JP4849822B2 - Appearance inspection apparatus and appearance inspection method - Google Patents

Appearance inspection apparatus and appearance inspection method Download PDF

Info

Publication number
JP4849822B2
JP4849822B2 JP2005129525A JP2005129525A JP4849822B2 JP 4849822 B2 JP4849822 B2 JP 4849822B2 JP 2005129525 A JP2005129525 A JP 2005129525A JP 2005129525 A JP2005129525 A JP 2005129525A JP 4849822 B2 JP4849822 B2 JP 4849822B2
Authority
JP
Japan
Prior art keywords
defect
defect classification
class
defects
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005129525A
Other languages
Japanese (ja)
Other versions
JP2006308364A (en
Inventor
明夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2005129525A priority Critical patent/JP4849822B2/en
Publication of JP2006308364A publication Critical patent/JP2006308364A/en
Application granted granted Critical
Publication of JP4849822B2 publication Critical patent/JP4849822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、検査試料の表面を撮像して得た撮像画像からこの検査試料上に生じた欠陥に分類分けを行う外観検査装置及び外観検査方法に関し、特に、半導体製造工程で半導体ウエハ上に形成した半導体回路パターンや、液晶表示パネルの欠陥分類を行う外観検査装置及び外観検査方法に関する。   The present invention relates to an appearance inspection apparatus and an appearance inspection method for classifying defects generated on an inspection sample from a captured image obtained by imaging the surface of the inspection sample, and in particular, formed on a semiconductor wafer in a semiconductor manufacturing process. The present invention relates to an appearance inspection apparatus and an appearance inspection method for classifying defects of a semiconductor circuit pattern and a liquid crystal display panel.

形成したパターンを撮像して画像データを生成し、画像データを解析してパターンの欠陥の有無などを検査することが広く行われている。特に、半導体製造の分野では、フォトマスクを検査するフォトマスク検査装置や半導体ウエハや、液晶表示パネルの上に形成したパターンを検査する外観検査装置が広く使用されている。以下本明細書では、半導体製造工程で半導体ウエハ上に形成した半導体回路パターンの欠陥を検出する外観検査装置(インスペクションマシン)を例として説明を行なうが、本発明はこれに限定されるものではない。   It is widely practiced to image a formed pattern to generate image data, and to analyze the image data to inspect for the presence or absence of a pattern defect. In particular, in the field of semiconductor manufacturing, a photomask inspection apparatus that inspects a photomask, a semiconductor wafer, and an appearance inspection apparatus that inspects a pattern formed on a liquid crystal display panel are widely used. In the following description, an appearance inspection apparatus (inspection machine) that detects defects in a semiconductor circuit pattern formed on a semiconductor wafer in a semiconductor manufacturing process will be described as an example. However, the present invention is not limited to this. .

また、一般の外観検査装置は、対象表面を垂直方向から照明してその反射光の像を捕らえる明視野検査装置であるが、照明光を直接捕らえない暗視野検査装置も使用されている。暗視野検査装置の場合、対象表面を斜め方向又は垂直方向から照明して正反射は検出しないようにセンサを配置し、照明光の照射位置を順次走査することにより対象表面の暗視野像を得る。従って、暗視野装置ではイメージセンサを使用しない場合もあるが、これも当然発明の対象である。このように、試料の表面を撮像して得た撮像画像から試料の外観を検査する外観検査装置及び外観検査方法であれば、どのような装置及び方法にも適用可能である。   A general visual inspection apparatus is a bright-field inspection apparatus that illuminates a target surface from the vertical direction and captures an image of reflected light, but a dark-field inspection apparatus that does not directly capture illumination light is also used. In the case of a dark field inspection apparatus, a sensor is arranged so that regular reflection is not detected by illuminating the target surface from an oblique direction or a vertical direction, and a dark field image of the target surface is obtained by sequentially scanning the irradiation position of the illumination light. . Therefore, the image sensor may not be used in the dark field device, but this is also an object of the invention. As described above, any apparatus and method can be applied as long as it is an appearance inspection apparatus and an appearance inspection method for inspecting the appearance of a sample from a captured image obtained by imaging the surface of the sample.

図1に、本特許出願の出願人が、特開2004−177397号公報(下記特許文献1)にて提案する外観検査装置と同様の、従来の外観検査装置についてそのブロック図を示す。図示するように、2次元又は3次元方向に自在に移動可能なステージ1の上面に試料台(チャックステージ)2が設けられている。この試料台の上に、検査対象となる半導体ウエハ3を載置して固定する。ステージの上部には1次元又は2次元のCCDカメラなどを用いて構成される撮像装置4が設けられており、撮像装置4は半導体ウエハ3上に形成されたパターンの画像信号を発生させる。   FIG. 1 shows a block diagram of a conventional appearance inspection apparatus similar to the appearance inspection apparatus proposed by the applicant of the present patent application in Japanese Patent Application Laid-Open No. 2004-177397 (the following Patent Document 1). As shown in the figure, a sample stage (chuck stage) 2 is provided on the upper surface of a stage 1 that can freely move in two-dimensional or three-dimensional directions. On this sample stage, the semiconductor wafer 3 to be inspected is placed and fixed. An imaging device 4 configured using a one-dimensional or two-dimensional CCD camera or the like is provided above the stage, and the imaging device 4 generates an image signal of a pattern formed on the semiconductor wafer 3.

図2に示すように、半導体ウエハ3上には、複数のダイ3Aが、X方向とY方向にそれぞれ繰返し、マトリクス状に配列されている。各ダイには同じパターンが形成されるので、隣接するダイの対応する部分の画像を比較するのが一般的である。両方のダイに欠陥がなければグレイレベル差は閾値より小さいが、一方に欠陥があればグレイレベル差は閾値より大きくなる(シングルディテクション)。これではどちらのダイに欠陥があるか分からないので、更に異なる側に隣接するダイとの比較を行ない、同じ部分のグレイレベル差が閾値より大きくなればそのダイに欠陥があることが分かる(ダブルディテクション)。   As shown in FIG. 2, a plurality of dies 3A are repeatedly arranged in a matrix on the semiconductor wafer 3 in the X direction and the Y direction, respectively. Since the same pattern is formed on each die, it is common to compare images of corresponding portions of adjacent dies. If there is no defect in both dies, the gray level difference is less than the threshold, but if there is a defect in one, the gray level difference is greater than the threshold (single detection). Since this does not know which die is defective, it is further compared with adjacent dies on different sides, and if the difference in gray level of the same part becomes larger than the threshold, it can be seen that the die is defective (double Detection).

撮像装置4は1次元のCCDカメラを備え、カメラが半導体ウエハ3に対してX方向又はY方向に一定速度で相対的に移動(スキャン)するようにステージ1を移動する。画像信号は多値のディジタル信号(グレイレベル信号)に変換された後、差分検出部6に入力されると共に、信号記憶部5に記憶される。スキャンにより隣のダイのグレイレベル信号が生成されると、それに同期して信号記憶部5に記憶された前のダイのグレイレベル信号を読み出し、差分検出部6に入力する。実際には微小な位置合わせ処理などが行われるがここでは詳しい説明は省略する。   The imaging device 4 includes a one-dimensional CCD camera, and moves the stage 1 so that the camera moves (scans) relative to the semiconductor wafer 3 at a constant speed in the X direction or the Y direction. The image signal is converted into a multi-value digital signal (gray level signal) and then input to the difference detection unit 6 and stored in the signal storage unit 5. When the gray level signal of the adjacent die is generated by scanning, the gray level signal of the previous die stored in the signal storage unit 5 is read out in synchronization with it and input to the difference detection unit 6. Actually, a minute alignment process is performed, but detailed description is omitted here.

差分検出部6には隣接する2個のダイのグレイレベル信号が入力され、2つのグレイレベル信号の差(グレイレベル差)が演算されて検出閾値計算部7と欠陥検出部8に出力される。ここでは、差分検出部6は、グレイレベル差の絶対値を算出し、それをグレイレベル差として出力する。検出閾値計算部7は、グレイレベル差から検出閾値を決定し、欠陥検出部8に出力する。欠陥検出部8は、グレイレベル差を決定された閾値と比較し、欠陥かどうかを判定する。   The difference detection unit 6 receives the gray level signals of two adjacent dies, calculates the difference between the two gray level signals (gray level difference), and outputs the difference to the detection threshold calculation unit 7 and the defect detection unit 8. . Here, the difference detector 6 calculates the absolute value of the gray level difference and outputs it as a gray level difference. The detection threshold calculation unit 7 determines a detection threshold from the gray level difference and outputs the detection threshold to the defect detection unit 8. The defect detection unit 8 compares the gray level difference with the determined threshold value and determines whether or not the defect is present.

半導体パターンは、メモリセル部、論理回路部、配線部、アナログ回路部などのパターンの種類に応じてノイズレベルが異なるのが一般的である。半導体パターンの部分と種類の対応関係は設計データにより分かる。そこで、例えば、検出閾値計算部7は部分毎に、その部分のグレイレベル差の分布に応じて検出閾値を自動的に決定し、欠陥検出部8は部分毎に決定された閾値で判定を行なう。   In general, a semiconductor pattern has a different noise level depending on a pattern type such as a memory cell portion, a logic circuit portion, a wiring portion, an analog circuit portion, and the like. Correspondence between semiconductor pattern portions and types can be understood from design data. Therefore, for example, the detection threshold value calculation unit 7 automatically determines a detection threshold value for each part according to the distribution of gray level differences of the part, and the defect detection unit 8 performs determination based on the threshold value determined for each part. .

さらに、外観検査装置には、欠陥検出部8により検出された各欠陥が、それぞれどのタイプの欠陥であるか自動的分類分けを行う欠陥分類部9を備えるものがある。欠陥分類部9は、撮像画像に現れた欠陥の外観的特徴に基づいて、検出された欠陥のタイプを特定して所定の欠陥分類に従って分類分けを行う。このような欠陥情報の分類分けは、欠陥検出部8により検出された欠陥のタイプを特定し、欠陥の発生原因を究明して欠陥の原因となった工程を特定するために利用される。   Further, some appearance inspection apparatuses include a defect classification unit 9 that automatically classifies each type of defect detected by the defect detection unit 8. The defect classification unit 9 identifies the type of the detected defect based on the appearance feature of the defect that appears in the captured image, and performs classification according to a predetermined defect classification. Such classification of defect information is used to identify the type of defect detected by the defect detection unit 8, investigate the cause of the defect, and identify the process that caused the defect.

特開2004−177397号公報JP 2004-177397 A

しかしながら、上述のように欠陥検出の際に使用する撮像画像を欠陥分類にも用いる場合には、欠陥分類に要する撮像画像の解像度は、一般に欠陥検出に必要な撮像解像度よりも高いため、撮像装置4が欠陥検出に必要な解像度で撮像画像を取得すると、欠陥分類を十分な精度で行うことはできない。一方で、十分な精度で欠陥分類を行うためにSEM(走査電子顕微鏡)等により高解像度の画像を使用すると、欠陥検出を行う検査時間が必要以上に長くなるという問題がある。   However, when the captured image used for defect detection is also used for defect classification as described above, the resolution of the captured image required for defect classification is generally higher than the imaging resolution necessary for defect detection. If a captured image is acquired at a resolution required for defect detection 4, defect classification cannot be performed with sufficient accuracy. On the other hand, when a high-resolution image is used by SEM (scanning electron microscope) or the like in order to classify defects with sufficient accuracy, there is a problem that the inspection time for performing defect detection becomes longer than necessary.

上記問題点に鑑み、本発明は、欠陥検出の際に使用する撮像画像を用いて、従来の欠陥分類方法よりも高い精度で、検出された欠陥の分類を行うことが可能な外観検査装置及び外観検査方法を提供することを目的とする。   In view of the above problems, the present invention provides an appearance inspection apparatus capable of classifying a detected defect with higher accuracy than a conventional defect classification method using a captured image used for defect detection, and An object is to provide an appearance inspection method.

上記目的を達成するために、本発明では、検査試料表面を撮像して得られる撮像画像から検査試料表面に存在する欠陥を検出してこれら欠陥を分類分けするのに際して、予め、所与の基準試料において検出された既知の欠陥を、所定の欠陥分類手段及び所定の観察手段によって、それぞれ第1の系の欠陥分類及び第2の系の欠陥分類に従って分類分けし、第1及び第2の系の欠陥分類に従う各々の分類分けの結果に基づいて、所定の欠陥分類手段によって第1の欠陥分類に従って分類分けされた各類の欠陥数から、所定の観察手段によって第2の欠陥分類に従い分類分けされる各類の欠陥数を、算出する近似式を導出する。
そして、検査試料について、所定の欠陥分類手段により第1の系の欠陥分類への分類分けを行った後、この第1の系の欠陥分類に分類分けされた各類の欠陥数に基づき、上記近似式に従って、第2の系の欠陥分類に従う各類の欠陥数を算出する。
In order to achieve the above object, according to the present invention, in order to detect defects existing on the surface of the inspection sample from the captured image obtained by imaging the surface of the inspection sample and classify these defects, a predetermined standard is used in advance. The known defects detected in the sample are classified according to the defect classification of the first system and the defect classification of the second system by the predetermined defect classification means and the predetermined observation means, respectively, and the first and second systems Based on the result of each classification according to the defect classification, the classification according to the second defect classification by the predetermined observation means from the number of each type of defect classified according to the first defect classification by the predetermined defect classification means An approximate expression for calculating the number of defects of each class is derived.
Then, after the inspection sample is classified into the first system defect classification by a predetermined defect classification means, based on the number of defects of each class classified into the first system defect classification, the above According to the approximate expression, the number of defects of each class according to the defect classification of the second system is calculated.

上記近似式は、例えば、上記基準試料について、上記所定の欠陥分類手段により第1の欠陥分類に従って分類分けされた各類の欠陥において、上記所定の観察手段により前記第2の欠陥分類に従って分類分けされた各類の欠陥が占めるそれぞれ割合に応じて、第1の系の欠陥分類に従って分類分けされた各類の欠陥数から、第2の系の欠陥分類に従う各類の欠陥数を近似するものであってよい。   For example, the approximate expression is obtained by classifying the reference sample according to the second defect classification by the predetermined observation means in each class of defects classified according to the first defect classification by the predetermined defect classification means. Approximating the number of defects of each class according to the defect classification of the second system from the number of defects of each class classified according to the defect classification of the first system, according to the proportion of each class of defects accounted for It may be.

または、上記近似式は、例えば、第1の系の欠陥分類に従って分類分けされた各類の欠陥数の割合から、第2の系の欠陥分類に従って分類分けされた各類の欠陥数の割合を近似するものであってもよい。このような近似式は、複数の基準試料のそれぞれについて、上記所定の欠陥分類手段により第1の欠陥分類に従って分類分けされた各類の欠陥数の割合と、上記所定の観察手段によって第2の欠陥分類に従って分類分けされた各類の欠陥数の割合と、の間の関係に基づき導出することが可能である。   Alternatively, the approximate expression may be, for example, the ratio of the number of defects classified according to the defect classification of the second system from the ratio of the number of defects classified according to the defect classification of the first system. It may be an approximation. Such an approximate expression includes the ratio of the number of defects of each class classified according to the first defect classification by the predetermined defect classification means for each of the plurality of reference samples, and the second observation means by the predetermined observation means. It is possible to derive based on the relationship between the ratio of the number of defects of each class classified according to the defect classification.

本発明によれば、欠陥検出に使用する撮像画像を用いる従来の欠陥分類手段による欠陥分類の結果に基づいて、他の観察手段(例えば高い解像度の撮像装置であるSEMを用いたSEM観察など)による欠陥分類の結果を統計的に近似することが可能となる。これにより従来の欠陥検出に使用する撮像画像を用いて行う欠陥分類に比べて高い精度で欠陥分類を行うことが可能となる。
また、本発明によれば、高い精度の欠陥分類を行うために、欠陥検出に使用する撮像画像の解像度を高める必要がないため、欠陥検査のスループットへ悪影響を及ぼすことを防止される。
According to the present invention, other observation means (for example, SEM observation using an SEM which is a high-resolution imaging device) based on the result of defect classification by a conventional defect classification means using a captured image used for defect detection. It is possible to statistically approximate the result of defect classification. As a result, defect classification can be performed with higher accuracy than defect classification performed using a captured image used for conventional defect detection.
Further, according to the present invention, since it is not necessary to increase the resolution of a captured image used for defect detection in order to perform defect classification with high accuracy, it is possible to prevent adverse effects on the defect inspection throughput.

以下、添付する図面を参照して本発明の実施例を説明する。図3は、本発明の第1実施例の半導体パターン用外観検査装置の概略構成を示すブロック図である。図3に示す半導体パターン用外観検査装置は、図1を参照して説明した半導体パターン用外観検査装置と同様の構成を有しており、同一又は類似する構成要素については同一の参照番号を付し、また、同じ構成要素については詳しい説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 3 is a block diagram showing a schematic configuration of the semiconductor pattern appearance inspection apparatus according to the first embodiment of the present invention. The semiconductor pattern appearance inspection apparatus shown in FIG. 3 has the same configuration as the semiconductor pattern appearance inspection apparatus described with reference to FIG. 1, and the same or similar components are denoted by the same reference numerals. In addition, detailed description of the same components is omitted.

図示するように、2次元又は3次元方向に移動可能なステージ1の上面には試料台2が設けられ、この試料台2の上に検査試料となる半導体ウエハ3を載置して固定する。ステージの上部にはCCDカメラなどを用いて構成される撮像装置4が設けられており、撮像装置4は半導体ウエハ3上に形成されたパターンの撮像画像の画像信号を発生させる。
撮像装置4は、例えばTDI等の1次元のCCDカメラを備え、カメラが半導体ウエハ3に対してX方向又はY方向に一定速度で相対的に移動(スキャン)するようにステージ1を移動する。撮像画像の画像信号は多値のディジタル信号(グレイレベル信号)に変換された後、差分検出部6に入力されると共に、信号記憶部5に記憶される。スキャンにより隣のダイのグレイレベル信号が生成されると、それに同期して信号記憶部5に記憶された前のダイのグレイレベル信号を読み出し、差分検出部6に入力する。
As shown in the figure, a sample stage 2 is provided on the upper surface of a stage 1 that can move in a two-dimensional or three-dimensional direction. An imaging device 4 configured using a CCD camera or the like is provided on the upper part of the stage. The imaging device 4 generates an image signal of a captured image of a pattern formed on the semiconductor wafer 3.
The imaging device 4 includes a one-dimensional CCD camera such as TDI, and moves the stage 1 so that the camera moves (scans) relative to the semiconductor wafer 3 at a constant speed in the X direction or the Y direction. The image signal of the captured image is converted into a multi-value digital signal (gray level signal), and then input to the difference detection unit 6 and stored in the signal storage unit 5. When the gray level signal of the adjacent die is generated by scanning, the gray level signal of the previous die stored in the signal storage unit 5 is read out in synchronization with it and input to the difference detection unit 6.

差分検出部6には隣接する2個のダイのグレイレベル信号が入力され、2つのグレイレベル信号の差(グレイレベル差)が演算されて検出閾値計算部7と欠陥検出部8に出力される。検出閾値計算部7は、グレイレベル差から検出閾値を決定し欠陥検出部8に出力する。欠陥検出部8は、グレイレベル差を決定された閾値と比較し欠陥かどうかを判定して欠陥を検出し、検出した欠陥毎について所定の欠陥情報を出力する。
この欠陥情報には、当該欠陥の識別子、位置情報や、撮像装置4による撮像画像に現れた欠陥の外観的特徴に関する情報(例えば、欠陥と判定された画素の明度や欠陥の大きさ等)が含まれる。
The difference detection unit 6 receives the gray level signals of two adjacent dies, calculates the difference between the two gray level signals (gray level difference), and outputs the difference to the detection threshold calculation unit 7 and the defect detection unit 8. . The detection threshold calculation unit 7 determines a detection threshold from the gray level difference and outputs it to the defect detection unit 8. The defect detection unit 8 compares the gray level difference with the determined threshold value to determine whether the defect is a defect, detects the defect, and outputs predetermined defect information for each detected defect.
The defect information includes the defect identifier, position information, and information regarding the appearance characteristics of the defect appearing in the image captured by the imaging device 4 (for example, the brightness of the pixel determined to be a defect and the size of the defect). included.

欠陥分類部9は、欠陥情報に含まれる当該欠陥に関して上記撮像画像に現れた外観的特徴に基づいて、検出された欠陥のタイプを特定して所定の欠陥分類(第1の系の欠陥分類)に従って分類分けを行う。
ここで第1の系の欠陥分類は、類1〜類n(nは自然数)のn個の類から成っており、欠陥分類部9は、例えば各欠陥の撮像画像に現れる外観的特徴に対応して、欠陥検出部8が検出した欠陥を各類1〜nに分類分けする。以下の説明のため、第1の系の欠陥分類では、例えば、類1には「明度が高く大きい」欠陥が、類2には「明度が高く大きさが中程度の」欠陥が、類3には「明度が高く小さい」欠陥が、類4には「明度が中程度で大きい」欠陥が、…などのように分類分けがなされるものとする。
The defect classification unit 9 identifies a type of the detected defect based on the appearance feature appearing in the captured image regarding the defect included in the defect information, and performs a predetermined defect classification (first system defect classification). According to the classification.
Here, the defect classification of the first system is composed of n classes of class 1 to class n (n is a natural number), and the defect classification unit 9 corresponds to, for example, appearance features appearing in the captured image of each defect. Then, the defects detected by the defect detection unit 8 are classified into classes 1 to n. For the following explanation, in the first type of defect classification, for example, class 1 has “high brightness and large” defects, class 2 has “high brightness and medium magnitude” defects, and class 3 It is assumed that a “high and small brightness” defect is classified into “4”, a “medium and large brightness” defect is classified into class 4, and so on.

1つ又は複数のウエハ3について欠陥検出部8による欠陥検出が完了すると、欠陥分類部9は、そのウエハ3上で検出され、上記第1の系の欠陥分類による分類が可能な全ての欠陥について、第1の系の欠陥分類に従って各類1〜nに分類分けされた各類毎の欠陥数を、以下説明する欠陥数算出部10に出力する。   When defect detection by the defect detection unit 8 is completed for one or a plurality of wafers 3, the defect classification unit 9 detects all the defects that are detected on the wafer 3 and can be classified by the defect classification of the first system. The number of defects for each class classified into classes 1 to n according to the defect classification of the first system is output to the defect count calculation unit 10 described below.

さらに、半導体パターン用外観検査装置は、欠陥分類部9により第1の系の欠陥分類に従って各類1〜nに分類分けされた各類毎の欠陥数に基づいて、後述する近似式に従い、第2の系の欠陥分類に従って分類分けされる各類毎の欠陥数を算出する欠陥数算出部10を備える。
ここで第2の系の欠陥分類は、類1〜類m(mは自然数)のm個の類から成る欠陥分類であり、例えば各類1〜mのそれぞれに係る欠陥種類は、ユーザにより任意に定義された欠陥分類としてよい。以下の説明のため、第2の系の欠陥分類では、例えば、類1には「配線ショートを生じる」欠陥が、類2には「パターン欠損による」欠陥が、類3には「層間に介在するパーティクルによる」欠陥が、…などのように分類分けがなされるものとする。
Further, the semiconductor pattern appearance inspection apparatus is configured according to an approximate expression to be described later based on the number of defects for each class classified by the class 1 to n according to the first class of defect classification by the defect classification unit 9. 2 is provided with a defect number calculation unit 10 that calculates the number of defects for each class classified according to the defect classification of the second system.
Here, the defect classification of the second system is a defect classification consisting of m classes of class 1 to class m (m is a natural number). For example, the defect type related to each of classes 1 to m is arbitrary by the user. The defect classification defined in (1) may be used. For the following explanation, in the second type of defect classification, for example, class 1 has a “wiring short circuit” defect, class 2 has a “pattern defect” defect, and class 3 has an “interlayer” It is assumed that “defects caused by particles to be performed” are classified as follows.

欠陥数算出部10は、次式(1)に示すように、所定の近似式f1、f2、…、fmに従って、第1の系の欠陥分類に従って分類分けされた各類1〜n毎の欠陥数に基づいて、第2の系の欠陥分類に従って分類分けされる各類1〜m毎の欠陥数を算出する。   As shown in the following equation (1), the defect number calculation unit 10 determines the defects for each class 1 to n classified according to the first system defect classification according to the predetermined approximate expressions f1, f2,. Based on the number, the number of defects for each class 1 to m classified according to the defect classification of the second system is calculated.

Figure 0004849822
Figure 0004849822

ここで、N1、N2…Nnは、それぞれ第1の系の欠陥分類に従って分類分けされた各類1〜n毎の欠陥数を示し、A1、A2…Amは、それぞれ第2の系の欠陥分類に従って分類分けされた各類1〜m毎の欠陥数を示す。   Here, N1, N2,... Nn indicate the number of defects for each class 1 to n classified according to the defect classification of the first system, and A1, A2,. The number of defects for each class 1 to m classified according to

さらに、半導体パターン用外観検査装置は、欠陥数算出部10による第2の系の欠陥分類に従う各類の欠陥数算出の前に、予め上記の近似式f1、f2、…、fmを導出する近似式導出部11と、導出された近似式を記憶する近似式記憶部12とを備える。
近似式導出部11は、既に欠陥が検出され、かつSEM観察などの所定の観察手段によって、それら欠陥について第2の系の欠陥分類に従い分類分けがなされているウエハ3(基準試料)を使用して、上記近似式を導出する。
そして、近似式導出部11は、このウエハ3(基準試料)において検出された既知の欠陥についての、所定の観察手段(上記例ではSEM観察)による第2の系の欠陥分類に従う分類分けの結果と、欠陥分類部9による前記第1の系の欠陥分類に従う分類分けの結果と、から上記近似式を導出する。
Further, the appearance inspecting apparatus for a semiconductor pattern is an approximation that derives the above approximate expressions f1, f2,..., Fm in advance before calculating the number of defects of each class according to the defect classification of the second system by the defect number calculation unit 10. An expression deriving unit 11 and an approximate expression storage unit 12 that stores the derived approximate expression are provided.
The approximate expression deriving unit 11 uses the wafer 3 (reference sample) in which defects have already been detected and the defects are classified according to the defect classification of the second system by predetermined observation means such as SEM observation. Thus, the above approximate expression is derived.
Then, the approximate expression deriving unit 11 classifies the known defects detected in the wafer 3 (reference sample) according to the defect classification of the second system by the predetermined observation means (SEM observation in the above example). The approximate expression is derived from the result of classification according to the defect classification of the first system by the defect classification unit 9.

そして、近似式導出部11により導出された近似式f1、f2、…、fmは、近似式記憶部12に記憶され、欠陥数算出部10は、第2の系の欠陥分類に従って分類分けされる各類1〜m毎の欠陥数を算出する際に、この近似式を近似式記憶部12から読み出して使用する。
以下、図4に示すフローチャートを参照して、近似式導出部11による近似式f1、f2、…、fmの第1の例の導出方法と、かかる近似式に基づいて欠陥数算出部10により行われる第2の系の欠陥分類に従う各類の欠陥数の算出方法を詳説する。
The approximate formulas f1, f2,..., Fm derived by the approximate formula deriving unit 11 are stored in the approximate formula storage unit 12, and the defect number calculation unit 10 is classified according to the defect classification of the second system. When calculating the number of defects for each class 1 to m, this approximate expression is read from the approximate expression storage unit 12 and used.
Hereinafter, referring to the flowchart shown in FIG. 4, a method for deriving the first example of the approximate expressions f1, f2,..., Fm by the approximate expression deriving unit 11, and the defect number calculating unit 10 based on the approximate expression. A method of calculating the number of defects of each class according to the second type of defect classification will be described in detail.

まず、ステップS1において、欠陥検出部8を用いて、所与の基準試料であるウエハ3上に存在する各欠陥を検出して、各欠陥の欠陥情報を取得する。
次に、ステップS2において、ステップS1で検出された各欠陥情報を欠陥分類部9によって上記第1の欠陥分類に従って分類分けする。
同様に、ステップS3において、ステップS1で検出された各欠陥情報を、SEM観察などの所定の観察手段によって上記第2の欠陥分類に従って分類分けする。
図3に示すように、これら欠陥分類部9によって分類分けされた欠陥情報と、所定の観察手段によって分類分けされた欠陥情報とは、近似式導出部11に入力される。
First, in step S1, each defect existing on the wafer 3 which is a given reference sample is detected by using the defect detection unit 8, and defect information of each defect is acquired.
Next, in step S2, each defect information detected in step S1 is classified by the defect classification unit 9 according to the first defect classification.
Similarly, in step S3, each defect information detected in step S1 is classified according to the second defect classification by a predetermined observation means such as SEM observation.
As shown in FIG. 3, the defect information classified by the defect classification unit 9 and the defect information classified by a predetermined observation unit are input to the approximate expression deriving unit 11.

再び図4に戻りステップS4において、近似式導出部11は、ステップS2で第1の欠陥分類に従って各類1〜nに分類分けされた欠陥に占める、ステップS3で第2の欠陥分類に従って各類1〜mに分類分けされた欠陥の割合Pij(i=1〜n、j=1〜m)を算出する。ここにPijは、第1の欠陥分類に従って第i番目の類に分類分けされた欠陥に占める、第2の欠陥分類に従って第j番目の類に分類分けされた欠陥に占める割合である。このとき、近似式導出部11は、ステップS2で第1の欠陥分類に従って分類分けされたそれぞれの欠陥が、ステップS3で第2の欠陥分類に従って分類分けされたそれぞれの欠陥のいずれに対応するかを、欠陥情報に含まれる各欠陥の識別子や位置情報に基づいて判断する。   Returning to FIG. 4 again, in step S4, the approximate expression deriving unit 11 occupies the defects classified into classes 1 to n according to the first defect classification in step S2, and in accordance with the second defect classification in step S3. A ratio Pij (i = 1 to n, j = 1 to m) of defects classified into 1 to m is calculated. Here, Pij is the ratio of the defects classified into the i-th class according to the first defect classification to the defects classified into the j-th class according to the second defect classification. At this time, the approximate expression deriving unit 11 corresponds to which one of the defects classified according to the first defect classification in step S2 corresponds to each defect classified according to the second defect classification in step S3. Is determined based on the identifier and position information of each defect included in the defect information.

より具体的に記述すると、近似式導出部11は、ステップS2で第1の欠陥分類に従って第i番目の類に分類分けされた欠陥に占める、ステップS3で第2の欠陥分類に従って各類1〜mに分類分けされた欠陥の各割合Pi1〜Pimを、第1の欠陥分類に従って類1〜mに分類分けされた欠陥のそれぞれについて算出する。
そして、第1の系の欠陥分類に従って分類分けされた各類の欠陥数N1〜Nnから、第2の系の欠陥分類に従う各類の欠陥数A1〜Amを近似する近似式f1〜fmを、次式(2)に示すように導出する。
More specifically, the approximate expression deriving unit 11 occupies the defects classified into the i-th class according to the first defect classification in step S2, and each class 1 to 1 according to the second defect classification in step S3. The ratios Pi1 to Pim of the defects classified into m are calculated for the defects classified into classes 1 to m according to the first defect classification.
An approximate expression f1 to fm that approximates the number of defects A1 to Am of each class according to the defect classification of the second system from the number of defects N1 to Nn of each class classified according to the defect classification of the first system, Derived as shown in the following equation (2).

Figure 0004849822
Figure 0004849822

そして、近似式導出部11は、導出した近似式f1〜fm(または各割合Pij(i=1〜n、j=1〜m))を、近似式記憶部12に記憶する。
ステップS5において、欠陥検出部8を用いて、検査試料であるウエハ3上に存在する各欠陥を検出して、各欠陥の欠陥情報を取得する。また、ステップS6において、欠陥分類部9は、ステップS5で検出された各欠陥情報を第1の欠陥分類に従って分類分けし、第1の欠陥分類に従って各類1〜nに分類分けされたそれぞれの欠陥数N1〜Nnを欠陥数算出部10に出力する。
Then, the approximate expression deriving unit 11 stores the derived approximate expressions f1 to fm (or each ratio Pij (i = 1 to n, j = 1 to m)) in the approximate expression storage unit 12.
In step S5, the defect detection unit 8 is used to detect each defect present on the wafer 3 that is the inspection sample, and acquire defect information of each defect. In step S6, the defect classification unit 9 classifies the defect information detected in step S5 according to the first defect classification, and classifies each of the defect information classified into classes 1 to n according to the first defect classification. The defect numbers N1 to Nn are output to the defect number calculation unit 10.

ステップS7において、欠陥数算出部10は、近似式記憶部12に記憶された近似式f1〜fm(または各割合Pij(i=1〜n、j=1〜m))を読み出して、上式(2)に従って、第2の欠陥分類に従い各類1〜mに分類分けされるそれぞれの欠陥数A1〜Anを算出する。   In step S <b> 7, the defect number calculation unit 10 reads out the approximate expressions f <b> 1 to fm (or the ratios Pij (i = 1 to n, j = 1 to m)) stored in the approximate expression storage unit 12, and calculates the above formula. According to (2), the respective defect numbers A1 to An classified into the classes 1 to m according to the second defect classification are calculated.

図5は、近似式導出部11による近似式の第2の例の導出方法と、かかる近似式に基づき欠陥数算出部10により行われる第2の系の欠陥分類に従う各類の欠陥数の算出方法を示すフローチャートであり、図6は、上記第2の例の導出方法の説明図である。   FIG. 5 shows how the approximate expression deriving unit 11 derives the second example of the approximate expression, and how to calculate the number of types of defects according to the defect classification of the second system performed by the defect number calculating unit 10 based on the approximate expression. FIG. 6 is an explanatory diagram of the derivation method of the second example.

まず、図4を参照して説明した上記第1の例の導出方法と同様に、ステップS1において、所与の基準試料であるウエハ3上に存在する各欠陥の欠陥情報を取得し、ステップS2において、この欠陥情報を欠陥分類部9によって上記第1の欠陥分類に従って分類分けし、ステップS3において、ステップS1で検出された各欠陥情報を、SEM観察などの所定の観察手段によって上記第2の欠陥分類に従って分類分けする。
そして、これら欠陥分類部9によって分類分けされた欠陥情報と、所定の観察手段によって分類分けされた欠陥情報とは、近似式導出部11に入力する。
これらステップS1〜S3を、複数の基準試料について繰り返し行う。
First, similarly to the derivation method of the first example described with reference to FIG. 4, in step S1, defect information of each defect existing on the wafer 3 which is a given reference sample is acquired, and step S2 is performed. In step S3, the defect information is classified by the defect classification unit 9 according to the first defect classification. In step S3, the defect information detected in step S1 is converted into the second information by predetermined observation means such as SEM observation. Classify according to defect classification.
The defect information classified by the defect classification unit 9 and the defect information classified by a predetermined observation unit are input to the approximate expression deriving unit 11.
These steps S1 to S3 are repeated for a plurality of reference samples.

ステップS11において、近似式導出部11は、ステップS2で第1の欠陥分類に従って各類1〜nに分類分けされた欠陥のそれぞれの欠陥数N1〜Nnが、全体の欠陥数(すなわちN=N1+N2+…+Nn)に占める割合を、各基準試料毎に別個に算出する。
近似式導出部11はまた、ステップS3で第2の欠陥分類に従って各類1〜mに分類分けされた欠陥のそれぞれの欠陥数A1〜Amが、全体の欠陥数(すなわちA=A1+A2+…+Am)に占める割合を、各基準試料毎に別個に算出する。
In step S11, the approximate expression deriving unit 11 determines that the number of defects N1 to Nn of the defects classified into the classes 1 to n according to the first defect classification in step S2 is the total number of defects (ie, N = N1 + N2 + ... + Nn) is calculated separately for each reference sample.
The approximate expression deriving unit 11 also calculates the total number of defects (that is, A = A1 + A2 +... + Am) as the respective defect numbers A1 to Am classified into the classes 1 to m according to the second defect classification in step S3. Is calculated separately for each reference sample.

次に近似式導出部11は、各基準試料のそれぞれについて算出された、第1の欠陥分類に従って分類分けされた各類i(i=1…n)の欠陥数の割合Ni/Nと、第2の欠陥分類に従って分類分けされた各類j(j=1…n)の欠陥数の割合Aj/Aと、の間の関係に基づき、上記割合Ni/Nから上記割合Aj/Aを近似する近似式gijを算出する。この様子を図6に示す。   Next, the approximate expression deriving unit 11 calculates the ratio Ni / N of the number of defects of each class i (i = 1... N) classified according to the first defect classification, calculated for each reference sample, and The ratio Aj / A is approximated from the ratio Ni / N on the basis of the relationship between the ratio Aj / A of the number of defects of each class j (j = 1... N) classified according to the two defect classifications. An approximate expression gij is calculated. This is shown in FIG.

図6の(A)は、各基準試料のそれぞれについて算出された、第1の欠陥分類に従って分類分けされた各類i(i=1…n)の欠陥数の割合Ni/Nと、第2の欠陥分類に従って分類分けされた各類j(j=1…n)の欠陥数の割合Aj/Aと、との関係をプロットした図である。
近似式導出部11は、最少二乗法などの近似式を導出する既知の手法に基づき、図6の(B)の実線に示すような近似式Aj/A=gij(Ni/N)と、上記割合Ni/NとAj/Aとの間の相関係数rijを算出する。
FIG. 6A shows the ratio Ni / N of the number of defects of each class i (i = 1... N) classified according to the first defect classification, calculated for each reference sample, and the second. It is the figure which plotted the relationship with the ratio Aj / A of the number of defects of each class j (j = 1 ... n) classified according to the defect classification.
The approximate expression deriving unit 11 is based on a known method for deriving an approximate expression such as the least square method, and the approximate expression Aj / A = gij (Ni / N) as shown by the solid line in FIG. A correlation coefficient rij between the ratios Ni / N and Aj / A is calculated.

その後、近似式導出部11は、第1の欠陥分類に従って分類分けされた各類の欠陥数の割合N1/N〜Nn/Nから、第2の欠陥分類に従って分類分けされた各類の欠陥数A1〜Amを近似する近似式を、次式(3)に示すように導出する。   Thereafter, the approximate expression deriving unit 11 calculates the number of defects of each class classified according to the second defect classification from the ratios N1 / N to Nn / N of the number of defects classified according to the first defect classification. An approximate expression that approximates A1 to Am is derived as shown in the following expression (3).

Figure 0004849822
Figure 0004849822

そして、近似式導出部11は、導出した近似式(または定数N、各関数gijを定めるパラメータ、相関係数rij(i=1〜n、j=1〜m))を、近似式記憶部12に記憶する。   Then, the approximate expression deriving unit 11 converts the derived approximate expression (or constant N, parameters defining each function gij, correlation coefficient rij (i = 1 to n, j = 1 to m)) into the approximate expression storage unit 12. To remember.

そして図4を参照して説明した上記第1の例の導出方法と同様に、ステップS5において、検査試料であるウエハ3上に存在する各欠陥を検出して、各欠陥の欠陥情報を取得する。ステップS6において、欠陥分類部9は、この各欠陥情報を第1の欠陥分類に従って分類分けし、第1の欠陥分類に従って各類1〜nに分類分けされたそれぞれの欠陥数N1〜Nnを欠陥数算出部10に出力する。   Then, similarly to the derivation method of the first example described with reference to FIG. 4, in step S5, each defect present on the wafer 3 as the inspection sample is detected, and defect information of each defect is acquired. . In step S6, the defect classification unit 9 classifies the defect information according to the first defect classification, and sets the defect numbers N1 to Nn classified into the classes 1 to n according to the first defect classification as defects. It outputs to the number calculation part 10.

ステップS12において、欠陥数算出部10は、検査試料であるウエハ3について第1の欠陥分類に従って分類分けされた各類i(i=1…n)の欠陥数の割合Ni/Nを求め、近似式記憶部12に記憶された近似式(3)(または上記定数N、各関数gijを定めるパラメータ、相関係数rij(i=1〜n、j=1〜m))を読み出す。
そして、割合Ni/Nに基づいて上式(3)に従って、第2の欠陥分類に従い各類1〜mに分類分けされるそれぞれの欠陥数A1〜Anを算出する。
In step S12, the defect number calculation unit 10 obtains the ratio Ni / N of the number of defects of each class i (i = 1... N) classified according to the first defect classification for the wafer 3 as the inspection sample, and approximates it. The approximate expression (3) (or the constant N, the parameter defining each function gij, the correlation coefficient rij (i = 1 to n, j = 1 to m)) stored in the expression storage unit 12 is read.
And according to the above formula (3) based on the ratio Ni / N, the number of defects A1 to An classified into each class 1 to m according to the second defect classification is calculated.

なお、上記の実施例では第2の系の欠陥分類は、第1の系の欠陥分類を成す各類と、異なる欠陥種別を示す類から成る例を示したが、第2の系の欠陥分類と第1の系の欠陥分類とを、同じ欠陥種別を示す類から成る欠陥分類としてもよい。すなわち例えば、第1及び第2の系の欠陥分類を、類1〜類m(mは自然数)のm個の類から成る欠陥分類として、各類1〜mのそれぞれに係る欠陥種類をユーザにより任意に定義された欠陥分類、例えば、類1には「配線ショートを生じる」欠陥が、類2には「パターン欠損による」欠陥が、類3には「層間に介在するパーティクルによる」欠陥が、…などのように分類分けがなされる欠陥分類としてもよい。   In the above-described embodiment, the defect classification of the second system is an example including each class forming the defect classification of the first system and a class indicating a different defect type. And the defect classification of the first system may be defect classifications composed of classes indicating the same defect type. That is, for example, the defect classifications of the first and second systems are classified as defect classifications consisting of m classes of class 1 to class m (m is a natural number), and the defect type related to each of classes 1 to m is determined by the user. Arbitrarily defined defect classifications, for example, class 1 includes “wiring short” defects, class 2 includes “pattern defects”, class 3 includes “interlayer particles” defects, It is good also as a defect classification | category classified like ....

また、第2の系の欠陥分類と第1の系の欠陥分類とを、その一部の類において互いに同じ欠陥種別を示す、他の類において相互に異なる欠陥種別を示す、類から成る欠陥分類としてもよい。   In addition, the defect classification of the second system and the defect classification of the first system, which are the same defect type in some classes, and which are different from each other in other classes, It is good.

図7は、近似式導出部11による近似式の第3の例の導出方法と、かかる近似式に基づき欠陥数算出部10により行われる第2の系の欠陥分類に従う各類の欠陥数の算出方法を示すフローチャートであり、図8は、上記第3の例の導出方法の説明図である。   FIG. 7 shows a method of deriving the third example of the approximate expression by the approximate expression deriving unit 11 and the calculation of the number of types of defects according to the defect classification of the second system performed by the defect number calculating unit 10 based on the approximate expression. FIG. 8 is an explanatory diagram of the derivation method of the third example.

まず、図4を参照して説明した上記第1の例の導出方法と同様に、ステップS1において、所与の基準試料であるウエハ3上に存在する各欠陥の欠陥情報を取得し、ステップS2において、この欠陥情報を欠陥分類部9によって上記第1の欠陥分類に従って分類分けし、ステップS3において、ステップS1で検出された各欠陥情報を、SEM観察などの所定の観察手段によって上記第2の欠陥分類に従って分類分けする。
そして、これら欠陥分類部9によって分類分けされた欠陥情報と、所定の観察手段によって分類分けされた欠陥情報とは、近似式導出部11に入力する。
これらステップS1〜S3及びS21を、複数の基準試料について繰り返し行う。
First, similarly to the derivation method of the first example described with reference to FIG. 4, in step S1, defect information of each defect existing on the wafer 3 which is a given reference sample is acquired, and step S2 is performed. In step S3, the defect information is classified by the defect classification unit 9 according to the first defect classification. In step S3, the defect information detected in step S1 is converted into the second information by predetermined observation means such as SEM observation. Classify according to defect classification.
The defect information classified by the defect classification unit 9 and the defect information classified by a predetermined observation unit are input to the approximate expression deriving unit 11.
These steps S1 to S3 and S21 are repeated for a plurality of reference samples.

次にステップS21において、近似式導出部11は、近似式導出部11は、ステップS2で第1の欠陥分類に従って分類分けされたそれぞれの欠陥と、ステップS3で第2の欠陥分類に従って分類分けされたそれぞれの欠陥とを、両者の欠陥情報に含まれる各欠陥の識別子や位置情報に基づいて対応付ける。
そして、ステップS2で第1の欠陥分類に従って各類iそれぞれについて(i=1…n)、各分類iに分類分けされた欠陥の総数Niのうち、ステップS2で第1の欠陥分類により類iに分類分けされ、かつステップS3で第2の欠陥分類により各類jに分類分けされた欠陥がそれぞれ占める総数Bijの割合であるBij/Niを算出する(j=1…m)。
Next, in step S21, the approximate expression deriving unit 11 classifies the approximate expression deriving unit 11 according to each defect classified according to the first defect classification in step S2 and according to the second defect classification in step S3. The respective defects are associated with each other based on the identifiers and position information of the defects included in the defect information of both.
Then, for each class i (i = 1... N) according to the first defect classification in step S2, out of the total number Ni of defects classified into each class i, the class i is determined by the first defect classification in step S2. Bij / Ni which is the ratio of the total number Bij occupied by the defects classified into each class j by the second defect classification in step S3 is calculated (j = 1... M).

次に近似式導出部11は、ステップS22において、各基準試料のそれぞれについて算出された、第1の欠陥分類に従って分類分けされた各類i(i=1…n)の欠陥数の割合Ni/Nと、ステップS21において算出された割合Bij/Niと、の間の関係に基づき、上記割合Ni/Nから上記割合Bij/Niを近似する近似式hijを、各類i、jごとに導出する。この様子を図8に示す。   Next, the approximate expression deriving unit 11 calculates the ratio of the number of defects of each class i (i = 1... N) calculated according to the first defect classification calculated for each of the reference samples in step S22 Ni /. Based on the relationship between N and the ratio Bij / Ni calculated in step S21, an approximate expression hij that approximates the ratio Bij / Ni is derived for each class i and j from the ratio Ni / N. . This is shown in FIG.

図8の(A)は、各基準試料のそれぞれについて算出された、第1の欠陥分類に従って分類分けされた各類iの欠陥数の割合Ni/Nと、ステップS21において算出された割合Bij/Niと、の関係をプロットした図である。近似式導出部11は、最少二乗法などの近似式を導出する既知の手法に基づき、図8の(B)の実線に示すような近似式Bij/Ni=hij(Ni/N)と、上記割合Ni/NとBij/Niとの間の相関係数rijを算出する。
その後、近似式導出部11は、近似式hijを次式(4)に示すように導出する。
FIG. 8A shows the ratio Ni / N of the number of defects of each class i classified according to the first defect classification calculated for each of the reference samples, and the ratio Bij / calculated in step S21. It is the figure which plotted the relationship with Ni. The approximate expression deriving unit 11 is based on a known method for deriving an approximate expression such as the least square method, and the approximate expression Bij / Ni = hij (Ni / N) as shown by the solid line in FIG. A correlation coefficient rij between the ratios Ni / N and Bij / Ni is calculated.
Thereafter, the approximate expression deriving unit 11 derives the approximate expression hij as shown in the following expression (4).

Figure 0004849822
Figure 0004849822

そして、近似式導出部11は、導出した近似式(または定数Sm、各関数hijを定めるパラメータ、相関係数rij(i=1〜n、j=1〜m))を、近似式記憶部12に記憶する。   Then, the approximate expression deriving unit 11 converts the derived approximate expression (or constant Sm, parameters for determining each function hij, correlation coefficient rij (i = 1 to n, j = 1 to m)) into the approximate expression storage unit 12. To remember.

そして図4を参照して説明した上記第1の例の導出方法と同様に、ステップS5において、検査試料であるウエハ3上に存在する各欠陥を検出して、各欠陥の欠陥情報を取得する。ステップS6において、欠陥分類部9は、この各欠陥情報を第1の欠陥分類に従って分類分けし、第1の欠陥分類に従って各類1〜nに分類分けされたそれぞれの欠陥数N1〜Nnを欠陥数算出部10に出力する。   Then, similarly to the derivation method of the first example described with reference to FIG. 4, in step S5, each defect present on the wafer 3 as the inspection sample is detected, and defect information of each defect is acquired. . In step S6, the defect classification unit 9 classifies the defect information according to the first defect classification, and sets the defect numbers N1 to Nn classified into the classes 1 to n according to the first defect classification as defects. It outputs to the number calculation part 10.

ステップS23において、欠陥数算出部10は、検査試料であるウエハ3について第1の欠陥分類に従って分類分けされた各類i(i=1…n)の欠陥数の割合Ni/Nを求める。また、近似式記憶部12に記憶された近似式(4)(または定数Sm、各関数hijを定めるパラメータ、相関係数rij(i=1〜n、j=1〜m))を読み出す。
そして、割合Ni/Nに基づいて上式(4)に従って、第2の欠陥分類に従い各類1〜mに分類分けされるそれぞれの欠陥数A1〜Anを算出する。
In step S23, the defect number calculation unit 10 obtains the ratio Ni / N of the number of defects of each class i (i = 1... N) classified according to the first defect classification for the wafer 3 as the inspection sample. Also, the approximate expression (4) (or constant Sm, parameters for determining each function hij, correlation coefficient rij (i = 1 to n, j = 1 to m)) stored in the approximate expression storage unit 12 is read out.
And according to the above formula (4) based on the ratio Ni / N, the number of defects A1 to An classified into each class 1 to m according to the second defect classification is calculated.

本発明は、検査試料の表面を撮像して得た撮像画像からこの検査試料上に生じた欠陥に分類分けを行う外観検査装置及び外観検査方法に利用可能である。特に、半導体製造工程で半導体ウエハ上に形成した半導体回路パターンや、液晶表示パネルの欠陥分類を行う外観検査装置及び外観検査方法に好適に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an appearance inspection apparatus and an appearance inspection method for classifying defects generated on an inspection sample from a captured image obtained by imaging the surface of the inspection sample. In particular, it can be suitably used for a semiconductor circuit pattern formed on a semiconductor wafer in a semiconductor manufacturing process, and an appearance inspection apparatus and an appearance inspection method for classifying defects of a liquid crystal display panel.

従来の外観検査装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the conventional external appearance inspection apparatus. 半導体ウエハ上のダイの配列を示す図である。It is a figure which shows the arrangement | sequence of the die | dye on a semiconductor wafer. 本発明の実施例の半導体パターン用外観検査装置の全体構成図である。It is a whole block diagram of the external appearance inspection apparatus for semiconductor patterns of the Example of this invention. 図3に示す外観検査装置による欠陥数算出方法の第1例のフローチャートである。It is a flowchart of the 1st example of the defect number calculation method by the visual inspection apparatus shown in FIG. 図3に示す外観検査装置による欠陥数算出方法の第2例のフローチャートである。It is a flowchart of the 2nd example of the defect number calculation method by the visual inspection apparatus shown in FIG. 図5に示す欠陥数算出方法の説明図である。It is explanatory drawing of the defect number calculation method shown in FIG. 図3に示す外観検査装置による欠陥数算出方法の第3例のフローチャートである。It is a flowchart of the 3rd example of the defect number calculation method by the visual inspection apparatus shown in FIG. 図7に示す欠陥数算出方法の説明図である。It is explanatory drawing of the defect number calculation method shown in FIG.

符号の説明Explanation of symbols

1 ステージ
2 試料台
3 半導体ウエハ
3A ダイ
4 撮像装置
5 信号記憶部
8 欠陥検出部
9 欠陥分類部
10 欠陥数算出部
DESCRIPTION OF SYMBOLS 1 Stage 2 Sample stand 3 Semiconductor wafer 3A Die 4 Imaging device 5 Signal storage part 8 Defect detection part 9 Defect classification part 10 Defect number calculation part

Claims (10)

検査試料表面を撮像する撮像手段と、該撮像手段による撮像画像から前記検査試料表面に存在する欠陥を検出する欠陥検出手段と、該欠陥検出手段により検出された前記欠陥を第1の系の欠陥分類に従って分類分けする欠陥分類手段と、を備える外観検査装置において、
前記検査試料について、前記欠陥分類手段により前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数に基づき、所定の近似式に従って、第2の系の欠陥分類に従う各類の欠陥数を算出する欠陥数算出手段を備え、
前記所定の近似式は、所与の基準試料において検出された既知の欠陥についての、前記欠陥分類手段による前記第1の系の欠陥分類に従う分類分けの結果と、前記撮像手段よりも高い解像度を有する所定の観察手段による前記第2の系の欠陥分類に従う分類分けの結果と、から予め導出された、前記第1の系の欠陥分類により得られた各類の欠陥数の集合から、前記第2の系の欠陥分類により得られた各類の欠陥数の集合を算出する近似式である、ことを特徴とする外観検査装置。
An imaging means for imaging the inspection sample surface, a defect detection means for detecting a defect existing on the inspection sample surface from an image captured by the imaging means, and the defect detected by the defect detection means as a first system defect In the visual inspection apparatus comprising defect classification means for classifying according to classification,
The number of defects of each class according to the second class of defect classification according to a predetermined approximate expression based on the number of defects classified by the defect classification means according to the first class of defect classification by the defect classification means. A defect number calculating means for calculating
The predetermined approximate expression has a result of classification according to the defect classification of the first system by the defect classification means for a known defect detected in a given reference sample, and higher resolution than the imaging means. From the result of classification according to the defect classification of the second system by the predetermined observation means, and from the set of the number of defects of each type obtained in advance by the defect classification of the first system, An appearance inspection apparatus characterized by being an approximate expression for calculating a set of the number of defects of each class obtained by the defect classification of system 2 .
前記近似式は、前記基準試料について、前記欠陥分類手段により前記第1の系の欠陥分類に従って分類分けされた各類の欠陥において、前記所定の観察手段により前記第2の系の欠陥分類に従って分類分けされた各類の欠陥が占めるそれぞれ割合に応じて、前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数から、前記第2の系の欠陥分類に従う各類の欠陥数を近似することを特徴とする請求項1に記載の外観検査装置。 The approximate expression classifies the reference sample according to the defect classification of the second system by the predetermined observation means in each class of defects classified by the defect classification means according to the defect classification of the first system. The number of defects of each class according to the defect classification of the second system is calculated from the number of defects of each class classified according to the defect classification of the first system, according to the proportion of each class of defects. The appearance inspection apparatus according to claim 1, wherein the appearance inspection apparatus is approximated. 前記近似式は、
複数の前記基準試料のそれぞれについて、前記所定の欠陥分類手段により前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数の割合と、前記所定の観察手段によって前記第2の系の欠陥分類に従って分類分けされた各類の欠陥数の割合と、の間の関係に基づき導出され、
前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数の割合から、前記第2の系の欠陥分類に従って分類分けされた各類の欠陥数の割合を近似する、
ことを特徴とする請求項1に記載の外観検査装置。
The approximate expression is
For each of the plurality of reference samples, the ratio of the number of defects of each class classified according to the defect classification of the first system by the predetermined defect classification means, and the second system by the predetermined observation means Derived based on the relationship between the percentage of the number of defects of each class classified according to the defect classification,
Approximating the ratio of the number of defects of each class classified according to the defect classification of the second system from the ratio of the number of defects of each class classified according to the defect classification of the first system,
The appearance inspection apparatus according to claim 1.
前記第2の系の欠陥分類を成す各類には、前記第1の系の欠陥分類を成す各類と異なる欠陥種別を示す類が含まれる請求項1〜3のいずれか一項に記載の外観検査装置。   The class that constitutes the defect classification of the second system includes a class that indicates a defect type different from the class that constitutes the defect classification of the first system. Appearance inspection device. 前記第2の系の欠陥分類を成す各類には、前記第1の系の欠陥分類を成す各類と同じ欠陥種別を示す類が含まれる請求項1〜3のいずれか一項に記載の外観検査装置。   The class that constitutes the defect classification of the second system includes a class that shows the same defect type as each class that constitutes the defect classification of the first system. Appearance inspection device. 検査試料表面を撮像して得られる撮像画像から前記検査試料表面に存在する欠陥を検出し、検出された前記欠陥を、さらに所定の欠陥分類手段により第1の系の欠陥分類への分類分けを行う外観検査方法において、
所与の基準試料において検出された既知の欠陥を、前記所定の欠陥分類手段及び前記撮像手段よりも高い解像度を有する所定の観察手段によって、それぞれ前記第1の系の欠陥分類及び第2の系の欠陥分類に従って分類分けし、
前記第1及び第2の系の欠陥分類に従う各々の前記分類分けの結果に基づいて、前記所定の欠陥分類手段によって前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数の集合から、前記所定の観察手段によって前記第2の系の欠陥分類に従い分類分けされる各類の欠陥数の集合を、算出する近似式を導出し、
前記検査試料について、前記所定の欠陥分類手段により前記第1の系の欠陥分類に分類分けされた各類の欠陥数に基づき、前記近似式に従って、第2の系の欠陥分類に従う各類の欠陥数を算出する、
ことを特徴とする外観検査方法。
A defect existing on the surface of the inspection sample is detected from a captured image obtained by imaging the surface of the inspection sample, and the detected defect is further classified into a first system defect classification by a predetermined defect classification means. In the appearance inspection method to be performed,
A known defect detected in a given reference sample is detected by a predetermined observation means having a higher resolution than the predetermined defect classification means and the imaging means , respectively, and the first system defect classification and the second system, respectively. According to the defect classification of
Based on each of the classified results according defect classification of the first and second systems, a set of the number of defects each class which is classified according to defect classification of the first system by the given defect classification means from derives an approximation formula a group of the number of defects in each class are classified according to defect classification of the second system by the predetermined observation means, calculates,
Based on the number of types of defects classified into the first type of defect classification by the predetermined defect classification means for the inspection sample, according to the approximate expression, each type of defect according to the second type of defect classification Calculate the number,
An appearance inspection method characterized by that.
前記近似式は、前記基準試料について、前記所定の欠陥分類手段により前記第1の系の欠陥分類に従って分類分けされた各類の欠陥において、前記所定の観察手段により前記第2の系の欠陥分類に従って分類分けされた各類の欠陥が占めるそれぞれ割合に応じて、前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数から、前記第2の系の欠陥分類に従う各類の欠陥数を近似することを特徴とする請求項6に記載の外観検査方法。 The approximate expression is the defect classification of the second system by the predetermined observation means for each type of defect classified by the predetermined defect classification means according to the defect classification of the first system with respect to the reference sample. Each type of defect according to the second type of defect classification from the number of defects classified according to the first type of defect classification according to the proportion of each type of defect classified according to The appearance inspection method according to claim 6, wherein the number is approximated. 前記近似式は、
複数の前記基準試料のそれぞれについて、前記所定の欠陥分類手段により前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数の割合と、前記所定の観察手段によって前記第2の系の欠陥分類に従って分類分けされた各類の欠陥数の割合と、の間の関係に基づき導出され、
前記第1の系の欠陥分類に従って分類分けされた各類の欠陥数の割合から、前記第2の系の欠陥分類に従って分類分けされた各類の欠陥数の割合を近似する、
ことを特徴とする請求項6に記載の外観検査方法。
The approximate expression is
For each of the plurality of reference samples, the ratio of the number of defects of each class classified according to the defect classification of the first system by the predetermined defect classification means, and the second system by the predetermined observation means Derived based on the relationship between the percentage of the number of defects of each class classified according to the defect classification,
Approximating the ratio of the number of defects of each class classified according to the defect classification of the second system from the ratio of the number of defects of each class classified according to the defect classification of the first system,
The appearance inspection method according to claim 6.
前記第2の系の欠陥分類を成す各類には、前記第1の系の欠陥分類を成す各類と異なる欠陥種別を示す類が含まれる請求項6〜8のいずれか一項に記載の外観検査方法。   9. Each class that constitutes the defect classification of the second system includes a class that indicates a defect type different from each class that constitutes the defect classification of the first system. Appearance inspection method. 前記第2の系の欠陥分類を成す各類には、前記第1の系の欠陥分類を成す各類と同じ欠陥種別を示す類が含まれる請求項6〜8のいずれか一項に記載の外観検査方法。   The class that forms the defect classification of the second system includes a class that shows the same defect type as each class that forms the defect classification of the first system. Appearance inspection method.
JP2005129525A 2005-04-27 2005-04-27 Appearance inspection apparatus and appearance inspection method Expired - Fee Related JP4849822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129525A JP4849822B2 (en) 2005-04-27 2005-04-27 Appearance inspection apparatus and appearance inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129525A JP4849822B2 (en) 2005-04-27 2005-04-27 Appearance inspection apparatus and appearance inspection method

Publications (2)

Publication Number Publication Date
JP2006308364A JP2006308364A (en) 2006-11-09
JP4849822B2 true JP4849822B2 (en) 2012-01-11

Family

ID=37475429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129525A Expired - Fee Related JP4849822B2 (en) 2005-04-27 2005-04-27 Appearance inspection apparatus and appearance inspection method

Country Status (1)

Country Link
JP (1) JP4849822B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176943A (en) * 1999-12-15 2001-06-29 Shin Etsu Handotai Co Ltd Method for evaluating semiconductor wafer
JP2001230289A (en) * 2000-02-15 2001-08-24 Hitachi Ltd Fault analyzing method and system
JP3920003B2 (en) * 2000-04-25 2007-05-30 株式会社ルネサステクノロジ Inspection data processing method and apparatus
JP2001331784A (en) * 2000-05-18 2001-11-30 Hitachi Ltd Defect sorting method and its device
JP4233397B2 (en) * 2002-10-01 2009-03-04 株式会社東京精密 Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus

Also Published As

Publication number Publication date
JP2006308364A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4776308B2 (en) Image defect inspection apparatus, image defect inspection system, defect classification apparatus, and image defect inspection method
JP4233397B2 (en) Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus
JP5275017B2 (en) Defect inspection method and apparatus
KR100855100B1 (en) Appearance inspection apparatus and appearance inspection method
JP4766897B2 (en) Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus
US7869643B2 (en) Advanced cell-to-cell inspection
JP2007149837A (en) Device, system, and method for inspecting image defect
JP4711570B2 (en) Pattern inspection method and inspection apparatus
JP2010164487A (en) Defect inspecting apparatus and defect inspecting method
KR20210064365A (en) Defect Inspection Device, Defect Inspection Method
JP2007003459A (en) Flaw inspection device of image, visual examination device and flaw inspection method of image
KR101146081B1 (en) Detection of macro-defects using micro-inspection inputs
JP2010043941A (en) Image inspection apparatus and image inspection method
JP2006138708A (en) Image flaw inspection method, image flaw inspecting device and visual inspection device
JP5372365B2 (en) Inspection apparatus and inspection method
JP2006113073A (en) System and method for pattern defect inspection
JP3752849B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2009097928A (en) Defect inspecting device and defect inspection method
US20230206417A1 (en) Detection of defects using a computationally efficient segmentation approach
JP4849822B2 (en) Appearance inspection apparatus and appearance inspection method
US11636587B2 (en) Inspection of a semiconductor specimen
JP3878340B2 (en) Pattern defect inspection method and apparatus
JP2006242681A (en) Visual inspection apparatus
TW202100991A (en) Appearance inspection management system, appearance inspection management device, appearance inspection management method and program which can support a user to select a feature amount used as a defect determination index in an appearance inspection device and set a threshold value for each feature amount
JP2007047122A (en) Image defect inspection device, defect classification device, and image defect inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees