JP4849514B2 - Variable magnification optical system and imaging apparatus using the same - Google Patents

Variable magnification optical system and imaging apparatus using the same Download PDF

Info

Publication number
JP4849514B2
JP4849514B2 JP2005263577A JP2005263577A JP4849514B2 JP 4849514 B2 JP4849514 B2 JP 4849514B2 JP 2005263577 A JP2005263577 A JP 2005263577A JP 2005263577 A JP2005263577 A JP 2005263577A JP 4849514 B2 JP4849514 B2 JP 4849514B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
negative
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263577A
Other languages
Japanese (ja)
Other versions
JP2007078799A (en
JP2007078799A5 (en
Inventor
祐子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2005263577A priority Critical patent/JP4849514B2/en
Priority to US11/490,067 priority patent/US7446948B2/en
Publication of JP2007078799A publication Critical patent/JP2007078799A/en
Publication of JP2007078799A5 publication Critical patent/JP2007078799A5/ja
Application granted granted Critical
Publication of JP4849514B2 publication Critical patent/JP4849514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系及びそれを用いた撮像装置に関するものであり、特に、コンパクトな変倍光学系及びそのコンパクトな変倍光学系を含む電子機器(例えば、デジタルカメラ、ビデオカメラ、デジタルビデオユニット、パーソナルコンピュータ、モバイルコンピュータ、携帯電話、情報携帯端末等に内蔵又は外付けされる)に関するものである。   The present invention relates to a variable magnification optical system and an imaging apparatus using the same, and in particular, a compact variable magnification optical system and an electronic apparatus (for example, a digital camera, a video camera, a digital camera) including the compact variable magnification optical system. Video unit, personal computer, mobile computer, mobile phone, portable information terminal, etc.).

近年、PDAと呼ばれる情報携帯端末や携帯電話が爆発的に普及し、撮像素子にCCD(Charge Coupled Device )やCMOS(Complementary Metal Oxide Semiconductor )センサーを使ったコンパクトなデジタルカメラやデジタルビデオユニットを内蔵したものも増えてきている。最近、比較的小さなサイズで高画素(メガピクセル)な撮像素子が開発されるようになり、小型で高性能な光学系が必要とされるようになった。   In recent years, personal digital assistants and mobile phones called PDAs have exploded in popularity, and built-in compact digital cameras and digital video units using CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) sensors as image sensors. Things are also increasing. Recently, an image sensor having a relatively small size and a high pixel (megapixel) has been developed, and a small and high-performance optical system has been required.

従来、小型な光学系の1つとして、特許文献1や特許文献2のものがあげられる。これらは、負正正の3群3枚構成の変倍光学系である。また、負先行の小型変倍光学系としては、特許文献3のものがあげられる。また、負正負の3群3枚構成の変倍光学系としては、特許文献4や特許文献5のものがあげられる。
特開2002−55278号公報 特開2003−177314号公報 特開2004−226691号公報 特開平3−260611号公報 特開2004−133058号公報
Conventionally, as one of small optical systems, there are those disclosed in Patent Document 1 and Patent Document 2. These are variable-magnification optical systems having a three-group three-element configuration that is positive / negative. Moreover, as a negative leading compact variable power optical system, the one of Patent Document 3 can be cited. Further, examples of the variable magnification optical system having a three-group three-element configuration of negative positive and negative are those of Patent Document 4 and Patent Document 5.
JP 2002-55278 A JP 2003-177314 A Japanese Patent Application Laid-Open No. 2004-226691 JP-A-3-260611 JP 2004-133058 A

しかし、特許文献1、特許文献2に記載のものは、撮像素子高が1.3mm程度の電子機器用小型変倍光学系であり、軸外収差補正が十分でなく、光学性能はVGA(撮像素子の画素数が30万程度)レベルと低く、光学系内のパワー配置が非対称による収差が出やすい。また、特許文献3に記載のものは、撮像素子高が1mm程度の超小型撮像素子に対応した変倍光学系であり、第3レンズ群を正屈折力レンズか負屈折力レンズで構成しているが、光学性能はVGA(撮像素子の画素数が30万程度)レベルと低く、光学系内のパワー配置が非対称による収差が出やすい。若しくは、第3レンズ群が像側に近く、小型化に不利なものである。特許文献4に記載のものは、銀塩カメラ用の変倍光学系であり、光学性能はSXGA(画素数が100万程度)レベルと高性能であるが、バックフォーカスが短く、第3レンズ群が大きくなりやすく、小型化に不利という欠点がある。特許文献5に記載のものは、負正負の3群構成であるが、第2レンズ群を正レンズと負レンズとの接合レンズで構成しているために、光学系が大きくなる欠点がある。また、この先行技術は撮像素子高が1.6mm程度で、光学性能はVGA(撮像素子の画素数が30万程度)レベルと低く、高性能とは言い難い。   However, the devices described in Patent Document 1 and Patent Document 2 are small variable power optical systems for electronic devices having an image sensor height of about 1.3 mm, and the correction of off-axis aberration is insufficient, and the optical performance is VGA (imaging). The number of pixels of the element is as low as about 300,000), and aberrations due to asymmetry of the power arrangement in the optical system are likely to occur. Further, the one described in Patent Document 3 is a variable magnification optical system corresponding to an ultra-small image pickup device having an image pickup device height of about 1 mm, and the third lens group is constituted by a positive refractive power lens or a negative refractive power lens. However, the optical performance is as low as VGA (the number of pixels of the image sensor is about 300,000), and aberration due to asymmetry of the power arrangement in the optical system is likely to occur. Alternatively, the third lens group is close to the image side, which is disadvantageous for miniaturization. Patent Document 4 describes a variable power optical system for a silver salt camera, which has an optical performance as high as SXGA (the number of pixels is about 1 million), but has a short back focus and a third lens group. Tends to be large, and has the disadvantage of being disadvantageous for miniaturization. Although the thing of patent document 5 is negative / positive / negative 3 group structure, since the 2nd lens group is comprised by the cemented lens of the positive lens and the negative lens, there exists a fault to which an optical system becomes large. Further, this prior art has an image sensor height of about 1.6 mm, and its optical performance is as low as VGA (the number of pixels of the image sensor is about 300,000), which is not high performance.

本発明は従来技術のこのような状況に鑑みてなされたものであって、その目的は、構成枚数が少く、小型で高性能な変倍光学系及びそれを搭載した電子機器を提供することである。   The present invention has been made in view of such a situation in the prior art, and an object of the present invention is to provide a small, high-performance variable magnification optical system having a small number of components, and an electronic apparatus including the same. is there.

上記目的を達成する本発明の変倍光学系は、物体側から順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群と負の屈折力の第3レンズ群よりなり、少なくとも第2レンズ群と第3レンズ群を移動させて各群間間隔を変えることで変倍を行う変倍光学系であって、
前記負の第1レンズ群は負レンズ1枚で構成され、
前記正の第2レンズ群は正レンズ1枚で構成され、
前記負の第3レンズ群は負レンズ1枚で構成され、
前記第3レンズ群の負レンズが凹面を像面側に向けた負メニスカス形状であり、
前記第1レンズ群と前記第2レンズ群の屈折力が以下の条件式(3)、(3−2)’を満足することを特徴とするものである。
1.8<|f1 |/f2 <6.5 ・・・(3)
1.9<|f1 (t)|/f2 ≦2.37 ・・・(3−2)’
ただし、f1 は第1レンズ群の焦点距離、
2 は第2レンズ群の焦点距離、
1 (t)は第1レンズ群の望遠端での焦点距離、
である。
The variable magnification optical system of the present invention that achieves the above object comprises, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. A zooming optical system for zooming by moving at least the second lens group and the third lens group to change the interval between the groups,
The negative first lens group is composed of one negative lens,
The positive second lens group includes one positive lens,
The negative third lens group is composed of one negative lens,
The negative lens of the third lens group has a negative meniscus shape with the concave surface facing the image plane side;
The refractive powers of the first lens group and the second lens group satisfy the following conditional expressions (3) and (3-2) ′.
1.8 <| f 1 | / f 2 <6.5 (3)
1.9 <| f 1 (t) | / f 2 ≦ 2.37 (3-2) ′
Where f 1 is the focal length of the first lens group,
f 2 is the focal length of the second lens group,
f 1 (t) is the focal length at the telephoto end of the first lens group,
It is.

本発明において上記構成をとる理由とその作用効果を以下に説明する。   The reason why the above configuration is adopted in the present invention and the function and effect thereof will be described below.

電子機器に搭載する光学系は撮像素子やフィルター類を像側に装備しているために、比較的長いバックフオーカスが必要となり、そのために有利な光学系としては、負先行のレトロフォーカス構成が最適である。   Since the optical system mounted on electronic equipment is equipped with an image sensor and filters on the image side, a relatively long back focus is required, and as an advantageous optical system there is a negative leading retrofocus configuration. Is optimal.

本発明では、第1レンズ群に負の屈折力を配置することで、広角化及び比較的長いバックフォーカスを得るのに有利な構成としている。また、各群をレンズ1枚構成とすることで、沈胴時の光学系の全長をより短くできる。また、光学系の主たるパワーを持つ第2レンズ群は強い正の屈折力を有するレンズとなるので、第1レンズ群の負レンズで発生する負作用の諸収差を良好に補正できる。また、第3レンズ群を負の屈折力を有する1枚のレンズで構成することで、第2レンズ群の正レンズで補正し切れない諸収差、特に軸外の諸収差を良好に補正している。第3レンズ群を正レンズ1枚で構成する場合は、収差補正上第2レンズ群内に正レンズと負レンズが必要になり、第2レンズ群が大型化し、光学系全体の大型化につながり好ましくない。さらに、本発明では、第3レンズ群の負レンズ形状を凹面を像面側に向けた負メニスカス形状とすることで、主点位置をより後方に設定して第3レンズ群を像面から適度に離すことができ、第3レンズ群の小型化と、フィルター類や撮像素子を装備できるバックフォーカスを確保している。   In the present invention, a negative refracting power is arranged in the first lens group, which is advantageous for widening the angle and obtaining a relatively long back focus. In addition, by configuring each group with one lens, the total length of the optical system when retracted can be further shortened. Further, since the second lens group having the main power of the optical system is a lens having a strong positive refractive power, it is possible to satisfactorily correct various aberrations of the negative action generated in the negative lens of the first lens group. In addition, by configuring the third lens group with a single lens having negative refractive power, various aberrations that cannot be corrected with the positive lens of the second lens group, particularly various off-axis aberrations, can be corrected well. Yes. When the third lens group is composed of one positive lens, a positive lens and a negative lens are required in the second lens group for aberration correction, and the second lens group becomes larger, leading to an increase in the size of the entire optical system. It is not preferable. Furthermore, in the present invention, the negative lens shape of the third lens group is a negative meniscus shape with the concave surface facing the image plane side, so that the principal point position is set further rearward so that the third lens group is appropriately positioned from the image plane. The third lens unit can be made compact, and a back focus that can be equipped with filters and an image sensor is secured.

以上の本発明の変倍光学系において、第3レンズ群の負レンズのシェイピングファクターが以下の条件式(1)を満足することが望ましい。   In the above variable magnification optical system of the present invention, it is desirable that the shaping factor of the negative lens in the third lens group satisfies the following conditional expression (1).

以上の本発明の変倍光学系において、第3レンズ群の負レンズのシェイピングファクターが以下の条件式(1)を満足することが望ましい。
1.0<(r6 +r7 )/(r6 −r7 )<2.0 ・・・(1)
ただし、r6 、r7 はそれぞれ第3レンズ群の負レンズの物体側面と像側面の軸上曲率半径である。
In the above variable magnification optical system of the present invention, it is desirable that the shaping factor of the negative lens in the third lens group satisfies the following conditional expression (1).
1.0 <(r 6 + r 7 ) / (r 6 −r 7 ) <2.0 (1)
Here, r 6 and r 7 are axial curvature radii of the object side surface and the image side surface of the negative lens of the third lens group, respectively.

本発明では、第3レンズ群を構成する負屈折力のレンズ形状を像面側に凹面を向けた負メニスカス形状としているが、そのレンズのシェイピングファクターを条件式(1)を満足するようにすることで、軸外諸収差、特に像面湾曲収差やコマ収差を良好に補正することが可能となる。条件式(1)の上限の2.0を越えると、像面側面であるr7 で発生する収差量が大きく、軸外収差、特に像面湾曲収差が補正困難になり好ましくない。下限の1.0を越えると、第3レンズ群の負屈折力が弱くなり、第3レンズ群で諸収差が補正し切れない。 In the present invention, the lens shape of the negative refractive power constituting the third lens group is a negative meniscus shape with the concave surface facing the image surface side, and the shaping factor of the lens is set to satisfy the conditional expression (1). Thus, it is possible to satisfactorily correct off-axis aberrations, particularly field curvature aberration and coma aberration. Exceeding the upper limit of 2.0 of conditional expression (1) is not preferable because the amount of aberration generated at r 7 that is the side surface of the image surface is large and off-axis aberrations, particularly field curvature aberrations, are difficult to correct. When the lower limit of 1.0 is exceeded, the negative refractive power of the third lens group becomes weak, and various aberrations cannot be corrected by the third lens group.

さらに、本発明では、第3レンズ群の負レンズのシェイピングファクターを次の条件式(1−2)内とすることで、軸外諸収差、特に像面湾曲収差とコマ収差をより良好にすることが可能となり、好ましい。   Furthermore, in the present invention, by setting the shaping factor of the negative lens of the third lens group within the following conditional expression (1-2), various off-axis aberrations, particularly field curvature aberration and coma aberration are made better. Is possible and preferable.

1.0<(r6 +r7 )/(r6 −r7 )<1.6 ・・・(1−2)
また、レンズ全長が以下の条件式(2)を満足することが望ましい。
1.0 <(r 6 + r 7 ) / (r 6 −r 7 ) <1.6 (1-2)
It is desirable that the total lens length satisfies the following conditional expression (2).

1.9<TLw /fw <3.1 ・・・(2)
ただし、TLw は広角端でのレンズ全長(第1面から像面までの距離)、
w は広角端における全系焦点距離、
である。
1.9 <TL w / f w <3.1 (2)
Where TL w is the total lens length at the wide-angle end (distance from the first surface to the image plane),
f w is the focal length of the entire system at the wide-angle end,
It is.

条件式(2)の下限の1.9を越えると、バックフォーカスの確保が困難になり、撮像素子ユニットやフィルター類を配置するスペースがとれなくなる。上限の3.1を越えると、性能を確保するには有利になるが、光学系が大きくなりすぎ、小型な光学系を提供できなくなり、好ましくない。   If the lower limit of 1.9 of conditional expression (2) is exceeded, it will be difficult to ensure back focus, and space for arranging the image sensor unit and filters will not be available. If the upper limit of 3.1 is exceeded, it is advantageous for ensuring the performance, but the optical system becomes too large and a small optical system cannot be provided, which is not preferable.

また、第1レンズ群と第2レンズ群の屈折力が以下の条件式(3)を満足することが望ましい。   Further, it is desirable that the refractive powers of the first lens group and the second lens group satisfy the following conditional expression (3).

1.8<|f1 |/f2 <6.5 ・・・(3)
ただし、f1 は第1レンズ群の焦点距離、
2 は第2レンズ群の焦点距離、
である。
1.8 <| f 1 | / f 2 <6.5 (3)
Where f 1 is the focal length of the first lens group,
f 2 is the focal length of the second lens group,
It is.

条件式(3)の上限の6.5を越えると、第2レンズ群の屈折力が強くなり、変倍光学系全体の小型化には有利になるが、第2レンズ群内での収差発生量が増え、収差補正上好ましくない。特にコマ収差補正が困難になり、高画質性能が確保できなくなる。下限の1.8を越えると、第2レンズ群の屈折力が弱くなり、第1レンズ群で発生する諸収差を良好に補正できなくなり、好ましくない。特に軸外収差の像面湾曲収差が補正困難になり、高画質性能を確保できなくなる。   If the upper limit of 6.5 of conditional expression (3) is exceeded, the refractive power of the second lens group becomes strong, which is advantageous for downsizing the entire variable magnification optical system, but aberrations occur in the second lens group. The amount increases, which is not preferable for aberration correction. In particular, correction of coma aberration becomes difficult, and high image quality performance cannot be secured. If the lower limit of 1.8 is exceeded, the refractive power of the second lens group becomes weak, and various aberrations occurring in the first lens group cannot be corrected well, which is not preferable. In particular, it becomes difficult to correct the curvature of field, which is an off-axis aberration, and it becomes impossible to ensure high image quality performance.

さらに、本発明では、第1レンズ群と第2レンズ群の屈折力を次の条件式(3−2)内とすることで、望遠端における球面収差及び軸外像面湾曲収差をより良好に補正することが可能となり、好ましい。   Further, in the present invention, the refractive power of the first lens group and the second lens group is set within the following conditional expression (3-2), so that spherical aberration and off-axis field curvature aberration at the telephoto end are improved. This can be corrected and is preferable.

1.9<|f1 (t)|/f2 <2.8 ・・・(3−2)
ただし、f1 (t)は第1レンズ群の望遠端での焦点距離、
2 は第2レンズ群の焦点距離、
である。
1.9 <| f 1 (t) | / f 2 <2.8 (3-2)
Where f 1 (t) is the focal length at the telephoto end of the first lens group,
f 2 is the focal length of the second lens group,
It is.

また、第3レンズ群を構成する負レンズが以下の条件式(4)を満足することが望ましい。   Moreover, it is desirable that the negative lens constituting the third lens group satisfies the following conditional expression (4).

0.4<r7 /fw <1.0 ・・・(4)
ただし、r7 は第3レンズ群の負レンズの像側面の軸上曲率半径、
w は広角端における全系焦点距離、
である。
0.4 <r 7 / f w <1.0 (4)
Where r 7 is the on-axis radius of curvature of the image side surface of the negative lens in the third lens group,
f w is the focal length of the entire system at the wide-angle end,
It is.

条件式(4)の下限の0.4を越えると、第3レンズ群の負レンズの像側面でのコマ収差発生量が増大し、周辺部の性能悪化の一因となる。上限の1.0を越えると、その面での負成分収差が小さくなりすぎて、他のレンズ要素で発生する正成分の球面収差を補正し切れなくなり、好ましくない。   If the lower limit of 0.4 of conditional expression (4) is exceeded, the amount of coma aberration generated on the image side surface of the negative lens in the third lens group will increase, causing a deterioration in the performance of the peripheral portion. Exceeding the upper limit of 1.0 is not preferable because negative component aberration on the surface becomes too small to correct positive component spherical aberration generated in other lens elements.

また、以下の条件式(5)を満足することが望ましい。   Moreover, it is desirable that the following conditional expression (5) is satisfied.

0.4<(G23L)/Y’<1.1 ・・・(5)
ただし、Y’は最大像高(有効撮像領域の対角長の半分の長さ)、
G23Lは第2レンズ群と第3レンズ群を構成するレンズの光軸上の厚さの合計、
である。
0.4 <(G23L) / Y ′ <1.1 (5)
Where Y ′ is the maximum image height (half the diagonal length of the effective imaging area),
G23L is the total thickness on the optical axis of the lenses constituting the second lens group and the third lens group,
It is.

条件式(5)の上限の1.1を越えると、第2レンズ群の全長が大きくなり、光学系の全体の大型化の一因となる。下限の0.4を越えて小さくなると、小型化には有利となるが、径に対しレンズが薄くなり破損しやすくなる等、加工組み立て上望ましくない。   If the upper limit of 1.1 of conditional expression (5) is exceeded, the total length of the second lens group will increase, contributing to an increase in the overall size of the optical system. If the value exceeds the lower limit of 0.4, it is advantageous for downsizing, but it is not desirable in terms of processing and assembly because the lens becomes thinner and more easily damaged with respect to its diameter.

また、第1レンズ群の負レンズが屈折力可変光学素子であることが望ましい。   Further, it is desirable that the negative lens of the first lens group is a refractive power variable optical element.

本発明では、第1レンズ群である負屈折力レンズを屈折力可変レンズとすることで、第1レンズ群内での負作用収差発生量をコントロールし、変倍の全域における諸収差を良好に補正している。広角側では、第1レンズ群の負屈折力を弱めることで、光学系の変倍効果を負担し、同時に広角時マイナスに大きくなる歪曲収差を良好に補正している。また、望遠側では、第1レンズ群の負屈折力を強くすることで、光学系の変倍効果を負担し、同時に望遠時にマイナスに大きくなる球面収差を良好に補正している。   In the present invention, the negative refractive power lens that is the first lens group is a variable refractive power lens, so that the amount of negative action aberration in the first lens group is controlled, and various aberrations in the entire zoom range are improved. It is corrected. On the wide-angle side, the negative refracting power of the first lens group is weakened to bear the magnification effect of the optical system, and at the same time, distortion that becomes negative at wide-angle is corrected well. On the telephoto side, the negative refracting power of the first lens group is strengthened to bear the zooming effect of the optical system, and at the same time, spherical aberration that becomes negative during telephoto is corrected well.

第1レンズ群の負レンズに屈折力可変光学素子を用いる場合に、その屈折力可変光学素子が、以下の条件式を満足することが望ましい。   When a variable power optical element is used for the negative lens of the first lens group, it is desirable that the variable power optical element satisfies the following conditional expression.

0.07<|φ1 |<0.27 ・・・(6)
ただし、φ1 は屈折力可変光学素子の屈折力である。
0.07 <| φ 1 | <0.27 (6)
Here, φ 1 is the refractive power of the refractive power variable optical element.

条件式(6)の上限の0.27を越えると、その屈折力可変光学素子の屈折力が強くなりすぎて軸外収差、特に広角端における歪曲収差等の補正が困難になる。また、下限の0.07を越えると、全長が長くなりすぎて大型化してしまう。   When the upper limit of 0.27 in conditional expression (6) is exceeded, the refractive power of the variable refractive power optical element becomes too strong, making it difficult to correct off-axis aberrations, particularly distortion at the wide-angle end. On the other hand, if the lower limit of 0.07 is exceeded, the overall length becomes too long and the size is increased.

また、第1レンズ群の負レンズを移動させてフォーカシングを行うことが望ましい。   Further, it is desirable to perform focusing by moving the negative lens of the first lens group.

第1レンズ群である負の第1レンズを移動させフォーカシングを行うと、距離変化に対しての収差変動が少なく好ましい。   It is preferable to move the negative first lens, which is the first lens group, to perform focusing so that aberration variation with respect to a change in distance is small.

第1レンズ群の負レンズに屈折力可変光学素子を用いる場合に、その屈折力可変光学素子の屈折力を変化させてフォーカシングを行うことができる。この場合、フォーカシング時の移動群機構が不要になり、シンプルな鏡枠構成が可能となる。   When a variable refractive power optical element is used for the negative lens of the first lens group, focusing can be performed by changing the refractive power of the variable refractive power optical element. In this case, a moving group mechanism at the time of focusing becomes unnecessary, and a simple lens frame configuration is possible.

本発明は、以上の何れかの変倍光学系と、その変倍光学系の像側に配置された撮像素子とを備えてなる撮像装置を含むものである。このような構成により、上述の変倍光学系と同様の作用効果が得られる。   The present invention includes an imaging apparatus including any of the above variable magnification optical systems and an image sensor disposed on the image side of the variable magnification optical system. With such a configuration, the same effect as that of the above-described variable magnification optical system can be obtained.

以上の本発明によって、構成枚数が少く、小型で高性能な変倍光学系及びそれを搭載した電子機器が得られる。   According to the present invention described above, a compact and high-performance variable magnification optical system having a small number of components and an electronic device equipped with the same can be obtained.

以下、本発明の変倍光学系の実施例1〜5について説明する。実施例1〜5の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図5に示す。図中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、赤外光を制限する波長域制限コートを施したローパスフィルター等を構成する平行平板はF、像面はIで示してある。   Examples 1 to 5 of the variable magnification optical system of the present invention will be described below. FIGS. 1 to 5 show lens cross-sectional views of the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 5, respectively. In the figure, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, and a parallel plate constituting a low-pass filter or the like with a wavelength range limiting coat that limits infrared light. Is denoted by F and the image plane is denoted by I.

実施例1〜5は、撮像素子高が2.3mm程度の電子機器用変倍光学系であり、何れも、物体側から順に、凹面を像面側に向けた負屈折力レンズ、絞り、両凸の正屈折力レンズ、像側に凹面を向けた負屈折力のメニスカスレンズで構成し、第2レンズ群G2と第3レンズ群G3を移動させ各群間距離を変えることで変倍を行っている。   Examples 1 to 5 are variable magnification optical systems for electronic equipment having an image pickup element height of about 2.3 mm. All of these examples are, in order from the object side, a negative refractive power lens having a concave surface directed to the image plane side, an aperture, and both Consists of a convex positive refracting lens and a negative refracting meniscus lens with the concave surface facing the image side, and zooming is performed by moving the second lens group G2 and the third lens group G3 to change the distance between each group. ing.

なお、実施例1、2、5の第1レンズ群G1を構成する第1負レンズは変倍に伴い屈折力が変化する液晶レンズ(屈折力可変素子)で構成されている。   The first negative lens constituting the first lens group G1 of Examples 1, 2, and 5 is composed of a liquid crystal lens (refractive power variable element) whose refractive power changes with zooming.

また、実施例3の歪曲収差は、電子撮像素子で受光後、画像処理等で補正することを前提としている。   Further, it is assumed that the distortion aberration of the third embodiment is corrected by image processing after receiving light by the electronic image sensor.

実施例4の第1レンズ群G1を構成する第1負レンズは変倍に伴い形状が変化する可変形状レンズ(屈折力可変素子)で構成されている。   The first negative lens constituting the first lens group G1 of Example 4 is composed of a variable shape lens (refractive power variable element) whose shape changes with zooming.

実施例1の変倍光学系は、図1に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は固定で、第2レンズ群G2は開口絞りSと一体に物体側に移動し、第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 1, the variable magnification optical system of Example 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, The zoom lens includes a third lens group G3 having negative refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, and the second lens group G2 is an aperture stop S. The third lens group G3 moves to the object side while increasing the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズからなり、その屈折率が広角端から望遠端への変倍の際に増加する。第2レンズ群G2は、両凸正レンズからなり、第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズからなる。非球面は、第1レンズ群G1の負メニスカスレンズの両面と、第2レンズ群G2の両凸正レンズの両面と、第3レンズ群G3の負メニスカスレンズの像面側の面との5面に用いている。   In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side, and its refractive index increases upon zooming from the wide-angle end to the telephoto end. The second lens group G2 is composed of a biconvex positive lens, and the third lens group G3 is composed of a negative meniscus lens having a convex surface facing the object side. The aspherical surfaces are five surfaces including both surfaces of the negative meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the negative meniscus lens of the third lens group G3. Used for.

実施例2の変倍光学系は、図2に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は固定で、第2レンズ群G2は開口絞りSと一体に物体側に移動し、第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 2, the variable magnification optical system of Example 2 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, The zoom lens includes a third lens group G3 having negative refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, and the second lens group G2 is an aperture stop S. The third lens group G3 moves to the object side while increasing the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズからなり、その屈折率が広角端から望遠端への変倍の際に増加する。第2レンズ群G2は、両凸正レンズからなり、第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズからなる。非球面は、第1レンズ群G1の負メニスカスレンズの両面と、第2レンズ群G2の両凸正レンズの両面と、第3レンズ群G3の負メニスカスレンズの像面側の面との5面に用いている。   In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side, and its refractive index increases upon zooming from the wide-angle end to the telephoto end. The second lens group G2 is composed of a biconvex positive lens, and the third lens group G3 is composed of a negative meniscus lens having a convex surface facing the object side. The aspherical surfaces are five surfaces including both surfaces of the negative meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the negative meniscus lens of the third lens group G3. Used for.

実施例3の変倍光学系は、図3に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は固定で、第2レンズ群G2は開口絞りSと一体に物体側に移動し、第3レンズ群G3は第2レンズ群G2との間隔を一旦縮め次いで広げながら物体側に移動する。   As shown in FIG. 3, the variable magnification optical system of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, The zoom lens includes a third lens group G3 having negative refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, and the second lens group G2 is an aperture stop S. The third lens group G3 moves toward the object side, and the third lens group G3 moves toward the object side while once reducing the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズからなり、第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズからなる。非球面は、第1レンズ群G1の負メニスカスレンズの両面と、第2レンズ群G2の両凸正レンズの両面と、第3レンズ群G3の負メニスカスレンズの像面側の面との5面に用いている。   In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, the second lens group G2 is composed of a biconvex positive lens, and the third lens group G3 is convex on the object side. It consists of a negative meniscus lens. The aspherical surfaces are five surfaces including both surfaces of the negative meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the negative meniscus lens of the third lens group G3. Used for.

実施例4の変倍光学系は、図4に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は固定で、第2レンズ群G2は開口絞りSと一体に物体側に移動し、第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 4, the zoom optical system of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, The zoom lens includes a third lens group G3 having negative refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, and the second lens group G2 is an aperture stop S. The third lens group G3 moves to the object side while increasing the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズからなり、その第2面の曲率半径が広角端から望遠端への変倍の際に減少し、第1面と第2面の面間隔も減少する。第2レンズ群G2は、両凸正レンズからなり、第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズからなる。非球面は、第1レンズ群G1の負メニスカスレンズの両面と、第2レンズ群G2の両凸正レンズの両面と、第3レンズ群G3の負メニスカスレンズの像面側の面との5面に用いている。   In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side. The radius of curvature of the second surface decreases upon zooming from the wide-angle end to the telephoto end. The distance between the surface and the second surface is also reduced. The second lens group G2 is composed of a biconvex positive lens, and the third lens group G3 is composed of a negative meniscus lens having a convex surface facing the object side. The aspherical surfaces are five surfaces including both surfaces of the negative meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the negative meniscus lens of the third lens group G3. Used for.

実施例5の変倍光学系は、図5に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成されており、開口絞りは第2レンズ群G2を構成する両凸正レンズの物体側の面に設けられている。広角端から望遠端への変倍をする際に、第1レンズ群G1は固定で、第2レンズ群G2は物体側に移動し、第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 5, the variable magnification optical system of Example 5 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a negative refractive power. The aperture stop is provided on the object-side surface of the biconvex positive lens constituting the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, and the third lens group G3 is spaced from the second lens group G2. Move to the object side while spreading.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズからなり、その屈折率が広角端から望遠端への変倍の際に増加する。第2レンズ群G2は、両凸正レンズからなり、第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズからなる。非球面は、第1レンズ群G1の負メニスカスレンズの両面と、第2レンズ群G2の両凸正レンズの両面と、第3レンズ群G3の負メニスカスレンズの像面側の面との5面に用いている。   In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side, and its refractive index increases upon zooming from the wide-angle end to the telephoto end. The second lens group G2 is composed of a biconvex positive lens, and the third lens group G3 is composed of a negative meniscus lens having a convex surface facing the object side. The aspherical surfaces are five surfaces including both surfaces of the negative meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the negative meniscus lens of the third lens group G3. Used for.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、FIYは像高、ωは半画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, FIY image height, omega half field angle, WE denotes a wide angle end, ST Is an intermediate state, TE is a telephoto end, r 1 , r 2, are curvature radii of lens surfaces, d 1 , d 2, are intervals between the lens surfaces, n d1 , n d2, are d lines of each lens Refractive index, ν d1 , ν d2 ... Is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A2 2 +A44 +A66 +A88
ただし、rは近軸曲率半径、Kは円錐係数、A2 、A4 、A6 、A8 はそれぞれ2次、4次、6次、8次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 2 y 2 + A 4 y 4 + A 6 y 6 + A 8 y 8
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 2 , A 4 , A 6 , and A 8 are second-order, fourth-order, sixth-order, and eighth-order aspheric coefficients, respectively.

なお、以下の実施例の数値データ中、長さを示す値はmm単位の長さである。   In the numerical data of the following examples, the value indicating the length is the length in mm.


実施例1
1 = 26.751 (非球面) d1 = 0.50 nd1 =(可変)νd1 =(可変)
2 = 3.372 (非球面) d2 = (可変)
3 = ∞(絞り) d3 = 0.29
4 = 2.017 (非球面) d4 = 0.88 nd2 =1.74716 νd2 =52.76
5 = -5.122 (非球面) d5 = (可変)
6 = 9.395 d6 = 0.54 nd3 =1.84700 νd3 =24.00
7 = 1.928 (非球面) d7 = (可変)
8 = ∞ d8 = 0.50 nd4 =1.51633 νd4 =64.14
9 = ∞ d9 = 0.50
10= ∞(像面)
非球面係数
第1面
K = 0
4 = -3.7730 ×10-3
6 = 2.3022 ×10-3
8 = -1.9976 ×10-4
第2面
K = 0
4 = 5.2428 ×10-4
6 = 3.6118 ×10-3
8 = 4.9284 ×10-4
第4面
K = -1.0229
4 = 6.2154 ×10-3
6 = -5.1160 ×10-3
8 = 0.0000
第5面
K = 0
4 = 4.3196 ×10-3
6 = -7.9105 ×10-3
8 = 2.3019 ×10-3
第7面
K = -0.4034
4 = 3.6964 ×10-2
6 = 4.3544 ×10-2
8 = -1.6171 ×10-2
ズームデータ(∞)
WE ST TE
f (mm) 3.60 5.10 7.20
NO 2.80 3.81 4.57
FIY (mm) 2.25 2.25 2.25
2 3.51 1.98 0.89
5 0.11 0.20 0.37
7 2.70 4.14 5.06
1 1.48000 1.75306 1.82000
ν1 56.5 53.3 52.5
1 -8.09 -5.17 -4.75
φ1 -0.12 -0.19 -0.21 。

Example 1
r 1 = 26.751 (aspherical surface) d 1 = 0.50 n d1 = (variable) ν d1 = (variable)
r 2 = 3.372 (aspherical surface) d 2 = (variable)
r 3 = ∞ (aperture) d 3 = 0.29
r 4 = 2.017 (aspherical surface) d 4 = 0.88 n d2 = 1.74716 ν d2 = 52.76
r 5 = -5.122 (aspherical surface) d 5 = (variable)
r 6 = 9.395 d 6 = 0.54 n d3 = 1.84700 ν d3 = 24.00
r 7 = 1.928 (aspherical surface) d 7 = (variable)
r 8 = ∞ d 8 = 0.50 n d4 = 1.51633 ν d4 = 64.14
r 9 = ∞ d 9 = 0.50
r 10 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0
A 4 = -3.7730 × 10 -3
A 6 = 2.3022 × 10 -3
A 8 = -1.9976 × 10 -4
Second side K = 0
A 4 = 5.2428 × 10 -4
A 6 = 3.6118 × 10 -3
A 8 = 4.9284 × 10 -4
4th surface K = -1.0229
A 4 = 6.2154 × 10 -3
A 6 = -5.1160 × 10 -3
A 8 = 0.0000
Fifth side K = 0
A 4 = 4.3196 × 10 -3
A 6 = -7.9105 × 10 -3
A 8 = 2.3019 × 10 -3
Surface 7 K = -0.4034
A 4 = 3.6964 × 10 -2
A 6 = 4.3544 × 10 -2
A 8 = -1.6171 × 10 -2
Zoom data (∞)
WE ST TE
f (mm) 3.60 5.10 7.20
F NO 2.80 3.81 4.57
FIY (mm) 2.25 2.25 2.25
d 2 3.51 1.98 0.89
d 5 0.11 0.20 0.37
d 7 2.70 4.14 5.06
n 1 1.48000 1.75306 1.82000
ν 1 56.5 53.3 52.5
f 1 -8.09 -5.17 -4.75
φ 1 -0.12 -0.19 -0.21.


実施例2
1 = 9.065 (非球面) d1 = 0.50 nd1 =(可変)νd1 =(可変)
2 = 2.565 (非球面) d2 = (可変)
3 = ∞(絞り) d3 = 0.23
4 = 2.009 (非球面) d4 = 0.82 nd2 =1.73792 νd2 =53.77
5 = -5.289 (非球面) d5 = (可変)
6 = 27.324 d6 = 0.61 nd3 =1.84700 νd3 =24.00
7 = 2.261 (非球面) d7 = (可変)
8 = ∞ d8 = 0.50 nd4 =1.51633 νd4 =64.14
9 = ∞ d9 = 0.50
10= ∞(像面)
非球面係数
第1面
K = 0
4 = -1.1146 ×10-2
6 = 3.4522 ×10-3
8 = -3.0779 ×10-4
第2面
K = 0
4 = -1.1417 ×10-2
6 = 6.1065 ×10-3
8 = -4.6860 ×10-5
第4面
K = -0.9282
4 = 7.7959 ×10-3
6 = -4.9582 ×10-3
8 = 0.0000
第5面
K = 0
4 = 6.7293 ×10-3
6 = -9.2563 ×10-3
8 = 2.7121 ×10-3
第7面
K = 0.5015
4 = 3.0181 ×10-2
6 = 4.3227 ×10-2
8 = -1.4779 ×10-2
ズームデータ(∞)
WE ST TE
f (mm) 3.60 5.10 7.20
NO 2.80 3.75 4.49
FIY (mm) 2.25 2.25 2.25
2 3.69 2.24 1.15
5 0.23 0.30 0.45
7 2.71 4.10 5.04
1 1.52000 1.73616 1.78000
ν1 50.5 49.6 49.5
1 -7.07 -5.02 -4.75
φ1 -0.14 -0.20 -0.21 。

Example 2
r 1 = 9.065 (aspherical surface) d 1 = 0.50 n d1 = (variable) ν d1 = (variable)
r 2 = 2.565 (aspherical surface) d 2 = (variable)
r 3 = ∞ (aperture) d 3 = 0.23
r 4 = 2.009 (aspherical surface) d 4 = 0.82 n d2 = 1.73792 ν d2 = 53.77
r 5 = -5.289 (aspherical surface) d 5 = (variable)
r 6 = 27.324 d 6 = 0.61 n d3 = 1.84700 ν d3 = 24.00
r 7 = 2.261 (aspherical surface) d 7 = (variable)
r 8 = ∞ d 8 = 0.50 n d4 = 1.51633 ν d4 = 64.14
r 9 = ∞ d 9 = 0.50
r 10 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0
A 4 = -1.1146 × 10 -2
A 6 = 3.4522 × 10 -3
A 8 = -3.0779 × 10 -4
Second side K = 0
A 4 = -1.1417 × 10 -2
A 6 = 6.1065 × 10 -3
A 8 = -4.6860 × 10 -5
4th surface K = -0.9282
A 4 = 7.7959 × 10 -3
A 6 = -4.9582 × 10 -3
A 8 = 0.0000
Fifth side K = 0
A 4 = 6.7293 × 10 -3
A 6 = -9.2563 × 10 -3
A 8 = 2.7121 × 10 -3
Surface 7 K = 0.5015
A 4 = 3.0181 × 10 -2
A 6 = 4.3227 × 10 -2
A 8 = -1.4779 × 10 -2
Zoom data (∞)
WE ST TE
f (mm) 3.60 5.10 7.20
F NO 2.80 3.75 4.49
FIY (mm) 2.25 2.25 2.25
d 2 3.69 2.24 1.15
d 5 0.23 0.30 0.45
d 7 2.71 4.10 5.04
n 1 1.52000 1.73616 1.78000
ν 1 50.5 49.6 49.5
f 1 -7.07 -5.02 -4.75
φ 1 -0.14 -0.20 -0.21.


実施例3
1 = 170.653 (非球面) d1 = 0.50 nd1 =1.52542 νd1 =55.78
2 = 2.807 (非球面) d2 = (可変)
3 = ∞(絞り) d3 = 0.00
4 = 1.898 (非球面) d4 = 1.14 nd2 =1.58313 νd2 =59.38
5 = -2.872 (非球面) d5 = (可変)
6 = 32.126 d6 = 0.50 nd3 =1.60687 νd3 =27.03
7 = 1.973 (非球面) d7 = (可変)
8 = ∞ d8 = 0.50 nd4 =1.51633 νd4 =64.14
9 = ∞ d9 = 0.50
10= ∞(像面)
非球面係数
第1面
K = 0
4 = -4.4751 ×10-2
6 = 4.4143 ×10-3
8 = 7.0371 ×10-4
第2面
K = 0
4 = -5.4025 ×10-2
6 = 5.0229 ×10-3
8 = 1.9408 ×10-3
第4面
K = -1.2270
4 = 9.7027 ×10-3
6 = 1.4144 ×10-2
8 = 0.0000
第5面
K = 0
4 = 6.5584 ×10-2
6 = -4.0609 ×10-3
8 = 5.2558 ×10-3
第7面
K = 2.0411
4 = -8.5633 ×10-2
6 = 3.0959 ×10-2
8 = -2.9048 ×10-2
ズームデータ(∞)
WE ST TE
f (mm) 3.60 6.22 7.20
NO 2.80 3.86 4.18
ω(°) 34.80 19.46 17.37
2 3.17 1.36 0.88
5 0.21 0.11 0.15
7 2.98 4.89 5.33 。

Example 3
r 1 = 170.653 (aspherical surface) d 1 = 0.50 n d1 = 1.52542 ν d1 = 55.78
r 2 = 2.807 (aspherical surface) d 2 = (variable)
r 3 = ∞ (aperture) d 3 = 0.00
r 4 = 1.898 (aspherical surface) d 4 = 1.14 n d2 = 1.58313 ν d2 = 59.38
r 5 = -2.872 (aspherical surface) d 5 = (variable)
r 6 = 32.126 d 6 = 0.50 n d3 = 1.60687 ν d3 = 27.03
r 7 = 1.973 (aspherical surface) d 7 = (variable)
r 8 = ∞ d 8 = 0.50 n d4 = 1.51633 ν d4 = 64.14
r 9 = ∞ d 9 = 0.50
r 10 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0
A 4 = -4.4751 × 10 -2
A 6 = 4.4143 × 10 -3
A 8 = 7.0371 × 10 -4
Second side K = 0
A 4 = -5.4025 × 10 -2
A 6 = 5.0229 × 10 -3
A 8 = 1.9408 × 10 -3
4th surface K = -1.2270
A 4 = 9.7027 × 10 -3
A 6 = 1.4144 × 10 -2
A 8 = 0.0000
Fifth side K = 0
A 4 = 6.5584 × 10 -2
A 6 = -4.0609 × 10 -3
A 8 = 5.2558 × 10 -3
Surface 7 K = 2.0411
A 4 = -8.5633 × 10 -2
A 6 = 3.0959 × 10 -2
A 8 = -2.9048 × 10 -2
Zoom data (∞)
WE ST TE
f (mm) 3.60 6.22 7.20
F NO 2.80 3.86 4.18
ω (°) 34.80 19.46 17.37
d 2 3.17 1.36 0.88
d 5 0.21 0.11 0.15
d 7 2.98 4.89 5.33.


実施例4
1 = 10.687 (非球面) d1 = (可変) nd1 =1.70269 νd1 =49.62
2 = (可変)(非球面) d2 = (可変)
3 = ∞(絞り) d3 = 0.26
4 = 2.058 (非球面) d4 = 0.81 nd2 =1.74100 νd2 =52.64
5 = -5.559 (非球面) d5 = (可変)
6 = 11.123 d6 = 0.82 nd3 =1.84666 νd3 =23.78
7 = 1.942 (非球面) d7 = (可変)
8 = ∞ d8 = 0.50 nd4 =1.51633 νd4 =64.14
9 = ∞ d9 = 0.50
10= ∞(像面)
非球面係数
第1面
K = 0
4 = -1.4506 ×10-2
6 = 3.3139 ×10-3
8 = -2.1979 ×10-4
第2面
K = 0
4 = (可変)
6 = (可変)
8 = (可変)
第4面
K = -1.0654
4 = 5.6061 ×10-3
6 = -4.2360 ×10-3
8 = 0.0000
第5面
K = 0
4 = 6.5699 ×10-3
6 = -8.6317 ×10-3
8 = 2.3784 ×10-3
第7面
K = 0.0590
4 = 2.6397 ×10-2
6 = 4.3305 ×10-2
8 = -1.5416 ×10-2
ズームデータ(∞)
WE ST TE
f (mm) 3.60 5.10 7.20
NO 2.76 4.13 5.05
FIY (mm) 2.25 2.25 2.25
1 0.76 0.52 0.50
2 3.73 2.15 1.05
5 0.15 0.23 0.41
7 1.98 3.72 4.65
2 4.503 2.792 2.560
4 (第2面) -1.6051×10-2 -1.7286×10-2 -1.8638×10-2
6 (第2面) 5.6250×10-3 5.5014×10-3 7.2142×10-3
8 (第2面) -2.8595×10-4 -1.8522×10-4 -1.2779×10-3
1 -11.67 -5.53 -4.92 。
φ1 -0.09 -0.18 -0.20

実施例5
1 = 11.019 (非球面) d1 = 0.50 nd1 =(可変)νd1 =(可変)
2 = 2.614 (非球面) d2 = (可変)
3 = 1.950 (非球面) d3 = 0.85 nd2 =1.76225 νd2 =51.25
(絞り)
4 = -4.595 (非球面) d4 = (可変)
5 = 55.017 d5 = 0.50 nd3 =1.84700 νd3 =24.00
6 = 2.126 (非球面) d6 = (可変)
7 = ∞ d7 = 0.50 nd4 =1.51633 νd4 =64.14
8 = ∞ d8 = 0.50
9 = ∞(像面)
非球面係数
第1面
K = 0
4 = -1.0007 ×10-2
6 = 4.2473 ×10-3
8 = -4.6301 ×10-4
第2面
K = 0
4 = -6.9714 ×10-3
6 = 7.8294 ×10-3
8 = -1.1709 ×10-5
第3面
K = -0.9283
4 = 7.1066 ×10-3
6 = -5.2297 ×10-3
8 = 0.0000
第4面
K = 0
4 = 6.7535 ×10-3
6 = -9.2607 ×10-3
8 = 3.2086 ×10-3
第6面
K = 0.4987
4 = 3.0255 ×10-2
6 = 5.5872 ×10-2
8 = -2.4416 ×10-2
ズームデータ(∞)
WE ST TE
f (mm) 3.60 5.10 7.20
NO 2.80 3.78 4.63
FIY (mm) 2.25 2.25 2.25
2 3.46 2.12 1.09
4 0.19 0.26 0.43
6 2.70 3.97 4.83
1 1.52000 1.71358 1.78000
ν1 50.5 49.6 49.5
1 -6.73 -4.92 -4.51
φ1 -0.15 -0.20 -0.22 。

Example 4
r 1 = 10.687 (aspherical surface) d 1 = (variable) n d1 = 1.70269 ν d1 = 49.62
r 2 = (variable) (aspherical surface) d 2 = (variable)
r 3 = ∞ (aperture) d 3 = 0.26
r 4 = 2.058 (aspherical surface) d 4 = 0.81 n d2 = 1.74100 ν d2 = 52.64
r 5 = -5.559 (aspherical surface) d 5 = (variable)
r 6 = 11.123 d 6 = 0.82 n d3 = 1.84666 ν d3 = 23.78
r 7 = 1.942 (aspherical surface) d 7 = (variable)
r 8 = ∞ d 8 = 0.50 n d4 = 1.51633 ν d4 = 64.14
r 9 = ∞ d 9 = 0.50
r 10 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0
A 4 = -1.4506 × 10 -2
A 6 = 3.3139 × 10 -3
A 8 = -2.1979 × 10 -4
Second side K = 0
A 4 = (variable)
A 6 = (variable)
A 8 = (variable)
4th surface K = -1.0654
A 4 = 5.6061 × 10 -3
A 6 = -4.2360 × 10 -3
A 8 = 0.0000
Fifth side K = 0
A 4 = 6.5699 × 10 -3
A 6 = -8.6317 × 10 -3
A 8 = 2.3784 × 10 -3
Surface 7 K = 0.0590
A 4 = 2.6397 × 10 -2
A 6 = 4.3305 × 10 -2
A 8 = -1.5416 × 10 -2
Zoom data (∞)
WE ST TE
f (mm) 3.60 5.10 7.20
F NO 2.76 4.13 5.05
FIY (mm) 2.25 2.25 2.25
d 1 0.76 0.52 0.50
d 2 3.73 2.15 1.05
d 5 0.15 0.23 0.41
d 7 1.98 3.72 4.65
r 2 4.503 2.792 2.560
A 4 (2nd surface) -1.6051 × 10 -2 -1.7286 × 10 -2 -1.8638 × 10 -2
A 6 (2nd surface) 5.6250 × 10 -3 5.5014 × 10 -3 7.2142 × 10 -3
A 8 (2nd surface) -2.8595 × 10 -4 -1.8522 × 10 -4 -1.2779 × 10 -3
f 1 -11.67 -5.53 -4.92.
φ 1 -0.09 -0.18 -0.20

Example 5
r 1 = 11.019 (aspherical surface) d 1 = 0.50 n d1 = (variable) ν d1 = (variable)
r 2 = 2.614 (aspherical surface) d 2 = (variable)
r 3 = 1.950 (aspherical surface) d 3 = 0.85 n d2 = 1.76225 ν d2 = 51.25
(Aperture)
r 4 = -4.595 (aspherical surface) d 4 = (variable)
r 5 = 55.017 d 5 = 0.50 n d3 = 1.84700 ν d3 = 24.00
r 6 = 2.126 (aspherical surface) d 6 = (variable)
r 7 = ∞ d 7 = 0.50 n d4 = 1.51633 ν d4 = 64.14
r 8 = ∞ d 8 = 0.50
r 9 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0
A 4 = -1.0007 × 10 -2
A 6 = 4.2473 × 10 -3
A 8 = -4.6301 × 10 -4
Second side K = 0
A 4 = -6.9714 × 10 -3
A 6 = 7.8294 × 10 -3
A 8 = -1.1709 × 10 -5
Third side K = -0.9283
A 4 = 7.1066 × 10 -3
A 6 = -5.2297 × 10 -3
A 8 = 0.0000
4th surface K = 0
A 4 = 6.7535 × 10 -3
A 6 = -9.2607 × 10 -3
A 8 = 3.2086 × 10 -3
6th surface K = 0.4987
A 4 = 3.0255 × 10 -2
A 6 = 5.5872 × 10 -2
A 8 = -2.4416 × 10 -2
Zoom data (∞)
WE ST TE
f (mm) 3.60 5.10 7.20
F NO 2.80 3.78 4.63
FIY (mm) 2.25 2.25 2.25
d 2 3.46 2.12 1.09
d 4 0.19 0.26 0.43
d 6 2.70 3.97 4.83
n 1 1.52000 1.71358 1.78000
ν 1 50.5 49.6 49.5
f 1 -6.73 -4.92 -4.51
φ 1 -0.15 -0.20 -0.22.

以上の実施例1〜5の無限遠物点合焦時の収差図をそれぞれ図6〜図10に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端におけるの球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。なお、各収差図中、“FIY”は像高を、“ω”は半画角を表す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 5 are shown in FIGS. In these aberration diagrams, (a) is a wide angle end, (b) is an intermediate state, (c) is a spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration at a telephoto end ( CC). In each aberration diagram, “FIY” represents the image height, and “ω” represents the half angle of view.

上記実施例1〜5の条件式(1)〜(6)の値、及び、f1 の値は次の通りである。 The values of conditional expressions (1) to (6) and values of f 1 in Examples 1 to 5 are as follows.

条件式 実施例1 実施例2 実施例3 実施例4 実施例5
(1) 1.52 1.18 1.13 1.42 1.08
(2) 2.65 2.72 2.64 2.64 2.56
(3)広角端 3.95 3.41 2.35 5.50 3.53
望遠端 2.32 2.29 2.32 2.37
(3−2) 2.32 2.29 2.35 2.32 2.37
(4) 0.54 0.63 0.55 0.54 0.59
(5) 0.63 0.63 0.73 0.72 0.60
(6)広角端 -0.12 -0.14 -0.09 -0.15
望遠端 -0.21 -0.21 -0.20 -0.22
1 広角端 -8.09 -7.07 -11.67 -6.73
望遠端 -4.75 -4.75 -4.92 -4.51
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5
(1) 1.52 1.18 1.13 1.42 1.08
(2) 2.65 2.72 2.64 2.64 2.56
(3) Wide angle end 3.95 3.41 2.35 5.50 3.53
Telephoto end 2.32 2.29 2.32 2.37
(3-2) 2.32 2.29 2.35 2.32 2.37
(4) 0.54 0.63 0.55 0.54 0.59
(5) 0.63 0.63 0.73 0.72 0.60
(6) Wide angle end -0.12 -0.14 -0.09 -0.15
Telephoto end -0.21 -0.21 -0.20 -0.22
f 1 Wide angle end -8.09 -7.07 -11.67 -6.73
Telephoto end -4.75 -4.75 -4.92 -4.51
.

さて、以上のような本発明による変倍光学系で物体像を形成しその像をCCD等の撮像素子に受光させて撮影を行う電子撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   An example of an electronic photographing apparatus, particularly a digital camera, a video camera, and an information processing apparatus, which forms an object image with the variable magnification optical system according to the present invention as described above and receives the image on an image sensor such as a CCD. It can be used for personal computers, telephones, especially mobile phones that are convenient to carry. The embodiment is illustrated below.

図11〜図13は、本発明による変倍光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図11はデジタルカメラ40の外観を示す前方斜視図、図12は同後方正面図、図13はデジタルカメラ40の構成を示す模式的な透視平面図である。ただし、図11と図13においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図13の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1の変倍光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、IRカットコートを施したローパスフィルター及びカバーガラスFを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   FIGS. 11 to 13 are conceptual diagrams of a configuration in which the variable magnification optical system according to the present invention is incorporated in a photographing optical system 41 of a digital camera. 11 is a front perspective view showing the appearance of the digital camera 40, FIG. 12 is a rear front view thereof, and FIG. 13 is a schematic perspective plan view showing the configuration of the digital camera 40. However, in FIGS. 11 and 13, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, When the photographing optical system 41 is retracted, including the setting change switch 62, the photographing optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60 by sliding the cover 60. When the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 is brought into the non-collapsed state of FIG. 13, and when the shutter button 45 disposed on the upper part of the camera 40 is pressed, the photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the variable magnification optical system of the first embodiment. An object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49 through a low-pass filter with IR cut coating and a cover glass F. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と2つのプリズムからなり、撮影光学系41の変倍光学系に連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 is composed of a plurality of lens groups (three groups in the figure) and two prisms, and is composed of a zoom optical system in which the focal length changes in conjunction with the variable magnification optical system of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 which is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

このように構成されたデジタルカメラ40は、撮影光学系41が高性能で小型で沈胴収納が可能であるあるので、高性能・小型化が実現できる。   In the digital camera 40 configured in this manner, the photographing optical system 41 has a high performance and a small size and can be retracted, so that a high performance and a small size can be realized.

次に、本発明による変倍光学系が対物光学系として内蔵された情報処理装置の一例であるパソコンが図14〜図16に示される。図14はパソコン300のカバーを開いた前方斜視図、図15はパソコン300の撮影光学系303の断面図、図16は図14の状態の側面図である。図14〜図16に示されるように、パソコン300は、外部から繰作者が情報を入力するためのキーボード301と、図示を省略した情報処理手段や記録手段と、情報を操作者に表示するモニター302と、操作者自身や周辺の像を撮影するための撮影光学系303とを有している。ここで、モニター302は、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子や、CRTディスプレイ等であってよい。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Next, a personal computer which is an example of an information processing apparatus in which the variable magnification optical system according to the present invention is built as an objective optical system is shown in FIGS. 14 is a front perspective view with the cover of the personal computer 300 opened, FIG. 15 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 16 is a side view of the state of FIG. As shown in FIGS. 14 to 16, the personal computer 300 includes a keyboard 301 for a writer to input information from the outside, information processing means and recording means (not shown), and a monitor for displaying information to the operator. 302 and a photographing optical system 303 for photographing the operator himself and surrounding images. Here, the monitor 302 may be a transmissive liquid crystal display element that is illuminated from the back by a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front, a CRT display, or the like. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、本発明による変倍光学系(図では略記)からなる対物レンズ112と、像を受光する撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographing optical system 303 has an objective lens 112 made up of a variable magnification optical system (abbreviated in the drawing) according to the present invention and an image sensor chip 162 that receives an image on a photographing optical path 304. These are built in the personal computer 300.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中の変倍光学系の駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The driving mechanism for the variable magnification optical system in the lens frame 113 is not shown.

撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力され、電子画像としてモニター302に表示される、図14には、その一例として、操作者の撮影された画像305が示されている。また、この画像305は、処理手段を介し、インターネットや電話を介して、遠隔地から通信相手のパソコンに表示されることも可能である。   The object image received by the image sensor chip 162 is input to the processing means of the personal computer 300 via the terminal 166 and displayed on the monitor 302 as an electronic image. FIG. A rendered image 305 is shown. The image 305 can also be displayed on the personal computer of the communication partner from a remote location via the processing means, the Internet, or the telephone.

次に、本発明による変倍光学系が撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話が図17に示される。図17(a)は携帯電話400の正面図、図17(b)は側面図、図17(c)は撮影光学系405の断面図である。図17(a)〜(c)に示されるように、携帯電話400は、操作者の声を情報として入力するマイク部401と、通話相手の声を出力するスピーカ部402と、操作者が情報を入力する入力ダイアル403と、操作者自身や通話相手等の撮影像と電話番号等の情報を表示するモニター404と、撮影光学系405と、通信電波の送信と受信を行うアンテナ406と、画像情報や通信情報、入力信号等の処理を行う処理手段(図示せず)とを有している。ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置は、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配置された本発明による変倍光学系(図では略記)からなる対物レンズ112と、物体像を受光する撮像素子チップ162とを有している。これらは、携帯電話400に内蔵されている。   Next, FIG. 17 shows a telephone which is an example of an information processing apparatus in which the variable magnification optical system according to the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. 17A is a front view of the mobile phone 400, FIG. 17B is a side view, and FIG. 17C is a cross-sectional view of the photographing optical system 405. As illustrated in FIGS. 17A to 17C, the mobile phone 400 includes a microphone unit 401 that inputs an operator's voice as information, a speaker unit 402 that outputs a voice of a call partner, and an operator who receives information. An input dial 403 for inputting information, a monitor 404 for displaying information such as a photographed image and a telephone number of the operator and the other party, a photographing optical system 405, an antenna 406 for transmitting and receiving communication radio waves, and an image And processing means (not shown) for processing information, communication information, input signals, and the like. Here, the monitor 404 is a liquid crystal display element. In the drawing, the arrangement positions of the respective components are not particularly limited to these. The photographing optical system 405 includes an objective lens 112 made up of a variable magnification optical system (abbreviated in the drawing) according to the present invention disposed on a photographing optical path 407, and an image sensor chip 162 that receives an object image. These are built in the mobile phone 400.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中の変倍光学系の駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The driving mechanism for the variable magnification optical system in the lens frame 113 is not shown.

撮影素子チップ162で受光された物体像は、端子166を介して、図示していない処理手段に入力され、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、通信相手に画像を送信する場合、撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する信号処理機能が処理手段には含まれている。   The object image received by the imaging element chip 162 is input to the processing means (not shown) via the terminal 166 and displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. . Further, when transmitting an image to a communication partner, the processing means includes a signal processing function for converting information of an object image received by the image sensor chip 162 into a signal that can be transmitted.

なお、各実施例において、ローパスフィルター等のフィルター類を省略すれば、沈胴時のカメラ厚みをより薄く構成することができる。   In each embodiment, if a filter such as a low-pass filter is omitted, the camera thickness when retracted can be made thinner.

本発明の以上の実施例によって、小型でSXGA(画素数が100万程度)レベルの高画質性能を確保した変倍光学系、及び、小型でSXGA(画素数が100万程度)レベルの高画質性能を確保した変倍光学系を搭載した電子機器の提供が可能となる。   According to the embodiment of the present invention, a variable magnification optical system that is small and secures high image quality performance of SXGA (the number of pixels is about 1 million), and a small image quality of SXGA (the number of pixels is about 1 million). It is possible to provide an electronic device equipped with a variable magnification optical system that ensures performance.

本発明による変倍光学系の実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図である。FIG. 3 is a lens cross-sectional view of the zoom lens according to the first embodiment of the present invention at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity. 実施例2の変倍光学系の図1と同様のレンズ断面図である。FIG. 3 is a lens cross-sectional view similar to FIG. 1 of the variable magnification optical system of Example 2. 実施例3の変倍光学系の図1と同様のレンズ断面図である。FIG. 4 is a lens cross-sectional view similar to FIG. 1 of the variable magnification optical system of Example 3. 実施例4の変倍光学系の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of the variable magnification optical system of Example 4. 実施例5の変倍光学系の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of the variable magnification optical system of Example 5. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 本発明による変倍光学系を組み込んだデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera incorporating the variable magnification optical system by this invention. 図11のデジタルカメラの後方斜視図である。FIG. 12 is a rear perspective view of the digital camera of FIG. 11. 図11のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 本発明による変倍光学系を対物光学系として組み込れたパソコンのカバーを開いた前方斜視図である。It is the front perspective view which opened the cover of the personal computer incorporating the variable magnification optical system by this invention as an objective optical system. パソコンの撮影光学系の断面図である。It is sectional drawing of the imaging optical system of a personal computer. 図14の状態の側面図である。It is a side view of the state of FIG. 本発明による変倍光学系を対物光学系として組み込れた携帯電話の正面図(a)、側面図(b)、その撮影光学系の断面図(c)である。FIG. 2 is a front view (a), a side view (b), and a sectional view (c) of the photographing optical system of a mobile phone in which the variable magnification optical system according to the present invention is incorporated as an objective optical system.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
F…ローパスフィルター等を構成する平行平板
I…像面
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
112…対物レンズ
113…鏡枠
114…カバーガラス
160…撮像ユニット
162…撮像素子チップ
166…端子
300…パソコン
301…キーボード
302…モニター
303…撮影光学系
304…撮影光路
305…画像
400…携帯電話
401…マイク部
402…スピーカ部
403…入力ダイアル
404…モニター
405…撮影光学系
406…アンテナ
407…撮影光路
G1 ... first lens group G2 ... second lens group G3 ... third lens group S ... aperture stop F ... parallel plate I constituting a low-pass filter, etc .... image plane E ... observer eyeball 40 ... digital camera 41 ... shooting optical system 42 ... Optical path for photographing 43 ... Viewfinder optical system 44 ... Optical path for viewfinder 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Finder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch 112 ... Objective Lens 113 ... Mirror frame 114 ... Cover glass 160 ... Imaging unit 162 ... Imaging element chip 166 ... Terminal 300 ... PC 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone unit 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Shooting optical system 406 ... Antenna 407 ... Shooting optical path

Claims (10)

物体側から順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群と負の屈折力の第3レンズ群よりなり、少なくとも第2レンズ群と第3レンズ群を移動させて各群間間隔を変えることで変倍を行う変倍光学系であって、
前記負の第1レンズ群は負レンズ1枚で構成され、
前記正の第2レンズ群は正レンズ1枚で構成され、
前記負の第3レンズ群は負レンズ1枚で構成され、
前記第3レンズ群の負レンズが凹面を像面側に向けた負メニスカス形状であり、
前記第1レンズ群と前記第2レンズ群の屈折力が以下の条件式(3)、(3−2)’を満足することを特徴とする変倍光学系。
1.8<|f 1 |/f 2 <6.5 ・・・(3)
1.9<|f 1 (t)|/f 2 ≦2.37 ・・・(3−2)’
ただし、f 1 は第1レンズ群の焦点距離、
2 は第2レンズ群の焦点距離、
1 (t)は第1レンズ群の望遠端での焦点距離、
である。
In order from the object side, the first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power, and at least the second lens group and the third lens group are moved. A variable power optical system that performs variable power by changing the distance between each group,
The negative first lens group is composed of one negative lens,
The positive second lens group includes one positive lens,
The negative third lens group is composed of one negative lens,
Ri negative meniscus der negative lens of the third lens group is a concave surface facing the image side,
Wherein the first lens group, the refractive power of the second lens group following conditional expression (3), the variable magnification optical system characterized that you satisfied (3-2) '.
1.8 <| f 1 | / f 2 <6.5 (3)
1.9 <| f 1 (t) | / f 2 ≦ 2.37 (3-2) ′
Where f 1 is the focal length of the first lens group,
f 2 is the focal length of the second lens group,
f 1 (t) is the focal length at the telephoto end of the first lens group,
It is.
前記第3レンズ群の負レンズのシェイピングファクターが以下の条件式(1)を満足することを特徴とする請求項1記載の変倍光学系。
1.0<(r6 +r7 )/(r6 −r7 )<2.0 ・・・(1)
ただし、r6 、r7 はそれぞれ第3レンズ群の負レンズの物体側面と像側面の軸上曲率半径である。
2. The variable magnification optical system according to claim 1, wherein a shaping factor of the negative lens of the third lens group satisfies the following conditional expression (1).
1.0 <(r 6 + r 7 ) / (r 6 −r 7 ) <2.0 (1)
Here, r 6 and r 7 are axial curvature radii of the object side surface and the image side surface of the negative lens of the third lens group, respectively.
レンズ全長が以下の条件式(2)を満足することを特徴とする請求項1又は2記載の変倍光学系。
1.9<TLw /fw <3.1 ・・・(2)
ただし、TLw は広角端でのレンズ全長(第1面から像面までの距離)、
w は広角端における全系焦点距離、
である。
The variable magnification optical system according to claim 1 or 2, wherein the total lens length satisfies the following conditional expression (2).
1.9 <TL w / f w <3.1 (2)
Where TL w is the total lens length at the wide-angle end (distance from the first surface to the image plane),
f w is the focal length of the entire system at the wide-angle end,
It is.
前記第3レンズ群を構成する負レンズが以下の条件式(4)を満足することを特徴とする請求項1からの何れか1項記載の変倍光学系。
0.4<r7 /fw <1.0 ・・・(4)
ただし、r7 は第3レンズ群の負レンズの像側面の軸上曲率半径、
w は広角端における全系焦点距離、
である。
The variable magnification optical system according to any one of claims 1 to 3 , wherein the negative lens constituting the third lens group satisfies the following conditional expression (4).
0.4 <r 7 / f w <1.0 (4)
Where r 7 is the on-axis radius of curvature of the image side surface of the negative lens in the third lens group,
f w is the focal length of the entire system at the wide-angle end,
It is.
以下の条件式(5)を満足することを特徴とする請求項1からの何れか1項記載の変倍光学系。
0.4<(G23L)/Y’<1.1 ・・・(5)
ただし、Y’は最大像高、
G23Lは第2レンズ群と第3レンズ群を構成するレンズの光軸上の厚さの合計、
である。
The zoom lens system according to any one of claims 1 to 4 , wherein the following conditional expression (5) is satisfied.
0.4 <(G23L) / Y ′ <1.1 (5)
Where Y ′ is the maximum image height,
G23L is the total thickness on the optical axis of the lenses constituting the second lens group and the third lens group,
It is.
前記第1レンズ群の負レンズが屈折力可変光学素子であることを特徴とする請求項1からの何れか1項記載の変倍光学系。 Negative lens variable magnification optical system of any one of claims 1 to 5, characterized in that the refractive power variable optical element of the first lens group. 前記屈折力可変光学素子が、以下の条件式を満足することを特徴とする請求項記載の変倍光学系。
0.07<|φ1 |<0.27 ・・・(6)
ただし、φ1 は屈折力可変光学素子の屈折力である。
The variable power optical system according to claim 6, wherein the refractive power variable optical element satisfies the following conditional expression.
0.07 <| φ 1 | <0.27 (6)
Here, φ 1 is the refractive power of the refractive power variable optical element.
前記第1レンズ群の負レンズを移動させてフォーカシングを行うことを特徴とする請求項1からの何れか1項記載の変倍光学系。 The variable power optical system of any one of claims 1 to 7, characterized in that to perform focusing by moving the negative lens of the first lens group. 前記屈折力可変光学素子の屈折力を変化させてフォーカシングを行うことを特徴とする請求項又は記載の変倍光学系。 Claim 6 or 7 variable power optical system, wherein the focusing is performed by changing the refractive power of the refractive power variable optical element. 請求項1からの何れか1項記載の変倍光学系と、前記変倍光学系の像側に配置された撮像素子とを備えたことを特徴とする撮像装置。 An imaging apparatus comprising: the variable magnification optical system according to any one of claims 1 to 9 ; and an imaging element disposed on an image side of the variable magnification optical system.
JP2005263577A 2005-09-12 2005-09-12 Variable magnification optical system and imaging apparatus using the same Expired - Fee Related JP4849514B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005263577A JP4849514B2 (en) 2005-09-12 2005-09-12 Variable magnification optical system and imaging apparatus using the same
US11/490,067 US7446948B2 (en) 2005-09-12 2006-07-21 Zoom optical system and imaging system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263577A JP4849514B2 (en) 2005-09-12 2005-09-12 Variable magnification optical system and imaging apparatus using the same

Publications (3)

Publication Number Publication Date
JP2007078799A JP2007078799A (en) 2007-03-29
JP2007078799A5 JP2007078799A5 (en) 2008-08-28
JP4849514B2 true JP4849514B2 (en) 2012-01-11

Family

ID=37939236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263577A Expired - Fee Related JP4849514B2 (en) 2005-09-12 2005-09-12 Variable magnification optical system and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP4849514B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027364A1 (en) 2011-08-25 2013-02-28 パナソニック株式会社 Zoom-lens system, interchangeable lens device, and camera system
CN109471238A (en) * 2017-09-07 2019-03-15 南昌欧菲光电技术有限公司 Eyeglass mould group

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424214A (en) * 1987-07-20 1989-01-26 Canon Kk Variable power optical system
JP2005037935A (en) * 2003-06-30 2005-02-10 Fujinon Corp Compact lightweight zoom lens
JP4413560B2 (en) * 2003-08-29 2010-02-10 京セラ株式会社 Variable magnification imaging lens
JP4619718B2 (en) * 2004-07-27 2011-01-26 富士フイルム株式会社 Zoom lens

Also Published As

Publication number Publication date
JP2007078799A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4938068B2 (en) Electronic imaging device
JP2004348082A (en) Optical path bending optical system
JP2005266129A (en) Zoom lens and electronic imaging apparatus having the same
JP2007156385A (en) Zoom optical system and image taking apparatus using the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2012003077A (en) Imaging optical system and electronic imaging apparatus having the same
JP4079630B2 (en) Imaging lens and imaging apparatus including the same
JP5226888B2 (en) Bending imaging optical system
JP5717988B2 (en) Variable magnification optical system and imaging apparatus using the same
JP4947990B2 (en) IMAGING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP4503918B2 (en) Imaging device
JP4705770B2 (en) Optical system provided with cemented lens and imaging device using the same
JP2007248951A (en) Bending variable power optical system
JP4503957B2 (en) Three-group zoom lens and electronic imaging apparatus using the same
JP4722425B2 (en) Electronic imaging device
JP5415778B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008122874A (en) Photographic optical system and imaging apparatus with this photographic optical system
JP4454996B2 (en) Imaging device
JP4849514B2 (en) Variable magnification optical system and imaging apparatus using the same
JP2005070697A (en) 3-group zoom lens and electronic imaging apparatus using same
JP4819413B2 (en) Zoom lens and imaging apparatus using the same
JP2007078800A (en) Variable power optical system and imaging apparatus using the same
JP5965519B2 (en) Zoom lens and imaging apparatus using the same
JP5969667B2 (en) Zoom lens and imaging apparatus using the same
JP5025821B2 (en) Zoom lens and camera equipped with zoom lens and image sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

R151 Written notification of patent or utility model registration

Ref document number: 4849514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees