JP4852003B2 - Reciprocating compressor capacity adjustment method - Google Patents

Reciprocating compressor capacity adjustment method Download PDF

Info

Publication number
JP4852003B2
JP4852003B2 JP2007192470A JP2007192470A JP4852003B2 JP 4852003 B2 JP4852003 B2 JP 4852003B2 JP 2007192470 A JP2007192470 A JP 2007192470A JP 2007192470 A JP2007192470 A JP 2007192470A JP 4852003 B2 JP4852003 B2 JP 4852003B2
Authority
JP
Japan
Prior art keywords
compression chamber
stage
reciprocating compressor
load
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007192470A
Other languages
Japanese (ja)
Other versions
JP2009030454A (en
Inventor
見治 名倉
敏明 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007192470A priority Critical patent/JP4852003B2/en
Publication of JP2009030454A publication Critical patent/JP2009030454A/en
Application granted granted Critical
Publication of JP4852003B2 publication Critical patent/JP4852003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、往復動圧縮機の容量調整方法に関し、より詳しくは、0%から100%に至るまでの段階的な容量の調整を、ヘッドエンドアンローダ(クリアランスポケット)の無い状態で実現可能な往復動圧縮機の容量調整方法に関するものである。   The present invention relates to a capacity adjustment method for a reciprocating compressor, and more specifically, a reciprocation capable of realizing stepwise capacity adjustment from 0% to 100% without a head end unloader (clearance pocket). The present invention relates to a capacity adjustment method for a dynamic compressor.

LNG(液化天然ガス)の蒸発に伴うBOG(ボイルオフガス)の圧縮に用いられる圧縮機には、BOGの発生量の変動に対応可能な往復動圧縮機が一般的に用いられており、この様な往復動圧縮機の概要及び容量調整方法について図5,6を参照しながら説明する。図5は往復動圧縮機の一種である対向釣合型2段圧縮機を説明するための模式図、図6は図5のY部詳細を示す部分詳細断面図である。この対向釣合型2段圧縮機は、駆動モータMによる回転運動を往復運動に変換するクランク機構20と、このクランク機構20に連結されガスを圧縮する1段目の往復圧縮機21A,21Bと2段目の往復圧縮機22A,22Bとによって構成される。   A reciprocating compressor capable of responding to fluctuations in the amount of generated BOG is generally used as a compressor used to compress BOG (boil-off gas) accompanying evaporation of LNG (liquefied natural gas). An outline of a reciprocating compressor and a capacity adjustment method will be described with reference to FIGS. FIG. 5 is a schematic view for explaining an opposed balanced two-stage compressor which is a kind of reciprocating compressor, and FIG. 6 is a partial detailed cross-sectional view showing details of a Y portion in FIG. This counter-balanced two-stage compressor includes a crank mechanism 20 that converts a rotational motion by the drive motor M into a reciprocating motion, and first-stage reciprocating compressors 21A and 21B that are coupled to the crank mechanism 20 and compress gas. It is comprised by 2nd-stage reciprocating compressor 22A, 22B.

そして、前記クランク機構20により前記2対の往復圧縮機21A,22A及び21B,22Bのピストン23を夫々対向して駆動し、前記第1段圧縮機21A,21Bのピストン23で圧縮したガスを、更に第2段圧縮機22A,22Bのピストン23で圧縮して高圧を得る様に構成されている。この様な複数段の往復動圧縮機は、図5の様な2段圧縮機の場合は圧力1MPa〜1.5MPa程度の、3段圧縮機の場合は2〜4MPa程度の高圧の圧縮気体が得られる。   Then, the pistons of the two pairs of reciprocating compressors 21A, 22A and 21B, 22B are driven to oppose each other by the crank mechanism 20, and the gas compressed by the pistons 23 of the first stage compressors 21A, 21B, Furthermore, it is configured to obtain a high pressure by being compressed by the piston 23 of the second stage compressor 22A, 22B. Such a multistage reciprocating compressor has a pressure of about 1 MPa to 1.5 MPa in the case of a two-stage compressor as shown in FIG. 5 and a high-pressure compressed gas of about 2 to 4 MPa in the case of a three-stage compressor. can get.

この様な従来例に係る2段往復動圧縮機の各シリンダ24a,24b及び25a,25bは、夫々ガス圧縮室(以下、圧縮室とも称す)を2室、即ち、ヘッドエンド側のガス圧縮室HE及びクランクエンド側のガス圧縮室CEを有しており、各圧縮室HE,CEのロード・アンロードは、これらの各圧縮室HE,CEに設けられた吸込弁アンローダ27の開閉により切替される。   Each of the cylinders 24a, 24b and 25a, 25b of the two-stage reciprocating compressor according to the conventional example has two gas compression chambers (hereinafter also referred to as compression chambers), that is, a gas compression chamber on the head end side. The gas compression chamber CE on the HE and crank end side is provided, and loading / unloading of each compression chamber HE, CE is switched by opening / closing of a suction valve unloader 27 provided in each compression chamber HE, CE. The

この吸込弁アンローダ27は、図6に示す如く、空気圧を利用したアクチュエータ31によりスパイダー32を駆動し、このスパイダー32に取り付けられたフィンガー32aの先端が前進して、弁板27aを押し込み拘束し、吸込側空間100とガス圧縮室とを連通して、圧縮室HEまたは/及びCE(HE,CEの何れか一方、あるいは両方)をアンロードさせる。その一方、前記フィンガー32aが後退して、弁板27aが前後の差圧(吸込側空間100とガス圧縮室との差圧)で開閉作動することによって、前記圧縮室HEまたは/及びCE(HE,CEの何れか一方、あるいは両方)をロードさせる様に構成されている。   As shown in FIG. 6, the suction valve unloader 27 drives the spider 32 by an actuator 31 using air pressure, the tip of a finger 32a attached to the spider 32 advances, and pushes and restrains the valve plate 27a. The suction side space 100 and the gas compression chamber communicate with each other to unload the compression chamber HE and / or CE (either HE or CE, or both). On the other hand, the finger 32a moves backward, and the valve plate 27a opens and closes by a differential pressure between the front and rear (a differential pressure between the suction side space 100 and the gas compression chamber), thereby causing the compression chamber HE and / or CE (HE , CE, or both) is loaded.

更に、前記各圧縮室HEのヘッドには、図5に示す如くクリアランスポケット28が設けられ、ヘッドエンドアンローダ29のピストン30に接続されたプラグ29aにより前記クリアランスポケット28を開閉させることよって、前記圧縮室HEの圧縮容積を増減して圧縮室HEの容量調整を行っている。   Further, a clearance pocket 28 is provided in the head of each compression chamber HE as shown in FIG. 5, and the clearance pocket 28 is opened and closed by a plug 29 a connected to the piston 30 of the head end unloader 29. The capacity of the compression chamber HE is adjusted by increasing / decreasing the compression volume of the chamber HE.

次に、この様な従来例に係る2段往復動圧縮機の運転方法につき、以下図7及び表1を参照しながら前図5,6も併用して説明する。図7は従来例に係る2段往復動圧縮機の運転方法を説明するための模式図であり、図(a)は0%負荷時、図(b)は25%負荷時、図(c)は50%負荷時、図(d)は75%負荷時、図(e)は100%負荷時の状態を夫々示す。表1は前記各負荷運転における圧縮室HE,CEの吸込弁アンローダ及びヘッドエンドアンローダの状態を示す。   Next, the operation method of the two-stage reciprocating compressor according to the conventional example will be described with reference to FIGS. FIG. 7 is a schematic diagram for explaining an operation method of a two-stage reciprocating compressor according to a conventional example. FIG. 7 (a) is at 0% load, FIG. 7 (b) is at 25% load, and FIG. Shows a state at 50% load, FIG. 4D shows a state at 75% load, and FIG. Table 1 shows the states of the suction valve unloader and the head end unloader of the compression chambers HE and CE in each load operation.

即ち、75%負荷時では、21A,22Aシリンダを100%負荷、21B,22Bシリンダを50%負荷(その逆も可)とし、クリアランスポケット28を用いなくても実現できる。一方、25%負荷時では、ヘッドエンドアンローダ29のプラグ29aを開いてクリアランスポケット38にも負荷させている。従って、従来例に係る2段往復動圧縮機の25%負荷運転時においては、ヘッドエンドアンローダが必須であったが、構造上シリンダ先端に取り付けるため、振動等の観点からも無い方が望ましい。   That is, at 75% load, the 21A and 22A cylinders can be 100% load, the 21B and 22B cylinders can be 50% load (and vice versa), and the clearance pocket 28 can be used. On the other hand, when the load is 25%, the plug 29a of the head end unloader 29 is opened to load the clearance pocket 38 as well. Therefore, the head end unloader is indispensable during the 25% load operation of the two-stage reciprocating compressor according to the conventional example. However, since it is structurally attached to the tip of the cylinder, it is desirable that the head end unloader is not present from the viewpoint of vibration or the like.

Figure 0004852003
Figure 0004852003

また、この様なヘッドエンドアンローダ29のプラグ29a開閉時の移動量L1は約50mmであるのに対し、吸込弁アンローダ27の弁板27aの押え込み量L2はせいぜい数mmであるため、ロード切替時に前記吸込弁アンローダ27とヘッドエンドアンローダ29とを同時に作動させる場合には、切替タイミングに差異を生じて来る。   Further, the movement amount L1 of the head end unloader 29 when the plug 29a is opened / closed is about 50 mm, whereas the pressing amount L2 of the valve plate 27a of the suction valve unloader 27 is at most several mm, so when the load is switched. When the suction valve unloader 27 and the head end unloader 29 are operated simultaneously, a difference occurs in the switching timing.

例えば、0%ロード(アンロード)から50%ロードに切替える場合、シリンダ22A,22Bの吸込弁アンローダ27によるCEロードからHEロードへの切替と、ヘッドエンドアンローダ29のプラグ29a開によるクリアランスポケット28のロードへの切替の様な2種類のアンローダを切替える場合に、上記切替に必要な時間の差異によりシリンダ21A,21Bとシリンダ22A,22Bとでロードの切替え方にずれを生じる。   For example, when switching from 0% load (unload) to 50% load, switching from CE load to HE load by the suction valve unloader 27 of the cylinders 22A, 22B and clearance pocket 28 by opening the plug 29a of the head end unloader 29 are performed. When switching between two types of unloaders such as switching to a load, there is a difference in load switching between the cylinders 21A and 21B and the cylinders 22A and 22B due to the difference in time required for the switching.

一方、他の従来例に係る往復動圧縮機の容量調整方法として、往復動圧縮機を駆動する電動機に、2組以上の独立した巻線を有する極数切換誘導電動機を用い、高速回転する高速用巻線による高速出力トルクを低速回転する低速用巻線による低速出力トルクよりも少なくとも部分的に大きく、かつ極数切換時のトルク差が負荷トルクより大きくなるように設定し、高速出力トルクと低速出力トルクの差が負荷トルクよりも大きくなるまで、低速用巻線に通電して加速し、次いで、低速用巻線に通電したまま高速用巻線に通電し、短時間後に低速用巻線の通電をオフして極数切換を行うものがある(特許文献1参照)。
特許第3801702号公報
On the other hand, as a method for adjusting the capacity of a reciprocating compressor according to another conventional example, a pole switching induction motor having two or more independent windings is used for an electric motor that drives the reciprocating compressor, and a high-speed rotation is performed. The high-speed output torque by the winding for the winding is set to be at least partially larger than the low-speed output torque by the low-speed winding that rotates at a low speed, and the torque difference when switching the number of poles is larger than the load torque. Energize the low-speed winding to accelerate until the difference in low-speed output torque is greater than the load torque, then energize the high-speed winding while energizing the low-speed winding. In some cases, the number of poles is switched by turning off the energization (see Patent Document 1).
Japanese Patent No. 3801702

しかしながら、上記極数切換による容量調整方法は、電動機に重複通電による過電流を通電する必要があるため、この重複通電時間に制約があり、誤作動や操作ミス等によりこの制約時間以上に重複通電した場合は、電動機に焼付等の損傷を与えるという問題点がある。   However, in the capacity adjustment method by switching the number of poles, it is necessary to energize the motor with overcurrent due to overlapping energization, so this overlapping energization time is limited, and due to malfunctions or operational errors, etc. In such a case, there is a problem that the electric motor is damaged such as seizure.

従って、本発明の目的は、ヘッドエンドアンローダ無しで0%から100%に至るまでの段階的な容量の調整、例えば25%ロード等が実現でき、かつロード切替時の切替タイミングに差異を生ずることなくロード切替可能な往復動圧縮機の容量調整方法を提供することにある。   Therefore, an object of the present invention is to realize stepwise capacity adjustment from 0% to 100% without a head end unloader, for example, 25% load and the like, and to produce a difference in switching timing at load switching. Another object of the present invention is to provide a capacity adjustment method for a reciprocating compressor capable of switching loads without load.

前記目的を達成するために、本発明の請求項1に係る往復動圧縮機の容量調整方法が採用した手段は、複数段の往復動圧縮機を備え、前記複数段の往復動圧縮機は各段毎にシリンダを2筒ずつ備え、前記各シリンダはそのシリンダ毎に収容されたピストンにて隔てられてなる2室の圧縮室を備え、前記各圧縮室はその圧縮室毎にロード・アンロードを切替え可能な吸込弁アンローダを備える往復動圧縮機の容量調整方法において、前記複数段の往復動圧縮機が、少なくとも、低段のシリンダに収容されたピストンと、高段のシリンダに収容されたピストンとをクランク機構にて連結して構成されたものであって、予め設定された時間に従って、前記低段のシリンダと前記高段のシリンダにおけるロード状態にある夫々の圧縮機が、一方がヘッドエンド側の圧縮室、他方がクランクエンド側の圧縮室となるよう、各圧縮室のロード状態・アンロード状態を切替え、前記低段のシリンダのロード状態である圧縮室をヘッドエンド側の圧縮室とし、前記高段のシリンダのロード状態である圧縮室をクランクエンド側の圧縮室としたことを特徴とするものである。 In order to achieve the above object, the means adopted by the capacity adjustment method of the reciprocating compressor according to claim 1 of the present invention includes a plurality of reciprocating compressors, and each of the plurality of reciprocating compressors includes Each cylinder is provided with two cylinders, each cylinder having two compression chambers separated by a piston accommodated in each cylinder, and each compression chamber is loaded / unloaded for each compression chamber. In the capacity adjustment method for a reciprocating compressor having a suction valve unloader capable of switching between, the plurality of reciprocating compressors are accommodated in at least a piston accommodated in a low-stage cylinder and a high-stage cylinder. a piston be one that is constituted by connecting in a crank mechanism, according to a preset time, the low-stage cylinder and the high-stage compressor of each in the load state in the cylinder of, one header End side of the compression chamber, so that the other is the compression chamber of the crank end side, switches the load state and the unloaded state of the compression chambers, the low-stage compression chamber of the compression chamber head end side is a load condition of the cylinder The compression chamber that is in a loaded state of the high-stage cylinder is a compression chamber on the crank end side .

本発明の請求項2に係る往復動圧縮機の容量調整方法が採用した手段は、請求項1に記載の往復動圧縮機の容量調整方法において、前記時間が一定時間間隔であることを特徴とするものである。   The means adopted by the capacity adjustment method of the reciprocating compressor according to claim 2 of the present invention is the capacity adjustment method of the reciprocating compressor according to claim 1, wherein the time is a fixed time interval. To do.

本発明の請求項3に係る往復動圧縮機の容量調整方法が採用した手段は、請求項1または2に記載の往復動圧縮機の容量調整方法において、前記各圧縮室に備えられた吸込弁アンローダが、空気圧を利用したアクチュエータにより作動され、これらのアクチュエータへの給気を開閉制御する電磁弁の一部をシリーズに接続すると共に、前記時間信号によってこれらの電磁弁を開閉することを特徴とするものである。   The capacity of the reciprocating compressor capacity adjusting method according to claim 3 of the present invention is the capacity adjusting method of the reciprocating compressor according to claim 1 or 2, wherein the suction valve provided in each of the compression chambers. The unloader is actuated by actuators using pneumatic pressure, and a part of the solenoid valves for controlling the opening and closing of the air supply to these actuators is connected to the series, and these solenoid valves are opened and closed by the time signal. To do.

本発明の請求項1に係る往復動圧縮機の容量調整方法によれば、0%から100%に至るまでの段階的な容量(負荷)、例えば、100%,75%,50%,25%,0%の各ロードの調整を、ヘッドエンドアンローダ及びクリアランスポケット無しで実現できる。また更に、クランク機構の回転に伴うトルクの変動を軽減することが可能となり、ピストンに設けられるロッドパッキン等の軸封手段にかかる負荷を軽減することが可能となる。 According to the capacity adjustment method of the reciprocating compressor according to claim 1 of the present invention, the stepwise capacity (load) from 0% to 100%, for example, 100%, 75%, 50%, 25% , 0% adjustment of each load can be realized without a head end unloader and clearance pocket. Furthermore, it is possible to reduce torque fluctuations associated with the rotation of the crank mechanism, and it is possible to reduce the load on shaft sealing means such as rod packing provided on the piston.

また、本発明の請求項2に係る往復動圧縮機の容量調整方法によれば、前記各圧縮室のロード切替間隔を適切な時間とすることにより、0%ロード(無負荷)時のシリンダ過熱によるリング材の損傷防止が可能となる。   According to the capacity adjustment method for a reciprocating compressor according to claim 2 of the present invention, the cylinder overheating at 0% load (no load) is achieved by setting the load switching interval of each compression chamber to an appropriate time. It is possible to prevent damage to the ring material due to

更に、本発明の請求項3に係る往復動圧縮機の容量調整方法によれば、0%ロードを検出するための圧力検出器の数を2個に減らすことが出来る Furthermore, according to the capacity adjustment method for a reciprocating compressor according to claim 3 of the present invention, the number of pressure detectors for detecting 0% load can be reduced to two .

先ず、本発明の実施の形態1に係る往復動圧縮機の構成について図1を参照しながら説明する。図1は本発明の実施の形態1に係る2段往復動圧縮機の構成を説明するための系統図である。本発明の実施の形態1に係る2段往復動圧縮機は、駆動モータMによる回転運動を往復運動に変換するクランク機構4と、このクランク機構4に連結されガスを圧縮する1段目の往復動圧縮機1A,1Bと2段目の往復動圧縮機2A,2Bとによって構成される。1段目の往復動圧縮機1A,1Bは各々シリンダ5a,5bを、2段目の往復動圧縮機2A,2Bは各々シリンダ6a,6bを備えているので、各段の往復動圧縮機は各段毎にシリンダを2筒ずつ備えているといえる。   First, the configuration of a reciprocating compressor according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a system diagram for explaining the configuration of a two-stage reciprocating compressor according to Embodiment 1 of the present invention. The two-stage reciprocating compressor according to the first embodiment of the present invention includes a crank mechanism 4 that converts rotational motion by the drive motor M into reciprocating motion, and a first-stage reciprocating motion that is coupled to the crank mechanism 4 and compresses gas. It is comprised by dynamic compressor 1A, 1B and 2nd-stage reciprocating compressor 2A, 2B. The first-stage reciprocating compressors 1A and 1B are respectively provided with cylinders 5a and 5b, and the second-stage reciprocating compressors 2A and 2B are respectively provided with cylinders 6a and 6b. It can be said that two cylinders are provided for each stage.

そして、前記クランク機構4により対向する2対の往復圧縮機1A,2A及び1B,2Bのピストン3を夫々対向して駆動し、前記第1段圧縮機1A,1Bのピストン3で圧縮したガスを、更に第2段圧縮機2A,2Bのピストン3で圧縮して高圧の圧縮空気を得る様に構成されている。この様な2段往復動圧縮機の各シリンダ5a,5b及び6a,6bは、夫々ガス圧縮室を2室、即ち、ヘッドエンド側のガス圧縮室HE及びコンロッドエンド側のガス圧縮室CEを有している。   Then, the pistons of the two pairs of reciprocating compressors 1A, 2A and 1B, 2B facing each other by the crank mechanism 4 are driven to face each other, and the gas compressed by the pistons 3 of the first stage compressors 1A, 1B is driven. Further, the compressor is configured to be compressed by the piston 3 of the second stage compressors 2A and 2B to obtain high-pressure compressed air. Each cylinder 5a, 5b and 6a, 6b of such a two-stage reciprocating compressor has two gas compression chambers, that is, a gas compression chamber HE on the head end side and a gas compression chamber CE on the connecting rod end side. is doing.

従って、各シリンダ5a,5b,6a,6bは、そのシリンダ毎に収容されたピストン3に隔てられてなる2室の圧縮室を夫々備えている。また、この複数段(2段)の往復動圧縮機は、低段(1段目)のシリンダ5a,5bに収容されたピストン3と、高段(2段目)のシリンダ6a,6bに収容されたピストン3とを、クランク機構4にて連結して構成されたものといえる。各圧縮室HE,CEのロード・アンロードは、これらの各圧縮室HE,CEに夫々設けられた吸込弁アンローダ7の開閉により切替される。   Accordingly, each of the cylinders 5a, 5b, 6a, 6b has two compression chambers separated by the piston 3 accommodated for each cylinder. The multistage (second stage) reciprocating compressor is housed in the piston 3 housed in the lower (first stage) cylinders 5a and 5b and in the higher stage (second stage) cylinders 6a and 6b. It can be said that the piston 3 is connected by a crank mechanism 4. The loading / unloading of the compression chambers HE, CE is switched by opening / closing the suction valve unloader 7 provided in each of the compression chambers HE, CE.

この吸込弁アンローダ7は、図6に示した従来例の吸込弁アンローダと同様に、空気圧を利用したアクチュエータ31によりスパイダー32を駆動し、このスパイダー32に取り付けられたフィンガー32aが前進して、弁板27aを押し込み拘束し、吸込側と連通することによって圧縮室HEをアンロードさせ、前記フィンガー32aが後退することによって弁板27aが前後の差圧で開閉作動することによって、圧縮室HEをロードさせる様に構成されている。   The suction valve unloader 7 drives the spider 32 by an actuator 31 using air pressure, and the finger 32a attached to the spider 32 moves forward in the same manner as the conventional suction valve unloader shown in FIG. The compression chamber HE is unloaded by pushing and restraining the plate 27a and communicating with the suction side, and the valve plate 27a is opened and closed by a differential pressure between the front and rear by the retraction of the finger 32a, thereby loading the compression chamber HE. It is configured to make it.

そして、本発明の実施の形態1に係る往復動圧縮機は、制御器8内に予め設定された時間信号によって、即ち予め設定された時間に従って、前記吸込弁アンローダ7のロード・アンロード、即ち、各圧縮室HE,CEのロード状態・アンロード状態を切替え可能に構成されている。即ち、圧空源から前記吸込弁アンローダ7を駆動する各アクチュエータへは、電磁弁9a,9b,9c,9dが介装された圧空配管10によって接続され、これらの電磁弁9a,9b,9c,9dのうち9a,9b,9cがシリーズ(直列)に、残りの電磁弁9dが単独に、前記圧空配管10に接続されている。   The reciprocating compressor according to the first embodiment of the present invention is configured to load / unload the suction valve unloader 7 according to a time signal set in the controller 8 in advance, that is, according to a preset time. The compression chambers HE and CE can be switched between a loaded state and an unloaded state. In other words, each actuator that drives the suction valve unloader 7 from a compressed air source is connected by a compressed air pipe 10 in which electromagnetic valves 9a, 9b, 9c, 9d are interposed, and these electromagnetic valves 9a, 9b, 9c, 9d. 9a, 9b, 9c are connected in series (series), and the remaining solenoid valve 9d is connected to the compressed air pipe 10 independently.

そして、前記電磁弁9aの開閉によって前記吸込弁アンローダ73a,74aの、前記電磁弁9bの開閉によって前記吸込弁アンローダ71b,72bの、前記電磁弁9cの開閉によって前記吸込弁アンローダ71a,72aの、前記電磁弁9dの開閉によって前記吸込弁アンローダ73b,73bのロード・アンロードを夫々切替え可能としているのである。   The suction valve unloaders 73a and 74a are opened and closed by opening and closing the solenoid valve 9a, the suction valve unloaders 71b and 72b are opened and closed by opening and closing the solenoid valve 9c, and the suction valve unloaders 71a and 72a are opened and closed. The suction valve unloaders 73b and 73b can be switched between loading and unloading by opening and closing the electromagnetic valve 9d.

これらの電磁弁9a,9b,9c,9dは、前記制御器8内に予め設定された時間信号の指令によって、即ち予め設定された時間に従って開閉され、各電磁弁9a,9b,9c,9dの後流に夫々接続された前記アクチュエータを作動して、前記吸込弁アンローダ71a〜74a,71b〜74bのうちの何れか該当する吸込弁アンローダのロード・アンロードの切替を行うのである。   These solenoid valves 9a, 9b, 9c, 9d are opened and closed according to a preset time signal command in the controller 8, that is, according to a preset time, and the solenoid valves 9a, 9b, 9c, 9d The actuators respectively connected to the wakes are operated to switch loading / unloading of the suction valve unloader corresponding to any one of the suction valve unloaders 71a to 74a and 71b to 74b.

即ち、前記吸込弁アンローダ7は、前記電磁弁9a〜9dのうちの何れかが開いて圧空が供給されると、該当のアクチュエータによって弁板が押し込まれて圧縮室HEまたは/及びCEが吸込側の系と連通したアンロード状態に、逆に前記何れかの電磁弁が閉じて圧空が遮断されると、該当のアクチュエータによる弁板の拘束が外れ、前後の差圧で開閉作動する状態、即ち前記圧縮室HEまたは/及びCEがロード状態となる。   That is, when one of the solenoid valves 9a to 9d is opened and pressurized air is supplied to the suction valve unloader 7, the valve plate is pushed in by the corresponding actuator so that the compression chamber HE or / and CE is on the suction side. Conversely, when any of the solenoid valves is closed and the compressed air is shut off in an unloaded state communicating with the system, the valve plate is unconstrained by the corresponding actuator, and the valve is opened and closed with a differential pressure before and after, The compression chamber HE or / and CE is loaded.

尚、前記電磁弁のうち9a,9b,9cをシリーズ(直列)に接続配管することによって、0%ロードを判断するための圧力検出器11を2個に削減することが出来る。電磁弁9dのみ単独に接続配管する理由は、後述する様に25%負荷時には電磁弁9c,9dを交互に切替えるのが好ましいためである。   By connecting 9a, 9b, and 9c of the solenoid valves in series (in series), the number of pressure detectors 11 for determining 0% load can be reduced to two. The reason why only the solenoid valve 9d is connected and connected is that it is preferable to alternately switch the solenoid valves 9c and 9d at 25% load as will be described later.

次に、この様な本発明の実施の形態1に係る2段往復動圧縮機の運転方法につき、以下図2,3及び表2を参照しながら説明する。図2は本発明の実施の形態1に係る往復動圧縮機の負荷運転方法を説明するための模式図であり、図(a)は0%負荷時、図(b)は25%負荷時、図(c)は50%負荷時、図(d)は75%負荷時、図(e)は100%負荷時の状態を夫々示す。図3は、図2(b)における25%負荷時の他の運転方法を説明するための模式図である。表2は、本発明の実施の形態に係る2段往復動圧縮機の運転方法における各シリンダの負荷状態を示す。   Next, an operation method of such a two-stage reciprocating compressor according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 2 is a schematic diagram for explaining a load operation method of the reciprocating compressor according to Embodiment 1 of the present invention. FIG. 2 (a) is at 0% load, FIG. 2 (b) is at 25% load, Fig. (C) shows the state at 50% load, Fig. (D) shows the state at 75% load, and Fig. (E) shows the state at 100% load. FIG. 3 is a schematic diagram for explaining another operation method at 25% load in FIG. Table 2 shows the load state of each cylinder in the operation method of the two-stage reciprocating compressor according to the embodiment of the present invention.

本発明の実施の形態1に係る2段往復動圧縮機の運転方法においては、0%負荷運転から負荷が25%増加する各段毎に、圧縮室を1室ずつ増加させて運転することが可能となる。即ち、25%負荷運転時では、対向する往復動圧縮機1A,2Aは無負荷運転する一方、他の対向する往復動圧縮機1B,2Bにおいては、往復動圧縮機1Bのシリンダの圧縮室HE及び往復動圧縮機2Bのシリンダの圧縮室CEのみを負荷運転することによって、各段とも圧縮室4室の内1室を負荷運転することになり、(1/4)×100=25%のロード運転を実現できるのである。   In the operation method of the two-stage reciprocating compressor according to Embodiment 1 of the present invention, the operation can be performed by increasing the compression chamber by one for each stage where the load increases by 25% from the 0% load operation. It becomes possible. That is, at the time of 25% load operation, the opposing reciprocating compressors 1A and 2A operate without load, while in the other opposing reciprocating compressors 1B and 2B, the compression chamber HE of the cylinder of the reciprocating compressor 1B. In addition, by performing load operation only on the compression chamber CE of the cylinder of the reciprocating compressor 2B, one of the four compression chambers is loaded on each stage, and (1/4) × 100 = 25%. Road operation can be realized.

Figure 0004852003
Figure 0004852003

但し、上記の如く、対向する往復動圧縮機1A,2Aのみ長時間の無負荷運転を継続すると、前記往復動圧縮機1A,2Aのシリンダの過熱によるリング材の損傷を招くことになる。この様な25%負荷運転は、図3に示す如く、往復動圧縮機1B,2Bの代わりに往復動圧縮機1Aのシリンダの圧縮室HE及び往復動圧縮機2Aのシリンダの圧縮室CEのみの負荷運転や、各段のシリンダの圧縮室4室のうちの1室を負荷運転する他の方法によっても達成可能である。そのため、前記往復動圧縮機1A,2Aと1B,2Bのシリンダの圧縮室のロード・アンロードを、前記制御器8内に予め設定された一定時間、即ち、5〜10分程度の間隔で切替えるのが好ましい。   However, as described above, if only the opposed reciprocating compressors 1A and 2A are continuously operated for a long time, the ring material is damaged due to overheating of the cylinders of the reciprocating compressors 1A and 2A. Such a 25% load operation is performed only in the compression chamber HE of the cylinder of the reciprocating compressor 1A and the compression chamber CE of the cylinder of the reciprocating compressor 2A instead of the reciprocating compressors 1B and 2B, as shown in FIG. This can also be achieved by load operation or other methods in which one of the four compression chambers of the cylinder of each stage is loaded. Therefore, loading / unloading of the compression chambers of the cylinders of the reciprocating compressors 1A, 2A and 1B, 2B is switched at a preset time in the controller 8, that is, at intervals of about 5 to 10 minutes. Is preferred.

更に、50%負荷運転時では、低段側(1段目)往復動圧縮機1A,1Bのシリンダの圧縮室HEと、高段側(2段目)往復動圧縮機2A,2Bのシリンダの圧縮室CEとを負荷運転することによって実現出来る一方、75%負荷運転では、往復動圧縮機1A,2Aを100%負荷、往復動圧縮機1Bのシリンダの圧縮室HE及び往復動圧縮機2Bのシリンダの圧縮室CEのみを負荷運転することによって実現可能である。   Further, at the time of 50% load operation, the compression chamber HE of the cylinder of the low stage (first stage) reciprocating compressor 1A, 1B and the cylinder of the high stage (second stage) reciprocating compressor 2A, 2B On the other hand, in the 75% load operation, the reciprocating compressors 1A and 2A are 100% loaded, and the compression chamber HE of the cylinder of the reciprocating compressor 1B and the reciprocating compressor 2B are realized. This can be realized by performing a load operation only on the compression chamber CE of the cylinder.

尚、前記50%負荷運転は、低段側(1段目)往復動圧縮機1A,1Bのシリンダの圧縮室CEと、高段側(2段目)往復動圧縮機2A,2Bのシリンダの圧縮室HEとを負荷運転すること等、各シリンダの圧縮室2室のうち、任意の1室を負荷運転することによっても実現可能であり、前記75%負荷運転も、往復動圧縮機1Aのシリンダの圧縮室HE及び往復動圧縮機2Aのシリンダの圧縮室CEのみを負荷運転し、対向する往復動圧縮機のシリンダ1B,2Bを100%負荷運転すること等、各段のシリンダの圧縮室4室のうちの任意の3室を負荷運転することによって実現可能である。   Note that the 50% load operation is performed between the compression chamber CE of the cylinders of the low-stage (first stage) reciprocating compressors 1A and 1B and the cylinders of the high-stage (second stage) reciprocating compressors 2A and 2B. It is also possible to perform a load operation on any one of the two compression chambers of each cylinder, such as a load operation with the compression chamber HE. The 75% load operation is also performed by the reciprocating compressor 1A. Only the compression chamber HE of the cylinder and the compression chamber CE of the cylinder of the reciprocating compressor 2A are loaded and the cylinders 1B and 2B of the opposing reciprocating compressor are 100% loaded, etc. This can be realized by load-operating any three of the four chambers.

ところで、従来技術として図7に示したものにおいて、0%負荷から50%負荷への切替を行おうとした場合、高段側(2段目)往復動圧縮機2A,2Bのシリンダの圧縮室CEはすぐロード状態とすることが出来るが、低段側(1段目)往復動圧縮機1A,1Bのシリンダの圧縮室HEはヘッドアンローダを押し込み、ロード状態となるまでに所定の時間を要するため、高段のシリンダと低段のシリンダとの間にロード状態への切替の「ずれ」が生じる。   By the way, in the example shown in FIG. 7 as the prior art, when switching from 0% load to 50% load is attempted, the compression chamber CE of the cylinder of the high stage (second stage) reciprocating compressor 2A, 2B. Can be immediately loaded, but the compression chamber HE of the cylinders of the low-stage (first stage) reciprocating compressors 1A and 1B pushes the head unloader and requires a predetermined time to enter the loaded state. In addition, a “shift” of switching to the load state occurs between the high-stage cylinder and the low-stage cylinder.

このロード状態への切替の「ずれ」は、いわば中間圧のバランスが崩れた状態が所定時間継続することを意味する。しかしながら、本発明においては、ヘッドアンローダがそもそも備えられていないため、上述した様なロード状態への切替の「ずれ」、ひいては中間圧のバランスが崩れた状態が生じないという利点がある。   This “shift” in switching to the load state means that the state where the balance of the intermediate pressure is lost continues for a predetermined time. However, in the present invention, since the head unloader is not provided in the first place, there is an advantage that the “shift” to the load state as described above and the state in which the balance of the intermediate pressure is not lost are not generated.

尚、対向するシリンダの対においては、同じタイミングでピストンが押し出され、クランク機構に及ぼされる力は、対向するシリンダのピストンの反力の合算値となる。このため、上述した通り、低段側の往復動圧縮機のシリンダと高段側の往復動圧縮機のシリンダにおけるロード状態にある夫々の圧縮室が、一方がヘッドエンド側の圧縮室HE、他方がクランクエンド側の圧縮室CEとなる様、各圧縮室のロード状態・アンロード状態を切替えることによって、対向するシリンダのピストンの反力の位相が(180度ずつ)ずれることになり、そのピストンの反力の合算値は過大とならない。   In the pair of opposed cylinders, the piston is pushed out at the same timing, and the force exerted on the crank mechanism is the sum of the reaction forces of the pistons of the opposed cylinder. Therefore, as described above, one of the compression chambers in the loaded state in the cylinder of the reciprocating compressor on the lower stage side and the cylinder of the reciprocating compressor on the higher stage side is the compression chamber HE on the head end side, and the other By switching the loading state / unloading state of each compression chamber so that the compression chamber CE becomes the crank end side, the phase of the reaction force of the piston of the opposing cylinder is shifted (by 180 degrees). The total value of the reaction force is not excessive.

結果として、クランク機構の回転に伴うトルクの変動、ひいては駆動モータにかかる負荷を軽減することが可能となる。尚、更に、低段側の往復動圧縮機のシリンダのロード状態である圧縮室をヘッドエンド側の圧縮室HEとし、高段側の往復動圧縮機のシリンダのロード状態である圧縮室をクランクエンド側の圧縮室CEとすることによって、ピストンロッドが圧縮室CEを貫通する部位に設けられるロッドパッキン等の軸封手段にかかる負荷を軽減できることが、本発明の発明者等によって経験則的に見出されている。   As a result, it is possible to reduce torque fluctuations accompanying the rotation of the crank mechanism, and hence the load on the drive motor. Furthermore, the compression chamber in the loaded state of the cylinder of the low-stage reciprocating compressor is referred to as a compression chamber HE on the head end side, and the compression chamber in the loaded state of the cylinder of the high-stage reciprocating compressor is cranked. By adopting the compression chamber CE on the end side, it is possible to reduce the load applied to the shaft sealing means such as the rod packing provided at the portion where the piston rod penetrates the compression chamber CE. Has been found.

次に、本発明の実施の形態2に係る往復動圧縮機の容量調整方法を、添付図4を参照しながら説明する。図4は本発明の実施の形態2に係り、図1のX部詳細を示す部分詳細断面図である。但し、本発明の実施の形態2が上記実施の形態1と相違するところは、吸込弁アンローダの構成に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、以下その相違する点について説明する。   Next, a capacity adjustment method for a reciprocating compressor according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a partial detailed cross-sectional view showing details of a portion X in FIG. 1 according to the second embodiment of the present invention. However, the difference between the second embodiment of the present invention and the first embodiment is that the suction valve unloader is different in configuration, and the other configuration is exactly the same as in the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and different points will be described below.

即ち、上記実施の形態1の吸込弁アンローダが、電磁弁が開いて圧空が供給されると、該当のアクチュエータが前進して弁板が押し込まれ圧縮室が吸込側の系と連通したアンロード状態に、逆に前記電磁弁が閉じて圧空が遮断されると、該当のアクチュエータが後退して弁板が前後の差圧で開閉作動する状態、即ちロード状態となる。   That is, when the solenoid valve is opened and the compressed air is supplied to the suction valve unloader of the first embodiment, the corresponding actuator moves forward, the valve plate is pushed in, and the compression chamber communicates with the system on the suction side. On the other hand, when the solenoid valve is closed and the compressed air is shut off, the corresponding actuator is retracted, and the valve plate is opened / closed by the differential pressure between the front and rear, that is, the load state.

それに対し、本実施の形態2の吸込弁アンローダ7(74a)は、電磁弁9aが開いて圧空が該当のアクチュエータ13に供給されると、ピストン13aがアクチュエータ13側に押し戻されて、スパイダー12のフィンガー12a先端が弁板14から離れ、弁板14の前後の差圧で開閉作動する状態、即ちロード状態に、逆に前記電磁弁が閉じて圧空が該当のアクチュエータ13から遮断されると、アクチュエータ13内に収納されたバネ13bによって、ピストン13aが圧縮室HE側に押し込まれて前記弁板14が閉じて、圧縮室HEが吸込側の系と連通したアンロード状態となる。   On the other hand, in the suction valve unloader 7 (74a) of the second embodiment, when the electromagnetic valve 9a is opened and the compressed air is supplied to the corresponding actuator 13, the piston 13a is pushed back to the actuator 13 side, and the spider 12 When the tip of the finger 12a is separated from the valve plate 14 and is opened / closed by a differential pressure across the valve plate 14, that is, in a load state, conversely, when the electromagnetic valve is closed and the compressed air is shut off from the corresponding actuator 13, the actuator The piston 13a is pushed into the compression chamber HE side by the spring 13b housed in the valve 13, the valve plate 14 is closed, and the compression chamber HE is in an unloaded state communicating with the suction side system.

以上、本発明に係る往復動圧縮機の容量調整方法によれば、複数段の往復動圧縮機を備え、前記複数段の往復動圧縮機は各段毎にシリンダを2筒ずつ備え、前記各シリンダはそのシリンダ毎に収容されたピストンにて隔てられてなる2室の圧縮室を備え、前記各圧縮室はその圧縮室毎にロード状態・アンロード状態を切替え可能な吸込弁アンローダを備える往復動圧縮機の容量調整方法において、予め設定された時間に従って前記圧縮室のロード状態・アンロード状態を切替えるので、0%から100%までの容量(負荷)、具体的には100%,75%,50%,25%,0%の各ロードの調整を、ヘッドエンドアンローダ及びクリアランスポケット無しで実現できる。   As described above, according to the capacity adjustment method for a reciprocating compressor according to the present invention, the reciprocating compressor of a plurality of stages is provided, and the reciprocating compressor of the plurality of stages includes two cylinders at each stage, The cylinder includes two compression chambers separated by a piston accommodated in each cylinder, and each of the compression chambers includes a suction valve unloader capable of switching between a load state and an unload state for each compression chamber. In the method of adjusting the capacity of the dynamic compressor, the load state / unload state of the compression chamber is switched according to a preset time, so the capacity (load) from 0% to 100%, specifically 100%, 75% , 50%, 25%, and 0% of load can be adjusted without a head end unloader and clearance pocket.

また、本発明に係る往復動圧縮機の容量調整方法によれば、前記時間が一定時間間隔であるとし、その一定時間間隔、即ち、前記各圧縮室のロード切替間隔を適切な時間とすることにより、0%ロード時のシリンダ過熱によるリング材の損傷防止が可能となる。   According to the capacity adjustment method for a reciprocating compressor according to the present invention, the time is assumed to be a constant time interval, and the constant time interval, that is, the load switching interval of each compression chamber is set to an appropriate time. Thus, it is possible to prevent damage to the ring material due to cylinder overheating at 0% load.

本発明の実施の形態1に係る2段往復動圧縮機の構成を説明するための系統図である。It is a systematic diagram for demonstrating the structure of the two-stage reciprocating compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る2段往復動圧縮機の負荷運転方法を説明するための模式図であり、図(a)は0%負荷時、図(b)は25%負荷時、図(c)は50%負荷時、図(d)は75%負荷時、図(e)は100%負荷時の状態を夫々示す。It is a schematic diagram for demonstrating the load driving | running method of the two-stage reciprocating compressor which concerns on Embodiment 1 of this invention, a figure (a) at the time of 0% load, a figure (b) at the time of 25% load, (C) shows a state at 50% load, FIG. (D) shows a state at 75% load, and (e) shows a state at 100% load. 図2(b)における25%負荷運転の他の運転方法を説明するための模式図である。It is a schematic diagram for demonstrating the other driving | running method of 25% load driving | operation in FIG.2 (b). 本発明の実施の形態2に係り、図1のX部詳細を示す部分詳細断面図である。FIG. 4 is a partial detailed cross-sectional view illustrating details of a portion X in FIG. 1 according to the second embodiment of the present invention. 従来例に係る往復動圧縮機の一種である対向釣合型2段圧縮機を説明するための模式図である。It is a schematic diagram for demonstrating the counter balance type | mold 2 stage compressor which is a kind of reciprocating compressor which concerns on a prior art example. 図5のY部詳細を示す部分詳細断面図である。It is a fragmentary detailed sectional view which shows the Y section detail of FIG. 従来例に係る2段往復動圧縮機の運転方法を説明するための模式図であり、図(a)は0%負荷時、図(b)は25%負荷時、図(c)は50%負荷時、図(d)は75%負荷時、図(e)は100%負荷時の状態を夫々示す。It is a schematic diagram for demonstrating the operating method of the two-stage reciprocating compressor which concerns on a prior art example, a figure (a) at the time of 0% load, the figure (b) at the time of 25% load, and the figure (c) at 50%. At the time of loading, FIG. (D) shows the state at 75% load, and FIG. (E) shows the state at 100% load.

符号の説明Explanation of symbols

HE:ヘッドエンド側のガス圧縮室,
CE:コンロッドエンド側のガス圧縮室,
M:駆動モータ,
1A,1B:1段目の往復動圧縮機(第1段圧縮機),
2A,2B:2段目の往復動圧縮機(第2段圧縮機),
3:ピストン, 4:クランク機構,
5a,5b,6a,6b:シリンダ,
7,71a〜74a,71b〜74b:吸込弁アンローダ,
8:制御器,
9a〜9d:電磁弁,
10:圧空配管, 11:圧力検出器,
12:スパイダー, 12a:フィンガー,
13:アクチュエータ, 13a:ピストン, 13b:バネ,
14:弁板
HE: Gas compression chamber on the head end side,
CE: Gas compression chamber on the connecting rod end side,
M: drive motor,
1A, 1B: first stage reciprocating compressor (first stage compressor),
2A, 2B: Second stage reciprocating compressor (second stage compressor),
3: piston, 4: crank mechanism,
5a, 5b, 6a, 6b: cylinder,
7, 71a-74a, 71b-74b: Suction valve unloader,
8: Controller,
9a to 9d: solenoid valves,
10: compressed air piping, 11: pressure detector,
12: Spider, 12a: Finger,
13: Actuator, 13a: Piston, 13b: Spring,
14: Valve plate

Claims (3)

複数段の往復動圧縮機を備え、
前記複数段の往復動圧縮機は各段毎にシリンダを2筒ずつ備え、
前記各シリンダはそのシリンダ毎に収容されたピストンにて隔てられてなる2室の圧縮室を備え、
前記各圧縮室はその圧縮室毎にロード・アンロードを切替え可能な吸込弁アンローダを備える往復動圧縮機の容量調整方法において、
前記複数段の往復動圧縮機が、少なくとも、低段のシリンダに収容されたピストンと、高段のシリンダに収容されたピストンとをクランク機構にて連結して構成されたものであって、
予め設定された時間に従って、前記低段のシリンダと前記高段のシリンダにおけるロード状態にある夫々の圧縮機が、一方がヘッドエンド側の圧縮室、他方がクランクエンド側の圧縮室となるよう、各圧縮室のロード状態・アンロード状態を切替え
前記低段のシリンダのロード状態である圧縮室をヘッドエンド側の圧縮室とし、前記高段のシリンダのロード状態である圧縮室をクランクエンド側の圧縮室としたことを特徴とする往復動圧縮機の容量調整方法。
Equipped with a multistage reciprocating compressor,
The multi-stage reciprocating compressor includes two cylinders for each stage,
Each cylinder includes two compression chambers separated by a piston accommodated in each cylinder,
In each compression chamber, the capacity adjustment method for a reciprocating compressor provided with a suction valve unloader capable of switching between loading and unloading for each compression chamber,
The multi-stage reciprocating compressor is configured by connecting at least a piston housed in a low-stage cylinder and a piston housed in a high-stage cylinder by a crank mechanism,
According to a preset time , each of the compressors in the loaded state in the low-stage cylinder and the high-stage cylinder is such that one is a compression chamber on the head end side and the other is a compression chamber on the crank end side. Switch the loading / unloading status of each compression chamber ,
The reciprocating compression is characterized in that the compression chamber in the loaded state of the lower stage cylinder is a compression chamber on the head end side, and the compression chamber in the loaded state of the higher stage cylinder is a compression chamber on the crank end side. How to adjust the capacity of the machine.
前記時間が一定時間間隔であることを特徴とする請求項1に記載の往復動圧縮機の容量調整方法。   The capacity adjustment method for a reciprocating compressor according to claim 1, wherein the time is a constant time interval. 前記各圧縮室に備えられた吸込弁アンローダが、空気圧を利用したアクチュエータにより作動され、これらのアクチュエータへの給気を開閉制御する電磁弁の一部をシリーズに接続すると共に、前記時間信号によってこれらの電磁弁を開閉することを特徴とする請求項1または2に記載の往復動圧縮機の容量調整方法。   A suction valve unloader provided in each of the compression chambers is operated by an actuator using air pressure, and a part of an electromagnetic valve for controlling opening and closing of air supply to these actuators is connected to a series, and these are also indicated by the time signal. 3. The capacity adjustment method for a reciprocating compressor according to claim 1, wherein the electromagnetic valve is opened and closed.
JP2007192470A 2007-07-24 2007-07-24 Reciprocating compressor capacity adjustment method Expired - Fee Related JP4852003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192470A JP4852003B2 (en) 2007-07-24 2007-07-24 Reciprocating compressor capacity adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192470A JP4852003B2 (en) 2007-07-24 2007-07-24 Reciprocating compressor capacity adjustment method

Publications (2)

Publication Number Publication Date
JP2009030454A JP2009030454A (en) 2009-02-12
JP4852003B2 true JP4852003B2 (en) 2012-01-11

Family

ID=40401236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192470A Expired - Fee Related JP4852003B2 (en) 2007-07-24 2007-07-24 Reciprocating compressor capacity adjustment method

Country Status (1)

Country Link
JP (1) JP4852003B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190724A (en) * 2010-03-12 2011-09-29 Ihi Compressor & Machinery Co Ltd Multistage reciprocating compressor and method of operating the same
JP5391154B2 (en) * 2010-06-07 2014-01-15 株式会社神戸製鋼所 Operation control method for BOG multistage positive displacement compressor
CN101922430A (en) * 2010-08-20 2010-12-22 桐乡锦瑞化纤有限公司 High-low-pressure dual-purpose piston type air compressor as network yarn air source in terylene production process
CN104612951B (en) * 2015-01-12 2016-04-20 北京博华信智科技股份有限公司 A kind of reciprocating compressor stepless tolerance regulating method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626485A (en) * 1985-07-03 1987-01-13 Hitachi Ltd Composite type magnetic bubble memory element
JPH01273886A (en) * 1988-04-27 1989-11-01 Agency Of Ind Science & Technol Control unit of compressor

Also Published As

Publication number Publication date
JP2009030454A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5766592B2 (en) Multistage piston compressor
JP4852003B2 (en) Reciprocating compressor capacity adjustment method
US7493757B2 (en) Hydraulic pressure supply unit
US7891955B2 (en) Compressor having a dual slide valve assembly
US20110271699A1 (en) Frequency variable compressor and control method thereof
US20090104060A1 (en) Compressor
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
JP5071967B2 (en) Rotary compressor and operation control method thereof
US9395108B2 (en) Cryogenic refrigerator
JP6430003B2 (en) Screw compressor and refrigeration cycle apparatus equipped with the screw compressor
EP1923571B1 (en) Capacity-variable rotary compressor
JP2803456B2 (en) Multi-cylinder rotary compressor
JP2008286067A (en) Gas multiple stage pressurizing device
US20190264967A1 (en) Multi-stage compressing system and control method thereof
KR100798559B1 (en) Two stage screw compressor and compression refrigerator using the same
US20220268280A1 (en) Dual-Stage Compressor, Control Method Thereof and Air Conditioning Unit
JP5292200B2 (en) Hydraulic pump device
CN211259012U (en) Two-stage compressor and air conditioning unit
CN211259010U (en) Two-stage compressor and air conditioning unit
JP3904852B2 (en) Screw compressor
US20210372384A1 (en) Piston compressor
JP4015219B2 (en) Air compressor load reducing device
CN110617218B (en) Control method of two-stage compressor and air conditioning unit
WO2017175298A1 (en) Screw compressor and refrigeration cycle device
CN218624652U (en) Slide valve assembly and two-stage screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Ref document number: 4852003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees