JP4854152B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP4854152B2
JP4854152B2 JP2001269198A JP2001269198A JP4854152B2 JP 4854152 B2 JP4854152 B2 JP 4854152B2 JP 2001269198 A JP2001269198 A JP 2001269198A JP 2001269198 A JP2001269198 A JP 2001269198A JP 4854152 B2 JP4854152 B2 JP 4854152B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
control window
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001269198A
Other languages
Japanese (ja)
Other versions
JP2002156635A (en
Inventor
英樹 松岡
美樹 田中
雅志 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001269198A priority Critical patent/JP4854152B2/en
Publication of JP2002156635A publication Critical patent/JP2002156635A/en
Application granted granted Critical
Publication of JP4854152B2 publication Critical patent/JP4854152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the contrast compatible with the response speed in a liquid crystal display device. SOLUTION: If the distance d between the longitudinal side 42 of a display electrode and the straight line part 51 of an alignment controlling window 50 is shortened, the response speed of a liquid crystal is made higher. If the alignment controlling window 50 is enlarged (equivalent to shortening of the distance d), the contrast is unfavorably lowered. If the distance d is <=25 &mu;m-30 &mu;m, the effect of the enhancement of the response speed is reduced. Thereby, the distance d is favorably specified to be 25 &mu;m-30 &mu;m. The width of the alignment controlling window 50 is favorably about 7 &mu;m.

Description

【0001】
【発明の属する技術分野】
本発明は、液晶の電気光学的な異方性を利用して表示を行う液晶表示装置(LCD:Liquid Crystal Display)に関し、特に、その電極の構造に関する。
【0002】
【従来の技術】
LCDは、小型、薄型、低消費電力等の利点がありOA機器、AV機器などの分野で実用化が進んでいる。特に、スイッチング素子として、薄膜トランジスタ(以下、TFTと略す)を用いたアクティブマトリクス型LCDは、原理的にデューティー比100%のスタティック駆動をマルチプレクス的に行うことができ、大画面、高精細な動画ディスプレイに使用されている。
【0003】
液晶層は、複数の画素に共通の共通電極とTFTに駆動される表示電極とに挟まれている。表示電極の形成領域は、一つの画素の領域に対応する。一つの画素または一つの画素の色領域に対応して、共通電極にはスリットが形成されている。このスリットは配向制御窓と呼ばれ、液晶分子の傾倒方向を一定とする機能を有している。配向制御窓の形状は、例えば、直線状のスリットと、この直線状スリットの両端に枝分かれするように結合されたV字状のスリットとを有する形状などがある。
【0004】
【発明が解決しようとする課題】
前述の配向制御窓の形状や、表示電極に対する配置などは、開口率、応答速度などを考慮した上で、決定する必要がある。
【0005】
本発明は、配向制御窓と表示電極の配置を適正化することを目的とする。
【課題を解決するための手段】
前述の目的を達成するために、本発明にかかる液晶表示装置は、配向制御窓と表示電極の表示平面上の距離または間隔を、最も長いところでも、25μm〜30μmとしている。
【0006】
前記の間隔が30μm以上では、この間隔が短いほど応答速度が早くなる傾向があるが、30μm以下、特に25μmより短くしても、応答速度はほとんど変化しないことが確認された。一方で、前記間隔が小さくなることは、1画素あたりの表示可能面積の減少につながり、この面積の減少は、開口率やコントラストの低下を招きやすい。したがって、前記間隔を30μm以下で、なるべく30μmに近い値とすることが好ましい。
【0007】
また前記配向制御窓の幅は約7μmとすることで、配向分割機能を十分に発揮しつつ、画素表示面積の減少を防ぐことができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。図1および図2は、本実施形態の液晶表示装置の一部の構造、特に1画素分を詳細に示す図である。図1は、液晶表示装置を構成する一対の基板のうち、TFTの形成された第1基板側の概略平面図であり、図2は図1のA−A線に沿った位置における液晶表示装置の断面図である。ガラスなどの絶縁性の基板10の上に、Cr,Ta,Moなどの金属からなるゲート電極11が形成され、これを覆ってSiNx、SiO2の一方または双方などからなるゲート絶縁膜12が形成されている。ゲート絶縁膜12の上には、ゲート電極11をまたぐようにパターニングされた多結晶シリコン(p−Si)層13が形成されており、この上にゲート電極11と同様の形状にパターニングされたSiO2などの注入ストッパ14を利用して、P,Asなどの不純物を低濃度に含有した(N−)低濃度(LD:Lightly doped)領域LD、その外側に同じ不純物を高濃度に含有した(N+)ソース領域Sおよびドレイン領域Dが形成されている。注入ストッパ14の直下は、実質的に不純物が含有されない真性層であり、チャンネル領域CHとなっている。これらの領域を有するp−Si層13を覆って、SiNxなどからなる層間絶縁膜15が形成されている。層間絶縁膜15の上には、Al,Moなどからなるソース電極16およびドレイン電極17が形成され、各層間絶縁膜15に開けられたコンタクトホールを介して、ソース領域Sおよびドレイン領域Dに接続されている。
【0009】
以上のような構成により得られるTFTの全面を覆うように、SOG(SPIN ON GLASS)、BPSG(BORO-PHOSPHO SILICATE GLASS)、アクリル樹脂などの平坦化絶縁膜18が形成されている。この平坦化絶縁膜18上にはITO(indium tin oxide)などの透明導電膜からなる液晶駆動用の表示電極19が形成され、平坦化絶縁膜18に開けられたコンタクトホールを介してソース電極16に接続されている。
【0010】
以上の構成を全て覆うように、ポリイミドなどの高分子膜からなる垂直配向膜20が形成されている。なお、本実施形態において、垂直配向膜20はラビングレスタイプの膜を採用している。一方、液晶層を挟んで基板10に対向する位置には、基板10と対をなす、ガラスなどからなる第2ガラス基板30が配置され、このガラス基板30上には、ITOにより表示部全面に形成された共通電極31が設けられている。共通電極31上には、第1基板10側の配向膜20と同じくポリイミドなどの配向膜33が形成されている。
【0011】
共通電極31には、この電極の厚さを貫通するスリットとして、配向制御窓50が形成されている。図1に破線で示すように、配向制御窓50の平面形状は、直線状のスリットである直線部分51の両端に、V字状のスリットであるV字状部分52を結合した形となっている。直線状のスリットの両端が、それぞれ二股に分かれ、分かれた部分がV字形状を形成していると言い換えてもよい。配向制御窓の直線部分51は、長方形の表示電極19の長辺42と略平行に、また短辺43方向のほぼ中央に配置されている。V字状部分52の先端は、共通電極31の、表示電極19の長方形の頂点に対向する位置にまで延びている。
【0012】
図2に示すように、配向制御窓50の直下においては、対向電極が存在しないので液晶分子41を傾斜させるほどの電界が発生せず、液晶分子41は、初期配向状態を維持し、電極19,31に対し、ほぼ垂直方向に配向する。一方、配向制御窓50の縁においては、図2に破線で示すような向き、すなわち配向制御窓50の両側の共通電極から電極が存在しない部分(配向制御窓50)の直下部分に、互いに近づくように、その後表示電極に向けて平行になる向きに電界が形成される。ここで、本実施形態において、液晶分子41は負の誘電異方性を備えているから、電界が発生すると配向制御窓50の近傍の液晶分子41は、その長軸が電界に直交するように、つまり、図2に示すように配向制御窓50近傍の液晶分子がハの字状に位置するように配向制御される。また、表示電極19の縁においても同様に、表示電極19の間隙部分に向けて斜めに電界が形成されるので、図2において逆ハの字状に配向制御される。そして、液晶の連続性によって、共通電極31や表示電極19の縁付近の液晶分子41の傾斜が内部の液晶まで伝達される。よって、液晶分子41の制御された配向方向は、画素内で配向制御窓50を境として図1の矢印で示すように複数の方向(ここでは4方向)となる。
【0013】
本表示装置の表示平面またはこれに平行な平面、すなわち表示電極19または共通電極31が配置されている平面に平行な平面上の、表示電極19と配向制御窓50の正射影について考える。表示電極19の射影の長辺42と、配向制御窓直線部分51の射影の縁との間隔dは、液晶の応答速度に影響する。液晶分子41は、電界がかけられたとき、電界の強さに応じて長軸が電界に直交するように平面の法線方向から傾くが、傾く方角は、電界強度によって決定されるものではない。そして、本実施形態において、その傾く方角は、前述した配向制御窓50の縁および表示電極19の縁付近に発生する斜めの電界による液晶分子41の傾斜方角により決定される。すなわち、前記の縁付近の液晶分子41が、斜めの電界によって所定方角に傾斜すると、この傾斜が電極の内側部分に伝播(でんぱ)する。したがって、この伝播距離が短い方が、液晶の応答速度が速いと考えられる。つまり、液晶分子41が倒れたとき、その長軸を結んでいった線の長さが短い方が好ましい。
【0014】
図3は、間隔dと、応答速度の関係を示している。破線で示すグラフは、表示電極19と共通電極31との間隙、すなわちセルギャップが3.3〜3.4μmの場合であり、実線で示すグラフは、セルギャップが3.5〜3.6μmの場合である。一般的傾向として、液晶の応答速度は、液晶表示装置のセルギャップが小さいほど速くなる特性を有し、図3においてもセルギャップ3.5〜3.6μmにおける液晶の応答速度よりも、3.3〜3.4μmにおける液晶の応答速度が速い。しかし、図3から明らかなように、本実施形態の垂直配向型液晶表示装置においては、このような一般的傾向だけでなく、いずれのセルギャップにおいても、間隙dが短くなると応答速度が速まる傾向を示し、さらに、その傾向は間隔dが30μm以下では弱まり、25μmより短くしても応答速度の改善はほとんど望めないことが分かる。なお、図3の特性は、液晶としてネガタイプフッ素系液晶を用い、その特性は、粘度:150mPa・sec、光学異方性:Δn=0.091、誘電異方性:Δε=−3.8、NI点(液晶が液体に変化する温度):82℃である。もちろん、本実施形態において採用可能な液晶として、上記特性を備えた液晶だけに限られるものではないが、少なくとも同程度の特性又は同種類の傾向を示す液晶において、図3に示すような窓と表示電極辺との間隙dと、液晶応答速度との関係が成り立つ。セルギャップが3.5〜3.6μmの場合では、間隔dが30μm以下の領域では、応答速度の短縮が鈍く、25μm以下ではほとんど変化しないことが分かる。また、セルギャップが3.3〜3.4μmの場合では、間隔dが30μm以下で、応答速度の短縮効果が鈍り、25μm以下での効果はわずかであることが分かる。
【0015】
一方、液晶分子の向きを制御可能な領域、すなわち表示電極19から配向制御窓50を除いた部分の面積は実質的な画素表示面積にほぼ等しいため、この面積は大きい方が好ましく、よって、この面からは間隔dは長い方が好ましい。したがって、間隔dは、応答速度の短縮効果が期待できない範囲において、なるべく長くすることがよいことが理解される。そこで、本実施形態においては、間隔dを25μm〜30μmとした。
【0016】
ここで、配向制御窓50の幅は7μm程度とすることが好適である。上述のように配向制御窓50は共通電極31が図1の点線のようなパターンに開口されて形成されたもので、窓直下では液晶にほとんど電界がかからないから、窓領域は非表示領域となるため、窓50の幅を7μmより狭めると画素表示面積が増加するが、配向分割機能を十分に発揮することができなくなる。反対に、7μmより大きくしても、配向分割機能はほとんど変化しない一方で画素表示面積が減少してしまう為である。
【0017】
図4には、配向制御窓の形状が異なる場合の例が示されている。表示電極119は略長方形であり、この長方形の長辺にほぼ平行に、かつ短辺のほぼ中心に略長方形のスリットとして幅が略7μmの配向制御窓150が位置している。この配向制御窓150の縁と、表示電極119の長辺の間隔dが、25μm〜30μmになっている。また、長方形の表示電極の短辺に平行に配向制御窓を設けることも可能である。この場合は、短辺どうしの間隔を25μm〜30μmとする。
【0018】
図5には、配向制御窓と表示電極の配置の他の例が示されている。表示電極219は、長方形に切り込みを入れたようなスリット260により、3つの部分に区画され、この区画された部分ごとに配向制御窓250が設けられている。一つの配向制御窓250の形状は、図1に示される配向制御窓50と同様に、一つの直線部分の両端が二股に分かれた形状をしている。そして、表示電極219の縁、すなわち表示電極の外形の一辺242およびスリット260の縁と、配向制御窓250の直線部分の縁の間隔dが、25μm〜30μmとなっている。また、窓250の幅は7μm程度のスリット260の幅も7μm程度である。このスリット260は、表示電極219に形成されたものであるが、窓250と同様な配向分割機能を有しており、スリット260を境に液晶の傾く方角を約180°に制御している。
【0019】
このように1画素の表示電極にスリットを設け、1画素当たり配向制御窓を複数設けることにより、より幅Wpの広い画素にも対応可能となる。間隔dを25μm〜30μm、スリットの幅Wsを7μmとすれば、図5のように1画素の表示電極を3つに分割した場合、185μm〜215μmの画素の幅Wpに対応することができる。また、図1または図4に示すように、1画素の表示電極を分割しない場合、57μm〜67μmの画素幅Wpに対応することができる。さらに、1画素の表示電極を二つに分割することによって、Wp121μm〜141μmに対応することができる。
【0020】
このように画素幅Wpの大きな画素についても、本発明によれば、画素内で配向方向を確実に分割でき、高速応答が可能で、かつ開口率を向上することができ、画素サイズの大きな例えば大型LCDなどに適用することで、優れた表示品質の大型LCDを実現できる。
【0021】
また、以上の中間となる値の幅Wpを有する画素に対しては、図6および図7に示すような電極の構成を採ることができる。図6は1画素の表示電極319と、共通電極331に設けられた配向制御窓350a,350bを示す平面図、図7は表示電極319と共通電極331に直交する面の断面図である。表示電極319は、配向制御窓350a,350bに略平行な、スリット360により二つの部分319a,319bに分割されている。部分319bの幅Wp2は部分319aの幅Wp1の略半分であり、面積も同様にほぼ半分となっている。
【0022】
共通電極の、部分319aの幅Wp1方向の中央付近に対応する位置に配向制御窓350aが設けられている。配向制御窓350aの縁と、表示電極の部分319aの配向制御窓に略平行な2辺との距離dは、前述の例と同様25μm〜30μmとなっている。また、表示電極のもう一方の部分319bに対して、配向制御窓350bは、表示電極319の外形、すなわち画素の外形となる辺342と対向する位置に設けられている。そして、配向制御窓350bの縁とスリット360の縁との間隔dも25μm〜30μmとなっている。
【0023】
図7の断面図に破線で示すように電界が形成され、また図示するように、配向制御窓350aとスリット360で分けられた3つの部分それぞれにおいて液晶分子41の配向方向がそろう。このような構成において、間隔dを25μm〜30μm、スリットおよび配向制御窓の幅を7μmとすれば、画素幅Wpを93μm〜108μmとすることができ、より多様な画素幅に対応することができるようになる。このような構成を採ってもなお実現できない画素幅(例えば68μm〜92μm)については、やや開口率を低下させるが、スリット、配向制御窓の幅wを拡大して対応することができる。
【0024】
【発明の効果】
本発明によれば、液晶分子の向きの制御可能な領域が大きく、すなわち画素のコントラストが大きく、応答速度の速い液晶表示装置を提供することができる。
【図面の簡単な説明】
【図1】 液晶表示装置の1画素の構造を示す平面図である。
【図2】 図1のA−A線断面図である。
【図3】 配向制御窓直線部分の縁と表示電極長辺との表示平面上の距離dと、応答速度の関係を示す図である。
【図4】 配向制御窓の形状の他の例を示す図である。
【図5】 表示電極の形状の他の例と、これに対応した配向制御窓の配置の例を示す図である。
【図6】 表示電極の形状のさらに他の例と、これに対応した配向制御窓の配置の例を示す図である。
【図7】 図6に示す表示電極を用いた液晶表示装置の断面図である。
【符号の説明】
19 表示電極、31 共通電極(対向電極)、40 液晶、41 液晶分子、42 (表示電極の)長辺、50 配向制御窓、51 (配向制御窓の)直線部分、52 (配向制御窓の)V字状部分。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display (LCD) that performs display using the electro-optical anisotropy of liquid crystal, and more particularly to the structure of an electrode thereof.
[0002]
[Prior art]
LCDs have advantages such as small size, thinness, and low power consumption, and are being put to practical use in fields such as OA equipment and AV equipment. In particular, an active matrix LCD using a thin film transistor (hereinafter abbreviated as TFT) as a switching element can in principle perform a static drive with a duty ratio of 100% in a multiplexed manner, with a large screen and high-definition video. Used for display.
[0003]
The liquid crystal layer is sandwiched between a common electrode common to a plurality of pixels and a display electrode driven by the TFT. The display electrode formation region corresponds to one pixel region. A slit is formed in the common electrode corresponding to one pixel or a color region of one pixel. This slit is called an alignment control window and has a function of making the tilt direction of liquid crystal molecules constant. Examples of the shape of the orientation control window include a shape having a linear slit and a V-shaped slit coupled so as to branch to both ends of the linear slit.
[0004]
[Problems to be solved by the invention]
The shape of the orientation control window and the arrangement with respect to the display electrode need to be determined in consideration of the aperture ratio, response speed, and the like.
[0005]
An object of the present invention is to optimize the arrangement of alignment control windows and display electrodes.
[Means for Solving the Problems]
In order to achieve the above object, in the liquid crystal display device according to the present invention, the distance or interval on the display plane between the alignment control window and the display electrode is 25 μm to 30 μm at the longest place.
[0006]
When the interval is 30 μm or more, the response speed tends to be faster as the interval is shorter. However, it was confirmed that the response speed hardly changes even when the interval is shorter than 30 μm, particularly less than 25 μm. On the other hand, the reduction in the interval leads to a reduction in displayable area per pixel, and this reduction in area tends to cause a decrease in aperture ratio and contrast. Therefore, it is preferable that the interval is 30 μm or less and as close to 30 μm as possible.
[0007]
Further, by setting the width of the alignment control window to about 7 μm, it is possible to prevent a decrease in the pixel display area while sufficiently exhibiting the alignment division function.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. FIG. 1 and FIG. 2 are diagrams showing in detail the structure of a part of the liquid crystal display device of this embodiment, particularly for one pixel. FIG. 1 is a schematic plan view of a first substrate side on which a TFT is formed among a pair of substrates constituting the liquid crystal display device, and FIG. 2 is a liquid crystal display device at a position along the line AA in FIG. FIG. A gate electrode 11 made of a metal such as Cr, Ta, or Mo is formed on an insulating substrate 10 such as glass, and a gate insulating film 12 made of one or both of SiNx and SiO 2 is formed so as to cover the gate electrode 11. Has been. A polycrystalline silicon (p-Si) layer 13 patterned so as to straddle the gate electrode 11 is formed on the gate insulating film 12, and an SiO 2 patterned in the same shape as the gate electrode 11 is formed thereon. using the injection stopper 14 such as 2, P, contained in low concentration impurities such as As (N-) low density (LD: Lightly doped) region LD, contained a high concentration of the same impurity on the outside ( N +) source region S and drain region D are formed. Immediately below the implantation stopper 14 is an intrinsic layer that is substantially free of impurities, and serves as a channel region CH. An interlayer insulating film 15 made of SiNx or the like is formed so as to cover the p-Si layer 13 having these regions. A source electrode 16 and a drain electrode 17 made of Al, Mo or the like are formed on the interlayer insulating film 15, and are connected to the source region S and the drain region D through contact holes opened in each interlayer insulating film 15. Has been.
[0009]
A planarization insulating film 18 such as SOG (SPIN ON GLASS), BPSG (BORO-PHOSPHO SILICATE GLASS), acrylic resin or the like is formed so as to cover the entire surface of the TFT obtained by the above configuration. A display electrode 19 for driving a liquid crystal made of a transparent conductive film such as ITO (indium tin oxide) is formed on the planarizing insulating film 18, and the source electrode 16 is connected through a contact hole opened in the planarizing insulating film 18. It is connected to the.
[0010]
A vertical alignment film 20 made of a polymer film such as polyimide is formed so as to cover all the above configurations. In the present embodiment, the vertical alignment film 20 is a rubbing-less type film. On the other hand, a second glass substrate 30 made of glass or the like that is paired with the substrate 10 is disposed at a position facing the substrate 10 with the liquid crystal layer interposed therebetween. On the glass substrate 30, the entire surface of the display unit is formed by ITO. A formed common electrode 31 is provided. An alignment film 33 such as polyimide is formed on the common electrode 31 in the same manner as the alignment film 20 on the first substrate 10 side.
[0011]
An alignment control window 50 is formed in the common electrode 31 as a slit that penetrates the thickness of the electrode. As shown by a broken line in FIG. 1, the planar shape of the orientation control window 50 is a shape in which a V-shaped portion 52 that is a V-shaped slit is coupled to both ends of a linear portion 51 that is a linear slit. Yes. In other words, both ends of the straight slit may be divided into two forks, and the divided portions may form a V shape. The straight line portion 51 of the orientation control window is disposed substantially in parallel with the long side 42 of the rectangular display electrode 19 and substantially at the center in the direction of the short side 43. The tip of the V-shaped portion 52 extends to a position of the common electrode 31 facing the rectangular vertex of the display electrode 19.
[0012]
As shown in FIG. 2, since there is no counter electrode immediately below the alignment control window 50, an electric field that tilts the liquid crystal molecules 41 is not generated, and the liquid crystal molecules 41 maintain the initial alignment state, and the electrode 19 , 31 is oriented in a substantially vertical direction. On the other hand, at the edge of the orientation control window 50, the orientation as shown by a broken line in FIG. 2, that is, from the common electrode on both sides of the orientation control window 50 to the portion immediately below the portion where no electrode exists (alignment control window 50). As described above, an electric field is then formed in a direction parallel to the display electrode. Here, in this embodiment, since the liquid crystal molecules 41 have negative dielectric anisotropy, the liquid crystal molecules 41 in the vicinity of the alignment control window 50 are arranged so that their major axes are orthogonal to the electric field when an electric field is generated. That is, as shown in FIG. 2, the orientation is controlled so that the liquid crystal molecules in the vicinity of the orientation control window 50 are positioned in a square shape. Similarly, since an electric field is formed obliquely toward the gap portion of the display electrode 19 at the edge of the display electrode 19, the orientation is controlled in an inverted C shape in FIG. 2. Due to the continuity of the liquid crystal, the tilt of the liquid crystal molecules 41 near the edges of the common electrode 31 and the display electrode 19 is transmitted to the internal liquid crystal. Therefore, the controlled alignment directions of the liquid crystal molecules 41 are a plurality of directions (here, four directions) as indicated by arrows in FIG. 1 with the alignment control window 50 as a boundary in the pixel.
[0013]
Consider an orthogonal projection of the display electrode 19 and the orientation control window 50 on the display plane of the present display device or a plane parallel thereto, that is, a plane parallel to the plane where the display electrode 19 or the common electrode 31 is disposed. The distance d between the projection long side 42 of the display electrode 19 and the projection edge of the alignment control window straight line portion 51 affects the response speed of the liquid crystal. When an electric field is applied, the liquid crystal molecules 41 are tilted from the normal direction of the plane so that the major axis is orthogonal to the electric field according to the strength of the electric field, but the direction of tilting is not determined by the electric field strength. . In the present embodiment, the tilting direction is determined by the tilting direction of the liquid crystal molecules 41 due to the oblique electric field generated near the edge of the alignment control window 50 and the edge of the display electrode 19 described above. That is, when the liquid crystal molecules 41 in the vicinity of the edge are inclined in a predetermined direction by an oblique electric field, this inclination is propagated to the inner portion of the electrode. Therefore, the shorter the propagation distance, the faster the response speed of the liquid crystal. That is, it is preferable that the length of the line connecting the long axes when the liquid crystal molecules 41 fall is short.
[0014]
FIG. 3 shows the relationship between the interval d and the response speed. A graph indicated by a broken line is a case where the gap between the display electrode 19 and the common electrode 31, that is, a cell gap is 3.3 to 3.4 μm, and a graph indicated by a solid line is a cell gap of 3.5 to 3.6 μm. Is the case. As a general tendency, the response speed of the liquid crystal has a characteristic that it becomes faster as the cell gap of the liquid crystal display device is smaller, and in FIG. 3, the response speed of the liquid crystal is 3. The response speed of the liquid crystal at 3 to 3.4 μm is fast. However, as is apparent from FIG. 3, in the vertical alignment type liquid crystal display device of the present embodiment, not only such a general tendency, but also in any cell gap, the response speed tends to increase as the gap d becomes shorter. Further, it can be seen that the tendency is weakened when the distance d is 30 μm or less, and that the response speed can hardly be improved even when the distance d is shorter than 25 μm. The characteristics shown in FIG. 3 are negative type fluorinated liquid crystal as the liquid crystal, and the characteristics are: viscosity: 150 mPa · sec, optical anisotropy: Δn = 0.091, dielectric anisotropy: Δε = -3.8, NI point (temperature at which the liquid crystal changes to a liquid): 82 ° C. Of course, the liquid crystal that can be employed in the present embodiment is not limited to the liquid crystal having the above-mentioned characteristics, but in a liquid crystal that exhibits at least the same characteristics or the same kind of tendency, the window as shown in FIG. The relationship between the gap d with the display electrode side and the liquid crystal response speed is established. It can be seen that when the cell gap is 3.5 to 3.6 μm, the response speed is not shortened in the region where the distance d is 30 μm or less, and hardly changes at 25 μm or less. In addition, when the cell gap is 3.3 to 3.4 μm, the effect of shortening the response speed is dull when the distance d is 30 μm or less, and the effect at 25 μm or less is slight.
[0015]
On the other hand, the area where the orientation of the liquid crystal molecules can be controlled, that is, the area of the display electrode 19 excluding the alignment control window 50 is substantially equal to the substantial pixel display area. The distance d is preferably longer from the surface. Therefore, it is understood that the interval d should be made as long as possible within the range where the effect of shortening the response speed cannot be expected. Therefore, in the present embodiment, the interval d is set to 25 μm to 30 μm.
[0016]
Here, the width of the orientation control window 50 is preferably about 7 μm. As described above, the alignment control window 50 is formed by opening the common electrode 31 in a pattern as shown by the dotted line in FIG. 1, and since the electric field is hardly applied to the liquid crystal just below the window, the window area becomes a non-display area. For this reason, if the width of the window 50 is narrower than 7 μm, the pixel display area increases, but the alignment division function cannot be fully exhibited. On the other hand, even if it is larger than 7 μm, the alignment display function is hardly changed, but the pixel display area is reduced.
[0017]
FIG. 4 shows an example where the shape of the orientation control window is different. The display electrode 119 is substantially rectangular, and an orientation control window 150 having a width of approximately 7 μm is positioned as a substantially rectangular slit substantially parallel to the long side of the rectangle and at the center of the short side. The distance d between the edge of the orientation control window 150 and the long side of the display electrode 119 is 25 μm to 30 μm. It is also possible to provide an orientation control window parallel to the short side of the rectangular display electrode. In this case, the interval between the short sides is set to 25 μm to 30 μm.
[0018]
FIG. 5 shows another example of the arrangement of the orientation control window and the display electrode. The display electrode 219 is divided into three parts by a slit 260 that is cut into a rectangle, and an orientation control window 250 is provided for each of the divided parts. The shape of one orientation control window 250 is a shape in which both ends of one straight line portion are divided into two forks, similar to the orientation control window 50 shown in FIG. The distance d between the edge of the display electrode 219, that is, the edge 242 of the outer shape of the display electrode and the edge of the slit 260, and the edge of the linear portion of the orientation control window 250 is 25 μm to 30 μm. The width of the window 250 is about 7 μm, and the width of the slit 260 is also about 7 μm. The slit 260 is formed in the display electrode 219, and has an alignment division function similar to that of the window 250. The direction in which the liquid crystal is tilted with the slit 260 as a boundary is controlled to about 180 °.
[0019]
Thus, by providing a slit in the display electrode of one pixel and providing a plurality of alignment control windows per pixel, it is possible to deal with a pixel having a wider width Wp. When the interval d is 25 μm to 30 μm and the slit width Ws is 7 μm, when the display electrode of one pixel is divided into three as shown in FIG. 5, it can correspond to the pixel width Wp of 185 μm to 215 μm. Further, as shown in FIG. 1 or FIG. 4, when the display electrode of one pixel is not divided, it can correspond to a pixel width Wp of 57 μm to 67 μm. Further, by dividing the display electrode of one pixel into two, it is possible to cope with Wp 121 μm to 141 μm.
[0020]
In this way, according to the present invention, even for a pixel having a large pixel width Wp, the alignment direction can be reliably divided within the pixel, a high-speed response can be achieved, and the aperture ratio can be improved. By applying to a large LCD, a large LCD with excellent display quality can be realized.
[0021]
Further, for the pixel having the intermediate value width Wp as described above, the electrode configuration as shown in FIGS. 6 and 7 can be adopted. 6 is a plan view showing the display electrode 319 of one pixel and the alignment control windows 350a and 350b provided in the common electrode 331. FIG. 7 is a cross-sectional view of a plane orthogonal to the display electrode 319 and the common electrode 331. The display electrode 319 is divided into two portions 319a and 319b by a slit 360 that is substantially parallel to the orientation control windows 350a and 350b. The width Wp2 of the portion 319b is substantially half of the width Wp1 of the portion 319a, and the area is also substantially half.
[0022]
An alignment control window 350a is provided at a position corresponding to the vicinity of the center of the common electrode in the width Wp1 direction of the portion 319a. The distance d between the edge of the orientation control window 350a and two sides substantially parallel to the orientation control window of the display electrode portion 319a is 25 μm to 30 μm as in the above example. In addition, with respect to the other portion 319b of the display electrode, the orientation control window 350b is provided at a position facing the outer shape of the display electrode 319, that is, the side 342 serving as the outer shape of the pixel. The distance d between the edge of the orientation control window 350b and the edge of the slit 360 is also 25 μm to 30 μm.
[0023]
As shown by the broken line in the cross-sectional view of FIG. 7, an electric field is formed, and as shown in the drawing, the alignment directions of the liquid crystal molecules 41 are aligned in each of the three portions divided by the alignment control window 350a and the slit 360. In such a configuration, if the distance d is 25 μm to 30 μm, and the width of the slit and the alignment control window is 7 μm, the pixel width Wp can be 93 μm to 108 μm, and more various pixel widths can be handled. It becomes like this. A pixel width (for example, 68 μm to 92 μm) that cannot be realized even with such a configuration can be dealt with by expanding the width w of the slit and the alignment control window, although the aperture ratio is slightly reduced.
[0024]
【The invention's effect】
According to the present invention, it is possible to provide a liquid crystal display device having a large region in which the orientation of liquid crystal molecules can be controlled, that is, a large pixel contrast and a high response speed.
[Brief description of the drawings]
FIG. 1 is a plan view showing a structure of one pixel of a liquid crystal display device.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a diagram showing the relationship between the distance d on the display plane between the edge of the alignment control window straight line portion and the long side of the display electrode, and the response speed.
FIG. 4 is a diagram showing another example of the shape of the orientation control window.
FIG. 5 is a diagram showing another example of the shape of the display electrode and an example of the arrangement of orientation control windows corresponding to the display electrode.
FIG. 6 is a diagram showing still another example of the shape of the display electrode and an example of the arrangement of the alignment control windows corresponding to the display electrode.
7 is a cross-sectional view of a liquid crystal display device using the display electrode shown in FIG.
[Explanation of symbols]
19 display electrode, 31 common electrode (counter electrode), 40 liquid crystal, 41 liquid crystal molecule, 42 long side of display electrode, 50 alignment control window, 51 linear portion of alignment control window, 52 of alignment control window V-shaped part.

Claims (5)

複数形成された表示電極と対向電極との間に垂直配向された液晶分子を有する液晶層が設けられ、電界により上記液晶分子の配向を制御する垂直配向方式の液晶表示装置であって、
前記表示電極は、直線状の切り込みにより複数の部分に分割され、前記分割された部分のうちの端に位置する端部分の面積は、他の部分の面積より小さく、
前記対向電極は、前記表示電極の分割された部分に対応して、前記切り込みと略平行な直線状の部分を有する形状の開口部である配向制御窓を有し、
前記分割された表示電極の端部分の縁であって、かつ画素の縁である辺は、前記配向制御窓の一つに重畳し、当該部分の他の縁と前記配向制御窓の直線部分の縁との前記表示平面上への正射影どうしの間隔が、25μm〜30μmであり、
他の表示電極の部分に関して、当該部分の前記切り込みに平行な2辺と、この切り込み部分に略平行な配向制御窓の直線部分の縁との表示平面上への正射影どうしの間隔が、25μm〜30μmである、
液晶表示装置。
A liquid crystal display device of a vertical alignment method in which a liquid crystal layer having liquid crystal molecules vertically aligned is provided between a plurality of display electrodes and a counter electrode, and the alignment of the liquid crystal molecules is controlled by an electric field,
The display electrode is divided into a plurality of parts by a linear cut, and the area of the end part located at the end of the divided part is smaller than the area of the other part,
The counter electrode has an alignment control window that is an opening having a shape having a linear portion substantially parallel to the notch, corresponding to the divided portion of the display electrode,
The edge that is the edge of the divided display electrode and the edge of the pixel overlaps with one of the alignment control windows, and the other edge of the portion and the straight portion of the alignment control window. The distance between the orthogonal projections on the display plane with the edge is 25 μm to 30 μm,
With respect to the other display electrode portion, the interval between the orthogonal projections on the display plane between the two sides parallel to the notch of the portion and the edge of the linear portion of the orientation control window substantially parallel to the notch is 25 μm. ~ 30 μm,
Liquid crystal display device.
請求項1に記載された液晶表示装置であって、前記対向電極は、直線部分と、直線部分の端部から屈曲して延在する部分とからなる配向制御窓を有する、
液晶表示装置。
2. The liquid crystal display device according to claim 1 , wherein the counter electrode includes an alignment control window including a straight portion and a portion that is bent and extends from an end portion of the straight portion.
Liquid crystal display device.
請求項2に記載された液晶表示装置であって、前記配向制御窓の先端は、前記対向電極における、前記表示電極の前記区画された部分の頂点に対向する位置まで延在している、
液晶表示装置。
3. The liquid crystal display device according to claim 2 , wherein a tip of the alignment control window extends to a position facing the apex of the partitioned portion of the display electrode in the counter electrode.
Liquid crystal display device.
請求項1から3に記載された液晶表示装置であって、前記配向制御窓の幅が7μmである、
液晶表示装置
4. The liquid crystal display device according to claim 1 , wherein a width of the alignment control window is 7 μm.
Liquid crystal display
請求項1から4に記載された液晶表示装置であって、液晶の誘電率が約−3.8である、
液晶表示装置。
5. The liquid crystal display device according to claim 1 , wherein the dielectric constant of the liquid crystal is about −3.8.
Liquid crystal display device.
JP2001269198A 2000-09-05 2001-09-05 Liquid crystal display Expired - Lifetime JP4854152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269198A JP4854152B2 (en) 2000-09-05 2001-09-05 Liquid crystal display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000268142 2000-09-05
JP2000268142 2000-09-05
JP2000-268142 2000-09-05
JP2001269198A JP4854152B2 (en) 2000-09-05 2001-09-05 Liquid crystal display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010254075A Division JP5300823B2 (en) 2000-09-05 2010-11-12 Liquid crystal display
JP2011099497A Division JP5372063B2 (en) 2000-09-05 2011-04-27 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2002156635A JP2002156635A (en) 2002-05-31
JP4854152B2 true JP4854152B2 (en) 2012-01-18

Family

ID=26599242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269198A Expired - Lifetime JP4854152B2 (en) 2000-09-05 2001-09-05 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4854152B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860121B2 (en) * 2004-06-21 2012-01-25 日本電気株式会社 Liquid crystal display
JP4639797B2 (en) * 2004-12-24 2011-02-23 カシオ計算機株式会社 Liquid crystal display element
JP2007293292A (en) * 2006-03-29 2007-11-08 Casio Comput Co Ltd Liquid crystal display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309264A (en) * 1992-04-30 1994-05-03 International Business Machines Corporation Liquid crystal displays having multi-domain cells
JPH08179381A (en) * 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd Liquid crystal display element
JPH10153802A (en) * 1996-09-30 1998-06-09 Fujitsu Ltd Liquid crystal display device
JPH1152381A (en) * 1997-07-29 1999-02-26 Tokuo Koma Liquid crystal display device
JP3398025B2 (en) * 1997-10-01 2003-04-21 三洋電機株式会社 Liquid crystal display
JPH11109391A (en) * 1997-10-01 1999-04-23 Sanyo Electric Co Ltd Liquid crystal display device
JP2976948B2 (en) * 1997-10-06 1999-11-10 日本電気株式会社 Liquid crystal display device, its manufacturing method and its driving method
JPH11119223A (en) * 1997-10-20 1999-04-30 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP3183645B2 (en) * 1998-04-08 2001-07-09 松下電器産業株式会社 Parallel alignment liquid crystal display
JP2000162599A (en) * 1998-11-30 2000-06-16 Sanyo Electric Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JP2002156635A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
KR100568053B1 (en) Active matrix type liquid crystal display device
KR100372665B1 (en) Vertical orientation type liguid crystal display
KR100730495B1 (en) IPS mode Liquid crystal display device and method for fabricating the same
KR101071711B1 (en) In-Plane Switching mode Liquid crystal display device
WO2013001980A1 (en) Liquid crystal display panel, and liquid crystal display device
US20150070644A1 (en) Pixel structure
KR20020028477A (en) Fringe field switching mode lcd
JP5616423B2 (en) Liquid crystal display
KR20100000721A (en) Array substrate for liquid crystal display device
KR102320000B1 (en) Liquid crystal display
JPH11109391A (en) Liquid crystal display device
KR100517345B1 (en) Liquid Crystal Display
JPH10333180A (en) Liquid crystal display device
JP4854152B2 (en) Liquid crystal display
KR101189143B1 (en) In-Plane Switching mode Liquid crystal display device
JP2002156642A (en) Liquid crystal display device, its manufacturing method and liquid crystal display method
KR20060045268A (en) Fringe field switching mode liquid crystal display device
JPH1195235A (en) Liquid crystal display device
KR100796493B1 (en) Liquid crystal display device
JP3421571B2 (en) Liquid crystal display
JP4049446B2 (en) Liquid crystal display
KR20020034451A (en) In-Plane Switching mode Liquid crystal display device and method for fabricating the same
KR101828482B1 (en) Liquid crystal display device
KR101009662B1 (en) Mask of Liquid Crystal Display Device
KR20000056641A (en) Liquid Crystal Displays Having Field-Generating Electrodes on A Single Substrate and Manufacturing Methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4854152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term