JP4849890B2 - Glass component having through hole and method for manufacturing the same - Google Patents

Glass component having through hole and method for manufacturing the same Download PDF

Info

Publication number
JP4849890B2
JP4849890B2 JP2005514386A JP2005514386A JP4849890B2 JP 4849890 B2 JP4849890 B2 JP 4849890B2 JP 2005514386 A JP2005514386 A JP 2005514386A JP 2005514386 A JP2005514386 A JP 2005514386A JP 4849890 B2 JP4849890 B2 JP 4849890B2
Authority
JP
Japan
Prior art keywords
hole
latent image
photosensitive glass
exposure
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005514386A
Other languages
Japanese (ja)
Other versions
JPWO2005033033A1 (en
Inventor
潤 小澤
和明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005514386A priority Critical patent/JP4849890B2/en
Publication of JPWO2005033033A1 publication Critical patent/JPWO2005033033A1/en
Application granted granted Critical
Publication of JP4849890B2 publication Critical patent/JP4849890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Description

本発明は、一様かつ微細な径の貫通孔を有するガラス部品及びその製造方法に関するものである。  The present invention relates to a glass component having a through hole having a uniform and fine diameter and a method for manufacturing the same.

近年、微細な貫通孔を有するガラス基板、あるいはガラス部品が、プリント配線基板、インクジェットプリント用ヘッド、あるいはガスフローメーター等に応用されつつあり、特にガラス材料として、感光性ガラスを用いたものが注目されている。感光性ガラスに貫通孔を形成する方法として、例えば、特許文献1、特許文献2に開示されている方法が知られている。  In recent years, glass substrates or glass parts having fine through-holes are being applied to printed wiring boards, inkjet printing heads, gas flow meters, etc., especially those using photosensitive glass as the glass material. Has been. As a method for forming a through hole in photosensitive glass, for example, methods disclosed in Patent Document 1 and Patent Document 2 are known.

図8は特許文献1に開示の貫通孔を有するガラス部品の製造方法の説明図である。以下、図8を参照にしながら、特許文献1に開示の貫通孔を有するガラス部品の製造方法を説明する。図8は、基板状をなした感光性ガラスに貫通孔を形成する工程のプロセス流れ図及び各工程における状態を模式的に示した側断面図である。図中、符号100は感光性ガラス、101aは露光結晶化部、101は貫通孔、102はフォトマスク、102aはフォトマスクの遮光膜、103はコリメートされた紫外光である。なお、遮光膜102aは、所望の貫通孔の形状及びその配列に対応したパターンとして、フォトマスク102に形成されている。  FIG. 8 is an explanatory diagram of a method for manufacturing a glass component having a through hole disclosed in Patent Document 1. Hereinafter, the manufacturing method of the glass component which has a through-hole disclosed by patent document 1 is demonstrated, referring FIG. FIG. 8 is a process flow chart of a process of forming a through hole in a photosensitive glass having a substrate shape, and a side sectional view schematically showing a state in each process. In the figure, reference numeral 100 denotes photosensitive glass, 101a denotes an exposure crystallization portion, 101 denotes a through hole, 102 denotes a photomask, 102a denotes a light shielding film of the photomask, and 103 denotes collimated ultraviolet light. The light shielding film 102a is formed on the photomask 102 as a pattern corresponding to the desired shape and arrangement of the through holes.

まず、図8(a)に示すように、フォトマスクを感光性ガラス100の上に設置し、コリメートされた紫外光103を照射する。この紫外光照射により、感光性ガラス100内に、露光結晶化部101aが潜像として形成される。潜像のパターンは、図8(a)に示したように、フォトマスクの遮光膜102aパターンのネガ型パターンに対応する。潜像が形成された感光性ガラス100を加熱熱処理した後、露光結晶化部101a、所謂潜像が形成された領域をフッ化水素酸系溶液によりエッチング除去し、図8(b)に示した所望の貫通孔パターンを得る。  First, as shown in FIG. 8A, a photomask is placed on the photosensitive glass 100 and irradiated with collimated ultraviolet light 103. By this ultraviolet light irradiation, an exposed crystallized portion 101a is formed as a latent image in the photosensitive glass 100. As shown in FIG. 8A, the latent image pattern corresponds to the negative pattern of the light shielding film 102a pattern of the photomask. After the heat treatment of the photosensitive glass 100 on which the latent image is formed, the exposed crystallization portion 101a, that is, the region where the so-called latent image is formed is removed by etching with a hydrofluoric acid solution, as shown in FIG. 8B. A desired through-hole pattern is obtained.

また、特許文献2に開示されている方法は、上記特許文献1に開示の方法とレーザー加工による貫通孔形成方法とを併用する方法である。すなわち、レーザー加工法により、所望の貫通孔径よりも小さい貫通孔をあらかじめ形成し、その後、前述した紫外光照射による潜像形成、熱処理、エッチングの各工程を経て貫通孔を形成するものである。あらかじめ形成する貫通孔は、熱処理後に行われるエッチング除去の際、エッチング液の貫通孔内における循環を改善する作用をなす。
特開2001−44639号公報 特開2001−105398号公報
Moreover, the method disclosed in Patent Document 2 is a method in which the method disclosed in Patent Document 1 and the through hole forming method by laser processing are used in combination. That is, a through-hole smaller than a desired through-hole diameter is formed in advance by a laser processing method, and then the through-hole is formed through the latent image formation, heat treatment, and etching steps described above. The through holes formed in advance serve to improve the circulation of the etching solution in the through holes when etching is performed after the heat treatment.
JP 2001-44639 A JP 2001-105398 A

ところで、プリント配線基板の高密度化、あるいは印刷画像の高精細化の技術潮流は留まる所を知らず、これに呼応して、微細貫通孔を有するガラス部品に対する要求は、益々強くなってきている。しかしながら、前述したように、従来の感光性ガラスに貫通孔を形成する方法は、所望の貫通孔形状、あるいは配列に対応したパターンを有するフォトマスクを用い、かつフォトリソグラフィック技術を踏襲するパターン形成法であり、貫通孔の微細化の点において、充分対応できるものではなかった。  By the way, the technical trend of increasing the density of printed wiring boards or increasing the definition of printed images is unknown, and in response to this, the demand for glass parts having fine through-holes has become stronger. However, as described above, the conventional method for forming a through hole in a photosensitive glass is a pattern forming method that uses a photomask having a pattern corresponding to a desired through hole shape or arrangement, and follows the photolithographic technique. In terms of miniaturization of the through-holes, it was not possible to cope with it sufficiently.

図6は従来のフォトマスクを用いた紫外線露光による潜像形成工程の説明図である。図6(a)は、紫外線露光により潜像が形成される様子を模式的に示した概略断面図であり、図中、符号102bはフォトマスクの開口部、81は潜像が形成される領域を示す包絡線、AA’は感光性ガラス100の表面位置を示す線、BB’、CC’は基板内部の任意の位置を示す線であり、CC’はBB’に比べてフォトマスク102からより離れた箇所に位置する。他の番号を付した部分は、前述したとおりである。なお、図6(a)はフォトマスク102と感光性ガラスとが密着した状態で露光が行われる、所謂密着露光方式の場合を示している。  FIG. 6 is an explanatory view of a latent image forming process by ultraviolet exposure using a conventional photomask. FIG. 6A is a schematic cross-sectional view schematically showing how a latent image is formed by ultraviolet exposure. In the figure, reference numeral 102b denotes a photomask opening, and 81 denotes a region where a latent image is formed. , AA ′ is a line indicating the surface position of the photosensitive glass 100, BB ′ and CC ′ are lines indicating arbitrary positions inside the substrate, and CC ′ is more from the photomask 102 than BB ′. Located in a remote location. The parts with other numbers are as described above. FIG. 6A shows a so-called contact exposure method in which exposure is performed in a state where the photomask 102 and the photosensitive glass are in close contact with each other.

また、図6(b)から(d)は、AA’、BB’、及びCC’線に沿った方向での露光量分布を示す模式的な分布曲線であり、横軸は距離、縦軸は露光量を表す。ここで、原点Oは、フォトマスクにおける開口部102bの中心に対応する位置である。開口部を透過した紫外光(図示せず)は、感光性ガラス基板内部を進行するに従い、遮光膜102aの真下に相当する部分にまで滲みだし、結果として、遮光膜102aで覆われた部分まで露光されることになる(以下、本明細書において、光が滲みだす現象を「滲み出し効果」という)。図6(b)から図6(d)に、この様子を模式的に示す。  FIGS. 6B to 6D are schematic distribution curves showing exposure dose distributions in directions along the lines AA ′, BB ′, and CC ′. The horizontal axis represents distance, and the vertical axis represents Represents exposure. Here, the origin O is a position corresponding to the center of the opening 102b in the photomask. As the ultraviolet light (not shown) transmitted through the opening travels through the photosensitive glass substrate, it oozes out to a portion corresponding to the light shielding film 102a, and as a result, reaches a portion covered with the light shielding film 102a. (Hereinafter, the phenomenon that light begins to bleed out is referred to as “bleeding effect”). FIG. 6B to FIG. 6D schematically show this state.

図6(b)は、感光性ガラス100表面(AA’線)での露光量分布である。前述したように、フォトマスク102と感光性ガラス100とは密着していることから、表面における露光量分布は箱形関数で表される。この場合、露光量分布の幅は、開口部102bの幅に等しく、遮光膜102aの直下に対応する部分は露光されない。フォトマスクから離れたBB’位置においては、図6(c)に示したように、光の滲み出し効果により、露光量の分布幅が広がり、かつ感光性ガラス基板内の光の吸収により露光量は減衰する。この状況は、図6(d)に示すように、CC’位置においては、より顕在化する。  FIG. 6B is an exposure amount distribution on the surface of the photosensitive glass 100 (AA ′ line). As described above, since the photomask 102 and the photosensitive glass 100 are in close contact with each other, the exposure amount distribution on the surface is represented by a box function. In this case, the width of the exposure amount distribution is equal to the width of the opening 102b, and the portion corresponding to the region immediately below the light shielding film 102a is not exposed. At the BB ′ position away from the photomask, as shown in FIG. 6C, the exposure width is widened due to the light bleeding effect, and the exposure amount is absorbed by the light absorption in the photosensitive glass substrate. Decays. This situation becomes more prominent at the position CC ′ as shown in FIG.

図7は潜像を形成した後に加熱熱処理を経て潜像形成領域をエッチング除去した場合に形成される孔を模式的に示す図である。図7はエッチング除去後の形状を示す概略側断面図で、符号91は孔である。一般的に、エッチングは基板の表面から進行する。また、潜像が形成されていない部分のエッチング速度は、潜像が形成された領域の速度に比べて小さいが、完全に零ではなく、エッチング液によって浸食される。潜像が形成されていない部分のエッチング速度は、潜像形成部の約1/50程度である。このことから、潜像形成領域のエッチングの進行と共に、感光性ガラスの表面における平面的なエッチングも合わせて進行し、結果として、図7に示したように、貫通孔の径は、その深さ方向で分布することとなる。  FIG. 7 is a diagram schematically showing holes formed when a latent image forming region is removed by etching through a heat treatment after forming a latent image. FIG. 7 is a schematic side sectional view showing the shape after etching removal, and reference numeral 91 is a hole. In general, etching proceeds from the surface of the substrate. Further, the etching speed of the portion where the latent image is not formed is smaller than the speed of the area where the latent image is formed, but is not completely zero and is eroded by the etching solution. The etching rate of the portion where the latent image is not formed is about 1/50 of that of the latent image forming portion. From this, as the etching of the latent image forming region progresses, the planar etching on the surface of the photosensitive glass also proceeds, and as a result, as shown in FIG. It will be distributed in the direction.

このように、従来の露光方法を適用した貫通孔形成工程においては、貫通孔の径は、フォトマスクにおける開口部の径と光の滲み出し効果の両者に依存する。勿論、フォトマスクの開口径を小さくすれば、得られる貫通孔の最小値も減少する。しかし、以下に説明するように、貫通孔径の減少と共に、その深さ方向に対する一様性は、相対的に損なわれてゆく。光の滲み出し効果は、照射する光の平行度、光の回折効果、あるいは感光性ガラス100内部における散乱等の要因によって決定される。また、これ等の要因は、フォトマスクの開口部102bの大きさ、換言すると貫通孔の径には殆ど依存しない。つまり、貫通孔径が充分大きい場合には、貫通孔径と光の滲み出し効果に起因する貫通孔径の拡大量との比率、あるいは貫通孔径と貫通孔径の一様性の欠如量との比率は小さくなる。従って、貫通孔径が充分大きい場合には、光の滲み出し効果による、これ等貫通孔径の変動は無視できる程度の値となる。しかしながら、貫通孔径の減少と共に当該比率は増加し、結果として、一様な径を有する貫通孔の形成が極めて困難となる。  Thus, in the through hole forming process to which the conventional exposure method is applied, the diameter of the through hole depends on both the diameter of the opening in the photomask and the light bleeding effect. Of course, if the opening diameter of the photomask is reduced, the minimum value of the through-hole obtained is also reduced. However, as will be described below, as the through hole diameter decreases, the uniformity in the depth direction is relatively impaired. The light bleeding effect is determined by factors such as the parallelism of the light to be irradiated, the light diffraction effect, or scattering within the photosensitive glass 100. These factors are almost independent of the size of the opening 102b of the photomask, in other words, the diameter of the through hole. That is, when the through-hole diameter is sufficiently large, the ratio between the through-hole diameter and the amount of enlargement of the through-hole diameter due to the light bleeding effect, or the ratio between the through-hole diameter and the lack of uniformity of the through-hole diameter is small. . Therefore, when the through-hole diameter is sufficiently large, these fluctuations of the through-hole diameter due to the light oozing effect are values that can be ignored. However, the ratio increases as the through-hole diameter decreases, and as a result, formation of a through-hole having a uniform diameter becomes extremely difficult.

以上の通り、上述の従来の方法では、貫通孔径の減少と共に、光の回折効果により、貫通孔の深さ方向に一様な径を有する貫通孔を形成することが極めて困難となる。勿論、貫通孔の深さが浅い場合、すなわち、感光性ガラス基板の厚さが薄い場合には、容易に数μmの径を有する貫通孔を形成することができるが、この場合の基板厚さは数十μm程度になる。斯かる状況においては、貫通孔を有するガラス部品の機械的耐久性の低下は免れず、その用途は極めて限定されることになる。例えば、機械的強度が確保できる基板厚さである350μmの場合、換言すると貫通孔の深さが350μmの場合、前述した従来の方法を用いて、径が約30μm以下、アスペクト比(貫通孔の深さをその径で除した値)で云うならば約12以上で、かつ深さ方向に一様な径を有する貫通孔の形成は極めて困難となる。本発明は上記問題点に鑑みてなされたものであり、感光性ガラス基板をその基体材料とし、高アスペクト比で、かつ径が30μm以下の一様な微細貫通孔が形成されたガラス部品及びその製造方法を提供することを目的とするものである。  As described above, in the above-described conventional method, it is extremely difficult to form a through hole having a uniform diameter in the depth direction of the through hole due to the diffraction effect of light as the through hole diameter decreases. Of course, when the depth of the through hole is shallow, that is, when the thickness of the photosensitive glass substrate is thin, a through hole having a diameter of several μm can be easily formed. Is about several tens of μm. In such a situation, a decrease in mechanical durability of the glass component having a through hole is inevitable, and its application is extremely limited. For example, when the substrate thickness is 350 μm, which can ensure mechanical strength, in other words, when the depth of the through hole is 350 μm, the diameter is about 30 μm or less and the aspect ratio (through hole In other words, it is extremely difficult to form a through hole having a diameter of about 12 or more and a uniform diameter in the depth direction. The present invention has been made in view of the above problems, and a glass component having a photosensitive glass substrate as a base material, a high aspect ratio, and a uniform fine through-hole having a diameter of 30 μm or less, and the glass component. The object is to provide a manufacturing method.

本発明により提供されるガラス部品は、
貫通孔を有するガラス部品において、前記ガラス部品の基体が感光性ガラスからなり、かつ前記貫通孔の直径が貫通孔の部位によらず略一定で、貫通孔の長さ(L)と貫通孔の直径(d)との比率(L/d)が15以上であり、かつ直径(d)が30μm以下であることを特徴とする貫通孔を有するガラス部品である。
また、本発明により提供されるガラス部品は、
前記感光性ガラスは、感光性材料として、0.001〜0.05重量%のAu、0.001〜0.5重量%のAg、0.001〜1重量%のCuO、0.001〜0.1重量%のPtのうちのいずれか1種以上を含み、さらに、光増感剤としてCeOを0.001〜0.2重量%含む感光性ガラスであることを特徴とするガラス部品である。
前記ガラス部品を製造する第1の手段は、
感光性ガラス基体の貫通孔を形成する部分に集光光束を照射して潜像を形成する第1の工程、第1の工程で集光光束を照射した感光性ガラスを熱処理して潜像が形成された部分を結晶化させる第2の工程、第2の工程で結晶化した部分を溶解除去することにより貫通孔を形成する第3の工程を含むことを特徴とする貫通孔を有するガラス部品の製造方法である。
第2の手段は、第1の手段にかかる貫通孔を有するガラス部品の製造方法において、前記第1の工程で集光光束を照射する際、該集光光束のビームウェストが、前記感光性ガラスの内部に位置することを特徴とする貫通孔を有するガラス部品の製造方法である。
第3の手段は、
第1の手段にかかる貫通孔を有するガラス部品の製造方法において、前記第1の工程で集光光束を照射する際、該集光光束のビームウエストの位置が該集光光束の光軸に沿って間欠的又は連続的に前記感光性ガラス基体の内部を移動しつつ、かつ連続的又は間欠的に前記集光光束が照射されることを特徴とする貫通孔を有するガラス部品の製造方法。
The glass component provided by the present invention is:
In a glass part having a through hole, the base of the glass part is made of photosensitive glass, and the diameter of the through hole is substantially constant regardless of the part of the through hole. The length (L) of the through hole and the through hole A glass part having a through hole, wherein the ratio (L / d) to the diameter (d) is 15 or more and the diameter (d) is 30 μm or less.
The glass component provided by the present invention is
The photosensitive glass contains 0.001 to 0.05% by weight of Au, 0.001 to 0.5% by weight of Ag, 0.001 to 1% by weight of Cu 2 O, 0.001 as a photosensitive material. A glass characterized in that it is a photosensitive glass containing at least one of Pt of 0.1 wt% and further containing 0.001 to 0.2 wt% of CeO 2 as a photosensitizer. It is a part.
The first means for manufacturing the glass part is:
The first step of forming a latent image by irradiating the portion of the photosensitive glass substrate where the through-hole is formed with a condensed light beam, the latent image is formed by heat-treating the photosensitive glass irradiated with the condensed light beam in the first step. A glass part having a through hole, comprising: a second step of crystallizing the formed portion; and a third step of forming a through hole by dissolving and removing the portion crystallized in the second step It is a manufacturing method.
The second means is a method of manufacturing a glass part having a through-hole according to the first means. When the condensed light beam is irradiated in the first step, the beam waist of the condensed light beam is the photosensitive glass. It is a manufacturing method of the glass component which has a through-hole characterized by being located inside.
The third means is
In the method for manufacturing a glass part having a through hole according to the first means, when the condensed light beam is irradiated in the first step, the position of the beam waist of the condensed light beam is along the optical axis of the condensed light beam. A method of manufacturing a glass component having a through hole, wherein the condensed light beam is irradiated continuously or intermittently while moving within the photosensitive glass substrate intermittently or continuously.

感光性ガラスに貫通孔を形成する方法において、光照射による潜像形成と潜像が形成された部分をエッチング除去する方法を基本とする場合、貫通孔の径、アスペクト比、あるいは径の深さ方向の一様性、と云った貫通孔形状は、潜像の形成工程とエッチング除去工程との両条件因子に依存し、場合によっては、後者の影響の方が前者に比べて大きいと考えられる。本発明者等は、前述した両因子に関し、鋭意検討した結果、微細貫通孔を形成する際、実現し得る貫通孔径の最小値を決定すると云う点において、上述した潜像形成工程の諸因子が、エッチング除去工程の諸因子に比べてより支配的であることを見出し、その結果を基に本発明を完成させるに至った。本発明により、感光性ガラスに、孔径が一様かつ微細で高アスペクト比(同比が15以上)を有する貫通孔を形成することが可能となるととともに、当該貫通孔を有する感光性ガラスを基体とするガラス部品の提供が可能となる。  In the method of forming a through hole in a photosensitive glass, when a latent image is formed by light irradiation and a method in which a portion where the latent image is formed is basically removed, the diameter, aspect ratio, or depth of the through hole is determined. The shape of the through-hole, such as the uniformity of direction, depends on both condition factors of the latent image formation process and the etching removal process, and in some cases, the influence of the latter is considered to be greater than the former. . As a result of intensive studies on both of the factors described above, the present inventors determined that the minimum value of the through-hole diameter that can be realized when forming a fine through-hole is that the factors of the latent image forming step described above are determined. The inventors have found that it is more dominant than various factors in the etching removal process, and have completed the present invention based on the result. According to the present invention, it is possible to form a through hole having a uniform and fine hole diameter and a high aspect ratio (the ratio is 15 or more) in the photosensitive glass, and the photosensitive glass having the through hole is used as a substrate. Glass parts can be provided.

図1は本発明の第1の実施の形態にかかる貫通孔を有するガラス部品の製造方法の説明図である。図1(a)は、露光時における光の照射状態を模式的に示した概略側断面図、図1(b)は、感光性ガラスの各部位における露光量の分布を模式的に示したものである。図中、符号21は集光光束、21aは集光光束のビームウエスト、AA’は、基板状をなした感光性ガラス100の中央部を示す線、BB’は感光性ガラス100の表面の位置を示す線、CC’は感光性ガラス100の裏面位置を示す線、22はAA’線に沿った方向での露光量分布、23は同BB’に沿った方向での同分布、E,Rは露光量分布22と23の交点における露光量と位置である。なお、図1(b)において、原点(距離が0の位置)は集光光束21の光軸とAA’もしくはBB’線との交点に相当する位置に対応し、横軸はAA’もしくはBB’線に沿った距離(原点からの距離)、縦軸は露光量を示す。  FIG. 1 is an explanatory view of a method for manufacturing a glass component having a through hole according to the first embodiment of the present invention. FIG. 1 (a) is a schematic side sectional view schematically showing the light irradiation state during exposure, and FIG. 1 (b) schematically shows the distribution of exposure amount in each part of the photosensitive glass. It is. In the figure, reference numeral 21 denotes a condensed light beam, 21a denotes a beam waist of the condensed light beam, AA ′ denotes a line indicating a central portion of the substrate-shaped photosensitive glass 100, and BB ′ denotes a position of the surface of the photosensitive glass 100. CC ′ is a line indicating the position of the back surface of the photosensitive glass 100, 22 is an exposure distribution in the direction along the AA ′ line, 23 is the same distribution in the direction along the BB ′, E, R Is the exposure amount and position at the intersection of the exposure distributions 22 and 23. In FIG. 1B, the origin (position where the distance is 0) corresponds to the position corresponding to the intersection of the optical axis of the condensed light beam 21 and the line AA ′ or BB ′, and the horizontal axis represents AA ′ or BB. 'The distance along the line (distance from the origin), the vertical axis indicates the exposure amount.

本実施の形態と上述の従来技術との重要な相違点は、露光時にフォトマスクを用いず、かつコリメートされた光束を用いずに、レンズ等の光学系により集束された集光光束21を用いている点にある。一般的に集光光束による露光量分布は、ガウス分布によって近似される。図1で符号22で示したように、ビームウェスト21aの位置(AA’線に対応)における分布が最も先鋭であり、露光量のピーク値も最大となる。一方、ビームウェスト21aの位置から離れた箇所、例えば、基板表面BB’線に対応する位置では、図1(b)中符号23で示したような形となり、分布幅は拡大し、かつ露光量のピーク値も低下する。  An important difference between the present embodiment and the above-described prior art is that a condensed light beam 21 focused by an optical system such as a lens is used without using a photomask at the time of exposure and without using a collimated light beam. There is in point. In general, the exposure amount distribution by the condensed light beam is approximated by a Gaussian distribution. As indicated by reference numeral 22 in FIG. 1, the distribution at the position of the beam waist 21a (corresponding to the line AA ') is the sharpest, and the peak value of the exposure amount is also the maximum. On the other hand, at a position away from the position of the beam waist 21a, for example, at a position corresponding to the substrate surface BB ′ line, the shape is as indicated by reference numeral 23 in FIG. 1B, the distribution width is increased, and the exposure amount is increased. The peak value of also decreases.

また、露光量の分布は、ビームウェスト位置を対称中心とする点対称の関係にあり、例えば、CC’線に沿った露光量の分布は、BB’線に沿った分布に等しい。図2は図1の集光光束21による露光量Eを感光性ガラス100の潜像形成に必要な露光臨界値に設定した場合に形成される潜像及びこの潜像に基づいて形成される貫通孔の説明図である。ここで、図2aは、露光後の潜像が形成された状態、図2(b)は潜像をエッチング除去した後の状態を示す。図において、符号31aは潜像形成領域、31は形成された貫通孔である。  The exposure dose distribution has a point-symmetric relationship with the beam waist position as the center of symmetry. For example, the exposure dose distribution along the CC ′ line is equal to the distribution along the BB ′ line. FIG. 2 shows a latent image formed when the exposure amount E by the condensed light beam 21 in FIG. 1 is set to an exposure critical value necessary for forming a latent image on the photosensitive glass 100 and a penetration formed based on the latent image. It is explanatory drawing of a hole. Here, FIG. 2A shows a state where a latent image after exposure is formed, and FIG. 2B shows a state after the latent image is removed by etching. In the figure, reference numeral 31a denotes a latent image forming area, and 31 denotes a formed through hole.

図1(b)に示したように、露光量がEとなる位置は、AA’線に沿った感光性ガラスの内部中心部、BB’線に沿った基板表面部及びCC’線に沿った感光性ガラスの裏面部において、いずれも位置Rである。このことから、図2(a)に示したように、感光性ガラス100の厚さ方向に一様な半径Rを有する円柱状の潜像領域31aが形成される。斯かる状態の感光性ガラス100を加熱熱処理後、エッチングを施すことにより、図2(b)にしたような断面形状を有する貫通孔31が形成される。なお、感光性ガラス100の表裏面近傍で、貫通孔31の径が拡大している原因は、前述したように、潜像が形成されていない領域においても、潜像形成領域のエッチングの進行と共に、感光性ガラス100の表面における平面的なエッチングも合わせて進行するためである。  As shown in FIG. 1B, the position where the exposure amount is E is the inner central portion of the photosensitive glass along the AA ′ line, the substrate surface portion along the BB ′ line, and the CC ′ line. In the back surface part of the photosensitive glass, all are positions R. From this, as shown in FIG. 2A, a cylindrical latent image region 31a having a uniform radius R in the thickness direction of the photosensitive glass 100 is formed. The photosensitive glass 100 in such a state is heated and heat-treated and then etched to form the through hole 31 having a cross-sectional shape as shown in FIG. As described above, the reason why the diameter of the through hole 31 is enlarged near the front and back surfaces of the photosensitive glass 100 is as the etching of the latent image forming region progresses even in the region where the latent image is not formed. This is because planar etching on the surface of the photosensitive glass 100 also proceeds.

この場合、孔径が拡大した部分については、研削もしくはラップ法等の機械加工法、又はイオンミリング法もしくはRIE(Reactive Ion Etching)法等のドライエッチング法等により除去すれば、一様な貫通孔径を有するガラス基板を得ることができる。また、この場合、厳密には、基板内部の全ての位置での露光量分布が一点で交わることはない。例えば、図1(a)において、AA’線とBB’線との間に位置する部位での露光量分布は、図1(b)における露光量分布22と23との中間の形状を示す分布となり、この分布と露光量分布22と23との交点は、露光量Eにおいて距離Rとはならず、異なった値となる。しかし、距離Rとのずれ量は僅少であり、ほぼ図2(b)に示したように、一様な径を有する円柱状の潜像が形成される。  In this case, if the hole diameter is enlarged, a uniform through-hole diameter can be obtained by removing it by a machining method such as grinding or lapping, or a dry etching method such as ion milling or RIE (Reactive Ion Etching). A glass substrate having the same can be obtained. In this case, strictly speaking, the exposure amount distributions at all positions inside the substrate do not intersect at one point. For example, in FIG. 1A, the exposure dose distribution at a portion located between the AA ′ line and the BB ′ line is a distribution showing an intermediate shape between the exposure dose distributions 22 and 23 in FIG. Thus, the intersection of this distribution and the exposure dose distributions 22 and 23 does not become the distance R in the exposure dose E, but has different values. However, the amount of deviation from the distance R is very small, and a cylindrical latent image having a uniform diameter is formed as shown in FIG. 2B.

図3は本発明の第2の実施の形態にかかる貫通孔を有するガラス部品の製造方法の説明図である。図3aは、露光時における光の照射状態を模式的に示した概略側断面図、図3bは、感光性ガラスの各部位における露光量の分布を複式的に示したものである。図中DD’は感光性ガラス100の表面から感光性ガラスの厚さの1/4に相当する位置を示す線、EE’は感光性ガラス100の表面から感光性ガラスの厚さの3/4に相当する位置を示す線、24はDD‘線に沿った露光量分布、41aは潜像形成領域、E2は露光量分布24のピーク値、R2は露光量分布22において露光量がE2となる位置である。  FIG. 3 is an explanatory view of a method for manufacturing a glass component having a through hole according to the second embodiment of the present invention. FIG. 3a is a schematic side cross-sectional view schematically showing the light irradiation state during exposure, and FIG. 3b is a dual view showing the distribution of exposure dose at each part of the photosensitive glass. In the figure, DD ′ is a line indicating a position corresponding to ¼ of the thickness of the photosensitive glass from the surface of the photosensitive glass 100, and EE ′ is 3/4 of the thickness of the photosensitive glass from the surface of the photosensitive glass 100. , 24 is an exposure amount distribution along the DD ′ line, 41a is a latent image forming region, E2 is a peak value of the exposure amount distribution 24, and R2 is an exposure amount E2 in the exposure amount distribution 22. Position.

また、集光光束21のビームウェスト21aは、AA’線上に位置している。潜像形成領域41aは、E2を感光性ガラス100において潜像を形成するための臨界露光量と一致する値に設定し、かつ露光量E2で露光した場合に得られる潜像である。この場合、形成される潜像形成領域41aの形状は略回転楕円体形状であり、その短径はR2に一致する。さらに、このR2は、第1の実施の形態におけるRに比べて小さい。しかしながら、この潜像の状態では、基板の表裏面に連通する孔である貫通孔を形成することはできない。  Further, the beam waist 21a of the condensed light beam 21 is located on the AA 'line. The latent image forming area 41a is a latent image obtained when E2 is set to a value that matches the critical exposure amount for forming a latent image in the photosensitive glass 100 and is exposed with the exposure amount E2. In this case, the formed latent image forming region 41a has a substantially spheroid shape, and its minor axis coincides with R2. Furthermore, this R2 is smaller than R in the first embodiment. However, in this latent image state, a through hole that is a hole communicating with the front and back surfaces of the substrate cannot be formed.

そこで、感光性ガラスの露光を以下に説明する2段階のプロセスにて行うことが有効となる。図4は2段階露光プロセスの説明図であり、図5は2段階露光によって形成された潜像を示す図である。図中、符号51、51a,51bは、潜像形成領域である。図4aは、集光光束21のビームウエスト21aをDD’線上に位置するように設定して露光した場合、図4bは、同ビームウェスト21aをEE’線上に位置するように設定して露光した場合を模式的に示している。なお、露光量は前述した場合と同様、E2である。すなわち、2段階露光プロセスとは、第1段目の露光プロセスで、図4aに示したように、感光性ガラス100の表面側から中央部にかけて潜像51を形成し、これに引き続き、図4bに示したように、第2段目の露光プロセスで、感光性ガラス100の中央部から底面にかけて潜像51bを形成するものである。  Therefore, it is effective to perform exposure of the photosensitive glass by a two-stage process described below. FIG. 4 is an explanatory diagram of the two-stage exposure process, and FIG. 5 is a diagram showing a latent image formed by the two-stage exposure. In the figure, reference numerals 51, 51a and 51b denote latent image forming areas. In FIG. 4a, when the beam waist 21a of the condensed light beam 21 is set to be positioned on the DD ′ line and exposed, FIG. 4b is set and exposed to set the beam waist 21a to be on the EE ′ line. The case is shown schematically. The exposure amount is E2 as in the case described above. That is, the two-stage exposure process is a first-stage exposure process, and as shown in FIG. 4a, a latent image 51 is formed from the surface side of the photosensitive glass 100 to the central portion, and subsequently, FIG. As shown in FIG. 4, the latent image 51b is formed from the center to the bottom of the photosensitive glass 100 in the second exposure process.

以上説明した2段階露光プロセスを経ることにより、図5に示すように、感光性ガラス表面から底面にかけて連続した潜像形成領域を得ることができる,感光性ガラス100を、第1の実施形態と同様、熱処理を施し、潜像形成領域をエッチング除去することにより、第1の実施形態に比べて、小さい径を有する貫通孔を形成することができる。なお、本第2の実施形態については、2段階の露光プロセスについて説明したが、2段階にとらわれることなく、2段階以上の露光プロセスでも可能である。すなわち多段階の露光プロセスにおいては、その照射露光量に応じて、集光光束のビーム位置を、光軸に沿った基板内部の任意の位置に設定することが可能であり、かつ必要な場合には、ビームウエストの位置を基板外部にも設定することが可能である。また、ビームウェスト位置を変化させる方法についても、間欠的あるいは連続的に変化させることが可能である。  Through the two-stage exposure process described above, as shown in FIG. 5, the photosensitive glass 100 capable of obtaining a continuous latent image forming region from the surface to the bottom of the photosensitive glass is the same as that of the first embodiment. Similarly, by performing heat treatment and etching away the latent image forming region, it is possible to form a through hole having a smaller diameter than in the first embodiment. In the second embodiment, the two-stage exposure process has been described. However, the second embodiment is not limited to the two-stage exposure process, and an exposure process having two or more stages is also possible. That is, in a multi-stage exposure process, the beam position of the condensed light beam can be set at an arbitrary position inside the substrate along the optical axis according to the irradiation exposure amount, and when necessary. It is possible to set the position of the beam waist also outside the substrate. Also, the method of changing the beam waist position can be changed intermittently or continuously.

また、本発明の実施形態において、レーザー光あるいは通常の紫外光のいずれも光源として用いることができる。以下、本発明について実施例に基づいてより詳細に説明する。  In the embodiment of the present invention, either laser light or normal ultraviolet light can be used as the light source. Hereinafter, the present invention will be described in more detail based on examples.

この実施例は、上述の実施の形態1の実施例である。感光性ガラス100として下記の組成を有し、かつ厚さが0.5mmのガラス基板(商品名:HOYA株式会社製PEG3)を用いた。
SiO:78.0重量%
LiO:10.0重量%
AI:6.0重量%
O:4.0重量%
NaO:1.0重量%
ZnO:1.0重量%
Au:0.003重量%
Ag:0.08重量%
CeO:0.08重量%
This example is an example of the first embodiment described above. As the photosensitive glass 100, a glass substrate (trade name: PEG3 manufactured by HOYA Corporation) having the following composition and a thickness of 0.5 mm was used.
SiO 2 : 78.0% by weight
Li 2 O: 10.0% by weight
AI 2 O 3 : 6.0% by weight
K 2 O: 4.0% by weight
Na 2 O: 1.0% by weight
ZnO: 1.0% by weight
Au: 0.003% by weight
Ag: 0.08% by weight
CeO: 0.08% by weight

用いた光源は、波長が355nmのYAGレーザーの3倍高調波であり、当該光を用いて感光性ガラス基板を露光するに際しては、集光光束のNAを0.4とした、また、露光に際しては、パルス光(パルス幅:約6nsec)を用い、パルス照射回数を制御することにより積算の露光量を制御した。なお、集光光束のビームウェストは、感光性ガラスの内部中央部(基板表面から0.25mmの位置)に位置するように設定した。以下に示す所定の積算光量で露光した後、感光性ガラス基板全体を、580℃で4時間熱処理した。
この際の昇温速度は1℃/分で、降温速度は0.2℃/分である。熱処理後、エッチング液として希フッ化水素酸水溶液(約7%)を用い、当該エッチング液を感光性ガラス基板の表裏にスプレーすることにより貫通孔を形成した。
The light source used is a third harmonic of a YAG laser having a wavelength of 355 nm, and when exposing the photosensitive glass substrate using the light, the NA of the condensed light flux is set to 0.4. Used pulsed light (pulse width: about 6 nsec) and controlled the number of times of pulse irradiation to control the integrated exposure amount. It should be noted that the beam waist of the condensed light beam was set so as to be located at the inner central portion (position of 0.25 mm from the substrate surface) of the photosensitive glass. After exposure with a predetermined integrated light amount shown below, the entire photosensitive glass substrate was heat treated at 580 ° C. for 4 hours.
In this case, the rate of temperature increase is 1 ° C./min, and the rate of temperature decrease is 0.2 ° C./min. After the heat treatment, a dilute hydrofluoric acid aqueous solution (about 7%) was used as an etching solution, and the etching solution was sprayed on the front and back of the photosensitive glass substrate to form through holes.

この際、エッチング液の温度は、特に制御しなかった。表1に、積算露光量と感光性ガラスの基板中央部近傍における貫通孔径及びアスペクト比との関係を示す。なお、本実施例において形成された貫通孔の形状は、図2bに示した形状と同様、基板表裏面近傍の孔径は、基板中央部近傍に比べて大きくなっており、かつ一様な貫通孔径が得られる部分は、基板表裏面から約75μm内側に入った部分からであった。この原因は、前述したように、潜像が形成されていない領域においても、潜像形成領域のエッチングの進行と共に、感光性ガラスの表面における平面的なエッチングも進行するためである。  At this time, the temperature of the etching solution was not particularly controlled. Table 1 shows the relationship between the integrated exposure amount and the through-hole diameter and aspect ratio in the vicinity of the central portion of the photosensitive glass substrate. In addition, the shape of the through hole formed in the present embodiment is the same as the shape shown in FIG. 2b, the hole diameter in the vicinity of the front and back surfaces of the substrate is larger than that in the vicinity of the center of the substrate, and the uniform through hole diameter. The part from which it was obtained was from the part which entered about 75 μm inside from the front and back surfaces of the substrate. This is because, as described above, even in a region where a latent image is not formed, planar etching on the surface of the photosensitive glass also proceeds with the progress of etching of the latent image forming region.

従って、表1に示したアスペクト比は、基板の厚さを0.35mmとして算出したものである。同表に示したように、積算露光量の増大に伴い、貫通孔径は拡大している。これは、積算露光量の増大と共に、潜像が形成される領域が拡大したことに起因するものである。

Figure 0004849890
Therefore, the aspect ratio shown in Table 1 is calculated with the substrate thickness set to 0.35 mm. As shown in the table, the diameter of the through hole is increased with the increase of the integrated exposure amount. This is because the area where the latent image is formed is enlarged as the integrated exposure amount is increased.
Figure 0004849890

この実施例は、上述の実施の形態2にかかる実施例である。本実施例における貫通孔の形成条件は、露光プロセスを除いて実施例1に記載した条件と同様である。本実施例においては、感光性ガラス基板の露光を第1及び第2の露光プロセスに分けて行った。第1の露光プロセスにおいては、図に示したように、集光光束のビームウエストの位置を感光性ガラス基板の表面から基板厚さの1/4の位置に設定して露光し、第2の露光プロセスでは、図4bに示したように、同位置を感光性ガラス基板の表面から基板厚さの3/4の位置に設定して露光した。なお、第1及び第2の積算露光量等の露光条件は同一である。表2に、積算露光量と感光性ガラス基板中央部における貫通孔径及びアスペクト比との関係を示す。アスペクト比の求め方は、実施例1と同様である。

Figure 0004849890
This example is an example according to the second embodiment described above. The through hole formation conditions in this example are the same as those described in Example 1 except for the exposure process. In this example, exposure of the photosensitive glass substrate was performed by dividing it into first and second exposure processes. In the first exposure process, as shown in the figure, exposure is performed by setting the position of the beam waist of the condensed light beam to a position of 1/4 of the substrate thickness from the surface of the photosensitive glass substrate, and the second exposure process. In the exposure process, as shown in FIG. 4b, the same position was set to a position 3/4 of the substrate thickness from the surface of the photosensitive glass substrate. The exposure conditions such as the first and second integrated exposure amounts are the same. Table 2 shows the relationship between the integrated exposure amount and the through-hole diameter and aspect ratio at the central portion of the photosensitive glass substrate. The method for obtaining the aspect ratio is the same as in the first embodiment.
Figure 0004849890

本発明は、一様かつ微細な径の貫通孔を有するガラス部品及びその製造方法に関するものであり、プリント配線基板、インクジェットプリント用ヘッド、あるいはガスフローメーター用の部品等として利用できる。  The present invention relates to a glass component having a through hole having a uniform and fine diameter and a method for producing the same, and can be used as a printed wiring board, an inkjet print head, a gas flow meter component, or the like.

本発明の第1の実施の形態にかかる貫通孔を有するガラス部品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the glass component which has a through-hole concerning the 1st Embodiment of this invention. 図1の集光光束21による露光量Eを感光性ガラス100の潜像形成に必要な露光臨界値に設定した場合に形成される潜像及びこの潜像に基づいて形成される貫通孔の説明図である。Description of a latent image formed when the exposure amount E by the condensed light beam 21 in FIG. 1 is set to an exposure critical value necessary for forming a latent image of the photosensitive glass 100 and a through hole formed based on the latent image FIG. 本発明の第2の実施の形態にかかる貫通孔を有するガラス部品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the glass component which has a through-hole concerning the 2nd Embodiment of this invention. 2段階露光プロセスの説明図である。It is explanatory drawing of a two-step exposure process. 2段階露光プロセスの説明図である。It is explanatory drawing of a two-step exposure process. 従来のフォトマスクを用いた紫外線露光による潜像形成工程の説明図である。It is explanatory drawing of the latent image formation process by the ultraviolet exposure using the conventional photomask. 潜像を形成した後に加熱熱処理を経て潜像形成領域をエッチング除去した場合に形成される孔を模式的に示す図である。It is a figure which shows typically the hole formed when a latent image formation area | region is etched and removed through heat processing after forming a latent image. 特許文献1に開示の貫通孔を有するガラス部品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the glass component which has a through-hole disclosed in patent document 1.

符号の説明Explanation of symbols

100 感光性ガラス
21 集光光束
21a ビームウエスト
22 AA’線に沿った光量分布
23 BB’線に沿った光量分布
DESCRIPTION OF SYMBOLS 100 Photosensitive glass 21 Condensed light beam 21a Beam waist 22 Light quantity distribution 23 along AA 'line Light quantity distribution along BB' line

Claims (1)

基板状をなす感光性ガラス基体の貫通孔を形成する部分に集光光束を照射して潜像を形成する第1の工程と、
前記第1の工程で集光光束を照射した感光性ガラスを熱処理して潜像が形成された部分を結晶化させる第2の工程と、
前記第2の工程で結晶化した部分を溶解除去することにより貫通孔を形成する第3の工程とを備えた貫通孔を有するガラス部品の製造方法であって、
前記第1の工程においては、前記集光光束を、該集光光束のビームウェストが、前記感光性ガラスの内部中心部に位置するように照射するものであり、
前記集光光束は、前記感光性ガラス基体の厚さ方向に一様な半径を有する円柱状の潜像領域が形成されるように、その露光量の分布が前記ビームウェスト位置を対称中心とする点対称の関係にあるとともに、潜像形成に必要な露光臨界値となる光量を有する位置が前記基板状の感光性ガラスの表裏面に沿った方向において前記集光光束の光軸から一定の距離となる関係にあることを特徴とする貫通孔を有するガラス部品の製造方法。
A first step of forming a latent image by irradiating a portion of the photosensitive glass substrate forming a through hole with a condensed light beam;
A second step of crystallizing the portion where the latent image is formed by heat-treating the photosensitive glass irradiated with the condensed light beam in the first step;
And a third step of forming a through hole by dissolving and removing the portion crystallized in the second step, and a method for producing a glass component having a through hole,
In the first step, the condensed light beam is irradiated so that a beam waist of the condensed light beam is located at an inner central portion of the photosensitive glass,
In the condensed light flux, the exposure distribution is centered on the beam waist position so that a cylindrical latent image region having a uniform radius in the thickness direction of the photosensitive glass substrate is formed. A position that has a point-symmetrical relationship and has a light quantity that is an exposure critical value necessary for forming a latent image is a certain distance from the optical axis of the condensed light flux in a direction along the front and back surfaces of the substrate-like photosensitive glass. The manufacturing method of the glass component which has a through-hole characterized by the above-mentioned relationship.
JP2005514386A 2003-10-06 2004-09-16 Glass component having through hole and method for manufacturing the same Expired - Fee Related JP4849890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514386A JP4849890B2 (en) 2003-10-06 2004-09-16 Glass component having through hole and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003347091 2003-10-06
JP2003347091 2003-10-06
JP2005514386A JP4849890B2 (en) 2003-10-06 2004-09-16 Glass component having through hole and method for manufacturing the same
PCT/JP2004/013508 WO2005033033A1 (en) 2003-10-06 2004-09-16 Glass component having through hole and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2005033033A1 JPWO2005033033A1 (en) 2007-11-15
JP4849890B2 true JP4849890B2 (en) 2012-01-11

Family

ID=34419571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514386A Expired - Fee Related JP4849890B2 (en) 2003-10-06 2004-09-16 Glass component having through hole and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP4849890B2 (en)
TW (1) TW200520650A (en)
WO (1) WO2005033033A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319198A (en) * 2005-05-13 2006-11-24 Disco Abrasive Syst Ltd Laser machining method for wafer and device thereof
EP2646384B1 (en) * 2010-11-30 2019-03-27 Corning Incorporated Methods of forming high-density arrays of holes in glass
JP2015040168A (en) * 2013-08-23 2015-03-02 Hoya株式会社 Manufacturing method of photosensitive glass substrate
DE102016109141B4 (en) * 2015-05-18 2018-09-13 Schott Ag Process for the production of photoimageable glass bodies in the recycling process
KR101934157B1 (en) * 2015-05-18 2018-12-31 쇼오트 아게 Sensitized, photo-sensitive glass and its production
CN106167346A (en) * 2015-05-18 2016-11-30 肖特股份有限公司 The method producing photosensitive glass body continuously
TW201704177A (en) * 2015-06-10 2017-02-01 康寧公司 Methods of etching glass substrates and glass substrates
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
KR20190116378A (en) 2017-03-06 2019-10-14 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method for introducing at least one recess into the material using electromagnetic radiation and subsequent etching process
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
JP2018199605A (en) * 2017-05-29 2018-12-20 Agc株式会社 Production method for glass substrate and glass substrate
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN108710261B (en) * 2018-06-07 2020-12-25 信利光电股份有限公司 Camera module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278433A (en) * 1988-04-30 1989-11-08 Hoya Corp Production of photosensitive glass article
JPH02255542A (en) * 1989-03-29 1990-10-16 Hoya Corp Formation of pattern of photosensitive glass
JPH1171139A (en) * 1997-08-26 1999-03-16 Res Dev Corp Of Japan Microcrystal-dispersing glass and its production
JP2000313629A (en) * 1999-04-27 2000-11-14 Japan Science & Technology Corp Micro-holed glass and its production
JP2003226548A (en) * 2002-02-01 2003-08-12 Hoya Corp Photosensitive glass, method of processing the same, method of manufacturing member for ink jet printer, and method of manufacturing semiconductor substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137345A (en) * 1983-01-21 1984-08-07 Konishiroku Photo Ind Co Ltd Crystallized glass
JP3559827B2 (en) * 2002-05-24 2004-09-02 独立行政法人理化学研究所 Method and apparatus for processing inside transparent material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278433A (en) * 1988-04-30 1989-11-08 Hoya Corp Production of photosensitive glass article
JPH02255542A (en) * 1989-03-29 1990-10-16 Hoya Corp Formation of pattern of photosensitive glass
JPH1171139A (en) * 1997-08-26 1999-03-16 Res Dev Corp Of Japan Microcrystal-dispersing glass and its production
JP2000313629A (en) * 1999-04-27 2000-11-14 Japan Science & Technology Corp Micro-holed glass and its production
JP2003226548A (en) * 2002-02-01 2003-08-12 Hoya Corp Photosensitive glass, method of processing the same, method of manufacturing member for ink jet printer, and method of manufacturing semiconductor substrate

Also Published As

Publication number Publication date
TW200520650A (en) 2005-06-16
WO2005033033A1 (en) 2005-04-14
TWI337514B (en) 2011-02-11
JPWO2005033033A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4849890B2 (en) Glass component having through hole and method for manufacturing the same
EP1964820B1 (en) Method of glass substrate working and glass part
TWI547454B (en) High-speed micro-hole fabrication in glass
JP5554838B2 (en) Laser processing method
US20190362987A1 (en) Substrate with glass sheet, resin layer and through-glass via
JP4182841B2 (en) Single crystal substrate processing method
US20060127640A1 (en) Glass substrate with fine hole and method for producing the same
KR20150111349A (en) Deposition mask production method and laser processing apparatus
JP2004351494A (en) Drilling method for material transparent to laser
JP2008156200A (en) Method and apparatus for processing glass by using laser
JP2010142837A (en) Laser processing method
JP4702794B2 (en) Method for forming through hole in photosensitive glass substrate
KR101165084B1 (en) Preparation method of fine pattern of photosensitive glass substrate by laser beam
JP6110403B2 (en) How to make a resonator
JP2002026466A (en) Condensing optical system and light source for laser machines
JP2012071325A (en) Method for processing substrate
EP0838701A1 (en) A laser processing method to an optical waveguide
JP4312109B2 (en) Laser processing method
JP2005224383A (en) Etching method of surface of golf club head
KR101777772B1 (en) Method to manufacture metal master mold and master mold made by the same
JP2787039B2 (en) Processing method of photosensitive glass
JP3299345B2 (en) Printed circuit board manufacturing method
JPH0437493A (en) Method for processing metallic plate
JP2005012767A (en) Method for manufacturing crystal oscillator
JP2022091732A (en) Method of structuring glass element and structured glass element produced thereby

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees