JP4846959B2 - コリオリ流量計用の熱応力が小さいバランスバー - Google Patents

コリオリ流量計用の熱応力が小さいバランスバー Download PDF

Info

Publication number
JP4846959B2
JP4846959B2 JP2001581062A JP2001581062A JP4846959B2 JP 4846959 B2 JP4846959 B2 JP 4846959B2 JP 2001581062 A JP2001581062 A JP 2001581062A JP 2001581062 A JP2001581062 A JP 2001581062A JP 4846959 B2 JP4846959 B2 JP 4846959B2
Authority
JP
Japan
Prior art keywords
balance bar
flow tube
coriolis
flow
drive coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001581062A
Other languages
English (en)
Other versions
JP2003533677A (ja
JP2003533677A5 (ja
Inventor
ヴァン・クリーヴ,クレイグ・ブレイナード
ランハム,グレゴリー・トリート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of JP2003533677A publication Critical patent/JP2003533677A/ja
Publication of JP2003533677A5 publication Critical patent/JP2003533677A5/ja
Application granted granted Critical
Publication of JP4846959B2 publication Critical patent/JP4846959B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【技術分野】
本発明は、バランスバーが連結されている流管に応力を加えずに広い範囲の熱的条件を受けるようなバランスバーを有するコリオリ流量計に関する。
【0002】
【技術的問題点】
直線状単管式コリオリ流量計は従来流管と同軸の同心状バランスバーを有している。バランスバーは流管の駆動モードの振動を釣り合わせるように流管に対して180°位相が外れて振動する。バランスバーと物質で満たされた流管とは共振振動数で振動する動的にバランスのとれた構造をなしている。バランスバーの端部は環状の受けバーを介して流管に固着されている。受けバーには節点と称する振動のない領域があり、流管の動作部分の端部をなしている。
【0003】
従来流管の外面とバランスバーの内面との間の半径方向の間隔は、小型化のためとバランスバーの共振振動数を同調させるために、小さくされていた。流管とバランスバーとの間の直径の差が小さいために非常に剛性の大きい連結部になっている。
【0004】
従来のバランスバーの形態に関する問題点は、バランスバーが流管に大きな熱応力を加えることである。コリオリ流量計の熱応力に3つの異なる型がある。第1は熱的衝撃である。慣例な機構に置かれたコリオリ流量計が急に熱い物質を受け入れると、熱い流管が膨張しようとするが、周囲の冷たいバランスバー及び流量計に拘束される。従来の形態のものは小さい弾性係数を有するチタンの流管を用いる。チタンの小さい熱膨張率及び高い降伏強度により流管が損傷を受けずに熱的衝撃の大きい応力に耐えられる。
【0005】
第2の型の熱応力はコリオリ流量計の上昇あるいは低下した一様な温度によるものである。この熱応力はコリオリ流量計のケースが流量計全体を物質の温度に維持するように絶縁され、あるいは加熱される化学あるいは食品のプラントに共通することである。コリオリ流量計全体がチタンであれば、流量計の一様な温度により何ら熱応力が生じないであろう。しかし、チタンは流量計全体に用いるには高価すぎる。多くの従来のコリオリ流量計は膨張率及び弾性係数が小さいことからチタンの流管を有している。経費上の理由でステンレス鋼のバランスバー及びケースを有しているが、チタンが好ましい材料である。これらの異なる材料は異なる膨張率を有するので、これらのコリオリ流量計には上昇した一様な温度で熱応力が生ずる。ステンレス鋼のバランスバー及びケースはチタンの流管の2倍以上の割合で膨張するので、70度で応力のないコリオリ流量計が200度では大きな応力を有する。
【0006】
第3の型の熱負荷において、物質と環境とが異なる温度を有する定常状態の熱的条件によって流管に応力が加わる。低温の気候における高温の物質を測定するコリオリ流量計は結果的に、チタンの流管が物質の温度に達し、バランスバーはわずかに低温になるにすぎないような熱的平衡状態に達する。しかしながら、ケースは周囲の条件により格段に低温になり得る。例えばケースが低温の風に当たると、ケースの温度は周囲の温度より数度高くなるだけであろう。バランスバー及び流管が膨張しようとしても低温のケースがこれを拘束して応力が生ずる。ステンレス鋼のバランスバーがチタンの流管の2倍の割合で膨張しようとする時にも応力が生ずる。
【0007】
市販の直線状単管式コリオリ流量計は永久的損傷を受けずに、理想的には物質の測定に過度の誤差が生じないようにして3つの型の熱的負荷に耐えられなければならない。バランスバーの端部は受けバーを介して流管に固着される。これにより流管が3つの部分に分割される。受けバーの間でバランスバー内の中心部分が流管の動作部分である。この部分はバランスバーに対して位相が外れて振動する。バランスバーの軸方向端部からケース端部までにわたる流管の2つの部分は振動せず、流管の非動作部分である。
【0008】
前述した従来のコリオリ流量計が第1の型の熱的負荷、熱的衝撃を受けると、流管の動作部分及び非動作部分がともに同じ熱応力を生ずる。これは、流管の動作部分を拘束するバランスバーも流管の非動作部分を拘束するケースも温度あるいは長さが変化せず、流管の3つの部分が急速に物質と同じ温度に達して同じ熱応力を有するためである。従来のコリオリ流量計が一様な上昇した温度を有する際に第2の型の熱負荷を受けると、流管の3つの部分には再度同じ熱応力が生ずる。バランスバー及びケースはともにステンレス鋼製であり、同じ割合で膨張する。チタンの流管は異なる割合で膨張しようとするが、バランスバー及びケースに拘束される。
【0009】
第3の熱負荷の条件では、流管及びバランスバーがほぼ物質の温度に達するが、ケースは低温のままである。高温のバランスバーは長さが増大するが、低温のケースは膨張しない。流管の非動作部分はケース端部と長くなるバランスバーとの間にある。バランスバー及びケースはともに流管よりずっと大きい断面積を有していて、流管の非動作部分の長さを減少させようとする。流管の非動作部分は高温であり、拘束されなければ長さが増大するので、強制的に長さが減少したことによりチタンの流管の降伏点強度を超え得るような応力が生ずる。一方、流管の動作部分はその端部において高温のステンレス鋼のバランスバーへの連結によって拘束されている。ステンレス鋼は流管のチタンよりずっと大きい膨張率を有する。バランスバーの温度は流管の温度にほぼ等しいので、バランスバーと流管との間の温度差に応じて、流管の動作部分には張力が加わるであろう。また、バランスバーの温度が流管の温度より低ければ圧縮力が加わるであろう。
【0010】
流管の非動作部分が温度勾配により大きな応力を受ける状態が従来のコリオリ流量計に関する問題となっている。一般的に従来のコリオリ流量計において、この問題はコリオリ流量計が動作する温度範囲を制限することによって解決される。これは、多くの利用者が熱応力により指定される限度を超える温度での物質流量を測定しようとするので、望ましくない。
【0011】
【解決策】
本発明は流管の動作部分及び非動作部分における応力をいかなる温度条件でもできるだけ小さくできるバランスバーを用いることによって上述の、また他の問題を解消する。バランスバーはその端部の長さの変化で流管に大きな軸方向の力が加わらないように追従性のある中間部分を有している。これにより流管の動作部分及び非動作部分に加わる熱応力が常に等しくなる。この応力の等しい状態が流管には最も可能性の低い応力状態である。バランスバーが軸方向に追従性を有する結果、流管における他の応力は流管とケースとの膨張の差だけの関数になる。バランスバーの膨張及び収縮はなくなり、流管の応力に作用を与えない。
【0012】
本発明のバランスバーの他の利点は経費である。従来のコリオリ流量計の多くは経費を妥当なものにするためにステンレス鋼のバランスバーを必要とする。コリオリ流量計の温度範囲を拡大するために、従来のバランスバーは流管の材料(チタン)にできるだけ近い膨張率を有することが必要とされる。従来の最善のバランスバーは全体としてチタンで形成されたものであろう。しかしながら、寸法の大きいコリオリ流量計におけるチタンのバランスバーの経費はステンレス鋼のバランスバーの6倍にもなる。本発明のバランスバーは流管に軸方向の力を加えないように大きな軸方向の追従性を有している。バランスバーの熱膨張は関係しないので、より少ない経費で製造され広い温度範囲となる。
【0013】
本発明にはいくつかの実施例が考えられる。第1の実施例は、2つの独立した端側部分と中心部分の空所とを有するバランスバーである。各端部はそれぞれ受けバーに取り付けられ、また受けバーを介して流管の動作部分の端部に取り付けられている。独立したバランスバーの端側部分は物質が満たされた流管の共振振動数を有するように設計されたカンチレバー状ビームのような挙動を示す。空所により従来の流量計のバランスバーの質量を付加させずにバランスバーの駆動モードの振動数が流管の駆動モードの振動数まで低下させられる。これはバランスバーから剛性を除去することによってなされる。これによりコリオリ流量計が動的にバランスのとれたものになる。駆動源はバランスバーの中心部分に空所があるためにケースに取り付けられた駆動コイルと流管に取り付けられたマグネットとからなる。独立したバランスバーの端側部分は流管の駆動モードの振動に応じて受けバーの運動により駆動される。独立したバランスバーの端側部分は流管の駆動モードの振動に応動して流管の動作部分の端部により受けバーに加わるトルクに釣り合うトルクを受けバーに加える。バランスバーの端側部分の撓みによりまた振動する流管の運動量が釣り合う。
【0014】
このバランスバーの形態は経費が少なくなることと、流管に応力が生ぜずに温度範囲が拡大することのほかに、さらに利点がある。従来の単管式流量計におけるバランスバーは駆動モードにおける流管の振動を釣り合わせることができたが、物質の流れる状態で流管に加わるコリオリ力によって生ずる流量計の振動のバランスをとることはない。物質の流れる振動する流管にコリオリ力及びコリオリ撓みが加わる。流管の2つの軸方向の半片は反対方向のコリオリ力を加える。流管の2つの軸方向の半片に生ずるコリオリ撓みも反対方向である。これらの力及び撓みは物質の流量に比例し、従来のバランスバーに取り付けられた錘によって釣り合わせられない振動を生ずる。
【0015】
本発明のバランスバーは2つの端側部分が独立しているためこれらのコリオリ力を釣り合わせられる。バランスバーの中心における空所によりバランスバーの端側部分が相互に位相が外れるように振動するモードにおけるその共振振動数が低下する。このモードはその形状によりコリオリ状モードと称される。空所によりこのモードの共振振動数が駆動振動数より低下する。各々のバランスバーの端側部分は駆動モードの振動数で流管とは位相が外れるように共振する。流管のコリオリ撓みは駆動モードの振動数で生ずるので、バランスバーの2つの独立した端側部分は駆動モードの撓みに対してと同様にコリオリ撓みに即応する。これらの2つの応答の駆動力は同じであり、受けバーの運動である。バランスバーの左方の端側部分は駆動モードの励振の場合と同じコリオリ励振に対する応答を有する。2つの励振モードの間の差は駆動モードの励振が一定の振幅であり流管の動作部分の2つの端部が相互に位相が合っていることである。コリオリ励振は流量に比例する振幅を有し、流管の動作部分の2つの端部は相互に180°位相が外れている。バランスバーの独立した端側部分は流管のコリオリ力を効果的に釣り合わせるコリオリ状撓みを有する。流量(したがってコリオリ力)が増大すると位相の外れたコリオリ状撓みは流管のコリオリ振動から位相が外れ、このコリオリ状撓みによりバランスバーの振動の振幅が増大する。
【0016】
バランスバーの端側部分によりコリオリ力での振動を釣り合わせるとより正確なコリオリ流量計となる。従来のコリオリ流量計の釣り合っていないコリオリにより駆動モードの振動数でのコリオリ流量計の揺動が生ずる。この揺動は流量に比例し、それによって物質の流れのコリオリ加速度とピックオフに生ずる出力信号とが変化する。この誤差については、それがコリオリ流量計の装着部の剛性によることを除いては補償される。堅固な装着部を有するコリオリ流量計はわずかの誤差になるが、柔軟な装着部を有するコリオリ流量計はより大きい誤差になるであろう。市販用のコリオリ流量計の装着状態は知られていないので、一般的に補償ができない。
【0017】
本発明の他の実施例は駆動コイルのブラケットで弱く連結されたバランスバーの端側部分を有する。これらのブラケットにより駆動源が軸方向中心部に装着されて駆動源のコイル及びマグネットがバランスバーの端側部分と流管とを位相を反対にして駆動できるようになる。これらのブラケットは十分に薄い金属で形成され、その形状はバランスバーの端側部分がほとんど抵抗を受けずに軸方向に膨張及び収縮できるようにするものである。これらの可撓性のブラケットによりまた加わるコリオリ力を釣り合わせるバランスバーの2つの端側部分の位相が外れた運動が可能になる。
【0018】
さらに他の実施例ではバランスバーの2つの端側部分の膨張及び収縮が可能になるが、2つの端側部分の位相が外れた運動は可能にならない。これにより経費の少ないバランスバーの材料を使用でき、高い温度範囲になる。この実施例ではコリオリ力を釣り合わせるバランスバーの端側部分の位相が外れた運動は可能でない。
【0019】
さらに他の実施例は可撓性の側方ストリップにより中心部分に連結された独立した端側部分を備えたバランスバーを与える。バランスバーの半片及び中心部分における切取り部分により軸方向の追従性が増大する。
【0020】
要するに、本発明はバランスバーの2つの端側部分を離脱させることによりバランスバーの3つの問題を解決する。それによりバランスバーがより経費の少ない材料で形成されるようになる。それにより流管に加わる軸方向の応力をより小さくして温度範囲をより広くすることが可能になり、また流管に加わるコリオリ力を釣り合わせることによってより正確なコリオリ流量計が提供される。
【0021】
本発明の一つの面は、入口から物質の流れを受け入れ、該物質の流れを流管手段を通じて出口に移送するコリオリ流量計において、
上記流管手段に平行に配置されたバランスバーと、
該バランスバーの端部を上記流管手段に連結する受けバーと、
上記流管手段及びバランスバーを位相が反対になるように振動させる駆動源と、
物質の流れを有し振動する上記流管手段のコリオリ応答を表す信号を生ずるように上記バランスバー及び流管手段に連結されたピックオフ手段と、
を備え、上記バランスバーはさらに、
軸方向の中間部分と、
第1の上記受けバーから上記中間部分に向かって軸方向内方に延びる第1の部分と、
第2の上記受けバーから上記中間部分に向かって軸方向内方に延びる第2の部分と、
上記軸方向の中間部分がばね手段を有すること、
上記ばね手段は上記第1の部分及び上記第2の部分に連結されると共に上記流管手段の駆動平面にほぼ直交して配向され、その軸方向のコンプライアンスがコリオリ流量計の温度変化に応答して上記流管手段に軸方向の応力を付加的に加えることなく長さを可変ならしめてなること、
を特徴とするコリオリ流量計である。
【0022】
他の面は、上記ばね手段がほぼ矩形になっていることである。
【0023】
さらに他の面は、上記流管手段が1本の直線状流管からなることである。
【0024】
さらに他の面は、上記中間部分がさらに上記バランスバーの上記第1の部分及び上記第2の部分に上記ばね手段により連結された駆動コイルのブラケット手段からなることである。
【0025】
さらに他の面は、上記流管手段は単一の流管であり、また上記ピックオフ手段が1対の速度検出器からなり、第1の上記ピックオフが上記バランスバーの第1の部分及び上記流管手段に連結され、第2の上記ピックオフが上記バランスバーの第2の部分及び上記流管手段に連結されるようにしたことである。
【0026】
さらに他の面は、
上記ばね手段の第1の端部が上記駆動コイルのブラケット手段に連結され、
上記ばね手段の第2の端部が上記バランスバーの上記第1の部分及び上記第2の部分に連結され、
上記ばね手段が上記バランスバーの上記第1の部分及び上記第2の部分の長さの軸方向の変化に応じて屈撓する
ようにしたことである。
【0027】
さらに他の面は、上記駆動コイルのブラケット手段が
上記流管の縦方向の軸に平行な平坦な面を有する駆動コイルのブラケットと、
上記流管の縦方向の軸に平行な面を有する第2のブラケットと、
を含み、
上記ばね手段が上記駆動コイルのブラケットを上記バランスバーの上記第1の部分及び上記第2の部分に連結する第1の組のばねを含み、
上記第1の駆動コイルのブラケットの平坦な面が上記駆動源のコイルを受け入れ、
駆動マグネットが上記流管に連結され上記駆動コイルに磁気的に連通し、
上記ばね手段が上記第2の駆動コイルのブラケットを上記バランスバーの上記第1の部分及び上記第2の部分に連結する第2の組のばねをさらに含み、
上記第2のブラケットの平坦な面に錘が取り付けられる
ようにしたことである。
【0028】
さらに他の面は、上記第1及び第2の組のばねが上記バランスバーの上記第1の部分及び上記第2の部分に連結された端部を有することである。
【0029】
さらに他の面は、
上記駆動コイルのブラケット手段が上記流管と同軸であり上記バランスバーの上記第1の部分及び上記第2の部分の間隔より小さい軸方向の長さを有し、
軸方向に細長い支持バーが上記バランスバーの上記第1の部分及び上記第2の部分を上記駆動コイルのブラケット手段に連結し、
上記細長い支持バーが上記バランスバーの振動の中立面内に配置されて上記流管の縦方向の軸に平行に向いており、
上記駆動コイルのブラケット手段の壁部にスロットがあり、該スロットは上記駆動コイルのブラケット手段の軸方向外側末端部に平行でこれに近接しており、
上記スロットの間の上記駆動コイルのブラケット手段の壁部の材料と上記駆動コイルのブラケット手段の軸方向外側末端部とが上記バランスバーの軸方向の長さの変化に応じて屈撓する第1の組のばねを形成するようにしたことである。
【0030】
さらに他の面は、
上記バランスバーの中間部分に近接して上記バランスバーの壁部に周方向の向きのスロットがあり、
上記スロットと上記軸方向に細長い支持バーとの間の壁部の材料が上記バランスバーの軸方向の長さの変化に応じて軸方向に屈撓する第2の組のばねを形成する
ようにしたことである。
【0031】
【詳細な説明】
<図1の説明> 図1は、バランスバー102で取り囲まれた直線状流管101を有し流管101及びバランスバー102がケース104に取り囲まれている直管型コリオリ流量計100を示している。受けバー110及び111はバランスバー102の端側部分を流管101の外壁に連結する。流管101はまた流管延長部分101A及び101Bを含む。101の部分は受けバー110と111との間の流管の動作部分である。延長部分101A及び101Bは流管の非動作部分であり、受けバー110及びと111をケース端部108及び109に連結する。113及び114の部分はネック部105及び115を通ってフランジ112及び112Aまで延びているので流管の一部分と考えられる。部分106は流量計の物質の入口である。部分107は流量計の物質の出口である。流量計電子回路121はバランスバー102と流管101とを位相を反対にして振動させるように線路123を介して駆動源Dに信号を供給する。ピックオフ(速度検出器)LPO及びRPOが物質流れを有する流管101の振動を検出し、コリオリ応答の位相を示す出力信号を生ずる。ピックオフの出力信号は線路122及び124を介して流量計電子回路121に供給され、流量計電子回路121は線路125を介して物質の流れに関する情報を含む出力を生ずる。
【0032】
バランスバー102は受けバー110及び111により流管101に堅固に連結されている。流管101は流管部分101A及び101Bによりケース端部108及び109に緊密に連結されている。流管のバランスバー及びケースへの緊密な連結により流管の温度がバランスバー102及びケース104に対して急に上昇する状態や流管の温度がバランスバー及び/またはケース104の温度と異なる定常的状態に流管に熱応力が生ずる。
【0033】
コリオリ流量計内には3つの型の熱応力が考えられる。第1の型は熱衝撃である。この時流管101は急に高温の(あるいは低温の)物質を受け入れるであろう。高温の流管は膨張しようとするが、これを取り囲む低温のバランスバー102及びケース104によって拘束される。この状態で低温のバランスバーより軸方向に膨張しようとする流管の動作部分101に応力が生ずる。流管の非動作部分101A及び101Bはこの応力を受けてケース104より軸方向に膨張しようとする。チタンの弾性係数は小さいので、流管がチタンで形成されていれば熱応力から生ずる問題が少なくなる。チタンの流管を使用することにより応力の問題が少なくなるが、流管に加わる応力のため流れの定常性が変化し得る。このため振動する流管により、またコリオリ流量計により生ずる出力情報の精度が低下する。
【0034】
第2の型の熱応力は流量計全体が上昇または低下した一様な温度に当てられる時に生ずる。チタンの流管を使用しても、ステンレスのバランスバー102及びケース104がチタンの流管101の2倍以上の割合で膨張しようとするので、流管が熱応力を受ける。チタンの流管が永久的な機械的変形を生ぜずにこの応力に耐えられても、その剛性が変化するために生ずる出力情報の精度が低下する。
【0035】
第3の型の熱応力は流れる物質と周囲環境とが異なる温度を有する定常状態の熱的条件により特徴づけられる。寒冷の気候において高温の物質を測定するコリオリ流量計は結果として、流管が物質の温度に達してバランスバーがわずかにより低温となる熱的平衡状態となる。ケースは北極での使用のような周囲の状態によりずっと低温になり得る。低温のケースによりバランスバー及び流管が膨張しようとするのを拘束される時に応力が生ずる。ステンレス鋼のバランスバーがチタンの流管の2倍の割合で膨張しようとする時にも応力が生ずる。これらの条件では、高温のバランスバーの長さが大きくなるのに低温のケースが大きくならない。流管の非動作部分101A及び101Bはケースの端部と膨張するバランスバーとの間に連結されている。バランスバー及びケースはともに流管よりずっと大きい断面積を有していて、流管の非動作部分101A及び101Bの長さを減少させる。これらの流管の非動作部分は長さが増大しようとするので、より大きいバランスバーにより加わる力が流管の部分101A及び101Bに応力を与える。この応力のレベルはチタンの流管の降伏強度を超え得る。一方、流管の動作部分101はその端部がバランスバー及び受けバーによって拘束される。ステンレス鋼のバランスバーはチタンの流管よりずっと大きい膨張率を有する。かくして、ステンレス鋼のバランスバーとチタンの流管との間の温度差に応じて、流管の動作部分101は張力が加わる状態となろう。バランスバーの温度が流管の温度より低い時に圧縮の状態になろう。
【0036】
それゆえ、図1に示されるような従来の直管型コリオリ流量計は流量計により生ずる出力情報の精度を低下させ極端な場合にさらに流管を永久的に破損させ得るような熱応力を流管に受ける問題になるのがわかる。
【0037】
<図2の説明> 図2は図1の従来のコリオリ流量計100と多くの点で同様な直管型コリオリ流量計200からなる本発明として考えられる第1の実施例を示している。異なるのは図2のバランスバーの中心部分が取り除かれていることである。
【0038】
図2は動作部分201と非動作部分201A及び201Bを有する直管型コリオリ流量計200を示している。コリオリ流量計200はさらにバランスバーの端側部分202,203及び空所の中心部分202V、ケース204、フランジ212及び212Aを含む。ケース204はネック部205及び215によって端側フランジ212及び212Aに連結された端側部分208及び209を有している。流量計の入口は左側の部分206であり、出口は右側の部分207である。コーン連結リンク213及び214はネック部205及び215を流管の部分201A及び201Bの外面に連結する。受けバー210及び211はバランスバーの部分202及び203の外側軸方向端部を流管201に連結する。ピックオフLPO及びRPOはそれぞれコイルC及びマグネットMを含む。駆動源Dは流管201に取り付けられたマグネット217と、ケース204の内壁220に脚部が連結された駆動コイルブラケット221の平坦な面に連結されたコイル216とからなる。部分222はバランスバーの端側部分202の軸方向内側端部であり、部分223はバランスバーの部分203の軸方向内側端部である。
【0039】
図1について説明したのと同様に、駆動源Dは流管201とバランスバーの端側部分202及び203とを位相を合わせて振動させる。流管101の流管の振動は受けバー110及び111を介してバランスバーの端側部分202及び203の端部に振動力を伝えて流管の駆動モードの振動に対して流管101とは反対の位相となるように振動させる。ピックオフ(速度検出器)LPO及びRPOは物質の流れを有し振動する流管201のコリオリ応答を検出し、物質の流れを示す出力信号を生ずる。この出力信号は線路122及び124を介して信号を処理し物質の流れを示す出力情報を生ずる流量計電子回路121に伝えられる。
【0040】
図2のコリオリ流量計200はバランスバーの中心部分の空所202Vを有しているので、2つの独立したバランスバーの端側部分202及び203がそれぞれの受けバー210及び211に、また受けバーを介して流管の動作部分201に取り付けられている。バランスバーの端側部分202及び203はカンチレバー状ビームとして振る舞い、それぞれ物質で満たされた振動する流管と同じ共振振動数を有する。流管とバランスバーの端側部分202及び203とは位相が反対になるように振動し同じ共振振動数を有するので、それらは流量計の外部に振動を与えない動的にバランスのとれた振動構造体をなしている。
【0041】
図2のコリオリ流量計の他の利点は、バランスバーの中心部分202Vにおける空所によりバランスバー202及び203が流管の動作部分101に応力を与えずに変化する熱的状態に応じて長さの膨張及び収縮ができるようになることである。その結果バランスバーに用いられる材料は高価なステンレス鋼である必要がなく、より経費の少ない材料で形成することができる。図2の流管に生ずる熱応力はケースの相対的な熱的膨張あるいは収縮により与えられるものである。
【0042】
図2の実施例について概括すると、バランスバーの端側部分202及び203の中間の空所202Vにより流管201に対して端側部分202及び203の駆動モードにおける共振振動数が低下する。また空所202Vによりバランスバーのコリオリ状モードの共振振動数が駆動振動数より低下する。それによって空所により流管201に対するバランスバーの端側部分202及び203の位相の外れたコリオリ状応答が高くなる。これによりコリオリ流量計の物質の流れに対する感度が高くなる。流量計200は駆動源Dがケースと流管との間に装着されることを必要とする。図2の実施例はまた、空所202Vがバランスバーの端側部分202及び203の軸方向の長さの変化に応じて流管601のいかなる軸方向応力に対しても保護するのに有利である。
【0043】
図3は、図2の独立したバランスバーの端側部分202及び203が流管201の駆動モードの振動にどのように応答するかを示している。この駆動モードの振動は流管により受けバー210及び211に加わるトルクを生ずる。このトルクはバランスバーの端側部分202及び203に伝えられてこれらの端側部分を流管201の対応する部分と反対の位相で振動させる。このバランスバーの端側部分の撓みは振動する流管とは反対であって、流管とバランスバーの端側部分とがともに相互の振動及びトルクを打ち消して動的にバランスのとれた振動構造体となる。このバランスバーは、バランスバーに用いられる材料の経費を少なくし広い温度範囲にわたって流管に加わる応力をより小さくするという付加的な利点を与える。
【0044】
図1のコリオリ流量計のバランスバーは駆動モードにおける流管の振動を釣り合わせるが、物質が流れる際に流管に加わるコリオリ力により生ずる流量計の振動のバランスをとるものではない。図4は物質の流れを有し振動する流管に加わる流管201に加わるコリオリ力と生ずる撓みとを示している。矢印は動作する流管201の各々の半分に加わるコリオリ力が反対の方向であることを示している。図4において、流管の左側半分におけるコリオリ力の矢印は上向きであり、右側半分の矢印は下向きである。その結果、流管の各々の半分に生ずるコリオリ力は反対の方向になっている。この力及び撓みは物質の流量の大きさに比例し、バランスバーに錘を取り付けることによって釣り合わすことができない。また、流管に加わる力は駆動モードの振動数で正弦波状に大きさ及び方向が連続的に変化する。図4に示される状態で、左側半分303に上向きの力が加わり右側半分304に下向きの力が加わるので、流管201は中心Cを中心として時計方向に回転しようとすることがわかる。以後の振動のサイクルで、力が向きを変えて流管が中心Cを中心として反時計方向に回転しようとする。流管に加わる回転力がこのように振動して変化するため流量計により生ずる物質の流れの情報の出力精度が悪影響を受けるという望ましくない振動が生ずる。
【0045】
図3のコリオリ撓みは駆動モードの振動数で生ずるので、バランスバーの端側部分が流管の駆動モードの撓みに対して応答するのと同じように流管のコリオリ撓みに即応する。これらの2つの応答の駆動力は同じである。それは受けバー210及び211の振動である。これが図5に示されている。バランスバーの左側部分202は図3のバランスバーの左側半片と同じ励振に対して同じ応答を有する。2つの励振モードの差は駆動励振が一定の振幅であり、流管201の動作部分の端部が相互に位相が合っていることである。コリオリ励振モードは物質の流量に比例する振幅を有し、バランスバーの2つの端側部分202及び203の振動は相互に180°位相が外れている。バランスバーの端側部分202及び203は、流量及びコリオリ力が増大すると振幅を増大させるので、流管に加わるコリオリ力を効果的に釣り合わせる。図5において、バランスバーの端側部分202及び203の撓みは流管201の対応する部分のコリオリ撓みとは位相が外れていることがわかる。その結果、物質の流れを有し振動する流管に加わるコリオリ力は、バランスバーの端側部分202及び203の対応する部分の振動の撓みを相殺させることにより効果的に釣り合わされる。駆動振動数でのコリオリ流量計の揺動を生ずる従来のコリオリ流量計のアンバランスなコリオリ力が本発明のコリオリ流量計ではなくなるので、このコリオリ力が釣り合うことでより正確なコリオリ流量計となる。
【0046】
<図6及び7の説明> 図6及び7は本発明を具体化したコリオリ流量計の他の実施例を示している。この実施例は主としてバランスバーの2つの端側部分602及び603可撓性の駆動コイルブラケット640からなる中心部分により連結されていることにおいて図2のものと異なっている。このブラケット640は駆動源Dがバランスバーの一部として従来の位置に装着されるようにする。駆動コイル及びこれに組み合わせられた流管上のマグネットはバランスバーの端側部分を流管と反対の位相で直接駆動できる。駆動コイルブラケット640の構造は可撓性の板ばね638を含むが、この板ばね638はこれを屈撓させるのに必要な力に応じた応力以上に流管に応力が生じないようにしてバランスバーの端側部分が軸方向に膨張及び収縮できるようにする可撓性のものである。板ばね638はまたバランスバーの端側部分602及び603が流管のコリオリ応答とは位相が外れていて振動する流管のコリオリ撓みを釣り合わせるコリオリ状応答を受けるようにする。
【0047】
駆動コイルブラケット640は駆動コイル644が装着された平坦な面646を含む。この構造640は、下側の末端における直角の屈曲部を有しまたバランスバーの端側部分602及び603の内側末端部636,637の延長部からなる支持バー642に取り付けられた4つの板ばね638を含む。部分640Aは錘643を装着する開口641を有するブラケットである。ブラケット640Aは下側の組のばね638Aにより支持バー642に連結されている。錘643は駆動コイル644の質量を動的に釣り合わせる。
【0048】
図6及び7の実施例の流量計構造の他の部分は図2の実施例と同様であり、以下に説明する部分を含む。すなわち、ケース604、ケース端部608及び609、入口606、ネック部605及び615、コーン連結部分613及び614、端側の非動作部分601A及び601Bを含む流管601であり、また、平面から外れた屈曲部分634を有するケース連結リンク631及び632、側壁の延長部610A及び611Aを含む受けバー610及び611、ケース604の内壁620、ピックオフLPO及びRPO端部と駆動源D、マグネットブラケット639、ブラケット639に装着されたマグネットM、コイル644、バランスバーの端側部分602及び603の内壁602A及び603A、出口607である。これらの部分は全て図2の実施例において対応する部分と同様で同じ作用を行う。
【0049】
図6及び7のばね638は、バランスバーの端側部分602及び603の長さが変化する際に流管601に応力を与えない熱膨張の能力を有する。バランスバーの端側部分が長くなりあるいは短くことにより脚部のばねが屈曲する。この屈曲により板ばねにその厚さのために小さい応力が生ずるにすぎない。流管に加わる応力はばね638を屈撓させるのに必要な小さい力に応じたものだけである。この実施例により駆動モードにおけるバランスバーの端側部分602及び603の共振振動数が流管601の共振振動数まで低下する。それによりまたバランスバーのコリオリ状モードの共振振動数が駆動振動数以下に低下する。バランスバーの端側部分602及び603の低下した共振振動数によりそれらの端側部分が流管601のコリオリ撓みとは位相が反対のコリオリ状撓みを有するようになる。バランスバーの端側部分のコリオリ状応答により図6及び7の実施例のコリオリ流量計物質の流れに対する感度が高くなり、流管に加わるコリオリ力のバランスがとられる。
【0050】
図1の実施例について説明したのと同様にして、流量計電子回路121が線路123を介して駆動源Dに信号を供給してバランスバー102と流管101とを位相が反対になるように振動させる。ピックオフLPO及びRPOが物質の流れを有する流管101の振動を検出してコリオリ応答の大きさ及び位相を示す出力信号を生ずる。ピックオフの出力信号は線路122及び124を介して流量計電子回路121に供給され、流量計電子回路121は線路125を介して物質の流れに関する情報を含む出力を生ずる。
【0051】
図6及び7の実施例を概括すると、バランスバーの端側部分602と603との可撓性の駆動コイルブラケット640により駆動モードにおける端側部分602及び603の共振振動数が流管601の共振振動数よりも低下する。また可撓性の駆動コイルブラケット640によりコリオリ状撓みモードにおけるバランスバーの端側部分602及び603の共振振動数が駆動振動数よりも低下する。これにより流管601に対するバランスバーの端側部分602及び603の位相が外れたコリオリ状応答が高くなる。これによりコリオリ流量計の物質の流れに対する感度が高くなる。しかしながら、駆動コイルブラケット640はコリオリ流量計の精度ないし出力データに悪影響を与える不要な振動を生ずることがないように注意して設計されなければならない。この実施例は、脚部のばね638が容易に屈撓して流管601がバランスバーの端側部分602及び603の軸方向の長さの変化に応じて軸方向の応力を受けないように保護する。
【0052】
<図8及び9の説明> 図8及び9は本発明を具体化したコリオリ流量計からなるさらに他の実施例を示している。この実施例はバランスバーの端側部分802と803との間のバランスバーの中間における駆動コイルブラケット構造を除いて多くの点で図2、6及び7の実施例と同様である。図2の実施例はバランスバーの中心部分として空所202Vを有し、図6及び7の実施例はバランスバーの中心部分として可撓性の駆動コイルブラケット640を有する。図8及び9の流量計800はバランスバーの端側部分802及び803の軸方向内側末端836及び837を相互に連結する中心のコイルブラケット841を有する。
【0053】
駆動コイルブラケット841は駆動源Dのコイル844を装着できるようにする上部の平坦部838、外側の周方向面843を有する。駆動コイルブラケット841はまたスロット842を有する。駆動コイルブラケット841は支持バー835によりバランスバーの端側部分802及び803の軸方向内側末端836及び837に連結されている。バランスバーの端側部分802はその右側端部の近くにスロットを有し、バランスバーの端側部分803はその左側端部の近くにスロット833を有する。バランスバーの端側部分のスロット833と駆動コイルブラケット841の対応するスロット842はバランスバーの端側部分802及び803の熱的膨張及び収縮に適合するように軸方向の追従性を与える脚ばね846をなす。バランスバーの端側部分の後側と駆動コイルブラケット841の後側とはこの図には示されない同様なスロットを有する。脚ばね846によって与えられる追従性は前述した2つの実施例ほど大きくはない。しかしながら、この追従性のためにバランスバーの膨張及び収縮によって流管に生ずる応力が多分に低下し得る。スロット832及び833によってもバランスバーの端側部分802及び803のばね率をこれらの部材が流管801のコリオリ撓みとは位相が反対のコリオリ状撓みを有するようにするバランスバーの端側部材802及び803のより低い共振振動数とするのを容易にするようにそれらの部材の共振振動数が低下する。図8及び9の実施例を含む他の部分は図2、6及び7の実施例について前述したのと同様である。これらの部分はケース804、ケース端部808及び809、ネック部805及び815、入口806、出口807、コーン連結部分813及び814、流管部分801A及び801B、平面から外れた屈曲部834及び834Aを有するケース連結リンク831及び832、受けバーの側壁延長部810A及び811Aを有する受けバー810及び811、ピックオフLPO及びRPO、駆動源D、ケース804の内壁820を含む。
【0054】
図1の実施例に関して説明したのと同様にして、流量計電子回路121は線路123を介して駆動源Dに信号を供給してバランスバー102と流管101とを位相が反対になるように振動させる。ピックオフLPO及びRPOは物質の流れを有する流管101の振動を検出してコリオリ応答の大きさ及び位相を示す出力信号を生ずる。ピックオフの出力信号は線路122及び124を介して流量計電子回路121に供給され、流量計電子回路121は物質の流れに関する情報を含む線路125への出力を生ずる。
【0055】
図8及び9の実施例を概括すると、バランスバーの端側部分802と803との中間の可撓性の駆動コイルブラケット841により駆動モードでの端側部分802及び803の共振振動数が流管の共振振動数に対して低下する。またコリオリ状モードにおける共振振動数が駆動振動数より低下する。これにより流管801に対してバランスバーの端側部分802及び803の位相が外れたコリオリ状応答が高くなり、コリオリ流量計の物質の流れに対する感度が高くなる。しかしながら、駆動コイルブラケット841はコリオリ流量計の精度あるいは出力データに悪影響を与えるような不要な振動を生じないように注意して設計されなければならない。この実施例は、スロット833及び842によって形成される脚ばね846がバランスバーの端側部分802及び803の軸方向の長さの変化に応じて屈撓し流管801に軸方向の応力が生じないように保護するばねとして作用する点において有利である。
【0056】
<図10、11及び12の説明> 図10、11及び12は本発明のさらに他の実施例のコリオリ流量計1000を示している。この実施例は、バランスバーの中心部分を含み、他の2つの部分が左方の端側部分1002及び右方の端側部分1003である中心駆動コイルブラケット1040の細部においてのみ前述した実施例と異なる。駆動コイルブラケット1040は1対の駆動源D1及びD2、バランスバーの端側部分1002の右端部における錘部分1041、バランスバーの端側部分1003の左端部における錘部分1035、コイルブラケット1042及び1043、駆動コイルブラケット1042と1043とを相互に連結する板ばね1045、駆動コイル1044及び1045、対応するマグネット1202及び1204、コイル1044及び1044Aを装着できるようにするための平坦な面を有する流管ブラケット1042を含む。図12に詳細に示されるように、駆動コイルブラケット1042の上面1046は弧状の切取り部1208を有する。板ばね1045の上端部は駆動コイルブラケット1042の直角な垂直面1209に取り付けられている。
【0057】
図10でバランスバーの端側部分1003に取り付けられている錘1035及び駆動コイルブラケット1043は、図の複雑さを少なくするために図12には示されていない。しかしながら、図12における駆動源D2のコイル1044が駆動コイルブラケット1043に取り付けられ、板ばね1045の下端部が駆動コイルブラケット1043の左側の垂直面に取り付けられることは当業者には明らかである。
【0058】
板ばね1045はバランスバーの端側部分1002と1003との中心側端部を移動可能に連結してそれらが変化する熱的状態に応じて長さを変化させられるようにする。バランスバーの端側部分1002及び1003のこの長さの変化により流管に応力が生ずることなく板ばね1045が屈撓することになる。言い換えると、バランスバーの端側部分1002及び1003の長さの変化によりただ板ばね1045の屈撓だけが生じ、ばね1045を屈撓させるのに必要な小さい力に対応する応力のほかには流管1001にいかなる応力も生じない。
【0059】
図12は流管1001の横側をバランスバーの端側部分1002、1003の内壁1002Aの横側に密接して連結させる受けバー1010及びその横側の突出部1001Aを示している。この連結部により流管の不要な横方向の振動の振動数が高くなって、速度検出器からの駆動振動数の信号を妨げなくなる。
【0060】
図10、11及び12の実施例は、可撓性の板ばね1045によりバランスバーの端側部分1002、1003が流管1001に応力を生ぜしめることなく自由に長さを変化させられるので、良好な熱的応答を与える。中心部の駆動コイルブラケット1040は擬似的振動モードが最少になる。板ばね1045はバランスバーの端側部分1002及び1003の内側端部1036及び1037を、相互に対して大きな位相の外れた運動を生じないように連結する。その結果、バランスバーの端側部分1002及び1003にはコリオリ状撓みが生じない。かくして、図10、11及び12の実施例は前述した実施例の物質の流れに対する感度を有していない。
【0061】
錘1035及び1041は駆動平面に垂直で流管の軸を含む平面を中心として質量分布を対称的にすることにより精度を高めることになる。かくして、錘1041は駆動コイル1044と駆動コイルブラケット1042とを合わせたのと同じ重量になる。これらの付加された錘によりバランスバーにコリオリ状撓みが与えられるので、錘が付加されなければ、流量計に軸方向に与えられる振動では誤った流れの信号が生ずる。
【0062】
図10、11及び12に示されるコリオリ流量計の他の部分は前述した実施例の場合と同様である。これらの部分はケース1004、ケース端部1008及び1009、ケースのネック部1005及び1015、流管の入口1006及び流管の出口1007、コーン連結部分1013及び1014、流管1001の非動作部分1001A及び1001B、ケース1004の内壁1020に連結された側方末端部1033を有するケース連結リンク1031及び1032、ピックオフLPO及びRPO、1対の駆動源D1及びD2、駆動コイルブラケット1042及び1043、錘1041及び1035、ケース連結リンク1031及び1032における平面内にない屈曲部1034である。
【0063】
図1の実施例に関して説明したのと同様にして、流量計電子回路121が線路123を介して駆動源Dに信号を供給してバランスバー102と流管101とを位相が反対になるように振動させる。ピックオフLPO及びRPOが物質の流れを有する流管101の振動を検出してコリオリ応答の大きさ及び位相を示す出力信号を生ずる。ピックオフの出力信号は線路122及び124を介して流量計電子回路121に供給され、流量計電子回路121は線路125を介して物質の流れに関する情報を含む出力を生ずる。
【0064】
図10、11及び12の実施例について概括すると、バランスバーの端側部分1002及び1003の中間の可撓性の駆動コイルブラケット1040は、ばね1045が容易に屈撓しバランスバーの端側部分1002及び1003の軸方向の長さの変化に応じて流管1001が軸方向の応力を生じないように保護する上で有利である。前述の実施例とは異なって、この実施例の板ばねによりコリオリ状撓みの振動数が流量計の感度を高めるのに十分には低下しない。
【0065】
本発明は好ましい実施例の説明に限定されるものではなく、本発明の精神及び範囲内において他の種々の変形、変更をなし得ることがわかるはずである。例えば、本発明を直線状単管式コリオリ流量計の一部分からなるものとして説明したが、本発明はこれに限定されずに、不規則な、あるいは曲線形状の単管式流量計や複数の流管を有するコリオリ流量計を含む他の型のコリオリ流量計にも用いられることがわかるであろう。
【図面の簡単な説明】
【図1】 従来の直線状流管のコリオリ流量計を示す図である。
【図2】 本発明の第1の実施例による直線状流管のコリオリ流量計を示す図である。
【図3】 本発明による流管及びバランスバーのモード形状を示す図である。
【図4】 本発明による流管及びバランスバーのモード形状を示す図である。
【図5】 本発明による流管及びバランスバーのモード形状を示す図である。
【図6】 本発明の第2の実施例による直線状流管のコリオリ流量計を示す図である。
【図7】 本発明の第2の実施例による直線状流管のコリオリ流量計を示す図である。
【図8】 本発明の第3の実施例による直線状流管のコリオリ流量計を示す図である。
【図9】 本発明の第3の実施例による直線状流管のコリオリ流量計を示す図である。
【図10】 本発明の第4の実施例による直線状流管のコリオリ流量計を示す図である。
【図11】 本発明の第4の実施例による直線状流管のコリオリ流量計を示す図である。
【図12】 本発明の第4の実施例による直線状流管のコリオリ流量計を示す図である。

Claims (9)

  1. 入口(206)から物質の流れを受け入れ、該物質の流れを流管手段(201)を通じて出口に移送するコリオリ流量計(200,600,800,1000)において、
    上記流管手段に平行に配置されたバランスバー(202,203,602,603,802,803,1002,1003)と、
    該バランスバーの端部を上記流管手段に連結する受けバー(210,211,610,611,810,811,1010,1011)と、
    上記流管手段及びバランスバーを位相が反対になるように振動させる駆動源(D)と、
    物質の流れを有し振動する上記流管手段のコリオリ応答を表す信号を生ずるように上記バランスバー及び流管手段に連結されたピックオフ手段(LPO,RPO)と、
    を含み、さらに、上記バランスバーが、
    駆動コイルブラケット手段と少なくとも一つのばね手段からなる軸方向の中間部分と、
    第1の上記受けバーから上記軸方向の中間部分に向かって軸方向内方に延びる第1の部分及び第2の上記受けバーから上記軸方向の中間部分に向かって軸方向内方に延びる第2の部分を含む上記バランスバーと、
    上記第1のバランスバー部分を上記第2のバランスバー部分に接合する上記軸方向中間部分と、
    上記ばね手段(638,638A)は上記第1の部分及び上記第2の部分に連結されると共に上記流管手段の駆動平面にほぼ直交して配向されて上記駆動コイルブラケット手段を上記バランスバーの上記第1の部分及び上記第2の部分の軸方向内端に接合し、上記少なくとも一つのばね手段はその軸方向のコンプライアンスがコリオリ流量計の温度変化に応答して上記流管手段に軸方向の応力を付加的に加えることなく長さを可変ならしめてなること、
    を含むことを特徴とするコリオリ流量計。
  2. 上記ばね手段がほぼ矩形であることを特徴とする請求項1に記載のコリオリ流量計。
  3. 上記流管手段がケースを含み、1本の直線状流管(201,601,801,1001)からなることを特徴とする請求項2に記載のコリオリ流量計。
  4. 上記流管手段が単一の流管であり、上記ピックオフ手段が1対の速度検出器からなり、第1の上記ピックオフが上記バランスバーの上記第1の部分及び上記流管手段に連結され、第2の上記ピックオフが上記バランスバーの上記第2の部分及び上記流管手段に連結されるようにしたことを特徴とする請求項1に記載のコリオリ流量計。
  5. 上記ばね手段(638,638A)の第1の端部が上記駆動コイルのブラケット手段に連結され、
    上記ばね手段の第2の端部が上記バランスバーの上記第1の部分及び上記第2の部分に連結され、
    上記ばね手段が上記バランスバーの上記第1の部分及び上記第2の部分の長さの軸方向の変化に応じて屈撓する
    ようにしたことを特徴とする請求項に記載のコリオリ流量計。
  6. 上記駆動コイルのブラケット手段が
    上記流管の縦方向の軸に平行な平坦な面を有する駆動コイルのブラケット(640,640A)と、
    上記流管の縦方向の軸に平行な面を有する第2のブラケット(640A)と、
    を含み、
    上記ばね手段が上記駆動コイルのブラケットを上記バランスバーの上記第1の部分及び上記第2の部分に連結する第1の組のばね(638)を含み、
    上記第1の駆動コイルのブラケットの平坦な面が上記駆動源のコイルを受け入れ、
    駆動マグネット(D)が上記流管に連結され上記駆動コイルに磁気的に連通し、
    上記ばね手段が上記第2の駆動コイルのブラケットを上記バランスバーの上記第1の部分及び上記第2の部分に連結する第2の組のばね(638A)をさらに含み、
    上記第2のブラケットの平坦な面に錘(643)が取り付けられる
    ようにしたことを特徴とする請求項に記載のコリオリ流量計。
  7. 上記第1及び第2の組のばねが上記バランスバーの上記第1の部分及び上記第2の部分に連結された端部を有することを特徴とする請求項に記載のコリオリ流量計。
  8. 上記駆動コイルのブラケット手段(843)が上記流管と同軸であり上記バランスバーの上記第1の部分と上記第2の部分の間隔より小さい軸方向の長さを有し、
    軸方向に細長い支持バー(835)が上記バランスバーの上記第1の部分及び上記第2の部分を上記駆動コイルのブラケット手段に連結し、
    上記細長い支持バー(835)が上記バランスバーの振動の中立面内に配置されて上記流管の縦方向の軸に平行に向いており、
    上記駆動コイルのブラケット手段の壁部にスロット(842)があり、該スロットは上記駆動コイルのブラケット手段の軸方向外側末端部に平行でこれに近接しており、
    上記スロットの間の上記駆動コイルのブラケット手段の壁部の材料と上記駆動コイルのブラケット手段の軸方向外側末端部とが上記バランスバーの軸方向の長さの変化に応じて屈撓する第1の組のばね(846)を形成する
    ようにしたことを特徴とする請求項に記載のコリオリ流量計。
  9. 上記バランスバーの端側部分の軸方向内側末端部に近接して上記バランスバーの中間部分の壁部に周方向の向きのスロット(833)があり、
    上記スロットと軸方向の細長い支持バー(835)との間の壁部の材料(846)が上記バランスバーの軸方向の長さの変化に応じて軸方向に屈撓する第2の組のばねを形成するようにしたことを特徴とする請求項に記載のコリオリ流量計。
JP2001581062A 2000-05-02 2001-04-25 コリオリ流量計用の熱応力が小さいバランスバー Expired - Fee Related JP4846959B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/563,026 2000-05-02
US09/563,026 US6487917B1 (en) 2000-05-02 2000-05-02 Low thermal stress balance bar for a coriolis flowmeter
PCT/US2001/013301 WO2001084085A2 (en) 2000-05-02 2001-04-25 Low thermal stress balance bar for a coriolis flowmeter

Publications (3)

Publication Number Publication Date
JP2003533677A JP2003533677A (ja) 2003-11-11
JP2003533677A5 JP2003533677A5 (ja) 2007-06-07
JP4846959B2 true JP4846959B2 (ja) 2011-12-28

Family

ID=24248792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001581062A Expired - Fee Related JP4846959B2 (ja) 2000-05-02 2001-04-25 コリオリ流量計用の熱応力が小さいバランスバー

Country Status (8)

Country Link
US (1) US6487917B1 (ja)
EP (2) EP1279007B1 (ja)
JP (1) JP4846959B2 (ja)
CN (1) CN1437698B (ja)
AR (1) AR029069A1 (ja)
AU (1) AU2001259147A1 (ja)
HK (1) HK1057091A1 (ja)
WO (1) WO2001084085A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160382A1 (en) * 2017-03-03 2018-09-07 General Electric Company Mass flow meter

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880410B2 (en) * 2002-03-14 2005-04-19 Endress + Hauser Flowtec Ag Transducer and method for measuring a fluid flowing in a pipe
US6598489B1 (en) * 2002-03-29 2003-07-29 Micro Motion, Inc. Balance bar having a reduced axial thermal stress resulting from high temperature manufacturing methods
MXPA05011151A (es) * 2003-04-17 2005-12-14 Micro Motion Inc Metodo y aparato de balanceo de fuerza de flujometro de coriolis.
DE10351312B4 (de) * 2003-10-31 2009-05-07 Abb Ag Anbauteil und Coriolis-Massendurchflussmessgerät mit diesem Anbauteil
DE10354373A1 (de) * 2003-11-20 2005-06-16 Endress + Hauser Flowtec Ag, Reinach Messaufnehmer vom Vibrationstyp
EP1735600B1 (de) * 2004-04-16 2019-09-18 Endress+Hauser Flowtec AG Wärmetauscher zum temperieren eines inline-messgeräts
DE102004030392A1 (de) * 2004-06-23 2006-01-19 Endress + Hauser Flowtec Ag, Reinach Meßwandler vom Vibrationstyp
US7077014B2 (en) * 2004-06-23 2006-07-18 Endress + Hauser Flowtec Ag Vibration-type measuring transducer
CA2574857C (en) * 2004-07-01 2013-05-14 Micro Motion, Inc. Split balance weights for eliminating density effect on flow
DK1914526T3 (en) 2005-02-25 2017-10-23 Endress & Hauser Flowtec Ag VIBRATION TYPE MEASUREMENT SENSOR
DE102006013601A1 (de) 2006-03-22 2007-09-27 Endress + Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp
US7546777B2 (en) * 2006-03-22 2009-06-16 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type
US7631561B2 (en) * 2006-03-22 2009-12-15 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type
US7555962B2 (en) * 2006-03-22 2009-07-07 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type
US7874220B2 (en) * 2006-11-16 2011-01-25 Abb Patent Gmbh Coriolis mass flowmeter with an oscillatable straight measuring tube
EP2122310B1 (de) * 2006-12-22 2016-03-23 Endress+Hauser Flowtec AG Messwandler vom vibrationstyp
DE102006062220A1 (de) * 2006-12-22 2008-06-26 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102006062219A1 (de) * 2006-12-22 2008-06-26 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102006062185A1 (de) * 2006-12-22 2008-06-26 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102007050686A1 (de) * 2007-10-22 2009-04-23 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102007062397A1 (de) * 2007-12-20 2009-06-25 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
US8281668B2 (en) * 2008-04-02 2012-10-09 Micro Motion, Inc. Brace bar with a partial bond
US20090297885A1 (en) * 2008-05-30 2009-12-03 Kishor Purushottam Gadkaree Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide
DE102008034412A1 (de) * 2008-07-23 2010-01-28 Endress + Hauser Flowtec Ag Ultraschallsensor eines Messsystems zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
DE102008035877A1 (de) * 2008-08-01 2010-02-04 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
US8839518B1 (en) * 2010-12-16 2014-09-23 Kennieth Neal EGR cooler and method of rebuilding existing cooler
CN103814278B (zh) * 2011-07-07 2016-12-21 微动公司 用于振动仪表的改进的电气配置
CN105008871B (zh) * 2012-12-30 2018-07-31 恩德斯+豪斯流量技术股份有限公司 振动型测量变换器以及形成有该测量变换器的测量系统
US20150153210A1 (en) * 2013-12-04 2015-06-04 Gilbarco Inc. Fuel dispenser coriolis flow meter
US9541429B2 (en) * 2014-06-02 2017-01-10 University Of Kansas Systems, methods, and devices for fluid data sensing
US10585109B2 (en) 2014-06-02 2020-03-10 University Of Kansas Systems, methods, and devices for fluid data sensing
CN107462293A (zh) * 2017-07-25 2017-12-12 大连美天测控系统有限公司 质量流量计
DE102017010850B3 (de) * 2017-11-23 2018-12-27 Schenck Process Europe Gmbh Messgerät zum Messen eines Massendurchsatzes eines Materialstroms, Messsystem, Dosiersystem, Verfahren zum Betreiben eines Messgeräts und Verfahren zum Betreiben eines Messsystems
US20230003566A1 (en) * 2019-12-13 2023-01-05 Micro Motion, Inc. Design to reduce strain in coriolis flow sensor
EP4111143A4 (en) * 2020-02-26 2023-12-06 Idex India Pvt. Ltd METHOD AND APPARATUS FOR BALANCING A CORIOLIS MASS FLOW METER
US10782170B1 (en) 2020-02-26 2020-09-22 IDEX India PVT. LTD Method and apparatus to balance a coriolis mass flow meter adding balancing weights by determining reaction forces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109513A (ja) * 1992-09-30 1994-04-19 Yokogawa Electric Corp コリオリ質量流量計
JPH10227677A (ja) * 1997-02-13 1998-08-25 Oval Corp 高温型コリオリ流量計
WO1999040394A1 (en) * 1998-02-09 1999-08-12 Micro Motion, Inc. Spring rate balancing of the flow tube and a balance bar in a straight tube coriolis flowmeter
WO2000012970A1 (en) * 1998-08-31 2000-03-09 Micro Motion, Inc. Method and apparatus for a coriolis flowmeter having its flow calibration factor independent of material density

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124295A1 (de) 1991-07-22 1993-01-28 Krohne Ag Massendurchflussmessgeraet
DE4224379C2 (de) 1992-07-06 1998-05-20 Krohne Messtechnik Kg Massendurchflußmeßgerät
JP2758798B2 (ja) 1992-11-19 1998-05-28 株式会社オーバル コリオリ流量計
US5691485A (en) 1994-06-06 1997-11-25 Oval Corporation Coaxial double tube type Coriolis flowmeter
DE59508708D1 (de) 1995-07-21 2000-10-12 Flowtec Ag Coriolis-Massedurchflussmesser mit mindestens einem Messrohr
JP3327325B2 (ja) 1997-07-11 2002-09-24 横河電機株式会社 コリオリ質量流量計
US5987999A (en) * 1998-07-01 1999-11-23 Micro Motion, Inc. Sensitivity enhancing balance bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109513A (ja) * 1992-09-30 1994-04-19 Yokogawa Electric Corp コリオリ質量流量計
JPH10227677A (ja) * 1997-02-13 1998-08-25 Oval Corp 高温型コリオリ流量計
WO1999040394A1 (en) * 1998-02-09 1999-08-12 Micro Motion, Inc. Spring rate balancing of the flow tube and a balance bar in a straight tube coriolis flowmeter
WO2000012970A1 (en) * 1998-08-31 2000-03-09 Micro Motion, Inc. Method and apparatus for a coriolis flowmeter having its flow calibration factor independent of material density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160382A1 (en) * 2017-03-03 2018-09-07 General Electric Company Mass flow meter

Also Published As

Publication number Publication date
CN1437698B (zh) 2010-10-13
EP1279007A2 (en) 2003-01-29
WO2001084085A3 (en) 2002-02-21
EP1279007B1 (en) 2020-07-15
EP3208575A1 (en) 2017-08-23
HK1057091A1 (en) 2004-03-12
WO2001084085A2 (en) 2001-11-08
EP3208575B1 (en) 2020-04-08
JP2003533677A (ja) 2003-11-11
AU2001259147A1 (en) 2001-11-12
AR029069A1 (es) 2003-06-04
CN1437698A (zh) 2003-08-20
US6487917B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP4846959B2 (ja) コリオリ流量計用の熱応力が小さいバランスバー
JP3416157B2 (ja) 波形の流管を有するコリオリ流量計
KR20010086232A (ko) 직선관 코리올리 유량계의 유동관 및 평형 바아의 스프링 상수 평형 장치 및 방법
KR20010071691A (ko) 민감도 강화 균형 바를 위한 방법 및 장치
CN1096605C (zh) 双重直管式科里奥利流量计
JP5589070B2 (ja) ケースを振動式フローメーターと結合するための方法および装置
EP1155290B1 (en) Low thermal stress case connect link for straight tube coriolis flowmeter
JP5589069B2 (ja) 振動式フローメーター用のバランスシステム
JP4015852B2 (ja) 精度を高めるバランスバーを有するコリオリ流量計に関する方法及び装置
US6178828B1 (en) Free standing Coriolis driver
JP2885768B1 (ja) コリオリ式質量流量計
JP2984192B2 (ja) コリオリ流量計
JP3834144B2 (ja) カウンタバランスチューブ式コリオリ流量計
AU691933B2 (en) A coaxial double tube type coriolis flowmeter
AU695134B2 (en) Coriolis flowmeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees