layers (3a, 3b and 4a, 4b). アルミニウムまたはアルミニウム合金製の第一薄層(3)で形成された基板上に、電解質(1)と接触するように設計され、かつ亜鉛を含んでなる、少なくとも1つの第二薄層(4)を、物理的蒸着で付着させることからなる、請求項1〜のいずれか一項に記載されたアルカリ燃料電池のアノードの製造方法。At least one second thin layer (4) designed to be in contact with the electrolyte (1) and comprising zinc on a substrate formed of a first thin layer (3) made of aluminum or an aluminum alloy The method for producing an anode of an alkaline fuel cell according to any one of claims 1 to 3 , which comprises adhering the material by physical vapor deposition. 第一および第二薄層(3a、3bおよび4a、4b)の繰返しが、物理的蒸着により、第二薄層(4b)上に付着される、請求項に記載の製造方法。5. A method according to claim 4 , wherein repetitions of the first and second thin layers (3a, 3b and 4a, 4b) are deposited on the second thin layer (4b) by physical vapor deposition.
JP2006534792A 2003-10-15 2004-10-13 Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode Expired - Fee Related JP4855263B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0312058 2003-10-15
FR0312058A FR2861219B1 (en) 2003-10-15 2003-10-15 ALKALINE FUEL CELL COMPRISING AN ANODE COMPRISING ALUMINUM AND ZINC AND METHOD OF MANUFACTURING THE ANODE
PCT/FR2004/002608 WO2005038964A2 (en) 2003-10-15 2004-10-13 Alkaline fuel cell comprising an anode consisting of aluminium and zinc, and method of producing one such anode

Publications (2)

Publication Number Publication Date
JP2007508672A JP2007508672A (en) 2007-04-05
JP4855263B2 true JP4855263B2 (en) 2012-01-18

Family

ID=34385188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006534792A Expired - Fee Related JP4855263B2 (en) 2003-10-15 2004-10-13 Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode

Country Status (5)

Country Link
US (1) US20070054155A1 (en)
EP (1) EP1673835B1 (en)
JP (1) JP4855263B2 (en)
FR (1) FR2861219B1 (en)
WO (1) WO2005038964A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102026A2 (en) * 2006-03-07 2007-09-13 Afc Energy Plc Electrodes of a fuel cell
JP2011249287A (en) * 2010-05-31 2011-12-08 Sumitomo Electric Ind Ltd Negative electrode for battery, manufacturing method thereof, and primary battery
JP6032018B2 (en) * 2012-01-19 2016-11-24 日産自動車株式会社 Injection metal-air battery
US10396418B2 (en) 2012-12-04 2019-08-27 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10581128B2 (en) 2012-12-04 2020-03-03 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10601095B2 (en) 2012-12-04 2020-03-24 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10608307B2 (en) 2012-12-04 2020-03-31 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10622690B2 (en) 2012-12-04 2020-04-14 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
CA2892173C (en) 2012-12-04 2023-09-05 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10573944B2 (en) 2012-12-04 2020-02-25 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10581129B2 (en) 2012-12-04 2020-03-03 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10516195B2 (en) 2012-12-04 2019-12-24 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
US10581127B2 (en) 2012-12-04 2020-03-03 Massachusetts Institute Of Technology Anaerobic aluminum-water electrochemical cell
JP6149404B2 (en) * 2013-01-21 2017-06-21 日産自動車株式会社 Aluminum-air battery
US10115975B2 (en) 2014-01-31 2018-10-30 Massachusetts Institute Of Technology Water-activated permanganate electrochemical cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562661A (en) * 1978-11-06 1980-05-12 Nippon Telegr & Teleph Corp <Ntt> Corrosion preventing method for aluminum electrode
JPH06179936A (en) * 1992-12-15 1994-06-28 Sumitomo Light Metal Ind Ltd Negative electrode material for aluminum battery
JPH07282859A (en) * 1994-04-12 1995-10-27 Aisin Seiki Co Ltd Aluminum-air battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1589907A1 (en) * 1966-11-23 1970-05-14 Hiradastechnikai Ipari Ki Self-healing thin film electrical capacitor and method of making the same
FR2088659A5 (en) * 1970-04-21 1972-01-07 Progil
US3939440A (en) * 1974-12-17 1976-02-17 Western Electric Company, Inc. Wound resistor-capacitor network and method of forming
US5006424A (en) * 1989-11-08 1991-04-09 The Regents Of The University Of California Battery using a metal particle bed electrode
US5316632A (en) * 1991-07-24 1994-05-31 Dieter Remppel Method for improving efficiency of electro-chemical cells
DE4221011A1 (en) * 1992-06-26 1994-01-05 Basf Ag Shell catalysts
FR2695254B1 (en) * 1992-09-02 2003-01-10 Conservatoire Nal Arts Metiers Solid alkaline polymer electrolyte, electrode and electrochemical generator comprising such an electrolyte.
US6372371B1 (en) * 1999-10-29 2002-04-16 Eontech Group, Inc Ecologically clean mechanically rechargeable air-metal current source
US20020076602A1 (en) * 2000-12-18 2002-06-20 More Energy Ltd. Direct liquid fuel cell and a novel binary electrode therefor
US20030134172A1 (en) * 2002-01-11 2003-07-17 Grande Wendy C. Integrated fuel cell and electrochemical power system employing the same
EP1376735A1 (en) * 2002-06-20 2004-01-02 Yung-Jen Lin Anode structure for metal-air battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562661A (en) * 1978-11-06 1980-05-12 Nippon Telegr & Teleph Corp <Ntt> Corrosion preventing method for aluminum electrode
JPH06179936A (en) * 1992-12-15 1994-06-28 Sumitomo Light Metal Ind Ltd Negative electrode material for aluminum battery
JPH07282859A (en) * 1994-04-12 1995-10-27 Aisin Seiki Co Ltd Aluminum-air battery

Also Published As

Publication number Publication date
EP1673835B1 (en) 2014-07-30
JP2007508672A (en) 2007-04-05
US20070054155A1 (en) 2007-03-08
FR2861219A1 (en) 2005-04-22
WO2005038964A3 (en) 2006-05-11
WO2005038964A2 (en) 2005-04-28
EP1673835A2 (en) 2006-06-28
FR2861219B1 (en) 2006-04-07

Similar Documents

Publication Publication Date Title
JP4855263B2 (en) Alkaline fuel cell wherein the anode comprises aluminum and zinc and a method for producing such an anode
JP5876950B2 (en) Negative electrode material for magnesium fuel cell
CA1042068A (en) Cathod reactants with additives to suppress hydrogen
Li et al. Aluminum as anode for energy storage and conversion: a review
EP2056381B1 (en) Cell, electrode, and collector used in them
TWI294194B (en) Negative electrode for nonaqueous secondary battery and process of producing the same
Wang et al. Research progress of magnesium anodes and their applications in chemical power sources
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JP6590902B2 (en) Corrosion prevention using sacrificial anode
KR940006308A (en) Alkaline Batteries, Manufacturing Method and Products Using the Same
JP2004536427A5 (en)
WO1996014667A1 (en) Sulfur/aluminum electrochemical batteries
JP2004335265A (en) Manufacturing method of negative electrode cup of alkaline battery
JP2009293117A (en) Anode for use in electrowinning zinc, and electrowinning method
US4677041A (en) Electrode assemblies for electrochemical cells
Hazri et al. Critical review on development of magnesium alloy as anode in Mg‐Air fuel cell and additives in electrolyte
JP2004319457A (en) Anode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using above anode
WO1999035703A1 (en) Metal-air battery
Jayasayee et al. Alternative chemistries in primary metal-air batteries
JP2015046312A (en) Magnesium battery
Carson Jr et al. The magnesium-air cell
JP5159624B2 (en) Electrode plate grid
JP2858855B2 (en) Nickel hydroxide electrode for alkaline storage battery and method for producing the same
CN117166021A (en) Corrosion protection method for zinc electrodeposited polar plate
Muniyandi Corrosion in Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees