JP4851134B2 - V-ribbed belt and manufacturing method thereof - Google Patents

V-ribbed belt and manufacturing method thereof Download PDF

Info

Publication number
JP4851134B2
JP4851134B2 JP2005215227A JP2005215227A JP4851134B2 JP 4851134 B2 JP4851134 B2 JP 4851134B2 JP 2005215227 A JP2005215227 A JP 2005215227A JP 2005215227 A JP2005215227 A JP 2005215227A JP 4851134 B2 JP4851134 B2 JP 4851134B2
Authority
JP
Japan
Prior art keywords
belt
longitudinal direction
grinding wheel
grinding
ribbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005215227A
Other languages
Japanese (ja)
Other versions
JP2007040314A (en
Inventor
琢也 吉川
昭裕 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2005215227A priority Critical patent/JP4851134B2/en
Publication of JP2007040314A publication Critical patent/JP2007040314A/en
Application granted granted Critical
Publication of JP4851134B2 publication Critical patent/JP4851134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、Vリブドベルト及びその製造方法に関する。 The present invention relates to a V-ribbed belt and a manufacturing method thereof.

例えば自動車エンジンのベルト式補機駆動装置に用いられるVリブドベルトであって研削・研磨工程を必要とするものは、その製造工程において一般的にVリブドベルト用2軸研削機による研削工程を含む。
具体的には図1に例示されるような加硫スリーブを駆動ロールと従動ロールに巻き掛けた状態で回転させ、加硫スリーブに回転している研削ホイールを当接することで当該加硫スリーブを研削する。このような研削工程に用いられてきた従来の2軸研削機は、図7に示すように研削ホイールと駆動ロールが共に等速回転するよう設定されている。
For example, a V-ribbed belt used in the belt-type accessory drive system of an automobile engine which require grinding and polishing process includes a grinding step by the generally V-ribbed belts for biaxial grinding machine in the manufacturing process .
Specifically, the vulcanization sleeve as illustrated in FIG. 1 is rotated in a state of being wound around the drive roll and the driven roll, and the vulcanization sleeve is brought into contact with the vulcanization sleeve by contacting the rotating grinding wheel. Grind. The conventional biaxial grinding machine that has been used in such a grinding process is set so that both the grinding wheel and the drive roll rotate at a constant speed as shown in FIG.

しかし一般的に機械加工された回転体とは何れも必然的に若干の芯ブレを有するものであって、上記の2軸研削機が備える研削ホイールも例外ではなく、通常は約0.05mm程度の芯ブレを有している。
さらに上記の如く研削ホイールと駆動ロールが共に等速で回転しているような場合では、図8に示す如く前記芯ブレに起因する縞模様(凹凸部)が前記加硫スリーブの被研削面に周期的に形成されてしまう。
この周期的な縞模様が原因となって、ベルト走行時において耳障りな高周波騒音が発生してしまうのである。
However, in general, any machined rotating body necessarily has a slight runout, and the above-mentioned grinding wheel provided in the biaxial grinding machine is no exception, usually about 0.05 mm. Has a core blur.
Further, when the grinding wheel and the drive roll are rotating at a constant speed as described above, a striped pattern (uneven portion) caused by the core blur is formed on the surface to be ground of the vulcanization sleeve as shown in FIG. It will be formed periodically.
Due to this periodic stripe pattern, annoying high-frequency noise is generated during belt running.

一方で自動車用エンジンの静粛性は大幅に改善されてきており、これに伴って上記のベルト自体の走行音を抑制するための対策が必要とされてきている。   On the other hand, the quietness of automobile engines has been greatly improved, and accordingly, measures for suppressing the running noise of the belt itself have been required.

そこで特許文献1は特にベルト走行に伴って発生する異音を効率よく低減することを目的とした伝動ベルトを開示する。この伝動ベルトは、ベルト底面において、ベルト厚さ方向のベルト本体側に陥没した状態の凹部と、該凹部にベルト長さ方向に隣接し、ベルト厚さ方向のベルト本体とは反対の側に隆起した状態の凸部との間のベルト厚さ方向の寸法である各凹凸量が、それぞれ40μm以下とされている。
特開2000−205340号公報(請求項1)
Therefore, Patent Document 1 discloses a power transmission belt for the purpose of efficiently reducing an abnormal noise generated particularly when the belt travels. This power transmission belt has a concave portion in the belt bottom surface in the belt thickness direction on the bottom surface of the belt, and is adjacent to the concave portion in the belt length direction and protrudes on the opposite side of the belt main body in the belt thickness direction. The amount of unevenness, which is the dimension in the belt thickness direction between the convex portions in the finished state, is 40 μm or less, respectively.
JP 2000-205340 A (Claim 1)

しかしながら上記特許文献1には上記凹凸量を40μm以下に抑えるための技術上の具体的な開示が一切記載されていない。
本発明の主目的は、ベルト走行時において発生する上記の騒音を抑制することにある。
However, Patent Document 1 does not describe any specific technical disclosure for suppressing the unevenness to 40 μm or less.
The main object of the present invention is to suppress the above-mentioned noise generated during belt running.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

ベルト長手方向に延びる複数条のリブが幅方向に並設されてなるVリブドベルトにおいて、前記Vリブドベルトのベルト底面には、ベルト厚さ方向のベルト本体側に陥没した状態の凹部と、当該凹部にベルト長手方向に隣接し、ベルト厚さ方向のベルト本体側とは反対側に隆起した状態の凸部とからなる凹凸部がベルト長手方向に連続的に形成されており、当該凹凸部のベルト長手方向長さがそれぞれ異なるものであり、前記凹凸部は、ゴム層中に心線を埋設した環状の加硫スリーブを駆動ロールと従動ロールに巻き掛けて所定の張力下で走行させ、当該走行中の加硫スリーブに芯ブレにより偏心しながら回転する研削ホイールを当接させて当該加硫スリーブの表面を研削する際に、前記芯ブレに対応して形成される縞模様状のものであり、前記凹凸部のベルト長手方向長さは、前記研削ホイール又は前記駆動ロールの少なくともいずれか一方の回転速度を研削中に変動させることにより異ならせるものである。 In a V-ribbed belt in which a plurality of ribs extending in the belt longitudinal direction are arranged side by side in the width direction, the belt bottom surface of the V-ribbed belt has a recess depressed in the belt main body side in the belt thickness direction, and the recess Concave and convex portions, which are adjacent to the belt longitudinal direction and are continuously formed in the belt longitudinal direction, are formed of convex portions that are raised on the side opposite to the belt main body side in the belt thickness direction. The concavo-convex portions are different in length in each direction , and the concavo-convex portion is run under a predetermined tension by winding an annular vulcanization sleeve having a core wire embedded in a rubber layer around a driving roll and a driven roll. When the surface of the vulcanization sleeve is ground by bringing a rotating grinding wheel into contact with the vulcanization sleeve while rotating eccentrically by the core blur, the striped pattern is formed corresponding to the core blur. Belt longitudinal length of the serial uneven portion, one of the rotational speed of at least one of the grinding wheel or the drive roll is intended to vary by varying during grinding.

以上の構成により前記Vリブドベルトの走行時において、ベルトの長手方向に連続的に形成された前記凹凸部に起因する騒音、特に固有の周波数帯における高周波騒音の発生を抑制することができる。また耳障りな前記騒音が抑制されることで、例えば自動車内における居住性を大幅に向上することができる。
またこれによりVベルトの高伝動性と平ベルトの柔軟性とを兼ね備えた前記Vリブドベルトとすることができる。
During the running of more of the V-ribbed belt by arrangement, noise caused by the uneven portion in the longitudinal direction are continuously formed in the belt, it is possible to particularly suppress the occurrence of high frequency noise at specific frequencies. Further, since the annoying noise is suppressed, for example, the comfort in an automobile can be greatly improved.
In addition, this makes it possible to obtain the V-ribbed belt that combines the high transmission performance of the V-belt and the flexibility of the flat belt.

ゴム層中に心線を埋設した環状の加硫スリーブを駆動ロールと従動ロールに巻き掛けて所定の張力下で走行させ、当該走行中の加硫スリーブに芯ブレにより偏心しながら回転する研削ホイールを当接させて当該加硫スリーブの表面を研削してなる、ベルト長手方向に延びる複数条のリブが幅方向に並設されるVリブドベルトの製造方法において、当該研削ホイール又は当該駆動ロールの少なくともいずれか一方の回転速度を研削中に変動させ、前記Vリブドベルトのベルト底面に、ベルト厚さ方向のベルト本体側に陥没した状態の凹部と、当該凹部にベルト長手方向に隣接し、ベルト厚さ方向のベルト本体側とは反対側に隆起した状態の凸部とからなる縞模様状の凹凸部であって、ベルト長手方向長さがそれぞれ異なる凹凸部をベルト長手方向に連続的に形成する。 An annular vulcanization sleeve in which a core wire is embedded in a rubber layer is wound around a drive roll and a driven roll and travels under a predetermined tension, and the grinding wheel rotates while being eccentric by the core blur on the traveling vulcanization sleeve It was allowed to abut made by grinding the surface of the vulcanized sleeve, in the manufacturing method of the V-ribbed belt ribs plural rows extending in belt longitudinal direction are arranged in the width direction, of the grinding wheel or the drive roll varying at least one of the rotational speed during grinding, the belt bottom surface of the V-ribbed belt, a concave portion in a state of depression in the belt main body of the belt thickness direction, adjacent to the belt longitudinal direction to the recess, the belt the thickness direction of the belt main body a concave-convex portion striped pattern consisting of a convex portion in a state in which raised the opposite side, the belt longitudinal direction different uneven portions belt longitudinal direction length, respectively Continuously formed.

これにより偏心した研削ホイールで製造されたとしても、前記Vリブドベルトの走行時においてベルトの長手方向に連続的に形成された前記凹凸部に起因する騒音、特に固有の周波数帯における高周波騒音の発生を抑制することができる。また耳障りな前記騒音が抑制されることで、例えば自動車内における居住性を大幅に向上することができる。
また上記騒音の発生を抑制するためには、単に前記研削ホイール又は前記駆動ロールの回転速度を研削中に変動させるだけでよいので、製造に要する時間やコストも殆ど増大することがない。
またこれによりVベルトの高伝動性と平ベルトの柔軟性とを兼ね備えた前記Vリブドベルトを製造することができる。
Even if they are produced in the grinding wheel eccentrically Thus, noise caused by the uneven portion in the longitudinal direction are continuously formed in the belt during the running of the V-ribbed belt, in particular of high-frequency noise at specific frequencies occur Can be suppressed. Further, since the annoying noise is suppressed, for example, the comfort in an automobile can be greatly improved.
Further, in order to suppress the generation of the noise, it is only necessary to change the rotational speed of the grinding wheel or the driving roll during grinding, so that the time and cost required for production hardly increase.
This also makes it possible to manufacture the V-ribbed belt that combines the high power transmission of the V-belt and the flexibility of the flat belt.

以下、図面を参照しつつ本発明に係るVリブドベルトの実施の形態に関して説明する。 Hereinafter, it described with respect to the embodiment of the V-ribbed belt according to the present invention with reference to the drawings.

最初に、Vリブドベルトの材料としての環状の加硫スリーブ1を図1を参照して説明する。図1は加硫スリーブの構成を示す断面斜視図である。この加硫スリーブ1は、円筒形の成形ドラム(図略)の外周面に、カバー帆布5を形成する帆布、接着ゴム層3を形成するゴムシート、心線2を形成する接着処理された撚りコード、圧縮ゴム層4を形成するゴムシートを順に巻き付け、得られた成形体を公知の加熱加圧手段によって加硫して得られる。   First, an annular vulcanization sleeve 1 as a material of a V-ribbed belt will be described with reference to FIG. FIG. 1 is a cross-sectional perspective view showing the configuration of the vulcanization sleeve. The vulcanization sleeve 1 is formed of a canvas forming a cover canvas 5, a rubber sheet forming an adhesive rubber layer 3, and an adhesive-treated twist forming a core wire 2 on the outer peripheral surface of a cylindrical forming drum (not shown). A cord and a rubber sheet forming the compressed rubber layer 4 are wound in order, and the resulting molded body is obtained by vulcanization by a known heating and pressing means.

圧縮ゴム層4としては、例えば、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、クロロスルホン化ポリエチレン(CSM)、アルキル化クロロスルホン化ポリエチレン(ACSM)、水素化ニトリルゴム(HNBR)等が用いられる。なお、圧縮ゴム層4には、ナイロン6、ナイロン66、ポリエステル、綿、アラミド等の短繊維を混入して、耐側圧性を向上させることが望ましい。   As the compressed rubber layer 4, for example, chloroprene rubber (CR), ethylene propylene rubber (EPDM), chlorosulfonated polyethylene (CSM), alkylated chlorosulfonated polyethylene (ACSM), hydrogenated nitrile rubber (HNBR), etc. are used. It is done. The compressed rubber layer 4 is desirably mixed with short fibers such as nylon 6, nylon 66, polyester, cotton, and aramid to improve the side pressure resistance.

心線2を構成するコードには、例えば、ポリエチレンテレフタレート(PET)繊維あるいはポリエチレン−2,6−ナフタレート(PEN)等の繊維からなる撚りコードが用いられる。この心線2は前記接着ゴム層3中に埋設される。
カバー帆布5としては、綿、ポリアミド、ポリエチレンテレフタレート、アラミド繊維からなる糸を用いて、平織、綾織、朱子織等に製織した布が用いられる。
As the cord constituting the core 2, for example, a twisted cord made of a fiber such as polyethylene terephthalate (PET) fiber or polyethylene-2,6-naphthalate (PEN) is used. The core wire 2 is embedded in the adhesive rubber layer 3.
As the cover canvas 5, a cloth woven into a plain weave, twill weave, satin weave, or the like using yarn made of cotton, polyamide, polyethylene terephthalate, or aramid fiber is used.

次に、上記のようにして作成した加硫スリーブ1に表面を研削してリブ部を形成する工程を図2乃至図4を参照して説明する。図2は加硫スリーブの研削の様子を示す側面図、図3は(a)が2軸研削機における研削ホイールと駆動ロールの回転速度を示す図であり、(b)が(a)の変形例を示す図、図4は図2の4−4線断面矢視図である。   Next, a process of grinding the surface of the vulcanized sleeve 1 produced as described above to form a rib portion will be described with reference to FIGS. FIG. 2 is a side view showing how the vulcanized sleeve is ground, FIG. 3 is a view showing the rotational speed of the grinding wheel and the drive roll in the biaxial grinding machine, and FIG. 2B is a modification of FIG. FIG. 4 is a diagram showing an example, and FIG. 4 is a sectional view taken along line 4-4 of FIG.

本工程では図2に示す2軸研削機のように、前記加硫スリーブ1を駆動ロール11(2軸研削機の主軸に相当)と従動ロール12の間に、適宜の張力を付与した状態で巻き掛ける。なお加硫スリーブ1は、図1に示す圧縮ゴム層4を形成するゴムシートが外側になるように、両ロール11・12に巻き掛けることとする。   In this process, as in the biaxial grinding machine shown in FIG. 2, the vulcanization sleeve 1 is applied with an appropriate tension between the driving roll 11 (corresponding to the main axis of the biaxial grinding machine) and the driven roll 12. Wrap it around. The vulcanization sleeve 1 is wound around both rolls 11 and 12 so that the rubber sheet forming the compressed rubber layer 4 shown in FIG.

そして図2の状態で、駆動ロール11を太線矢印方向に回転させて加硫スリーブ1を白抜き矢印方向に走行させるとともに、駆動ロール11に近接して配置される研削ホイール13を、駆動ロール11と同方向(又は逆方向)に回転させる。なおこの研削ホイール13は約0.05mm程度の芯ブレを有するものである。   In the state of FIG. 2, the drive roll 11 is rotated in the direction of the thick arrow to cause the vulcanization sleeve 1 to travel in the direction of the outlined arrow, and the grinding wheel 13 disposed in the vicinity of the drive roll 11 is moved to the drive roll 11. In the same direction (or the opposite direction). The grinding wheel 13 has a core blur of about 0.05 mm.

ここで前記の駆動ロール11及び研削ホイール13の回転速度は図3(a)に示す如く以下のように設定される。即ち研削ホイール13は研削中、常に等速回転するよう回転速度が例えば1800rpmに設定されている。一方、駆動ロール11の回転速度は研削中、常に変動するものとし、具体的には回転速度が10〜100rpmの振幅を有し、変動周期が3〜60secである正弦波の如く変動するように設定されている。
なおこれに代えて図3(b)に示すように以下のように設定されてもよい。即ち駆動ロール11は研削中、常に等速回転するよう回転速度が例えば10〜100rpmに設定されており、一方、研削ホイール13の回転速度は研削中、常に変動するものとし、具体的には回転速度が300〜3000rpmの振幅を有し、変動周期が3〜60secである正弦波の如く変動するように設定されてもよい。
更には駆動ロール11と研削ホイール13が共に研削中、常に変動する場合も考えられる。
Here, the rotational speeds of the drive roll 11 and the grinding wheel 13 are set as follows as shown in FIG. That is, the rotation speed of the grinding wheel 13 is set to 1800 rpm, for example, so that it always rotates at a constant speed during grinding. On the other hand, the rotational speed of the drive roll 11 is always changed during grinding. Specifically, the rotational speed of the drive roll 11 has an amplitude of 10 to 100 rpm and changes like a sine wave having a fluctuation period of 3 to 60 sec. Is set.
Instead of this, as shown in FIG. 3B, it may be set as follows. That is, the rotational speed of the drive roll 11 is set to, for example, 10 to 100 rpm so that it always rotates at a constant speed during grinding. On the other hand, the rotational speed of the grinding wheel 13 always fluctuates during grinding. The speed may be set so as to fluctuate like a sine wave having an amplitude of 300 to 3000 rpm and a fluctuation period of 3 to 60 sec.
Furthermore, it may be considered that the drive roll 11 and the grinding wheel 13 always fluctuate during grinding.

なお前記研削ホイール13の表面にはダイヤモンドの研削粒を電着させるとともに、図2の4−4線断面矢視図としての図4に示すように、研削ホイール13の外周面には多数(例えば、50〜150個)のV字状の突起14が形成されている。そして、研削ホイール13を回転させながら走行中の加硫スリーブ1の表面に当接させて、前記突起14の部分を圧縮ゴム層4に食い込ませることで研削して溝を形成する。この結果、リブ部7となる多数の突起が、加硫スリーブ1の圧縮ゴム層4に形成される。言い換えれば後述するベルト底面側に、ベルト長手方向に延びる複数条のリブ部7(リブ)が幅方向に並べて形成される。   In addition, diamond grinding grains are electrodeposited on the surface of the grinding wheel 13, and as shown in FIG. 4 as a sectional view taken along line 4-4 in FIG. , 50 to 150) V-shaped projections 14 are formed. Then, the grinding wheel 13 is rotated and brought into contact with the surface of the traveling vulcanization sleeve 1, and the portion of the protrusion 14 is cut into the compressed rubber layer 4 to be ground to form a groove. As a result, a large number of protrusions that become the rib portions 7 are formed on the compressed rubber layer 4 of the vulcanization sleeve 1. In other words, a plurality of rib portions 7 (ribs) extending in the belt longitudinal direction are formed side by side in the width direction on the belt bottom surface described later.

こうしてリブ部7が形成された加硫スリーブ1は、所定幅ごとに輪切りすることで、図5のような完成品のVリブドベルト10を得ることができる。   The vulcanized sleeve 1 in which the rib portion 7 is formed in this manner can be cut into rounds at predetermined widths, whereby a finished V-ribbed belt 10 as shown in FIG. 5 can be obtained.

ところでリブ部7の先端における被研削面であるベルト底面8を図6を参照して説明する。図6は図5の太線矢印6からみた側面図であって、被研削面の凹凸状態が誇張して描かれた模式的な図である。   By the way, the belt bottom surface 8 which is a surface to be ground at the tip of the rib portion 7 will be described with reference to FIG. FIG. 6 is a side view seen from the thick arrow 6 in FIG. 5, and is a schematic diagram in which the uneven state of the surface to be ground is exaggerated.

上述したように前記研削ホイール13は若干の芯ブレを有しているので、研削ホイール13が1回転する毎に1つの凹部が前記ベルト底面8に形成され、研削工程後にはベルト底面8が図6に示す如く縞模様状となる。
より詳しくは前記ベルト底面8には、ベルト厚さ方向(図6において上下方向)のベルト本体側、即ち前記の接着ゴム層3及びカバー帆布5へ近づく方向に陥没した状態の凹部8aと、当該凹部8aにベルト長手方向(図6において左右方向)に隣接し、ベルト厚さ方向のベルト本体側とは反対側に隆起した状態の凸部8bとからなる凹凸部8cがベルト長手方向に反復して連続的に形成される。
このとき前記の駆動ロール11又は研削ホイール13を図3(a)に示す如く研削中に変動させることで、ベルト長手方向に連続的に形成される上記の凹凸部8cはピッチ(ベルト長手方向長さ)Pが3.1〜6.3mmの範囲において夫々異なるように形成される。端的に言えばベルト底面8に形成される上記縞模様のピッチPが不等ピッチとなっている。
なお上記凹凸部8cのピッチPの範囲は、駆動ロール11又は研削ホイール13の回転速度等の条件を適宜変更することによって自由に設定することができる。
As described above, since the grinding wheel 13 has a slight core blur, each time the grinding wheel 13 makes one revolution, one recess is formed in the belt bottom surface 8. As shown in FIG.
More specifically, the belt bottom surface 8 has a recess 8a that is depressed in the belt thickness direction (vertical direction in FIG. 6) on the side of the belt body, that is, in a direction approaching the adhesive rubber layer 3 and the cover canvas 5; A concave / convex portion 8c, which is adjacent to the concave portion 8a in the longitudinal direction of the belt (left and right direction in FIG. 6) and includes a convex portion 8b that protrudes on the opposite side of the belt main body in the belt thickness direction, repeats in the longitudinal direction of the belt. Formed continuously.
At this time, by changing the driving roll 11 or the grinding wheel 13 during grinding as shown in FIG. 3A, the above-mentioned concavo-convex portion 8c formed continuously in the belt longitudinal direction has a pitch (length in the belt longitudinal direction). A) P is formed to be different in the range of 3.1 to 6.3 mm. In short, the pitch P of the stripe pattern formed on the belt bottom surface 8 is an unequal pitch.
In addition, the range of the pitch P of the said uneven | corrugated | grooved part 8c can be freely set by changing conditions, such as the rotational speed of the drive roll 11 or the grinding wheel 13, suitably.

以上により偏心した前記研削ホイール13で製造されたとしても、前記研削ホイール13の芯ブレにより形成される縞模様のピッチPを不等ピッチにすることでベルト走行時において、当該縞模様が等ピッチ状に現れている場合(図7及び図8参照)と比較して、ベルトの長手方向に反復して連続的に形成された前記凹凸部8cに起因する騒音、特に固有の周波数帯における高周波騒音の発生を抑制することができる。
また耳障りな前記騒音が抑制されることで、例えば自動車内における居住性を大幅に向上することができる。
また上記騒音の発生を抑制するためには、単に前記研削ホイール13又は前記駆動ロール11の回転速度を研削中に変動させるだけでよいので、製造に要する時間やコストも殆ど増大することがない。
Even when manufactured with the grinding wheel 13 decentered as described above, the striped pattern is formed at an equal pitch during belt running by making the pitch P of the striped pattern formed by the core blurring of the grinding wheel 13 unequal. Compared with the case where it appears in the shape (see FIGS. 7 and 8), noise caused by the uneven portion 8c formed continuously in the longitudinal direction of the belt, particularly high frequency noise in a specific frequency band Can be suppressed.
Further, since the annoying noise is suppressed, for example, the comfort in an automobile can be greatly improved.
Further, in order to suppress the generation of the noise, it is only necessary to change the rotational speed of the grinding wheel 13 or the drive roll 11 during grinding, so that the time and cost required for manufacturing hardly increase.

なお図3(a)に示すように本実施形態において、前記駆動ロール11(又は前記研削ホイール13)は研削中、正弦波の如く変動するように設定されているとしたが、これに限るものではなく、例えば三角波やノコギリ波の如く変動するように設定されてもよい。
またこれら正弦波・三角波・ノコギリ波は周期的に変動することに代えて、非周期的に(ランダムに)変動するものであってもよい。
As shown in FIG. 3 (a), in the present embodiment, the drive roll 11 (or the grinding wheel 13) is set so as to fluctuate like a sine wave during grinding. Instead, it may be set to fluctuate like a triangular wave or a sawtooth wave, for example.
Further, these sine wave, triangular wave, and sawtooth wave may be changed aperiodically (randomly) instead of periodically changing.

なお従来の2軸研削機において設定されていた図7に示す回転速度条件、即ち研削ホイール(1800rpm)及び駆動ロール(15rpm)が共に等速回転であるという条件においては、上記の縞模様のピッチPは一定値である4.7mmとなっており、これに起因してベルト走行時において固有の周波数帯において当該伝動ベルトは高周波騒音を発生していた。   In the case of the rotational speed condition shown in FIG. 7, which is set in the conventional two-axis grinding machine, that is, the condition that both the grinding wheel (1800 rpm) and the driving roll (15 rpm) are rotating at a constant speed, the pitch of the stripe pattern described above is used. P is a constant value of 4.7 mm. Due to this, the transmission belt generates high-frequency noise in a specific frequency band during belt running.

加硫スリーブの構成を示す断面斜視図。The cross-sectional perspective view which shows the structure of a vulcanization sleeve. 加硫スリーブの研削の様子を示す側面図。The side view which shows the mode of grinding of a vulcanization sleeve. (a)は2軸研削機における研削ロールと駆動ロールの回転速度を示す図であり、(b)は(a)の変形例を示す図。(A) is a figure which shows the rotational speed of the grinding roll and drive roll in a biaxial grinding machine, (b) is a figure which shows the modification of (a). 図2の4−4線断面矢視図。FIG. 4 is a sectional view taken along line 4-4 in FIG. 完成したVリブドベルトの構成を示す断面斜視図。The cross-sectional perspective view which shows the structure of the completed V-ribbed belt. 図5の太線矢印6からみた側面図であって、被研削面の凹凸状態が誇張して描かれた模式的な図。FIG. 6 is a side view seen from a thick arrow 6 in FIG. 5, and is a schematic diagram in which the uneven state of the surface to be ground is exaggerated. 従来の2軸研削機における研削ロールと駆動ロールの回転速度を示す図。The figure which shows the rotational speed of the grinding roll and drive roll in the conventional biaxial grinding machine. 従来のVリブドベルトの側面図であって、被研削面の凹凸状態を誇張して描かれた模式的な図。It is a side view of the conventional V ribbed belt, Comprising: The schematic diagram drawn exaggerating the uneven | corrugated state of the to-be-ground surface.

1 加硫スリーブ
2 心線
3 接着ゴム層
4 圧縮ゴム層
8 ベルト底面
8a 凹部
8b 凸部
8c 凹凸部
10 Vリブドベルト
11 駆動ロール
12 従動ロール
13 研削ホイール
DESCRIPTION OF SYMBOLS 1 Vulcanization sleeve 2 Core wire 3 Adhesive rubber layer 4 Compression rubber layer 8 Belt bottom surface 8a Concave portion 8b Convex portion 8c Concavity and convexity portion 10 V-ribbed belt 11 Drive roll 12 Driven roll 13 Grinding wheel

Claims (2)

ベルト長手方向に延びる複数条のリブが幅方向に並設されてなるVリブドベルトにおいて、
前記Vリブドベルトのベルト底面には、ベルト厚さ方向のベルト本体側に陥没した状態の凹部と、当該凹部にベルト長手方向に隣接し、ベルト厚さ方向のベルト本体側とは反対側に隆起した状態の凸部とからなる凹凸部がベルト長手方向に連続的に形成されており、
当該凹凸部のベルト長手方向長さがそれぞれ異なるものであり、
前記凹凸部は、ゴム層中に心線を埋設した環状の加硫スリーブを駆動ロールと従動ロールに巻き掛けて所定の張力下で走行させ、当該走行中の加硫スリーブに芯ブレにより偏心しながら回転する研削ホイールを当接させて当該加硫スリーブの表面を研削する際に、前記芯ブレに対応して形成される縞模様状のものであり、
前記凹凸部のベルト長手方向長さは、前記研削ホイール又は前記駆動ロールの少なくともいずれか一方の回転速度を研削中に変動させることにより異ならせるものである、ことを特徴とするVリブドベルト。
In the V-ribbed belt in which a plurality of ribs extending in the belt longitudinal direction are arranged in parallel in the width direction,
On the belt bottom surface of the V-ribbed belt, there is a recess recessed in the belt body direction in the belt thickness direction, and the recess is adjacent to the recess in the longitudinal direction of the belt and is raised on the side opposite to the belt body side in the belt thickness direction. The uneven part consisting of the convex part of the state is continuously formed in the belt longitudinal direction,
The lengths in the belt longitudinal direction of the uneven portions are different from each other,
The concavo-convex portion is decentered by the core blurring of the traveling vulcanization sleeve by running an annular vulcanization sleeve with a core wire embedded in the rubber layer around a driving roll and a driven roll under a predetermined tension. While grinding the surface of the vulcanization sleeve while abutting a rotating grinding wheel, it is a striped pattern formed corresponding to the core blur,
The V-ribbed belt is characterized in that the length of the concavo-convex portion in the longitudinal direction of the belt is varied by changing the rotational speed of at least one of the grinding wheel or the drive roll during grinding.
ゴム層中に心線を埋設した環状の加硫スリーブを駆動ロールと従動ロールに巻き掛けて所定の張力下で走行させ、当該走行中の加硫スリーブに芯ブレにより偏心しながら回転する研削ホイールを当接させて当該加硫スリーブの表面を研削してなる、ベルト長手方向に延びる複数条のリブが幅方向に並設されるVリブドベルトの製造方法において、
当該研削ホイール又は当該駆動ロールの少なくともいずれか一方の回転速度を研削中に変動させ、
前記Vリブドベルトのベルト底面に、ベルト厚さ方向のベルト本体側に陥没した状態の凹部と、当該凹部にベルト長手方向に隣接し、ベルト厚さ方向のベルト本体側とは反対側に隆起した状態の凸部とからなる縞模様状の凹凸部であって、ベルト長手方向長さがそれぞれ異なる凹凸部をベルト長手方向に連続的に形成する、ことを特徴とするVリブドベルトの製造方法
An annular vulcanization sleeve in which a core wire is embedded in a rubber layer is wound around a drive roll and a driven roll and travels under a predetermined tension, and the grinding wheel rotates while being eccentric by the core blur on the traveling vulcanization sleeve In a method for manufacturing a V-ribbed belt, in which a plurality of ribs extending in the belt longitudinal direction are juxtaposed in the width direction, and the surface of the vulcanization sleeve is ground by abutting
The rotational speed of at least one of the grinding wheel or the drive roll is varied during grinding,
On the belt bottom surface of the V-ribbed belt, a recess recessed in the belt main body side in the belt thickness direction, a state adjacent to the concave portion in the longitudinal direction of the belt and raised on the opposite side of the belt main body side in the belt thickness direction A method for producing a V-ribbed belt , wherein uneven portions having a striped pattern composed of a plurality of convex portions and having uneven lengths in the belt longitudinal direction are continuously formed in the belt longitudinal direction.
JP2005215227A 2005-06-30 2005-07-26 V-ribbed belt and manufacturing method thereof Expired - Fee Related JP4851134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215227A JP4851134B2 (en) 2005-06-30 2005-07-26 V-ribbed belt and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005191031 2005-06-30
JP2005191031 2005-06-30
JP2005215227A JP4851134B2 (en) 2005-06-30 2005-07-26 V-ribbed belt and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007040314A JP2007040314A (en) 2007-02-15
JP4851134B2 true JP4851134B2 (en) 2012-01-11

Family

ID=37798503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215227A Expired - Fee Related JP4851134B2 (en) 2005-06-30 2005-07-26 V-ribbed belt and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4851134B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016209633A1 (en) 2016-06-02 2017-12-07 Contitech Antriebssysteme Gmbh V-belt and method for its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724997Y2 (en) * 1978-10-30 1982-05-31
JP2002340104A (en) * 2001-05-16 2002-11-27 Mitsuboshi Belting Ltd V-ribbed belt

Also Published As

Publication number Publication date
JP2007040314A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1992837B1 (en) Method of producing a power transmission belt in an upright manner
KR102062739B1 (en) Transmission belt and manufacturing method therefor
CN1776249A (en) Timing belt
WO2014091672A1 (en) Toothed belt
EP0533505B1 (en) Method of forming rib surfaces on a power transmission belt
JPH08303529A (en) Cogged v-belt
US4931118A (en) Method of manufacturing multiribbed belts
JP4851134B2 (en) V-ribbed belt and manufacturing method thereof
JP2571524B2 (en) V-ribbed cogged belt and method of manufacturing the same
JP4118840B2 (en) V-ribbed belt manufacturing method and manufacturing apparatus
JP2006118558A (en) V-ribbed belt and its manufacturing method
JP2007314895A (en) Twisted yarn belt
JP2019019831A (en) Transmission belt manufacturing method
JP2009226544A (en) Method and device for forming groove of belt sleeve
JP7255982B2 (en) Hexagonal belt
WO2024185788A1 (en) Toothed belt and transmission system
KR100382748B1 (en) Power transmission belt using stabilized open mesh textile material in overcord for enhanced rubber penetration
JP3068200U (en) Power transmission belt
JP2022056760A (en) Power transmission belt and power transmission device
JP2002168307A (en) V-ribbed belt and v-ribbed belt forming die
JP2004076905A (en) Transmission belt and method of manufacturing the same
EP1630451A2 (en) Power transmission belt using stabilized open mesh textile material in overcord for enhanced rubber penetration
JPS59208245A (en) Multirib belt and manufacture thereof
JPS58217337A (en) Manufacture of v-belt with cog
JP2000130515A (en) Transmission belt and manufacturing process thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4851134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees