JP4851799B2 - Method for producing polymer fine particles - Google Patents

Method for producing polymer fine particles Download PDF

Info

Publication number
JP4851799B2
JP4851799B2 JP2006017809A JP2006017809A JP4851799B2 JP 4851799 B2 JP4851799 B2 JP 4851799B2 JP 2006017809 A JP2006017809 A JP 2006017809A JP 2006017809 A JP2006017809 A JP 2006017809A JP 4851799 B2 JP4851799 B2 JP 4851799B2
Authority
JP
Japan
Prior art keywords
reaction
fine particles
solution
polymer fine
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006017809A
Other languages
Japanese (ja)
Other versions
JP2007197565A (en
Inventor
幸彦 仲
威之 大嶋
繁 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2006017809A priority Critical patent/JP4851799B2/en
Publication of JP2007197565A publication Critical patent/JP2007197565A/en
Application granted granted Critical
Publication of JP4851799B2 publication Critical patent/JP4851799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

この発明は、粒径が均一な高分子微粒子の製造方法に関し、特に、大規模且つ特殊な設備を必要とせずに、架橋度が高い高分子微粒子を大量に合成できる製造方法に関する。   The present invention relates to a method for producing polymer fine particles having a uniform particle size, and more particularly, to a production method capable of synthesizing a large amount of polymer fine particles having a high degree of crosslinking without requiring a large-scale and special equipment.

ミクロンサイズ(0.01〜数10μm径程度)の高分子微粒子は、有機顔料、トナー粒子、液晶パネル用スペーサー、分離材料、生化学用担体、標準粒子、化粧品用充填剤、各種添加剤又は配合剤などの用途に幅広く使用されている。そして、これら高分子微粒子は、流動性の確保等の観点から、その粒子径ができるだけ均一であることが求められている。   Polymer fine particles of micron size (0.01 to several tens of μm diameter) are organic pigments, toner particles, liquid crystal panel spacers, separation materials, biochemical carriers, standard particles, cosmetic fillers, various additives or compounding agents, etc. Widely used in various applications. These polymer fine particles are required to have as uniform a particle size as possible from the viewpoint of ensuring fluidity.

さて、このようなミクロンサイズの高分子微粒子の製造方法としては、従来から懸濁重合、乳化重合、分散重合等の各種製造方法が知られている(特許文献1及び2を参照。)。ただ、これらの製造方法により均一な粒径の高分子微粒子を製造するに際には、反応溶液に添加する界面活性剤や安定剤の量など、反応溶液の組成を微妙に調製する必要があった。したがって、化学物質や生体物質を固定して生化学用坦体として使用するための、表面修飾が可能な二次的反応性官能基が残された高分子微粒子を、製造することは困難であった。   Various production methods such as suspension polymerization, emulsion polymerization, and dispersion polymerization have been conventionally known as methods for producing such micron-sized polymer fine particles (see Patent Documents 1 and 2). However, when producing fine polymer particles with a uniform particle diameter by these production methods, it is necessary to delicately prepare the composition of the reaction solution, such as the amount of surfactant and stabilizer added to the reaction solution. It was. Therefore, it is difficult to produce polymer fine particles in which a secondary reactive functional group capable of surface modification is left for fixing a chemical substance or a biological substance and using it as a carrier for biochemistry. It was.

このような欠点を解消して、表面修飾が可能な高分子微粒子を製造する方法として、従来から、架橋性モノマーであるジエチレングリコールジメタクリレートを含む有機溶媒に放射線(ガンマー線)を照射して、高分子微粒子を製造する方法が研究されている(非特許文献1〜3を参照。)。   As a method for eliminating such drawbacks and producing polymer fine particles capable of surface modification, conventionally, an organic solvent containing diethylene glycol dimethacrylate, which is a crosslinkable monomer, is irradiated with radiation (gamma rays) to increase the size. Methods for producing molecular fine particles have been studied (see Non-Patent Documents 1 to 3).

この放射線による重合方法は、二次的反応性官能基が表面に残された均一な粒径の高分子微粒子を、界面活性剤や安定剤を添加しない架橋性モノマーと有機溶媒のみの均一系から、溶液を撹拌せずに製造することはできる。しかし、放射線照射施設を必要とするため、容易に且つ低価格の製造することは困難であるとの問題点があった。   This radiation-based polymerization method uses a uniform system of only a crosslinkable monomer and an organic solvent without adding a surfactant or a stabilizer to a polymer particle having a uniform particle size in which secondary reactive functional groups remain on the surface. The solution can be produced without stirring. However, since a radiation irradiation facility is required, there is a problem that it is difficult to manufacture easily and at a low cost.

一方、モノマーと溶媒の系から、ラジカル重合法により高分子微粒子を大量に製造する方法としては熱重合が一般的である。なお、熱重合による微粒子合成は、モノマー、高分子微粒子は溶解しない溶媒、不均一溶液を安定させる界面活性剤か高分子微粒子の結合を防ぐ安定剤、ラジカルを発生する重合開始剤などを使用し、これらを反応容器に入れ、ラジカルと反応して連鎖反応を停止する酸素を窒素バブリング等によって除去し、攪拌とともに加熱してラジカル重合反応を行うものである。このように、熱重合による高分子微粒子の製造は、複雑な溶液組成の調製や合成反応中の撹拌操作を必要とするため、均一な粒径の高分子微粒子は製造するのが困難であるとの問題点があった。
特開昭59−181301号公報 特開昭63−316766号公報 吉田ら( M. Yoshida )、「有機溶媒存在下における放射線重合により製造した高分子微粒子の特徴(character of polymer microspheres prepared by radiation-induced polymerization in the presence of organic solvents)」、放射線物理および化学(Radiat.Phys.Chem.)、エルゼヴィア出版(Elsevier)、1987年、第30巻、第1号、p.39−45 仲(Y.Naka)ら、「放射線重合による微粒子の製造 1.単分散ポリジエチレングリコールジメタクリレートの形成機構(Preparation of Microspheres by Radiation-Induced Polymerization. 1.Mechanism for the Formation of Monodisperse Poly(diethylene glycol dimethacrylate) Microspheres)、高分子科学雑誌 A部(J.Polym.Sci., Part A, Polym. Chem. Ed.)、米国、Jone Wily & Sons, Inc.、1991、第29巻、第8号、p.1197−1202 仲(Y.Naka)ら、「放射線重合による微粒子の製造 2.微粒子の成長機構(Preparation of Microspheres by Radiation-Induced Polymerization. 2. Mechanism of Microsphere Growth.)」、高分子科学雑誌 A部(J. Polym. Sci., Part A, Polym. Chem. Ed.)、米国、Jone Wily & Sons, Inc.、1992年、第30巻、第7号、p.1287−1298
On the other hand, thermal polymerization is generally used as a method for producing a large amount of polymer fine particles from a monomer / solvent system by radical polymerization. Fine particle synthesis by thermal polymerization uses monomers, solvents that do not dissolve polymer particles, surfactants that stabilize heterogeneous solutions or stabilizers that prevent polymer particles from binding, polymerization initiators that generate radicals, etc. These are put in a reaction vessel, oxygen that reacts with radicals to stop the chain reaction is removed by nitrogen bubbling or the like, and heated with stirring to perform radical polymerization reaction. Thus, production of polymer fine particles by thermal polymerization requires preparation of a complicated solution composition and stirring operation during the synthesis reaction, and it is difficult to produce polymer fine particles with a uniform particle size. There was a problem.
JP 59-181301 JP-A-63-3316766 Yoshida et al., “Character of polymer microspheres prepared by radiation-induced polymerization in the presence of organic solvents”, Radiation physics and chemistry (Radiat Phys. Chem.), Elsevier, 1987, Vol. 30, No. 1, p. 39-45 Y. Naka et al. “Preparation of Microspheres by Radiation-Induced Polymerization. 1.Mechanism for the Formation of Monodisperse Poly (diethylene glycol dimethacrylate) Microspheres), Polymer Science Journal Part A (J. Polym. Sci., Part A, Polym. Chem. Ed.), USA, Jone Wily & Sons, Inc., 1991, Vol. 29, No. 8, p. 1197-1202 Y. Naka et al., “Preparation of Microspheres by Radiation-Induced Polymerization. 2. Mechanism of Microsphere Growth.”, Journal of Polymer Science, A (J. Polym. Sci., Part A, Polym. Chem. Ed.), USA, Jone Wily & Sons, Inc., 1992, Volume 30, No. 7, p. 1287-1298

この発明は、従来からある高分子微粒子の製造方法の欠点を解消し、表面に修飾が可能な二次的反応性官能基を有しているとともに、均一な粒径の高分子微粒子を特殊で大がかりな設備を使用することなく容易、かつ大量に製造できる方法を提供することを目的とする。   The present invention eliminates the drawbacks of conventional polymer fine particle production methods, has secondary reactive functional groups that can be modified on the surface, and specially produces polymer fine particles with a uniform particle size. An object of the present invention is to provide a method that can be easily and mass-produced without using a large-scale facility.

発明者らは、鋭意研究の結果、架橋性モノマーを一定の条件下で熱重合することにより、放射線照射設備などの特殊な設備を使用しなくても、前記高分子微粒子が製造できることを見出した。   As a result of diligent research, the inventors have found that the polymer fine particles can be produced by thermal polymerization of the crosslinkable monomer under certain conditions without using special equipment such as radiation irradiation equipment. .

すなわち、この発明は、架橋性モノマーを有機溶媒に溶解して原料溶液を得る工程と、原料溶液に重合開始剤又は重合開始剤の溶液を添加して反応溶液を得る工程と、原料溶液に重合開始剤又は重合開始剤の溶液を添加し、誘導期間中に攪拌して反応溶液を得る工程と、反応溶液を静置した状態で加熱して重合反応させる工程と、を含む高分子微粒子製造方法である。   That is, the present invention includes a step of dissolving a crosslinkable monomer in an organic solvent to obtain a raw material solution, a step of adding a polymerization initiator or a polymerization initiator solution to the raw material solution to obtain a reaction solution, and a polymerization to the raw material solution. A method for producing polymer fine particles, comprising: adding an initiator or a solution of a polymerization initiator and stirring during an induction period to obtain a reaction solution; and heating and reacting the reaction solution in a stationary state It is.

この発明の高分子微粒子製造方法は、放射線照射設備など特殊な設備を使用しないため、合成スケールを大きくすることが容易である。したがって、表面修飾された高分子微粒子が容易、かつ大量に製造できるようになり、その製造コストを下げることができる。また、この発明により製造した高分子微粒子は、その表面に様々な官能基を付加させ、それら官能基と反応する化学物質や生体物質により表面修飾することもできる。   Since the method for producing polymer fine particles of the present invention does not use special equipment such as radiation irradiation equipment, it is easy to increase the synthetic scale. Therefore, the surface-modified polymer fine particles can be produced easily and in large quantities, and the production cost can be reduced. In addition, the polymer fine particles produced according to the present invention can be surface-modified with a chemical substance or a biological substance that adds various functional groups to the surface and reacts with these functional groups.

この発明は、架橋性モノマーを有機溶媒に溶解して原料溶液を得る工程、原料溶液に重合開始剤又は重合開始剤の溶液を添加して反応溶液を得る工程、原料溶液に重合開始剤又は重合開始剤の溶液を添加し、誘導期間中に攪拌して反応溶液を得る工程と、反応溶液を静置した状態で加熱して重合反応させる工程と、の各工程を含んでいる。   The present invention includes a step of dissolving a crosslinkable monomer in an organic solvent to obtain a raw material solution, a step of adding a polymerization initiator or a polymerization initiator solution to the raw material solution to obtain a reaction solution, a polymerization initiator or a polymerization of the raw material solution Each step includes a step of adding a solution of an initiator and stirring to obtain a reaction solution during the induction period, and a step of performing a polymerization reaction by heating the reaction solution while standing.

(架橋性モノマー)
この発明で使用する架橋性モノマーとしては、ジエチレングリコールジメタクリレートなどを例示することができる。
(Crosslinkable monomer)
Examples of the crosslinkable monomer used in the present invention include diethylene glycol dimethacrylate.

なお、モノマーとして、前記架橋性モノマーに加えて、スチレンモノマー、アクリルアミド、アクリル酸およびメチルアクリレート等のアクリル酸エステル類、メタアクリル酸およびメチルメタクリレート等のメタアクリル酸エステル類などの非架橋性モノマーを加えてもよい。また、無水マレイン酸、グリシジルメタクリレート、ヒドロキシルエチルメタクリレート、メタクリロイオキシエチルイソシアネート、アクリロイルオキシエチルイソシアネート等の二次的反応性反応性をもつ非架橋性モノマーを加えてもよい。   In addition to the crosslinkable monomer, as a monomer, non-crosslinkable monomers such as styrene monomers, acrylamide, acrylic acid esters such as acrylic acid and methyl acrylate, and methacrylic acid esters such as methacrylic acid and methyl methacrylate are used. May be added. Further, a non-crosslinkable monomer having secondary reactive reactivity such as maleic anhydride, glycidyl methacrylate, hydroxylethyl methacrylate, methacryloyloxyethyl isocyanate, acryloyloxyethyl isocyanate may be added.

(有機溶媒)
この発明で使用する有機溶媒としては、架橋性モノマーを初めとするモノマー、重合開始剤、その他の必要な助剤を溶解し、かつ重合後の高分子微粒子は溶解しないものであれば特に制限することなく使用することができる。このような有機溶媒としては具体的には、架橋性モノマーに対する良溶媒が挙げられ、好ましくは酢酸エチル、酢酸プロピルなどのエステル類、アセトン、アセトニトリル、ジエチルケトンなどのケトン類などを例示することができる。
(Organic solvent)
The organic solvent used in the present invention is particularly limited as long as it dissolves monomers including a crosslinkable monomer, a polymerization initiator, and other necessary auxiliary agents, and does not dissolve polymer fine particles after polymerization. Can be used without Specific examples of such an organic solvent include good solvents for the crosslinkable monomer, and preferable examples include esters such as ethyl acetate and propyl acetate, and ketones such as acetone, acetonitrile, and diethyl ketone. it can.

有機溶媒の使用量は、モノマーの合計100重量部に対し、300〜5000重量部程度であり、好ましくは500〜2000重量部程度である。有機溶媒の使用量が、300重量部未満の場合には形状が悪化して溶液全体がゲル化するとの問題が生じ、5000重量部を越えると微粒子が形成しない、十分な収量を得ることができない等の問題が生じる。   The amount of the organic solvent used is about 300 to 5000 parts by weight, preferably about 500 to 2000 parts by weight, based on 100 parts by weight of the total amount of monomers. When the amount of the organic solvent used is less than 300 parts by weight, the shape deteriorates and the entire solution gels. When the amount exceeds 5000 parts by weight, fine particles are not formed, and a sufficient yield cannot be obtained. Such problems arise.

(重合開始剤)
この発明で使用する重合開始剤としては、油溶性の公知のラジカル重合開始剤であれば特に限定するとなく使用できる。このような重合開始剤としては、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、オクタノイルパーオキサイド、o−クロロベンゾイルパーオキサイド、アセチルパーオキサイド、t−ブチルハイドロパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイドなどの有機過酸化物、2,2’−アゾビスイソブチロニトリル、2,2’− アゾビス(2,4−ジメチルバレロニトリル)、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビス(2−メチルブチロニトリル)、アゾビスシクロヘキサンカルボニトリルなどのアゾ化合物、及びこれら重合開始剤の誘導体類などを例示することができる。
(Polymerization initiator)
The polymerization initiator used in the present invention is not particularly limited as long as it is an oil-soluble known radical polymerization initiator. Such polymerization initiators include cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, o-chlorobenzoyl peroxide, acetyl peroxide, t-butyl hydroperoxide, t-butyl peroxide. Organic peroxides such as acetate, t-butylperoxyisobutyrate, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis (2 -Methylbutyronitrile), azobiscyclohexanecarbonitrile, etc. Azo compounds, and the like derivatives of these polymerization initiators may be exemplified.

また、重合開始剤の使用量は、原料溶液100重量部に対し、0.1〜5重量部程度であり、0.1〜1重量部とすることが好ましい。重合開始剤の使用量が0.1重量部未満の場合には、重合反応が不十分となる、重合に長時間を要する等の問題が生じ、5重量部を超えると、逆に収率が変わらないか低下する、急激な反応の進行によって形状の悪い粒子が形成する等の問題が生じる。なお、重合開始剤は、原料溶液への溶解を短時間に行うため、原料溶液とは別に有機溶媒に溶解しておく方法も可能である。そして、溶解に使用する有機溶媒としては、原料溶液に使用したものと同一のものが好ましい。   Moreover, the usage-amount of a polymerization initiator is about 0.1-5 weight part with respect to 100 weight part of raw material solutions, and it is preferable to set it as 0.1-1 weight part. When the amount of the polymerization initiator used is less than 0.1 parts by weight, problems such as insufficient polymerization reaction and a long time for polymerization occur, and when it exceeds 5 parts by weight, the yield does not change. Such a problem arises that particles having a bad shape are formed due to the rapid progress of the reaction. Since the polymerization initiator is dissolved in the raw material solution in a short time, a method in which the polymerization initiator is dissolved in an organic solvent separately from the raw material solution is also possible. And as an organic solvent used for melt | dissolution, the same thing as what was used for the raw material solution is preferable.

(高分子微粒子の製造)
高分子微粒子は、上述の架橋性モノマーなどのモノマー、有機溶媒、重合開始剤などから以下の手順によって製造する。
(Manufacture of polymer fine particles)
The polymer fine particles are produced from monomers such as the above-mentioned crosslinkable monomer, an organic solvent, a polymerization initiator and the like by the following procedure.

(1)原料溶液等の調製
モノマーを有機溶媒に溶解して反応溶液とし、この反応溶液を反応容器に入れ、使用する重合開始剤がラジカルを発生する温度(重合温度)まで反応容器ごとで昇温する。一方、重合開始剤、重合開始剤を溶解した溶液は、当該重合開始剤がラジカルを発生する温度より少し低い温度、具体的には40〜120℃程度で保存する。
(1) Preparation of raw material solution, etc. Monomers are dissolved in an organic solvent to form a reaction solution, and this reaction solution is put into a reaction vessel, and the temperature rises for each reaction vessel up to the temperature at which the polymerization initiator used generates radicals (polymerization temperature). Warm up. On the other hand, the polymerization initiator and the solution in which the polymerization initiator is dissolved are stored at a temperature slightly lower than the temperature at which the polymerization initiator generates radicals, specifically, about 40 to 120 ° C.

(2)反応溶液の調製
原料溶液が入った反応容器に重合開始剤又は重合開始剤の溶液を添加して、攪拌することにより均一化し、反応溶液を得る。なお、反応溶液を攪拌するのは、誘導期間(重合開始剤を添加してから重合反応が開始するまでの期間)中のみである。ここで、通常の熱重合とは異なり重合反応中に攪拌を止めてしまうのは、生成した高分子微粒子同士が癒着するのを防いで、均一な高分子微粒子を得るためである。
(2) Preparation of reaction solution A polymerization initiator or a solution of a polymerization initiator is added to a reaction vessel containing a raw material solution and stirred to obtain a reaction solution. The reaction solution is stirred only during the induction period (period from the addition of the polymerization initiator to the start of the polymerization reaction). Here, unlike the usual thermal polymerization, the stirring is stopped during the polymerization reaction in order to prevent the produced polymer fine particles from adhering to each other and obtain uniform polymer fine particles.

(3)重合反応
(2)で均一化した反応溶液の入った反応容器を、重合温度に設定された恒温槽等に漬けて一定時間攪拌することなく静置する。一定時間経過後、反応容器を冷却して合成反応を停止して、メンブレンフィルターなどにより高分子微粒子をろ過し、ろ過した高分子微粒子を溶媒で洗浄する。
(3) Polymerization reaction The reaction vessel containing the reaction solution homogenized in (2) is immersed in a thermostatic bath set at the polymerization temperature and allowed to stand without stirring for a certain period of time. After a certain period of time, the reaction vessel is cooled to stop the synthesis reaction, the polymer fine particles are filtered with a membrane filter or the like, and the filtered polymer fine particles are washed with a solvent.

このようにして製造された高分子微粒子の粒径は、公知の方法、例えば、走査型電子顕微鏡によって高分子微粒子を観察することにより、測定することができる。また、高分子微粒子の粒径のばらつきは、例えば、CV値(%){(標準偏差/平均粒径)×100}の大小によって評価することができ、その値としては好ましくは10%以下、より好ましくは5%以下である。   The particle diameter of the polymer fine particles thus produced can be measured by observing the polymer fine particles with a known method, for example, a scanning electron microscope. The variation in the particle size of the polymer fine particles can be evaluated by, for example, the CV value (%) {(standard deviation / average particle size) × 100}, and the value is preferably 10% or less, More preferably, it is 5% or less.

なお、この発明は前記の実施の形態に限定されるわけではなく、特許請求の範囲に記載した発明の技術的範囲内で様々な変更を加えることができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope of the invention described in the claims.

例えば、原料溶液を得る工程の後に、原料溶液を窒素ガスなどの不活性ガスでバブリングしてもよい。なお、バブリングにより、原料溶液中に含まれる酸素を追い出して、原料溶液中の酸素濃度を調節し、重合反応が始まるまでの時間(誘導期間)を調整することができる。具体的には、長時間バブリングすることによって誘導期間は短くなり、反対に短い時間バブリングすることによって誘導期間は長くなる。   For example, the raw material solution may be bubbled with an inert gas such as nitrogen gas after the step of obtaining the raw material solution. In addition, by bubbling, oxygen contained in the raw material solution is driven out, the oxygen concentration in the raw material solution is adjusted, and the time (induction period) until the polymerization reaction starts can be adjusted. Specifically, the induction period is shortened by bubbling for a long time, and conversely, the induction period is lengthened by bubbling for a short time.

そのため、従来からある熱重合法により高分子微粒子を製造する場合と比較して、より短い時間だけバブリングすれば、誘導期間が長くなり、重合開始時の反応溶液の温度、重合開始剤の濃度分布をより均一にし、形状や粒径分布の良い高分子微粒子を得ることができる。   Therefore, in comparison with the case of producing polymer fine particles by a conventional thermal polymerization method, if the bubbling is performed for a shorter time, the induction period becomes longer, the temperature of the reaction solution at the start of polymerization, the concentration distribution of the polymerization initiator The polymer fine particles having a more uniform shape and particle size distribution can be obtained.

以下に、この発明を実施例に従ってさらに詳しく説明するが、この発明の特許請求の範囲は如何なる意味においても下記の実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the claims of the present invention is not limited by the following examples in any way.

(1)原料溶液の調製
ジエチレングリコールジメタクリレート(新中村化学製) 50.0 gを容積 500 mlのガラス容器(反応容器)に入れ、溶媒である酢酸エチル (アルドリッチ製) 400 g を注いで溶解したのち、反応容器の蓋を閉めて60℃まで加熱した。
(1) Preparation of raw material solution After putting 50.0 g of diethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) into a 500 ml glass container (reaction container) and pouring 400 g of ethyl acetate (manufactured by Aldrich) as a solvent, The reaction vessel was closed and heated to 60 ° C.

(2)重合反応
原料溶液の温度が60℃に到達したのち、反応容器の蓋を開いて2,2’-アゾビスイソブチロニトリル(アルドリッチ製) 1.5 g を添加した。添加後、速やかに反応溶液を攪拌して重合開始剤を溶解させ反応溶液を得た。反応容器の蓋を密閉して反応容器を恒温槽(60℃)に入れて静置し、重合反応を進行させた。2時間10分後、反応容器を恒温槽から静かに取り出して蓋を開けて空気を入れたのち、反応容器を冷凍庫(-10℃)に入れ冷却し、重合反応を停止させた。最後に、反応溶液をメンブレンフィルターでろ過して高分子微粒子を分離したのち、高分子微粒子を酢酸エチルで洗浄して乾燥させた。
(2) Polymerization reaction After the temperature of the raw material solution reached 60 ° C, the reaction container was opened and 1.5 g of 2,2'-azobisisobutyronitrile (manufactured by Aldrich) was added. After the addition, the reaction solution was promptly stirred to dissolve the polymerization initiator to obtain a reaction solution. The reaction vessel was sealed and the reaction vessel was placed in a constant temperature bath (60 ° C.) and allowed to stand to allow the polymerization reaction to proceed. After 2 hours and 10 minutes, the reaction vessel was gently removed from the thermostat, the lid was opened, air was introduced, the reaction vessel was placed in a freezer (−10 ° C.) and cooled to stop the polymerization reaction. Finally, the reaction solution was filtered with a membrane filter to separate the polymer particles, and the polymer particles were washed with ethyl acetate and dried.

なお、重合反応経過の観察から、誘導期間が終わって微粒子が生成し始めるまでの時間が10分から20分程度であること、この時間は反応容器の空間部分に残っている空気の量に依存すること、具体的には、空気量が多いときには重合反応が促進され、空気量が少ないときには重合反応が抑制されることが分かった。   From the observation of the progress of the polymerization reaction, the time from the end of the induction period to the start of generation of fine particles is about 10 to 20 minutes, and this time depends on the amount of air remaining in the space portion of the reaction vessel Specifically, it has been found that the polymerization reaction is promoted when the amount of air is large, and the polymerization reaction is suppressed when the amount of air is small.

(3)評価
その後、高分子微粒子の重量から反応収量、反応収率を測定した。また、走査型電子顕微鏡(日立製S-2250N)により高分子微粒子を観察して粒径を測定した。その結果、反応収量は38.2 g、反応収率は76.4 %、粒径は1.13±0.10μmであった。また、CV値(%)は8.8 %であった。
(3) Evaluation Thereafter, reaction yield and reaction yield were measured from the weight of the polymer fine particles. In addition, the polymer fine particles were observed with a scanning electron microscope (Hitachi S-2250N) to measure the particle size. As a result, the reaction yield was 38.2 g, the reaction yield was 76.4%, and the particle size was 1.13 ± 0.10 μm. The CV value (%) was 8.8%.

(1)原料溶液及び触媒溶液の調製
ジエチレングリコールジメタクリレート(新中村化学製) 50.0 g及びスチレンモノマー(アルドリッチ製) 2.0 gを容積 500 mlのガラス容器(反応容器)に入れ、これに溶媒である酢酸エチル (アルドリッチ製) 350 g を注いで溶解したのち、反応容器の蓋を閉めて60℃まで加熱し、原料溶液(以下、A液と省略する。)とした。また、2,2’-アゾビスイソブチロニトリル(アルドリッチ製)2.5 g を別の容器に入れ、酢酸エチル溶液(アルドリッチ製)25 mlを注いで溶解し触媒溶液(以下、B液と省略する。)とした。なお、B液は室温で保管した。
(2)重合反応
A 液の入った反応容器を60℃付近に加熱したのち、反応容器にB液を注いで混合し、反応容器を恒温槽(60℃)に120分間静置した。120分後、反応容器を氷冷することによって合成反応を停止した。最後に、反応溶液をメンブレンフィルターでろ過して、高分子微粒子を分離したのち、高分子微粒子を酢酸エチルで洗浄して乾燥させた。
(1) Preparation of raw material solution and catalyst solution 50.0 g of diethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) and 2.0 g of styrene monomer (manufactured by Aldrich) are placed in a 500 ml glass container (reaction container), and acetic acid as a solvent is added thereto. After 350 g of ethyl (manufactured by Aldrich) was poured and dissolved, the reaction vessel was closed and heated to 60 ° C. to obtain a raw material solution (hereinafter abbreviated as “A solution”). Also, add 2.5 g of 2,2'-azobisisobutyronitrile (manufactured by Aldrich) into another container, pour 25 ml of ethyl acetate solution (manufactured by Aldrich), dissolve, and dissolve the catalyst solution (hereinafter abbreviated as B solution). .) In addition, B liquid was stored at room temperature.
(2) Polymerization reaction
After the reaction vessel containing solution A was heated to around 60 ° C., solution B was poured into the reaction vessel and mixed, and the reaction vessel was left in a constant temperature bath (60 ° C.) for 120 minutes. After 120 minutes, the synthesis reaction was stopped by cooling the reaction vessel with ice. Finally, the reaction solution was filtered through a membrane filter to separate the polymer particles, and the polymer particles were washed with ethyl acetate and dried.

(3)評価
その後、実施例1と同様の方法により、高分子微粒子の反応収量、反応収率、及び粒径を測定した。その結果、反応収量は42.6 g、反応収率は81.9 %、粒径は1.67±0.13 μmであった。また、CV値(%)は7.8 %であった。
(3) Evaluation Thereafter, the reaction yield, reaction yield, and particle size of the polymer fine particles were measured in the same manner as in Example 1. As a result, the reaction yield was 42.6 g, the reaction yield was 81.9%, and the particle size was 1.67 ± 0.13 μm. The CV value (%) was 7.8%.

(1)原料溶液及び触媒溶液の調製
ジエチレングリコールジメタクリレート(新中村化学製) 10.2 g及びメタクリロイオキシエチルイソシアネート(昭和電工製) 4.2 gを容積 100 mlのガラス容器(反応容器)に入れ、これに溶媒である酢酸エチル (アルドリッチ製) 78 g を注いで溶解したのち、反応容器の蓋を閉めて60℃まで加熱し、原料溶液(以下、A液と省略する。)とした。また、2,2’-アゾビスイソブチロニトリル(アルドリッチ製) 0.3 g を別の容器に入れ、酢酸エチル溶液(アルドリッチ製)6 mlを注いで溶解し触媒溶液(以下、B液と省略する。)とした。なお、B液は室温で保管した。
(1) Preparation of raw material solution and catalyst solution Diethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 10.2 g and methacryloyloxyethyl isocyanate (manufactured by Showa Denko) 4.2 g are placed in a 100 ml glass container (reaction container). After 78 g of ethyl acetate (manufactured by Aldrich) as a solvent was poured and dissolved, the reaction vessel was closed and heated to 60 ° C. to obtain a raw material solution (hereinafter abbreviated as “A solution”). Also, add 0.3 g of 2,2'-azobisisobutyronitrile (manufactured by Aldrich) into another container, pour 6 ml of ethyl acetate solution (manufactured by Aldrich) and dissolve to dissolve the catalyst solution (hereinafter abbreviated as solution B). .) In addition, B liquid was stored at room temperature.

(2)重合反応
A 液の入った反応容器を60℃付近に加熱したのち、反応容器にB液を注いで混合し、反応容器を恒温槽(60℃)に120分間静置した。120分後、反応容器を氷冷することによって合成反応を停止した。最後に、反応溶液をメンブレンフィルターでろ過して、高分子微粒子を分離したのち、高分子微粒子を溶媒で洗浄して乾燥させた。
(2) Polymerization reaction
After the reaction vessel containing solution A was heated to around 60 ° C., solution B was poured into the reaction vessel and mixed, and the reaction vessel was left in a constant temperature bath (60 ° C.) for 120 minutes. After 120 minutes, the synthesis reaction was stopped by cooling the reaction vessel with ice. Finally, the reaction solution was filtered with a membrane filter to separate the polymer particles, and the polymer particles were washed with a solvent and dried.

(3)評価
その後、実施例1と同様の方法により、高分子微粒子の反応収量、反応収率、及び粒径を測定した。その結果、反応収量は10.5 g、反応収率は73 %、粒径は1.93±0.15 μmであった。また、CV値(%)は7.8 %であった。
(3) Evaluation Thereafter, the reaction yield, reaction yield, and particle size of the polymer fine particles were measured in the same manner as in Example 1. As a result, the reaction yield was 10.5 g, the reaction yield was 73%, and the particle size was 1.93 ± 0.15 μm. The CV value (%) was 7.8%.

Claims (4)

粒径が0.01〜2μmである高分子微粒子の製造方法であって、
架橋性モノマーを有機溶媒に溶解して原料溶液を得る工程と、
原料溶液に重合開始剤又は重合開始剤の溶液を添加し、誘導期間中に攪拌して反応溶液を得る工程と、
反応溶液を静置した状態で加熱して重合反応させる工程と、
を含む高分子微粒子の製造方法。
Particle size is a method for producing the polymer fine particles is 0.01 to 2 [mu] m,
A step of dissolving a crosslinkable monomer in an organic solvent to obtain a raw material solution;
Adding a polymerization initiator or a solution of the polymerization initiator to the raw material solution and stirring during the induction period to obtain a reaction solution;
Heating the reaction solution in a standing state to cause a polymerization reaction;
A method for producing polymer fine particles comprising
原料溶液を得る工程の後に、原料溶液を不活性ガスによりバブリングする工程を含む請求項1に記載の高分子微粒子の製造方法。   The method for producing polymer fine particles according to claim 1, comprising a step of bubbling the raw material solution with an inert gas after the step of obtaining the raw material solution. 原料溶液が、架橋性モノマーに加えて非架橋性モノマーを含有する請求項1又は請求項2の何れかに記載の高分子微粒子の製造方法。   The method for producing polymer fine particles according to claim 1, wherein the raw material solution contains a non-crosslinkable monomer in addition to the crosslinkable monomer. 架橋性モノマーがジエチレングリコールジメタクリレートである請求項1から請求項3の何れかに記載の高分子微粒子の製造方法。   The method for producing fine polymer particles according to any one of claims 1 to 3, wherein the crosslinkable monomer is diethylene glycol dimethacrylate.
JP2006017809A 2006-01-26 2006-01-26 Method for producing polymer fine particles Active JP4851799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017809A JP4851799B2 (en) 2006-01-26 2006-01-26 Method for producing polymer fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017809A JP4851799B2 (en) 2006-01-26 2006-01-26 Method for producing polymer fine particles

Publications (2)

Publication Number Publication Date
JP2007197565A JP2007197565A (en) 2007-08-09
JP4851799B2 true JP4851799B2 (en) 2012-01-11

Family

ID=38452485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017809A Active JP4851799B2 (en) 2006-01-26 2006-01-26 Method for producing polymer fine particles

Country Status (1)

Country Link
JP (1) JP4851799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023929B2 (en) * 2012-03-26 2016-11-09 新中村化学工業株式会社 Ultraviolet-absorbing polymer fine particles and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433111A (en) * 1987-07-30 1989-02-03 Japan Atomic Energy Res Inst Production of microparticulate polymer having active functional group
JPH11199603A (en) * 1998-01-14 1999-07-27 Nippon Shokubai Co Ltd Production of water absorbing resin
JP2000034306A (en) * 1998-07-21 2000-02-02 Sekisui Chem Co Ltd Production of fine particle, fine particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive fine particle and conductive connection structure

Also Published As

Publication number Publication date
JP2007197565A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
McLeary et al. A 1H NMR investigation of reversible addition− fragmentation chain transfer polymerization kinetics and mechanisms. Initialization with different initiating and leaving groups
Park et al. One-step synthesis of hollow dimpled polystyrene microparticles by dispersion polymerization
Miasnikova et al. Influencing the phase transition temperature of poly (methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture
CN100577697C (en) Method for producing an (meth)acrylate syrup
CN102702421B (en) Method for photochemically preparing monodisperse polymer functional microspheres
CN101580565A (en) Method for copolymerization of alpha-methyl styrene (AMS) and maleic anhydride (MAn)
JP4851799B2 (en) Method for producing polymer fine particles
CN106519155B (en) The method for preparing high solids content soap-free polymerization object lotion based on semi-continuous charging method
Liu et al. In situ visualization and real-time tracking of emulsion and miniemulsion polymerization at the microscale via fluorescence imaging
CN106832201A (en) A kind of method for preparing monodisperse polymer microsphere in micro level at room temperature
JP5541474B2 (en) Monodispersed crosslinked polymer fine particles and method for producing the same
Peng et al. Effect of TEOA on the Process of Photopolymerization at 532 nm and Properties of Nanogels
TWI824583B (en) Tackifier and adhesive compositions
Mehravar et al. Synthesis and expansion characteristics of expandable styrene/methyl methacrylate copolymer beads: the effects of monomer composition and cell structure modifying aid
JP6023929B2 (en) Ultraviolet-absorbing polymer fine particles and method for producing the same
JP5808552B2 (en) Polymer particles
JP4736310B2 (en) Maleimide group-containing polymer particles and method for producing the same
JP2013256657A (en) Method for producing methacrylic resin, methacrylic resin and molded article
Pitchaimari et al. Studies on thermal degradation kinetics of thermal and UV cured N-(4-hydroxy phenyl) maleimide derivatives
Liu et al. A mechanically strong shape-memory organohydrogel based on dual hydrogen bonding and gelator-induced solidification effect
CN101530771B (en) Method for preparing polymer microspheres
JP4178872B2 (en) Method for producing crosslinked polymer particles
US6486344B1 (en) Polymer coatings with improved adhesion properties on metallic surfaces
JP2002522524A (en) Peroxides, their production and use
JP2012233147A (en) Method for producing polymer particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4851799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250