JP4853898B2 - DNA standard - Google Patents

DNA standard Download PDF

Info

Publication number
JP4853898B2
JP4853898B2 JP2005249995A JP2005249995A JP4853898B2 JP 4853898 B2 JP4853898 B2 JP 4853898B2 JP 2005249995 A JP2005249995 A JP 2005249995A JP 2005249995 A JP2005249995 A JP 2005249995A JP 4853898 B2 JP4853898 B2 JP 4853898B2
Authority
JP
Japan
Prior art keywords
dna
seq
sequence
base sequence
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005249995A
Other languages
Japanese (ja)
Other versions
JP2007060966A (en
Inventor
守 川原崎
哲志 陶山
正規 有田
ナナ 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005249995A priority Critical patent/JP4853898B2/en
Publication of JP2007060966A publication Critical patent/JP2007060966A/en
Application granted granted Critical
Publication of JP4853898B2 publication Critical patent/JP4853898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、DNA定量において標準物質として使用するのに最適なDNA、および該DNAからなる標準DNA試料に関する。   The present invention relates to DNA optimum for use as a standard substance in DNA quantification, and a standard DNA sample comprising the DNA.

近年、ウイルス疾患、腫瘍等の様々な疾病の診断、発症予測あるいはその原因究明等のため、あるいは遺伝子組み換え食品等に対する安全性確保等のため、DNA定量技術が盛に用いられている。現在用いられている代表的なDNA定量技術としてPCRを用いる手段がある、
これは、DNAポリメラーゼ、蛍光標識した基質ヌクレオチド、予めDNA標準物質及びプライマーを含有する反応溶液を用いて、DNA標準物質の濃度を変えてPCR増幅を行い、該DNA標準物質の各濃度毎に、サイクル数とこれに伴い増大(TaqMan法等に代表される蛍光強度増大型検出法を用いる場合)、または減少(QP法に代表される蛍光強度減少型検出法を用いる場合)する蛍光強度との関係を求め(PCR増幅曲線)、さらに一定の蛍光強度、または蛍光減少率に達するサイクル数とDNA標準物質濃度との関係を求めておく。次いで、被験DNA試料を同様にPCR増幅し、該試料が上記の蛍光強度、または蛍光減少率に達するサイクル数を求め、このサイクル数とDNA標準物質濃度の関係から、試料中のDNA濃度を決定するものである。
このDNA定量技術においては、DNA標準物質として既知の遺伝子配列の一部が使用されてきたが、この既知の遺伝子配列を利用することに起因して、様々な問題が考えられる。
2. Description of the Related Art In recent years, DNA quantification techniques have been actively used to diagnose various diseases such as viral diseases and tumors, to predict the onset or to investigate the cause thereof, or to ensure the safety of genetically modified foods. There is a means using PCR as a representative DNA quantification technique currently used.
This is a DNA polymerase, a fluorescently labeled substrate nucleotide, a reaction solution containing a DNA standard and a primer in advance, and PCR amplification is performed by changing the concentration of the DNA standard, and for each concentration of the DNA standard, The number of cycles and the fluorescence intensity increasing (when using a fluorescence intensity increasing detection method typified by TaqMan method) or decreasing (when using a fluorescence intensity decreasing detection method typified by QP method) The relationship is determined (PCR amplification curve), and the relationship between the number of cycles to reach a certain fluorescence intensity or fluorescence reduction rate and the concentration of the DNA standard is determined. Next, the test DNA sample is amplified by PCR in the same manner, and the number of cycles at which the sample reaches the above-described fluorescence intensity or fluorescence reduction rate is determined. The DNA concentration in the sample is determined from the relationship between the number of cycles and the concentration of the DNA standard substance. To do.
In this DNA quantification technique, a part of a known gene sequence has been used as a DNA standard substance, but various problems can be considered due to the use of this known gene sequence.

一方、DNA設計手法として、 互いにミスハイブリダイゼーションを起こしにくいDNA配列を効率よくかつシステマティックに設計する方法が開発されており、この方法は所定の長さのDNA配列を、G又はCとA又はTを0と1からなるビット列(テンプレート)で表わした場合、各テンプレート間、各テンプレートの逆配列間、これらをシフトした配列間、これらの連結配列間とのハミング距離が、いずれも所定値以上になるテンプレートを選択し、該テンプレートが表現するDNA配列の集合の中から、ハミング符号等の任意の誤り訂正符号の符号語と組み合わせることにより、テンプレートが表現するDNA配列同士が少なくとも前記ハミング距離kを保つDNA配列の集合を選定するというものである(特許文献1、2参照。)   On the other hand, as a DNA design method, a method for efficiently and systematically designing DNA sequences that are unlikely to cause mishybridization with each other has been developed. In this method, a DNA sequence having a predetermined length is converted into G or C and A or T. Is represented by a bit string (template) consisting of 0 and 1, the hamming distances between the templates, between the inverted arrays of the templates, between the shifted arrays, and between the connected arrays are all greater than a predetermined value. Are combined with a code word of an arbitrary error correction code such as a Hamming code from the set of DNA sequences represented by the template, so that at least the Hamming distance k between the DNA sequences represented by the template is obtained. A set of DNA sequences to be maintained is selected (see Patent Documents 1 and 2).

特開2004−355294JP 2004-355294 A WO2003/038091WO2003 / 038091

DNA標準物質として、既知の遺伝子配列を利用することに起因して生じる主な問題点としては、例えば以下のものが考えられる。

1)従来のDNA標準物質は天然の環境中に存在する塩基配列を有するから、特異的プローブ、プライマーがDNA定量系に予期せず混入するDNAとハイブリダイズする等の恐れがあり、これがPCRの増幅効率や検出系に影響を与え、定量値が正確でない可能性がある。
2)天然由来のDNA標準物質における塩基配列中の塩基の種類に偏り(例えば、GC含量)、または高次構造があり、これらがPCRの増幅効率に影響を与え、定量値に誤差を生ずる恐れがある。
3)上記1)、2)に起因して、従来のDNA標準物質は天然に存在するDNAを標準物質として使用しており、定量装置・定量手法ごとに校正に用いる標準物質が異なっているため、プライマー、プローブのサイトとして選択したDNA配列ごとにGC含量、塩基長、特異的配列に起因して増幅効率に差が生じ、各種DNA定量装置・定量手法により得られた定量値を客観的な値に校正するためには十分ではなく、このため、各種DNA定量装置間、手法間のDNA定量能力の比較、あるいは各種DNA定量装置で得られた定量値を客観的に評価、比較することが非常に困難である。
As main problems caused by using a known gene sequence as a DNA standard substance, for example, the following can be considered.

1) Since a conventional DNA standard has a base sequence existing in the natural environment, there is a risk that a specific probe or primer may hybridize with DNA that is unexpectedly mixed into the DNA quantification system. Amplification efficiency and detection system may be affected, and the quantitative value may not be accurate.
2) There is a bias in the type of base in the nucleotide sequence in the DNA standard substance derived from nature (for example, GC content) or higher order structure, which may affect the amplification efficiency of PCR and cause an error in the quantitative value. There is.
3) Due to the above 1) and 2), the conventional DNA standard substance uses naturally existing DNA as the standard substance, and the standard substance used for calibration differs depending on the quantification device / quantitative technique. Because of differences in amplification efficiency due to the GC content, base length, and specific sequence for each DNA sequence selected as a primer or probe site, the quantitative values obtained by various DNA quantification devices / quantitative techniques are objective It is not sufficient to calibrate to a value. Therefore, it is possible to objectively evaluate and compare quantification values obtained by various DNA quantification apparatuses, comparison of DNA quantification ability between various DNA quantification apparatuses and methods. It is very difficult.

本発明の課題は、上記1)〜3)にみられる、従来のDNA標準物質の使用に起因して生ずる問題点を解消する点にあり、DNAの定量値が正確で、各種DNA定量装置により得られた定量値を客観的な値に校正することが可能であって、このため、各DNA定量装置間の定量能力を比較、評価でき、あるいは異なるDNA定量装置で得られた定量値を、客観的に評価、比較可能にし得る新規な標準DNA試料を提供することにある。
An object of the present invention is to eliminate the problems caused by the use of the conventional DNA standard substances as seen in the above 1) to 3). The quantitative value of DNA is accurate, and various DNA quantification devices are used. It is possible to calibrate the obtained quantitative value to an objective value, and for this reason, it is possible to compare and evaluate the quantitative ability between the DNA quantitative devices, or to obtain the quantitative value obtained by different DNA quantitative devices, The object is to provide a new standard DNA sample that can be objectively evaluated and compared.

本発明者等は、上記課題を解決すべく鋭意研究の結果、塩基配列中の塩基に偏りがなく、しかも非天然で高次構造をとらない塩基配列からなるDNAを設計し、該DNAがDNA標準物質として極めて良好な性能を有することを見いだし、本発明を完成させるに至った。
すなわち、本発明は以下の(1)〜(9)に係るものである
As a result of diligent research to solve the above problems, the present inventors designed a DNA having a base sequence that is non-biased in the base sequence and does not have a non-natural and higher order structure, and the DNA is a DNA. It has been found that it has extremely good performance as a standard substance and has led to the completion of the present invention.
That is, the present invention relates to the following (1) to (9).

(1)長さおよびGC含量が一定のオリゴヌクレオチド配列を組み合わせたDNAであって、非天然の塩基配列からなることを特徴とするDNA。
(2)配列表の配列番号1に示される塩基配列を有することを特徴とするDNA
(3)上記(2)に記載されたDNAの塩基配列中の任意の領域の塩基配列からなり、少なくとも30merの長さを有することを特徴とする、DNA。
(4)配列表の配列番号2〜6のいずれかに示される塩基配列を有することを特徴とする、上記(3)に記載のDNA。
(5)上記(2)〜(4)のいずれかに記載のDNAの5’末端および3’末端に、さらにGC含量50%のプライマー接合用の塩基配列が設けられていることを特徴とする、DNA
(6)配列表の7〜18のいずれかに示される塩基配列を有することを特徴とする、上記(5)に記載のDNA。
(7)上記(1)〜(6)のいずれかに記載のDNAと、該DNAと相補の塩基配列を有するDNAとからなることを特徴とする、2本鎖DNA
(8)上記(7)の2本鎖DNAがベクターに導入されていることを特徴とする、組み換えベクター。
(9)上記(7)または(8)に記載の2本鎖DNAからなることを特徴とする、DNA定量に使用する標準DNA試料。
(1) DNA comprising a combination of oligonucleotide sequences having a constant length and GC content, and comprising an unnatural base sequence.
(2) DNA having a base sequence represented by SEQ ID NO: 1 in the sequence listing
(3) A DNA comprising a base sequence of an arbitrary region in the base sequence of the DNA described in (2) above and having a length of at least 30 mer.
(4) The DNA according to (3) above, which has a base sequence represented by any one of SEQ ID NOs: 2 to 6 in the sequence listing.
(5) The DNA sequence according to any one of the above (2) to (4) is further provided with a base sequence for primer conjugation having a GC content of 50% at the 5 ′ end and 3 ′ end. DNA
(6) The DNA according to (5) above, which has the base sequence shown in any one of 7 to 18 in the sequence listing.
(7) A double-stranded DNA comprising the DNA according to any one of (1) to (6) above and a DNA having a base sequence complementary to the DNA
(8) A recombinant vector, wherein the double-stranded DNA of (7) is introduced into a vector.
(9) A standard DNA sample used for DNA quantification, comprising the double-stranded DNA according to (7) or (8) above.

本発明のDNA標準物質は、GC含量が一定のオリゴヌクレオチドを組み合わせ、全体のDNAの塩基配列はもちろん、その一部の領域においてもGC含量は一定であるように設計しているので、配列中のGC含量のバラツキや高次構造の有無によりPCR増幅が影響されることがなく、また、天然のDNAの塩基配列とは異なる塩基配列を有するために、天然に存在する目的以外のDNAが校正実験の定量系に予期せず混入しても、それによりPCR増幅に与える影響は少なく、これらの点で、正確なDNA定量が可能となるほか、各種DNA定量装置により得られた定量値を客観的な値に校正することが可能であって、このため、各DNA定量装置間の定量能力の比較、評価、あるいは異なるDNA定量装置で得られた定量値を、客観的に評価、比較することが可能になる。
The DNA standard of the present invention is designed such that oligonucleotides with a constant GC content are combined and the GC content is constant not only in the entire DNA base sequence but also in a partial region thereof. PCR amplification is not affected by the presence or absence of higher-order structure and the presence or absence of higher-order structures, and it has a base sequence that is different from the base sequence of natural DNA. Unexpected contamination in the experimental quantification system has little effect on PCR amplification. In this respect, accurate DNA quantification is possible, and quantitative values obtained by various DNA quantification devices are objective. It is possible to calibrate to a specific value. For this reason, comparison and evaluation of the quantification ability between the DNA quantification devices, or quantitative values obtained with different DNA quantification devices can be objectively determined. Evaluation, it is possible to compare.

本発明のDNAは、GC含量に偏りのない塩基配列を有し、かつ、非天然で高次構造をとらない塩基配列を有することを特徴とするものであり、これと相補の塩基配列を有するDNAとからなる2本鎖DNAは、DNA定量装置に使用する標準DNA試料として好適に使用できる。 本発明におけるDNAはその長さに特に制限はなく、QPrimer法等、プローブを用いない定量PCR実験の標準DNA試料として使用する場合、最短で30bp程度の長さがあればよい。また、600bpの長さがあれば、現在使用されている全てのDNA定量装置において使用できる。   The DNA of the present invention is characterized by having a base sequence with no bias in GC content and having a non-natural base sequence that does not have a higher order structure, and has a base sequence complementary thereto. Double-stranded DNA composed of DNA can be suitably used as a standard DNA sample used in a DNA quantification apparatus. The length of the DNA in the present invention is not particularly limited, and when used as a standard DNA sample in a quantitative PCR experiment without using a probe, such as the QPPrimer method, the length should be at least about 30 bp. Moreover, if it has a length of 600 bp, it can be used in all currently used DNA quantification apparatuses.

本発明のより具体的なDNAの塩基配列は、配列表の配列番号1に示されるもの、およびその部分配列である。
本発明のDNAは、一定の長さと一定のCG含量を有するDNAを複数組み合わせてデザインした多数のDNAから、データーベースに登録されている既存の塩基配列と相同性を有するものを除いたものである。また、選択した配列が高次構造をとらないことを確認した。例えば、配列番号1のDNAの塩基配列は、GC含量50%で長さが12merの塩基配列を複数、有田等の方法(特開2004−355294号公報)を用いて設計し、さらにこれらの配列をつなぎ合わせて、約600merの塩基配列をデザインし、このようにデザインした複数の候補配列の中で、核酸塩基配列および翻訳産物の配列が既存の核酸・蛋白質データーベースのレコードと60%以上の相同性を示さないものを選択したものである。
A more specific base sequence of the DNA of the present invention is that shown in SEQ ID NO: 1 in the sequence listing and partial sequences thereof.
The DNA of the present invention is obtained by excluding those having homology with existing base sequences registered in a database from a large number of DNAs designed by combining a plurality of DNAs having a certain length and a certain CG content. is there. Moreover, it confirmed that the selected arrangement | sequence did not take a higher-order structure. For example, the base sequence of the DNA of SEQ ID NO: 1 is designed using a plurality of base sequences having a GC content of 50% and a length of 12 mer, using the method of Arita et al. (Japanese Patent Laid-Open No. 2004-355294). The base sequence of about 600 mer is connected, and among the multiple candidate sequences designed in this way, the nucleic acid base sequence and the translation product sequence are more than 60% of the existing nucleic acid / protein database records. Those that do not show homology are selected.

この配列番号1の塩基配列は天然には存在せず、また、該塩基配列中のGC含量は、12merの長さであれば、どの領域の部分をとってもほぼ均等に50%である。したがって、
この配列番号1の塩基配列中の任意の領域の部分塩基配列からなるものであっても、少なくとも30merの長さを有するDNAであれば、標準DNA試料の構成DNAとなりうる。このようなDNAの塩基配列の具体例は配列番号2〜6に示される。
また、配列番号7〜12、13〜18のDNAは、いずれも配列番号1のDNAあるいはその部分配列(配列番号2〜6)を有するもので、5’末端と3’末端にそれぞれ12merまたは24merの塩基配列を付加したものであり、これにより100bpから600bpのいずれの増幅長に対しても同じ両末端の12merまたは24merの配列、および相補配列を共通のプライマーとしたPCR増幅が可能となる。また、付加された塩基配列もそれぞれ50%のGC含量を有し、また、天然の塩基配列を含まないように設計した点では、配列番号1〜6に示されるDNAと同様である。
The base sequence of SEQ ID NO: 1 does not exist in nature, and the GC content in the base sequence is approximately equal to 50% in any region as long as the length is 12 mer. Therefore,
Even a DNA consisting of a partial base sequence of an arbitrary region in the base sequence of SEQ ID NO: 1 can be a constituent DNA of a standard DNA sample as long as it has a length of at least 30 mer. Specific examples of such a DNA base sequence are shown in SEQ ID NOs: 2 to 6.
The DNAs of SEQ ID NOs: 7 to 12 and 13 to 18 all have the DNA of SEQ ID NO: 1 or a partial sequence thereof (SEQ ID NOs: 2 to 6), and 12 mer or 24 mer at the 5 ′ end and 3 ′ end, respectively. Thus, PCR amplification using the same 12-mer or 24-mer sequence at both ends and a complementary sequence as a common primer is possible for any amplification length of 100 bp to 600 bp. The added base sequences each have a GC content of 50%, and are the same as the DNAs shown in SEQ ID NOs: 1 to 6 in that they are designed not to contain a natural base sequence.

このように設計された本発明のDNAは、それ自体周知の方法により合成可能である。また、現在ではこのようなDNAの委託製造元が多数あり。これらに委託して入手することも可能である。
得られたDNAは、該DNAと相補DNAとで2本鎖DNAとし、これをDNA定量装置において標準DNA試料として使用するが、この2本鎖DNAも、上記DNAを鋳型鎖としてDNAポリメラーゼにより相補鎖を合成することにより得られ、従来周知の方法により得ることができる。本発明の標準DNA試料は適当なプラスミド等のベクターに連結しておくことが便利である。このような組み換えベクターは、大腸菌等の宿主に導入して、凍結乾燥等により保存でき、必要なとき、宿主微生物を増殖させることにより組み換えベクターを得、これから、本発明の標準DNA試料をPCR的に増幅することにより、大量に供給できる。また実施例1に示すように、任意のプライマーサイトを付与できる。
The DNA of the present invention thus designed can be synthesized by a method known per se. At present, there are many such contract manufacturers of DNA. It is also possible to consign and obtain them.
The obtained DNA is converted into double-stranded DNA by the DNA and complementary DNA, and this is used as a standard DNA sample in a DNA quantification device. This double-stranded DNA is also complemented by DNA polymerase using the DNA as a template strand. It is obtained by synthesizing a chain and can be obtained by a conventionally known method. It is convenient to connect the standard DNA sample of the present invention to a vector such as an appropriate plasmid. Such a recombinant vector can be introduced into a host such as Escherichia coli and stored by lyophilization or the like. When necessary, a recombinant vector is obtained by growing a host microorganism. Can be supplied in large quantities. Moreover, as shown in Example 1, arbitrary primer sites can be provided.

本発明における標準DNA試料は、DNA定量装置において従来と同様に使用すればよい。その代表的な使用法について、図1に基づき以下説明する。
すなわち、DNA定量装置において、本発明の各種濃度の標準DNA試料を鋳型としてPCRを行う。このPCR反応溶液中には蛍光標識したヌクレオチドを含有させる。
PCRのサイクル数が増大するにしたがい、蛍光強度が増大(TaqMan法)、または蛍光強度が減少(QP法)するが、使用した標準DNAの濃度毎にPCRの増幅曲線(サイクル数と蛍光強度の関係)を求め(図1A)。さらに、一定の蛍光強度、または蛍光消光率になるまでのPCRのサイクル数と標準DNA試料濃度との関係を求める(図1B)。
本発明の標準DNA試料を、異なるDNA定量装置間において使用して、上記増幅曲線を求め、これを比較することにより、その感度、正確性等の性能比較を行うことができ、また、各定量装置の校正も可能となる。

以下本発明の実施例を示すが、本発明はこれら実施例により限定されるものではない。
The standard DNA sample in the present invention may be used in a DNA quantification apparatus in the same manner as before. The typical usage will be described below with reference to FIG.
That is, in a DNA quantification apparatus, PCR is performed using standard DNA samples of various concentrations of the present invention as templates. This PCR reaction solution contains fluorescently labeled nucleotides.
As the PCR cycle number increases, the fluorescence intensity increases (TaqMan method), or the fluorescence intensity decreases (QP method), but the PCR amplification curve (cycle number and fluorescence intensity for each standard DNA concentration used). Relationship) (Fig. 1A). Further, the relationship between the number of PCR cycles until a certain fluorescence intensity or fluorescence quenching rate is reached and the standard DNA sample concentration is determined (FIG. 1B).
By using the standard DNA sample of the present invention between different DNA quantification apparatuses, the above amplification curves are obtained and compared, whereby performance comparison such as sensitivity and accuracy can be performed. Equipment calibration is also possible.

Examples of the present invention are shown below, but the present invention is not limited to these examples.

以下に、標準用DNAの加工例を示す。タカラバイオ、ドラゴンジェノミックス社に製造を依頼して、配列番号1に示す塩基配列を有するDNAを合成し、pUC18ベクターに組み込まれた形(NMIJ-Arita2::pUC18)で供給を受けた。この合成DNA(200ng/μl)をテンプレートとして、AmpliTaq Gold (Perkin Elmer)の標準プロトコールに従って、次に示すプライマー・セットにより(95℃40秒・59℃40秒・72℃40秒)×25サイクルのPCR増幅を行い、配列番号7〜12に示す、両末端に12merずつの塩基配列を付加したDNAシリーズを作成した。   Examples of processing standard DNA are shown below. TAKARA BIO and Dragon Genomics Co., Ltd. were commissioned to produce the DNA having the nucleotide sequence shown in SEQ ID NO: 1 and supplied in the form (NMIJ-Arita2 :: pUC18) incorporated into the pUC18 vector. Using this synthetic DNA (200 ng / μl) as a template, according to the standard protocol of AmpliTaq Gold (Perkin Elmer), the following primer set (95 ° C., 40 seconds, 59 ° C., 40 seconds, 72 ° C., 40 seconds) × 25 cycles PCR amplification was performed, and DNA series shown in SEQ ID NOs: 7 to 12 with 12mer base sequences added to both ends were prepared.

配列番号7のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttctggcatccttagtccc(配列番号20)

配列番号8のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttgtaagagcgtacgtaac(配列番号21)

配列番号9のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttgatgcaatgtcggaagg(配列番号22)

配列番号10のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttgagacataagcggtgac(配列番号23)

配列番号11のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttatgtgcgaacctatcagc(配列番号24)

配列番号12のDNA製造用プライマーセット
aacagacggcatattcgaagggtgattgg(配列番号19)、aacgcgagtcttcatccattctgcgtacc(配列番号25)
Primer set for DNA production of SEQ ID NO: 7
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttctggcatccttagtccc (SEQ ID NO: 20)

Primer set for DNA production of SEQ ID NO: 8
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttgtaagagcgtacgtaac (SEQ ID NO: 21)

Primer set for DNA production of SEQ ID NO: 9
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttgatgcaatgtcggaagg (SEQ ID NO: 22)

Primer set for DNA production of SEQ ID NO: 10
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttgagacataagcggtgac (SEQ ID NO: 23)

Primer set for DNA production of SEQ ID NO: 11
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttatgtgcgaacctatcagc (SEQ ID NO: 24)

Primer set for DNA production of SEQ ID NO: 12
aacagacggcatattcgaagggtgattgg (SEQ ID NO: 19), aacgcgagtcttcatccattctgcgtacc (SEQ ID NO: 25)

これら配列番号7〜12に示すDNAの断片(NMIJ-ARITA2-100〜600)はそれぞれTベクター(pSTBlue-1 AccepTor Vectpr, Novagen, Germany)にクローン化し、シークエンシングにより全塩基配列を確認した。
次に、配列番号7〜12のDNAがそれぞれ挿入されたTベクターをテンプレートとして、Pyrobest polymerase(宝酒造)の標準プロトコールに従って、次に示すプライマーとの組み合わせにより(95℃40秒・72℃80秒)×25サイクルのPCR増幅を行い、さらに両末端に12merずつの塩基配列を付加、合計各24merずつのプライマー・サイトを追加したDNAシリーズ(配列番号13〜18)を作成した。
These DNA fragments (NMIJ-ARITA2-100 to 600) shown in SEQ ID NOs: 7 to 12 were each cloned into a T vector (pSTBlue-1 AccepTor Vectpr, Novagen, Germany), and the entire nucleotide sequence was confirmed by sequencing.
Next, using the T vectors into which the DNAs of SEQ ID NOs: 7 to 12 are inserted as templates, according to the standard protocol of Pyrobest polymerase (Takara Shuzo), in combination with the following primers (95 ° C 40 seconds, 72 ° C 80 seconds) PCR amplification was performed for 25 cycles, and a DNA series (SEQ ID NOs: 13 to 18) was prepared by adding 12 mer base sequences to both ends and adding a total of 24 mer primer sites.

配列番号13のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号7のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttctggcatccttagtccc(配列番号27)

配列番号14のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号8のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttgtaagagcgtacgtaac(配列番号28)

配列番号15のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号9のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttgatgcaatgtcggaagg(配列番号29)

配列番号16のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号10のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttgagacataagcggtgac(配列番号30)

配列番号17のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号11のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttatgtgcgaacctatcagc(配列番号31)

配列番号18のDNA製造用テンプレート及びプライマーセット
テンプレート:配列番号12のDNA
プライマーセット:tttgcaagcctcaacagacggcatattcgaagggtgattgg(配列番号26)
aaagcatcggacaacgcgagtcttcatccattctgcgtacc(配列番号32)
Template for DNA production of SEQ ID NO: 13 and primer set template: DNA of SEQ ID NO: 7
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttctggcatccttagtccc (SEQ ID NO: 27)

Template for DNA production of SEQ ID NO: 14 and primer set template: DNA of SEQ ID NO: 8
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttgtaagagcgtacgtaac (SEQ ID NO: 28)

Template for DNA production of SEQ ID NO: 15 and primer set template: DNA of SEQ ID NO: 9
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttgatgcaatgtcggaagg (SEQ ID NO: 29)

Template for DNA production of SEQ ID NO: 16 and primer set template: DNA of SEQ ID NO: 10
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttgagacataagcggtgac (SEQ ID NO: 30)

Template for DNA production of SEQ ID NO: 17 and primer set template: DNA of SEQ ID NO: 11
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttatgtgcgaacctatcagc (SEQ ID NO: 31)

Template for DNA production of SEQ ID NO: 18 and primer set template: DNA of SEQ ID NO: 12
Primer set: tttgcaagcctcaacagacggcatattcgaagggtgattgg (SEQ ID NO: 26)
aaagcatcggacaacgcgagtcttcatccattctgcgtacc (SEQ ID NO: 32)

図2〜6は、NMIJ-Arita2-100A(配列番号18), NMIJ-Arita2-200A(配列番号17), NMIJ-Arita2-300A(配列番号16), NMIJ-Arita2-400A(配列番号15), NMIJ-Arita2-500A(配列番号14)およびNMIJ-Arita2-600A(配列番号13)の各標準DNAを鋳型として各種プラットフォーム(Applied Biosystems社製のDNA定量装置;ABI7900とRoche社製のDNA定量装置;LightCycler)で各種測定法(TaqManProbe法、QProbe法、QPrimer法)にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す。図2〜6は、それぞれ
TaqManProbe法(ABI7900)、QPrimer法(ABI7900)、QProbe法(ABI7900)、QPrimer法(LightCycler)およびQProbe法(LightCycler)を行った場合の結果を示し。各図の(1)、(2)及び(3)はそれぞれ順に、templateとして0.5x107、0.5x108、0.5x109コピーの鋳型DNA(NMIJ-Arita2 100A-600A、配列番号13-18に対応)を1ウェル(50μL, ABI7900)または1キャピラリー(20μL, LightCycler)に添加して実験した結果を表す。なお、各鋳型の増幅塩基配列長はおよそ100、200、300、400、500、600 bpである。
2-6, NMIJ-Arita2-100A (SEQ ID NO: 18), NMIJ-Arita2-200A (SEQ ID NO: 17), NMIJ-Arita2-300A (SEQ ID NO: 16), NMIJ-Arita2-400A (SEQ ID NO: 15), NMIJ-Arita2-500A (SEQ ID NO: 14) and NMIJ-Arita2-600A (SEQ ID NO: 13) standard DNAs as templates, various platforms (Applied Biosystems DNA quantification devices; ABI7900 and Roche DNA quantification devices; Amplification curves obtained when real-time PCR is performed according to various measurement methods (TaqManProbe method, QProbe method, QPrimer method) using LightCycler are shown. 2-6 are respectively
The results when TaqManProbe method (ABI7900), QPrimer method (ABI7900), QProbe method (ABI7900), QPrimer method (LightCycler), and QProbe method (LightCycler) are shown. (1), (2) and (3) in each figure correspond to template DNA (NMIJ-Arita2 100A-600A, SEQ ID NO: 13-18) of 0.5x10 7 , 0.5x10 8 , 0.5x10 9 copies as template, respectively. ) In one well (50 μL, ABI7900) or one capillary (20 μL, LightCycler). The length of the amplified base sequence of each template is approximately 100, 200, 300, 400, 500, 600 bp.

ABI7900を使用する場合、ABI指定の96穴プレートを容器として用い、TaqManProbe法で測定する場合は、各ウエルには50 μl中に蒸留水22.1 μl、2x Universal master mix(ABI)25 μl、サケ精子DNA溶液(50 ng/μl、和光)0.5 μl、Foward primer
(CAAGCCTCAACAGACGGCATA(配列番号33) 100 μM) 0.45 μl、Reverse primer
(CATCGGACAACGCGAGTCTT(配列番号34) 100 μM) 0.45 μl、TaqMan probe
(FAM-CCGTTATCTCAGCCCTAATCTCTGCGGTT-TAMRA (配列番号36)25 μM) 0.5 μl、template (0.5x107、0.5x108、0.5x109 copy/μl) 1 μlを含む 反応液を入れた。PCRランの条件は50度2分、95度10分の加熱の後、40サイクルのPCR反応(95度30秒、55度30秒、72度30秒を1サイクルとする)で行った。
When using ABI7900, when using the 96-well plate designated by ABI as a container and measuring by TaqManProbe method, each well contains 22.1 μl of distilled water in 50 μl, 25 μl of 2x Universal master mix (ABI), salmon sperm DNA solution (50 ng / μl, Wako) 0.5 μl, Forward primer
(CAAGCCTCAACAGACGGCATA (SEQ ID NO: 33) 100 μM) 0.45 μl, Reverse primer
(CATCGGACAACGCGAGTCTT (SEQ ID NO: 34) 100 μM) 0.45 μl, TaqMan probe
(FAM-CCGTTATCTCAGCCCTAATCTCTGCGGTT-TAMRA (SEQ ID NO: 36) 25 μM) A reaction solution containing 0.5 μl and template (0.5 × 10 7 , 0.5 × 10 8 , 0.5 × 10 9 copy / μl) 1 μl was added. The PCR run was performed by heating at 50 degrees 2 minutes and 95 degrees 10 minutes, followed by 40 cycles of PCR reaction (95 degrees 30 seconds, 55 degrees 30 seconds, 72 degrees 30 seconds as one cycle).

ABI7900を用いQPrimer法で測定する場合は50 μl中に蒸留水39.6 μl、10x Titanium Buffer (BD Biosciences Clontech) 5.0 μl 、50x AGUC mix (Roche) 1 μl、サケ精子DNA溶液 (50 ng/μl、和光) 0.5 μl、牛血清アルブミン溶液(10 mg/ml、和光) 1.2 μl、QPrimer (QProbeTM G5’; CAAGCCTCAACAGACGGCATA(配列番号33)、J Bio21、100 μM) 0.15 μl、Reverse primer (CATCGGACAACGCGAGTCTT(配列番号34) 100 μM) 0.50 μl、Titanium Taq (BD Biosciences Clontech) 1 μl、Urasil-DNA Glycosylase (Roche) 0.5 μl、template (0.5x107、0.5x108、0.5x109 copy/μl)1 μlを含む 反応液を入れた。PCRランの条件は95度10分の加熱の後、40サイクルのPCR反応(95度30秒、55度30秒、72度30秒を1サイクルとする)で行った。 When measuring with QPrimer method using ABI7900, 39.6 μl of distilled water in 50 μl, 5.0 μl of 10x Titanium Buffer (BD Biosciences Clontech), 1 μl of 50x AGUC mix (Roche), salmon sperm DNA solution (50 ng / μl, Wako) ) 0.5 μl, bovine serum albumin solution (10 mg / ml, Wako) 1.2 μl, QPrimer (QProbe TM G5 '; CAAGCCTCAACAGACGGCATA (SEQ ID NO: 33), J Bio21, 100 μM) 0.15 μl, Reverse primer (CATCGGACAACGCGAGTCTT (SEQ ID NO: 34) ) 100 μM) 0.50 μl, Titanium Taq (BD Biosciences Clontech) 1 μl, Urasil-DNA Glycosylase (Roche) 0.5 μl, template (0.5x10 7 , 0.5x10 8 , 0.5x10 9 copies / μl) 1 μl Put. The PCR run was performed by heating at 95 ° C. for 10 minutes followed by 40 cycles of PCR reaction (95 ° 30 seconds, 55 ° 30 seconds, 72 ° 30 seconds as one cycle).

ABI7900を用いQProbe法で測定する場合は50 μl中に蒸留水38.05 μl、10x Titanium Buffer (BD Biosciences Clontech) 5.0 μl、50x AGUC mix (Roche) 1 μl、サケ精子DNA溶液 (50 ng/μl、和光) 0.5 μl、牛血清アルブミン溶液(10 mg/ml、和光) 1.2 μl、Foward primer (CAAGCCTCAACAGACGGCATA(配列番号33) 100 μM) 0.15 μl、Reverse primer (CATCGGACAACGCGAGTCTT(配列番号34) 100 μM) 0.50 μl、QProbe(QProbeTM G3’; CAATCGAAGCCAGAATGCAAGGGTCA(配列番号35), JBio21、10 μM) 1 μl、Titanium Taq (BD Biosciences Clontech) 1 μl、Urasil-DNA Glycosylase (Roche) 0.5 μl、template (0.5x107、0.5x108、0.5x109 copy/μl)1 μlを含む 反応液を入れた。PCRランの条件は95度10分の加熱の後、40サイクルのPCR反応(95度30秒、55度30秒、72度30秒を1サイクルとする)で行った。 When measuring by AQP7 method using ABI7900, 38.05 μl of distilled water in 50 μl, 5.0 μl of 10x Titanium Buffer (BD Biosciences Clontech), 1 μl of 50x AGUC mix (Roche), salmon sperm DNA solution (50 ng / μl, Wako) ) 0.5 μl, bovine serum albumin solution (10 mg / ml, Wako) 1.2 μl, Forward primer (CAAGCCTCAACAGACGGCATA (SEQ ID NO: 33) 100 μM) 0.15 μl, Reverse primer (CATCGGACAACGCGAGTCTT (SEQ ID NO: 34) 100 μM) 0.50 μl, QProbe (QProbe TM G3 '; CAATCGAAGCCAGAATGCAAGGGTCA (SEQ ID NO: 35), JBio21, 10 μM) 1 μl, Titanium Taq (BD Biosciences Clontech) 1 μl, Urasil-DNA Glycosylase (Roche) 0.5 μl, template (0.5x10 7 , 0.5x10 8 , 0.5 × 10 9 copies / μl) containing 1 μl was added. The PCR run was performed by heating at 95 ° C. for 10 minutes followed by 40 cycles of PCR reaction (95 ° 30 seconds, 55 ° 30 seconds, 72 ° 30 seconds as one cycle).

Roch LightCyclerを用いる場合は、指定のガラスキャピラリを容器として用い、QPrimer法で測定する場合は20 μl中に蒸留水15.22 μl、10x Titanium Buffer (BD Biosciences Clontech) 2.0 μl 、50x AGUC mix (Roche)0.4 μl、サケ精子DNA溶液(50 ng/μl、和光) 0.2 μl、牛血清アルブミン溶液(10 mg/ml、和光) 0.5 μl、QPrimer (QProbeTM G5’; CAAGCCTCAACAGACGGCATA(配列番号33)、J Bio21、100 μM) 0.04 μl、Reverse primer (CATCGGACAACGCGAGTCTT(配列番号34) 100 μM) 0.04 μl、Titanium Taq (BD Biosciences Clontech) 0.4 μl、Urasil-DNA Glycosylase (Roche) 0.2 μl、template (0.5x107、0.5x108、0.5x109 copy/μl)1 μlを含む 反応液を入れた。PCRランの条件は50度2分、95度10分の加熱の後、40サイクルのPCR反応(95度30秒、55度30秒、72度30秒を1サイクルとする)で行った。 When using the Roch LightCycler, use the specified glass capillary as the container.When measuring with the QPrimer method, 15.22 μl of distilled water in 20 μl, 2.0 μl of 10x Titanium Buffer (BD Biosciences Clontech), 50x AGUC mix (Roche) 0.4 μl, salmon sperm DNA solution (50 ng / μl, Wako) 0.2 μl, bovine serum albumin solution (10 mg / ml, Wako) 0.5 μl, QPrimer (QProbe TM G5 '; CAAGCCTCAACAGACGGCATA (SEQ ID NO: 33), J Bio21, 100 μM) 0.04 μl, Reverse primer (CATCGGACAACGCGAGTCTT (SEQ ID NO: 34) 100 μM) 0.04 μl, Titanium Taq (BD Biosciences Clontech) 0.4 μl, Urasil-DNA Glycosylase (Roche) 0.2 μl, template (0.5x10 7 , 0.5x10 8 , A reaction solution containing 1 μl of 0.5 × 10 9 copies / μl) was added. The PCR run was performed by heating at 50 degrees 2 minutes and 95 degrees 10 minutes, followed by 40 cycles of PCR reaction (95 degrees 30 seconds, 55 degrees 30 seconds, 72 degrees 30 seconds as one cycle).

LightCyclerを用いてQProbe法で測定する場合、20 μl中に蒸留水14.94 μl、10x Titanium Buffer (BD Biosciences Clontech) 2.0 μl 、50x AGUC mix (Roche)0.4 μl、サケ精子DNA溶液 (50 ng/μl、和光) 0.2 μl、牛血清アルブミン溶液(10 mg/ml、和光) 0.5 μl、Fowardprimer(CAAGCCTCAACAGACGGCATA(配列番号33)、100 μM) 0.06 μl、Reverse primer (CATCGGACAACGCGAGTCTT(配列番号34) 100 μM) 0.20 μl、QProbe(QprobeTM G3’; CAATCGAAGCCAGAATGCAAGGGTCA(配列番号35)、JBio21、10 μM)0.1 μl、Titanium Taq (BD Biosciences Clontech) 0.4 μl、Urasil-DNA Glycosylase (Roche) 0.2 μl、template (0.5x107、0.5x108、0.5x109 copy/μl)1 μlを含む 反応液を入れた。PCRランの条件は50度2分、95度10分の加熱の後、40サイクルのPCR反応(95度30秒、55度30秒、72度30秒を1サイクルとする)で行った。各キャピラリには図2〜6に示したように、すべての装置、手法、標準DNA濃度、増幅配列長に渡って良好な増幅曲線が得られ、本標準DNAが対象とするすべての組み合わせで標準DNA試料として使用可能なことが明確に示されている。
When measuring with QProbe method using LightCycler, distilled water 14.94 μl, 10x Titanium Buffer (BD Biosciences Clontech) 2.0 μl, 50x AGUC mix (Roche) 0.4 μl, salmon sperm DNA solution (50 ng / μl, Wako) 0.2 μl, Bovine serum albumin solution (10 mg / ml, Wako) 0.5 μl, Forwardprimer (CAAGCCTCAACAGACGGCATA (SEQ ID NO: 33), 100 μM) 0.06 μl, Reverse primer (CATCGGACAACGCGAGTCTT (SEQ ID NO: 34) 100 μM) 0.20 μl, QProbe (Qprobe TM G3 '; CAATCGAAGCCAGAATGCAAGGGTCA ( SEQ ID NO: 35), JBio21,10 μM) 0.1 μl , Titanium Taq (BD Biosciences Clontech) 0.4 μl, Urasil-DNA Glycosylase (Roche) 0.2 μl, template (0.5x10 7, 0.5x10 8 , 0.5 × 10 9 copies / μl) 1 μl of reaction solution was added. The PCR run was performed by heating at 50 degrees 2 minutes and 95 degrees 10 minutes, followed by 40 cycles of PCR reaction (95 degrees 30 seconds, 55 degrees 30 seconds, 72 degrees 30 seconds as one cycle). As shown in FIGS. 2-6, each capillary provides a good amplification curve over all devices, techniques, standard DNA concentrations, and amplification sequence lengths. It is clearly shown that it can be used as a DNA sample.

代表的なDNA定量法の原理の概略を示す図である。It is a figure which shows the outline of the principle of a typical DNA quantification method. 配列番号13〜18に示されるDNAを鋳型として用い、Applied Biosystems社製のABI7900でTaqMan法にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す図である。It is a figure which shows the amplification curve obtained when real time PCR is performed according to TaqMan method by ABI7900 made from Applied Biosystems using DNA shown by sequence number 13-18 as a template. 配列番号13〜18に示されるDNAを鋳型として用い、Applied Biosystems社製のABI7900でQPrimer法にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す図である。It is a figure which shows the amplification curve obtained when real time PCR was performed according to QPrimer method by ABI7900 made from Applied Biosystems using DNA shown by sequence number 13-18 as a template. 配列番号13〜18に示されるDNAを鋳型として用い、Applied Biosystems社製のABI7900でQProbe法にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す図である。It is a figure which shows the amplification curve obtained when real time PCR was performed according to QProbe method by ABI7900 made from Applied Biosystems using DNA shown by sequence number 13-18 as a template. 配列番号13〜18に示されるDNAを鋳型として用い、Roche社製のLightCyclerでQPrimer法にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す図である。It is a figure which shows the amplification curve obtained when performing real-time PCR according to QPrimer method with LightCycler made from Roche, using DNA shown by sequence number 13-18 as a template. 配列番号13〜18に示されるDNAを鋳型として用い、Roche社製のLightCyclerでQProbe法にしたがいリアルタイムPCRを行った場合に得られた増幅曲線を示す図である。It is a figure which shows the amplification curve obtained when the DNA shown by sequence number 13-18 is used as a template, and real-time PCR is performed according to the QProbe method with the LightCycler manufactured by Roche.

符号の説明Explanation of symbols

TMProbe法;タックマンプローブ法
QPrimer;キュープライマー法
QProbe;キュープローブ法
ABI;アプライドバイオシステムズ社製定量DNA測定装置ABI7900
LC;ロッシュ社製定量DNA測定装置 LightCycler
TMProbe method; Tackman probe method
QPrimer; cue primer method
QProbe; cue probe method
ABI; Applied Biosystems quantitative DNA measuring device ABI7900
LC; Quantitative DNA analyzer LightCycler manufactured by Roche

Claims (8)

配列表の配列番号1に示される塩基配列からなるDNA。 DNA consisting of the base sequence shown in SEQ ID NO: 1 in the sequence listing. 請求項1に記載されたDNAの塩基配列中の任意の領域の塩基配列からなり、少なくとも30merの長さを有することを特徴とする、DNA。 A DNA comprising a nucleotide sequence of an arbitrary region in the nucleotide sequence of the DNA according to claim 1 and having a length of at least 30 mer. 配列表の配列番号2〜6のいずれかに示される塩基配列を有することを特徴とする、請求項2に記載のDNA。 The DNA according to claim 2, which has the base sequence represented by any one of SEQ ID NOs: 2 to 6 in the sequence listing. 請求項1〜3のいずれかに記載のDNAの5’末端および3’末端に、さらにGC含量50%のプライマー接合用の塩基配列が設けられていることを特徴とする、DNA。 A DNA comprising a base sequence for primer conjugation having a GC content of 50% at the 5 'end and 3' end of the DNA according to any one of claims 1 to 3. 配列表の7〜18のいずれかに示される塩基配列を有することを特徴とする、請求項4に記載のDNA。 The DNA according to claim 4, which has the base sequence shown in any one of 7 to 18 in the sequence listing. 請求項1〜5のいずれかに記載のDNAと、該DNAと相補の塩基配列を有するDNAとからなることを特徴とする、2本鎖DNA。 A double-stranded DNA comprising the DNA according to any one of claims 1 to 5 and a DNA having a base sequence complementary to the DNA. 請求項6の2本鎖DNAがベクターに導入されていることを特徴とする、組み換えベクター。 A recombinant vector, wherein the double-stranded DNA of claim 6 is introduced into the vector. 請求項6または7に記載の2本鎖DNAからなることを特徴とする、DNA定量に使用する標準DNA試料。 A standard DNA sample used for DNA quantification, comprising the double-stranded DNA according to claim 6 or 7.
JP2005249995A 2005-08-30 2005-08-30 DNA standard Active JP4853898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249995A JP4853898B2 (en) 2005-08-30 2005-08-30 DNA standard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249995A JP4853898B2 (en) 2005-08-30 2005-08-30 DNA standard

Publications (2)

Publication Number Publication Date
JP2007060966A JP2007060966A (en) 2007-03-15
JP4853898B2 true JP4853898B2 (en) 2012-01-11

Family

ID=37923902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249995A Active JP4853898B2 (en) 2005-08-30 2005-08-30 DNA standard

Country Status (1)

Country Link
JP (1) JP4853898B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051214A1 (en) * 2007-10-19 2009-04-23 Eiken Kagaku Kabushiki Kaisha Nucleic acid amplification method, and reagent and reagent kit for use in the method
JP5229895B2 (en) * 2008-11-19 2013-07-03 独立行政法人産業技術総合研究所 Nucleic acid standards
JP2011239708A (en) * 2010-05-17 2011-12-01 National Institute Of Advanced Industrial Science & Technology Design method for probe for nucleic acid standard substrate detection, probe for nucleic acid standard substrate detection and nucleic acid detecting system having the same
CN110408612B (en) * 2019-07-09 2023-02-21 上海市计量测试技术研究院(中国上海测试中心、华东国家计量测试中心、上海市计量器具强制检定中心) Protective agent for low-concentration DNA standard substance, preservation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089860A1 (en) * 2001-10-29 2005-04-28 Masanori Arita Oligonucleotide sequences free from mishybridization and method of designing the same
JP2004355294A (en) * 2003-05-29 2004-12-16 National Institute Of Advanced Industrial & Technology Designing method of dna code as information carrier

Also Published As

Publication number Publication date
JP2007060966A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
EP2619327B1 (en) Increasing confidence of allele calls with molecular counting
Pestana et al. Early, rapid and sensitive veterinary molecular diagnostics-real time PCR applications
Wang et al. Development and validation of the AmpFℓSTR® identifiler® direct PCR amplification kit: A multiplex assay for the direct amplification of single‐source samples
CN106471134B (en) Methods and products for quantifying RNA transcript variants
JP6100933B2 (en) Allelic ladder locus
US11795451B2 (en) Primer for next generation sequencer and a method for producing the same, a DNA library obtained through the use of a primer for next generation sequencer and a method for producing the same, and a DNA analyzing method using a DNA library
JP6636247B2 (en) Method for quantifying WT1 mRNA expression level
JP4853898B2 (en) DNA standard
JP6648749B2 (en) Nucleic acid amplification method
US20220267848A1 (en) Detection and quantification of rare variants with low-depth sequencing via selective allele enrichment or depletion
KR20070046764A (en) Gene methylation assay controls
US20100297633A1 (en) Method of amplifying nucleic acid
JP2018512121A5 (en)
JP4491276B2 (en) Method and kit for detecting the presence of a single nucleotide polymorphism in a target DNA sequence
US7501239B2 (en) Method of detecting β3 adrenaline receptor mutant gene and nucleic acid probe and kit therefor
WO2003097828A1 (en) Method of identifying nucleic acid
JP4437207B2 (en) CYP2D6 mutation detection method and nucleic acid probe and kit therefor
JP5110423B2 (en) Microbe identification method, primer used in the method, and identification kit
JP2006296350A (en) Method for preparing nucleic acid construct ligating plurality of nucleic acids and cloning of nucleic acid utilizing the same method
JP2008161113A (en) Method for discriminating bacterium helicobacter pylori
JP2004344065A (en) Oligonucleotide and method for detecting mycobacterium tuberculosis group using the same
KR102286025B1 (en) Mass spectrometry using dna polymerases with increased mutation specificity
JP2004041191A (en) Method for identifying nucleic acid
RU2352641C1 (en) Method of diagnosing heredotary predisposition to thrombophilia
WO2022271682A1 (en) Polymerases for isothermal nucleic acid amplification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250