JP4846603B2 - Alignment film manufacturing method - Google Patents

Alignment film manufacturing method Download PDF

Info

Publication number
JP4846603B2
JP4846603B2 JP2007003135A JP2007003135A JP4846603B2 JP 4846603 B2 JP4846603 B2 JP 4846603B2 JP 2007003135 A JP2007003135 A JP 2007003135A JP 2007003135 A JP2007003135 A JP 2007003135A JP 4846603 B2 JP4846603 B2 JP 4846603B2
Authority
JP
Japan
Prior art keywords
film
alignment film
pressure
alignment
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003135A
Other languages
Japanese (ja)
Other versions
JP2008170668A (en
Inventor
信 青代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007003135A priority Critical patent/JP4846603B2/en
Publication of JP2008170668A publication Critical patent/JP2008170668A/en
Application granted granted Critical
Publication of JP4846603B2 publication Critical patent/JP4846603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は液晶表示装置を製造する製造方法の技術分野に関する。   The present invention relates to a technical field of a manufacturing method for manufacturing a liquid crystal display device.

従来より、例えば負の誘電異方性を有する液晶分子を、一対の基板間に垂直配向するように封入したVA(Vertically Aligned)モードの液晶表示装置が広く知られている。
VAモードの液晶表示装置では、電界無印加時に液晶分子が基板主面に対してほぼ垂直に配向し、電界印加時には基板主面に対して傾斜配向する。
2. Description of the Related Art Conventionally, for example, VA (Vertically Aligned) mode liquid crystal display devices in which liquid crystal molecules having negative dielectric anisotropy are sealed so as to be vertically aligned between a pair of substrates are widely known.
In the VA mode liquid crystal display device, liquid crystal molecules are aligned substantially perpendicular to the main surface of the substrate when no electric field is applied, and are inclined with respect to the main surface of the substrate when an electric field is applied.

垂直配向時には、光は偏光面がほとんど変化せずに液晶層を通過し、傾斜配向時には、複屈折率性により入射光の偏光面が回転する。
垂直配向時において光を遮断するように偏光板を配置しておくと、TNモードの液晶表示装置に比較して高いコントラストを実現できると言われている。
At the time of vertical alignment, the light passes through the liquid crystal layer with almost no change in the plane of polarization, and at the time of tilt alignment, the plane of polarization of incident light rotates due to the birefringence.
It is said that if a polarizing plate is arranged so as to block light during vertical alignment, a higher contrast can be realized as compared with a TN mode liquid crystal display device.

各液晶分子の配向の変化方向を一定にするために、液晶は配向膜上に配置され、この配向膜によって、液晶分子はあらかじめ微小な斜頚角度(プレチルト角)を持って配向されている。   In order to make the change direction of the alignment of each liquid crystal molecule constant, the liquid crystal is arranged on the alignment film, and the liquid crystal molecules are aligned in advance with a small tilt angle (pretilt angle) by this alignment film.

この配向膜には、従来よりポリイミド等の有機材料が広く知られている。しかし、有機材料からなる配向膜は耐光性や耐熱性に劣るため、近年ではSiO等の無機材料からなる耐光性、耐熱性に優れた無機配光膜の開発が進められている。無機配向膜の形成には、従来より斜方蒸着が用いられている。   Conventionally, organic materials such as polyimide have been widely known for this alignment film. However, since alignment films made of organic materials are inferior in light resistance and heat resistance, in recent years, inorganic light distribution films made of inorganic materials such as SiO and excellent in light resistance and heat resistance have been developed. Conventionally, oblique deposition has been used to form the inorganic alignment film.

斜方蒸着は、SiO2、SiO、Al22などの無機材料を入射角が斜めに入るよう基板を斜頚させて蒸着を行う方法で、蒸気の入射角、成膜中の圧力(酸素などのガス導入)によりプレチルト角がコントロールされる。(特開2004-163921)
しかしながら、このようにして作製された配向膜は密度が低いため、バリア性が低く、この配向膜上に液晶を配置したときに、液晶中に含まれるイオンが配向膜中を透過し、配向膜の下層に位置する透明導電膜に進入すると、表示不良が生じてしまう。
The oblique deposition is a method in which an inorganic material such as SiO 2 , SiO, Al 2 O 2 is deposited by tilting the substrate so that the incident angle enters obliquely. The incident angle of vapor, the pressure during film formation (oxygen) The pretilt angle is controlled by gas introduction). (JP 2004-163921)
However, since the alignment film thus prepared has a low density, the barrier property is low, and when liquid crystal is arranged on the alignment film, ions contained in the liquid crystal permeate the alignment film, and the alignment film If it enters into the transparent conductive film located in the lower layer, display defects will occur.

そこで成膜工程を垂直蒸着と斜方蒸着2段に分け(特許公開2005-77901)、バリア性が高いバリア層を形成する方法が提案されているが、二台の成膜装置を使用し、その間を搬送すると処理時間が長くなり、また、一台の成膜装置内で垂直蒸着と斜方蒸着を行なうと、発塵や、リークガスの問題が生じるおそれがある。
特開2004−163921号公報 特開2005−77901号公報
Therefore, a method of forming a barrier layer having a high barrier property has been proposed by dividing the film formation process into two stages of vertical vapor deposition and oblique vapor deposition (Patent Publication 2005-77901). If it is transported between them, the processing time becomes long, and if vertical vapor deposition and oblique vapor deposition are performed in one film forming apparatus, there is a possibility that problems such as dust generation and leakage gas occur.
JP 2004-163921 A JP-A-2005-77901

本発明は上記課題を解決するためになされたものであり、その目的は、液晶を所望のプレチルト角で配向可能であり、かつ、化学的安定性の高い配向膜を成膜することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to form an alignment film capable of aligning liquid crystals at a desired pretilt angle and having high chemical stability.

配向膜のバリア性に関し、配向膜の膜密度が高い程バリア性は高くなる。配向膜の膜密度の大きさは、配向膜の屈折率を測定すれば間接的に求めることができる。
配向膜を蒸着法で形成する場合、入射角度が35−60°の範囲、6×10-3〜3×10-2Paの圧力範囲では、入射角度が大きくなるほど、また、成膜圧力が高くなるほど形成される配向膜の構造が平滑なものから柱状に変化し、配向膜の表面に、液晶を傾けるために必要な凹凸が表面に形成され、その結果、入射角度が大きい程、また、圧力が高い程、プレチルト角は大きな値となる。
Regarding the barrier property of the alignment film, the higher the film density of the alignment film, the higher the barrier property. The film density of the alignment film can be obtained indirectly by measuring the refractive index of the alignment film.
When the alignment film is formed by vapor deposition, in the range where the incident angle is 35-60 ° and in the pressure range of 6 × 10 −3 to 3 × 10 −2 Pa, the larger the incident angle, the higher the deposition pressure. The structure of the alignment film formed changes from a smooth one to a columnar shape, and irregularities necessary for tilting the liquid crystal are formed on the surface of the alignment film. As a result, the larger the incident angle, the higher the pressure. The higher the value, the larger the pretilt angle.

入射角度を大きくするためには、基板を水平面から傾け、傾斜させて蒸着すればよく、成膜圧力を変えるためには、真空槽中に導入する酸素の量を変え、真空槽中の酸素圧力を変えればよい。   In order to increase the incident angle, the substrate may be deposited by tilting and tilting it from the horizontal plane. To change the deposition pressure, the amount of oxygen introduced into the vacuum chamber is changed, and the oxygen pressure in the vacuum chamber is changed. Just change.

本発明の発明者等は、バリア性の要求とプレチルト角の要求を両立させる配向膜を形成するため、成膜圧力と、屈折率及びプレチルト角の関係を測定した。
基板を水平状態から45°傾斜させ、二酸化ケイ素からなる蒸着材料を真空雰囲気中で溶融、蒸発させ、基板表面に二酸化ケイ素膜から成る配向膜を形成したときの成膜圧力と屈折率の関係を下記表1及び図3に示し、成膜圧力とプレチルト角の関係を表2及び図4に示す。成膜速度は5Å/秒、膜厚1000Åであった。
The inventors of the present invention measured the relationship between the deposition pressure, the refractive index, and the pretilt angle in order to form an alignment film that satisfies both the barrier property requirement and the pretilt angle requirement.
The relationship between the deposition pressure and the refractive index when the substrate is tilted 45 ° from the horizontal state, the evaporation material made of silicon dioxide is melted and evaporated in a vacuum atmosphere, and the alignment film made of the silicon dioxide film is formed on the substrate surface. It shows in following Table 1 and FIG. 3, and the relationship between the film-forming pressure and a pretilt angle is shown in Table 2 and FIG. The film formation rate was 5 mm / second and the film thickness was 1000 mm.

Figure 0004846603
Figure 0004846603

Figure 0004846603
Figure 0004846603

図3、4から、成膜圧力が異なる場合、屈折率は成膜圧力が小さい程大きく、逆に、プレチルト角は成膜圧力が高い程大きい。
また、基板の水平面に対する傾斜角度を大きくすれば、プレチルト角を大きくすることができるが、斜め方向から入射する蒸気によって配向膜が形成されると、膜密度が低下し、バリア性が悪くなる。
従って、大きなプレチルト角を得るための傾斜角度と成膜圧力を設定すると、バリア性が得られなくなる。
3 and 4, when the film formation pressure is different, the refractive index is larger as the film formation pressure is smaller, and conversely, the pretilt angle is larger as the film formation pressure is higher.
In addition, if the tilt angle of the substrate with respect to the horizontal plane is increased, the pretilt angle can be increased. However, if the alignment film is formed by vapor incident from an oblique direction, the film density is lowered and the barrier property is deteriorated.
Therefore, if the tilt angle and film formation pressure for obtaining a large pretilt angle are set, the barrier property cannot be obtained.

本発明者等は、液晶のプレチルト角には、配向膜の表面の膜質が影響しており、配向膜の下層の部分の膜質は影響しないことに基づき、プレチルト角とバリア性が両立する配向膜を得るためには、プレチルト角を得るための傾斜角度を設定し、先ず、その傾斜角度でバリア性が得られる圧力で配向膜を形成した後、圧力を変化させ、傾斜角度を変化させずにプレチルト角を得られる膜質の配向膜を形成すればよいことを見いだし、本発明を創作するに到った。   Based on the fact that the film quality of the surface of the alignment film has an influence on the pretilt angle of the liquid crystal, the inventors have not affected the film quality of the lower layer of the alignment film. In order to obtain the pretilt angle, an inclination angle is set. First, after forming an alignment film at a pressure at which the barrier property is obtained at the inclination angle, the pressure is changed without changing the inclination angle. It has been found that an alignment film having a film quality capable of obtaining a pretilt angle may be formed, and the present invention has been created.

係る知見に基づいて成された本発明は、基板上に透明導電膜と二酸化ケイ素を主成分とする配向膜が形成され、前記配向膜表面に液晶が配置される液晶表示装置の前記配向膜を製造する製造方法であって、前記配向膜を形成する工程は、前記透明導電膜が形成された基板を水平面に対して所定の傾斜角度で傾斜させた状態で真空雰囲気中に保持し、前記真空雰囲気中に酸素を導入し、前記真空雰囲気の酸素圧力を第一の成膜圧力にした状態で二酸化ケイ素を主成分とする蒸着材料を溶融させ、前記蒸着材料の蒸気を放出させ、前記透明導電膜表面に前記配向膜の底面層を成長させた後、前記真空雰囲気の酸素圧力を、前記第一の成膜圧力よりも高い第二の成膜圧力にし、前記配向膜の表面層を前記底面層上に形成する配向膜の製造方法である。
本発明は配向膜の製造方法であって、同一の真空槽内で、前記底面層と前記表面層を成長させる配向膜の製造方法である。
本発明は配向膜の製造方法であって、前記傾斜角度は、前記底面層を形成する間と前記表面層を形成する間で同じにする配向膜の製造方法である。
本発明は配向膜の製造方法であって、前記真空雰囲気中に窒素ガスを導入する配向膜の製造方法である。
本発明は配向膜の製造方法であって、前記表面層の膜厚をが10nm以上にする配向膜の製造方法である。
The present invention based on such knowledge is obtained by forming the alignment film of a liquid crystal display device in which an alignment film mainly composed of a transparent conductive film and silicon dioxide is formed on a substrate, and liquid crystal is disposed on the alignment film surface. In the manufacturing method for manufacturing, the step of forming the alignment film is performed by holding the substrate on which the transparent conductive film is formed in a vacuum atmosphere in a state where the substrate is inclined at a predetermined inclination angle with respect to a horizontal plane. Oxygen is introduced into the atmosphere, and a vapor deposition material mainly composed of silicon dioxide is melted in a state where the oxygen pressure in the vacuum atmosphere is set to a first film formation pressure, and vapor of the vapor deposition material is released, and After the bottom layer of the alignment film is grown on the film surface, the oxygen pressure in the vacuum atmosphere is set to a second film formation pressure higher than the first film formation pressure, and the surface layer of the alignment film is formed into the bottom surface. A method for producing an alignment film formed on a layer
The present invention is a method for manufacturing an alignment film, in which the bottom layer and the surface layer are grown in the same vacuum chamber.
The present invention is a method for producing an alignment film, wherein the tilt angle is the same during the formation of the bottom layer and during the formation of the surface layer.
The present invention is a method for manufacturing an alignment film, which is a method for manufacturing an alignment film in which nitrogen gas is introduced into the vacuum atmosphere.
The present invention is a method for producing an alignment film, wherein the film thickness of the surface layer is 10 nm or more.

表面に膜厚1000Åの透明導電膜(ITO膜)がスパッタ法で成膜された基板を用意し、傾斜角度(基板表面と水平面の成す角度)40°、45°、50°、圧力2×10-2Pa、2×10-3Paの条件を組み合わせ、それぞれ配向膜を形成した。各配向膜は、屈折率をエリプソメータによって測定し、更に各配向膜に液晶(メルク(株)社製の商品名「MLC6608」)を配置し、クリスタルローテーション法でプレチルト角を測定した。
傾斜角度と圧力以外の成膜条件を下記表3に示し、測定結果を下記表4、5に示す。
Prepare a substrate on which a transparent conductive film (ITO film) with a thickness of 1000 mm is formed by sputtering, and tilt angles (angles between the substrate surface and a horizontal plane) 40 °, 45 °, 50 °, pressure 2 × 10 The alignment films were formed by combining the conditions of −2 Pa and 2 × 10 −3 Pa. Each alignment film was measured for refractive index with an ellipsometer, liquid crystal (trade name “MLC6608” manufactured by Merck & Co., Inc.) was further disposed on each alignment film, and the pretilt angle was measured by a crystal rotation method.
Deposition conditions other than the tilt angle and pressure are shown in Table 3 below, and the measurement results are shown in Tables 4 and 5 below.

Figure 0004846603
Figure 0004846603

Figure 0004846603
Figure 0004846603

Figure 0004846603
Figure 0004846603

図5は、上記測定結果から求めた傾斜角度と屈折率の関係を示すグラフであり、符号L1に示す曲線は2×10-2Paの圧力で形成した場合、符号H1に示す曲線は、2×10-3Paの圧力で形成した場合である。 FIG. 5 is a graph showing the relationship between the inclination angle and the refractive index obtained from the above measurement results. When the curve indicated by L 1 is formed at a pressure of 2 × 10 −2 Pa, the curve indicated by H 1 is This is the case of forming at a pressure of 2 × 10 −3 Pa.

図6は、上記測定結果から求めた傾斜角度とプレチルト角の関係を示すグラフであり、符号H2に示す曲線は、2×10-2Paの圧力で形成した場合、符号L2示す曲線は、2×10-3Paの圧力で形成した場合である。
図5、6から分かるように、基板の水平面からの傾斜角度が大きくなるほど屈折率が小さく、プレチルト角が大きくなっている。
FIG. 6 is a graph showing the relationship between the tilt angle and the pretilt angle obtained from the above measurement results. When the curve indicated by the symbol H 2 is formed at a pressure of 2 × 10 −2 Pa, the curve indicated by the symbol L 2 is This is the case of forming at a pressure of 2 × 10 −3 Pa.
As can be seen from FIGS. 5 and 6, the refractive index decreases and the pretilt angle increases as the inclination angle of the substrate from the horizontal plane increases.

本発明は、必要なプレチルト角が得られる圧力の値と傾斜角度の値の組み合わせのうち、同じ傾斜角度で圧力を小さくした場合に、必要な屈折率が得られる傾斜角度を予め求めておき、先ず、必要な屈折率が得られる第一の成膜圧力で蒸着して配向膜の底面層を形成し、次いで、圧力を第一の成膜圧力よりも高い第二の成膜圧力に変更し、必要なプレチルト角が得られる表面層を形成している。   In the present invention, when the pressure is reduced at the same inclination angle among the combinations of the pressure value and the inclination angle value at which a necessary pretilt angle is obtained, an inclination angle at which a necessary refractive index is obtained is obtained in advance. First, the bottom layer of the alignment film is formed by vapor deposition at a first film formation pressure that provides the necessary refractive index, and then the pressure is changed to a second film formation pressure that is higher than the first film formation pressure. Thus, a surface layer capable of obtaining a necessary pretilt angle is formed.

本発明により成膜された配向膜はバリア性と配向性を兼ね備えるので、異なる成膜装置によってバリア膜を配向膜と別に成膜する必要が無い。
本発明で形成される配向膜はSiO2を主成分とするため、配向膜に樹脂膜を用いた場合に比べ、液晶表示装置は耐光性、耐熱性に優れている。
Since the alignment film formed according to the present invention has both barrier properties and alignment properties, it is not necessary to form the barrier film separately from the alignment film by using different film forming apparatuses.
Since the alignment film formed in the present invention contains SiO 2 as a main component, the liquid crystal display device is superior in light resistance and heat resistance compared to the case where a resin film is used as the alignment film.

図1の符号5は本発明方法に用いることができる成膜装置の一例を示している。
この成膜装置5は、真空槽51を有している。真空槽51の内部には、基板ホルダ57が配置されている。また、真空槽51の内部には回転軸55が水平に配置され、基板ホルダ57はこの回転軸55に取り付けられており、回転軸55が回転すると、基板ホルダ57は水平面に対して所望角度傾斜できるように構成されている。
図1の符号11は、基板ホルダ57に保持され、表面Sが水平面Hに対して傾斜角度θ(0<θ<90°)傾いた状態の基板を示している。
Reference numeral 5 in FIG. 1 shows an example of a film forming apparatus that can be used in the method of the present invention.
The film forming apparatus 5 has a vacuum chamber 51. A substrate holder 57 is disposed inside the vacuum chamber 51. A rotation shaft 55 is horizontally disposed inside the vacuum chamber 51, and the substrate holder 57 is attached to the rotation shaft 55. When the rotation shaft 55 rotates, the substrate holder 57 is inclined at a desired angle with respect to the horizontal plane. It is configured to be able to.
Reference numeral 11 in FIG. 1 denotes a substrate held by the substrate holder 57 and having the surface S inclined with respect to the horizontal plane H by an inclination angle θ (0 <θ <90 °).

真空槽51内部の基板ホルダ57の真下位置には、蒸着容器52が配置されている。蒸着容器52の内部には、蒸着材料54が配置されている。
真空槽51には真空排気系59が接続されている。真空排気系59によって真空槽51内部を真空排気し、電源4から不図示のヒータに通電して蒸着容器52内の蒸着材料54を加熱溶融させると、真空槽51内に蒸着材料54の蒸気が放出され、蒸着材料54の蒸気が基板11表面上に到達する。
A vapor deposition container 52 is disposed immediately below the substrate holder 57 inside the vacuum chamber 51. A vapor deposition material 54 is disposed inside the vapor deposition container 52.
A vacuum exhaust system 59 is connected to the vacuum chamber 51. When the inside of the vacuum chamber 51 is evacuated by the evacuation system 59 and the heater (not shown) is energized from the power source 4 to heat and melt the vapor deposition material 54 in the vapor deposition vessel 52, the vapor of the vapor deposition material 54 enters the vacuum chamber 51. The vapor of the vapor deposition material 54 reaches the surface of the substrate 11 as it is released.

真空槽51にはガス供給系58が接続されている。ガス供給系58には不図示のタンクが設けられており、タンク内に収容された補助ガスを流量制御しながら真空槽51内部に導入できるように構成されている。   A gas supply system 58 is connected to the vacuum chamber 51. The gas supply system 58 is provided with a tank (not shown) so that the auxiliary gas accommodated in the tank can be introduced into the vacuum chamber 51 while controlling the flow rate.

真空槽51には、圧力センサ67と膜厚センサ63が設けられている。圧力センサ67は制御装置2に接続され、膜厚センサ63は、膜厚計6を介して制御装置2に接続されており、圧力センサ67によって真空槽51内部の圧力を測定し、膜厚センサ63によって基板11表面上に成長する薄膜の膜厚を測定できるように構成されている。   The vacuum chamber 51 is provided with a pressure sensor 67 and a film thickness sensor 63. The pressure sensor 67 is connected to the control device 2, and the film thickness sensor 63 is connected to the control device 2 via the film thickness meter 6, and the pressure sensor 67 measures the pressure inside the vacuum chamber 51, and the film thickness sensor The thickness of the thin film grown on the surface of the substrate 11 can be measured by 63.

制御装置2は、圧力センサ67と膜厚センサ63の測定値に基づいて、下記のようにガス導入系58から真空槽51内に導入する補助ガスの量を制御する。
即ち、制御装置2は一乃至複数の圧力値を記憶するように構成されており、記憶された圧力値の中から、一の圧力値が選択されると、制御装置2は、圧力センサ67によって測定された真空槽51内の圧力の測定値が選択された圧力と等しくなるように、ガス導入系58を制御する。ここでは、後述するように、第一の成膜圧力と、それよりも高圧の第二の成膜圧力が記憶されている。
The control device 2 controls the amount of auxiliary gas introduced from the gas introduction system 58 into the vacuum chamber 51 based on the measured values of the pressure sensor 67 and the film thickness sensor 63 as described below.
That is, the control device 2 is configured to store one or a plurality of pressure values, and when one pressure value is selected from the stored pressure values, the control device 2 is controlled by the pressure sensor 67. The gas introduction system 58 is controlled so that the measured pressure value in the vacuum chamber 51 is equal to the selected pressure. Here, as will be described later, the first film formation pressure and the second film formation pressure higher than that are stored.

また、制御装置2には、膜厚基準値が記憶されており、膜厚センサ63の測定値が膜厚基準値よりも小さいときには、第一の成膜圧力が選択され、膜厚基準値以上になると、第二の成膜圧力が選択される。   The control device 2 stores a film thickness reference value. When the measured value of the film thickness sensor 63 is smaller than the film thickness reference value, the first film forming pressure is selected and is equal to or greater than the film thickness reference value. Then, the second film formation pressure is selected.

次に、この成膜装置5を用いて配向膜を成膜する工程について説明する。
液晶表示装置に要求されるプレチルト角の範囲は予め分かっており、上述したように、成膜圧力を変えた場合に、必要なプレチルト角と屈折率を得ることができる傾斜角度θを予め求めておき、その傾斜角度で蒸着したときに、必要な屈折率が得られる成膜圧力と、必要なプレチルト角が得られる成膜圧力を、それぞれ第一の成膜圧力と第二の成膜圧力として、制御装置2に記憶させておく。
Next, a process for forming an alignment film using the film forming apparatus 5 will be described.
The range of the pretilt angle required for the liquid crystal display device is known in advance, and as described above, the tilt angle θ that can obtain the necessary pretilt angle and refractive index when the film forming pressure is changed is obtained in advance. The deposition pressure at which a necessary refractive index is obtained and the deposition pressure at which a necessary pretilt angle is obtained when vapor deposition is performed at the tilt angle are defined as a first deposition pressure and a second deposition pressure, respectively. And stored in the control device 2.

また、形成する配向膜の底面層の膜厚を基準膜厚として制御装置2に記憶させておく。
蒸着容器52内に二酸化ケイ素を主成分とする蒸着材料54を配置し、ガス供給系58に補助ガスとして酸素ガスを配置し、真空排気系59を動作させて真空槽51内部に真空雰囲気を形成する。
Further, the thickness of the bottom layer of the alignment film to be formed is stored in the control device 2 as a reference film thickness.
A vapor deposition material 54 containing silicon dioxide as a main component is disposed in the vapor deposition vessel 52, oxygen gas is disposed as an auxiliary gas in the gas supply system 58, and the vacuum exhaust system 59 is operated to form a vacuum atmosphere in the vacuum chamber 51. To do.

図1の符号10は成膜対象物である積層基板を示している。積層基板10は基板11と、基板11表面に配置された透明電極膜12とを有しており、表面に透明電極膜12が露出している。   Reference numeral 10 in FIG. 1 indicates a laminated substrate which is a film formation target. The laminated substrate 10 has a substrate 11 and a transparent electrode film 12 disposed on the surface of the substrate 11, and the transparent electrode film 12 is exposed on the surface.

真空槽51内の真空雰囲気を維持したまま、積層基板10を真空槽51内部に搬入し、透明電極膜12が露出する面(成膜面)を蒸着容器52に向け、水平な基板ホルダ57に保持させた後、基板ホルダ57を傾け、基板11の表面Sと水平面Hとの角度が予め求めた傾斜角度θになるよう積層基板10を傾ける。
真空槽51の内部には加熱ヒータ61が設けられており、加熱ヒータ61に通電し、積層基板10を所定温度に加熱する。
While maintaining the vacuum atmosphere in the vacuum chamber 51, the laminated substrate 10 is carried into the vacuum chamber 51, the surface where the transparent electrode film 12 is exposed (film formation surface) is directed to the vapor deposition container 52, and the horizontal substrate holder 57 is placed. After the holding, the substrate holder 57 is tilted, and the laminated substrate 10 is tilted so that the angle between the surface S of the substrate 11 and the horizontal plane H becomes a previously determined tilt angle θ.
A heater 61 is provided inside the vacuum chamber 51. The heater 61 is energized to heat the laminated substrate 10 to a predetermined temperature.

蒸着容器52との基板ホルダ57の間にはシャッタ68が設けられており、シャッタ68を閉じた状態で蒸着容器52の蒸着材料54を加熱し、蒸気を放出させ、真空槽51内に酸素ガスを導入し、第一の成膜圧力で安定したところで、シャッタ68を開け、積層基板10を所定温度に維持したまま、蒸着材料54の蒸気を積層基板10の成膜面に到達させ、配向膜の底面層を成長させる。
底面層の膜厚が基準膜厚に到達したところで、一旦シャッタ68を閉じ、酸素導入量を増加させ、真空槽51内を第一の成膜圧力から第二の成膜圧力に変化させる。
A shutter 68 is provided between the vapor deposition vessel 52 and the substrate holder 57, and the vapor deposition material 54 in the vapor deposition vessel 52 is heated with the shutter 68 closed to release vapor, and oxygen gas is introduced into the vacuum chamber 51. When the first film forming pressure is stabilized, the shutter 68 is opened, and the vapor of the vapor deposition material 54 reaches the film forming surface of the laminated substrate 10 while maintaining the laminated substrate 10 at a predetermined temperature. The bottom layer of is grown.
When the film thickness of the bottom layer reaches the reference film thickness, the shutter 68 is once closed, the oxygen introduction amount is increased, and the inside of the vacuum chamber 51 is changed from the first film formation pressure to the second film formation pressure.

真空槽51内の圧力が第二の成膜圧力で安定したところで、シャッタ68を開け、底面層上に、配向膜の表面層を成長させると、所望の屈折率の底面層と、所望のプレチルト角が得られる表面層を有する配向膜が形成される。
表面層が所定膜厚に達したところで、シャッタ68を閉じ、蒸着材料54の加熱を停止し、蒸気放出を停止させた状態で、積層基板10を真空槽51の外部に搬出する。
When the pressure in the vacuum chamber 51 is stabilized at the second film-forming pressure, the shutter 68 is opened, and the surface layer of the alignment film is grown on the bottom layer. An alignment film having a surface layer from which corners can be obtained is formed.
When the surface layer reaches a predetermined film thickness, the shutter 68 is closed, the heating of the vapor deposition material 54 is stopped, and the vapor emission is stopped, and the laminated substrate 10 is carried out of the vacuum chamber 51.

次に、配向膜が形成された積層基板10を組み立てて液晶表示装置を製造する工程について説明すると、上述した工程で成膜面に配向膜が形成された2枚の積層基板10、20を、配向膜15、25が形成された面を対面させて、不図示のスペーサを挟み込み、積層基板10、20を封止部材33で貼り合せて、積層基板10、20の間に液晶31を配置し、基板11、21の配向膜15、25が形成された側と反対側の面に偏光板17、27を配置すれば、図2に示すような液晶表示装置1が得られる。   Next, a process of manufacturing the liquid crystal display device by assembling the laminated substrate 10 on which the alignment film is formed will be described. The two laminated substrates 10 and 20 having the alignment film formed on the film formation surface in the above-described steps are The surfaces on which the alignment films 15 and 25 are formed face each other, a spacer (not shown) is sandwiched between them, the laminated substrates 10 and 20 are bonded together with a sealing member 33, and the liquid crystal 31 is disposed between the laminated substrates 10 and 20. If the polarizing plates 17 and 27 are arranged on the surface of the substrates 11 and 21 opposite to the side on which the alignment films 15 and 25 are formed, the liquid crystal display device 1 as shown in FIG. 2 is obtained.

<試験1>
上記成膜装置5により、傾斜角度を42°に維持したまま、2×10-3Pa(第一の成膜圧力)で底面層を成膜し、2×10-2Pa(第二の成膜圧力)で底面層の表面に表面層を積層し、合計膜厚500Åの配向膜を成膜する際に、配向膜の底面層の膜厚と表面層の膜厚の比を50/450、100/400、200/300、300/200、400/100、500/0に変えて6種類の配向膜を別々の積層基板10の成膜面に形成した。
<Test 1>
With the film forming apparatus 5, the bottom layer is formed at 2 × 10 −3 Pa (first film forming pressure) while maintaining the tilt angle at 42 °, and 2 × 10 −2 Pa (second formed film). When the surface layer is laminated on the surface of the bottom layer with a film pressure) to form an alignment film having a total thickness of 500 mm, the ratio of the thickness of the bottom layer to the thickness of the surface layer is 50/450, Six kinds of alignment films were formed on the film formation surfaces of the separate laminated substrates 10 in place of 100/400, 200/300, 300/200, 400/100, and 500/0.

各配向膜の表面に液晶(メルク(株)社製の商品名「MLC6608」)を配置し、クリスタルローテーション法によりプレチルト角を測定した。
尚、配向膜の成膜速度は5Å/秒、加熱手段(ヒータ)への投入電力は150×7(mA、KV)とし、蒸着容器52と基板11間の距離は1000mmとした。配向膜全体の膜厚のうち、表面層の膜厚と、表面層の膜厚に対応するプレチルト角の値を下記表6に示し、表面層の膜厚と、プレチルト角の関係を図7に示す。
A liquid crystal (trade name “MLC6608” manufactured by Merck & Co., Inc.) was placed on the surface of each alignment film, and the pretilt angle was measured by a crystal rotation method.
The alignment film was formed at a rate of 5 Å / second, the power applied to the heating means (heater) was 150 × 7 (mA, KV), and the distance between the vapor deposition vessel 52 and the substrate 11 was 1000 mm. Table 6 below shows the thickness of the surface layer and the value of the pretilt angle corresponding to the thickness of the surface layer, and the relationship between the thickness of the surface layer and the pretilt angle is shown in FIG. Show.

Figure 0004846603
Figure 0004846603

表6と図7から、表面層の膜厚が100Å(10nm)未満と薄すぎると、傾斜角度θと成膜圧力が同じであっても、底面層の影響を受けてプレチルト角が小さいが、表面層が10nmあれば膜厚が厚い場合と同じプレチルト角が得られた。   From Table 6 and FIG. 7, when the film thickness of the surface layer is too thin, less than 100 mm (10 nm), the pretilt angle is small due to the influence of the bottom layer, even if the inclination angle θ and the film formation pressure are the same, If the surface layer was 10 nm, the same pretilt angle as when the film thickness was large was obtained.

<試験2>
上記「試験1」で成膜した6種類の配向膜について、見かけ上の屈折率を測定し、表面層の膜厚と屈折率との関係を調べた。尚、見かけ上の屈折率とは、表面層と底面層を足した配向膜全体の屈折率のことである。配向膜全体の膜厚のうち、表面層の膜厚と、測定された屈折率との関係を図8に示す。
表面層の膜厚が減り、底面層の膜厚が増える程、屈折率が高い層の割合が増えるから、図8に示されるように、配向膜全体の屈折率が高くなることが分かる。
<Test 2>
The apparent refractive index of the six types of alignment films formed in “Test 1” was measured, and the relationship between the film thickness of the surface layer and the refractive index was examined. The apparent refractive index is the refractive index of the entire alignment film including the surface layer and the bottom layer. FIG. 8 shows the relationship between the film thickness of the surface layer and the measured refractive index among the film thicknesses of the entire alignment film.
As the film thickness of the surface layer decreases and the film thickness of the bottom layer increases, the ratio of the layer having a higher refractive index increases, so that the refractive index of the entire alignment film increases as shown in FIG.

図8と、上記図7から、例えば、表面層の膜厚が100Å(10nm)、底面層の膜厚が400Å(40nm)の配向膜は、高い屈折率(約1.45)を維持したまま、約3°のプレチルト角を持ち、配向膜が配向性とバリア性の両方に優れている。   From FIG. 8 and FIG. 7 above, for example, an alignment film having a surface layer thickness of 100 mm (10 nm) and a bottom layer thickness of 400 mm (40 nm) maintains a high refractive index (about 1.45). , Having a pretilt angle of about 3 °, the alignment film is excellent in both alignment and barrier properties.

<試験3>
表面にITOからなる透明電極膜12が形成された積層基板10を用意し、上記「試験1」と同じ条件で、配向膜全体の膜厚は変えず、表面層の膜厚と底面層の膜厚を変えた配向膜を別々の積層基板10に成膜した。
<Test 3>
A laminated substrate 10 having a transparent electrode film 12 made of ITO formed on the surface is prepared. Under the same conditions as in “Test 1”, the film thickness of the surface layer and the film of the bottom layer are not changed without changing the film thickness of the entire alignment film. Alignment films having different thicknesses were formed on separate laminated substrates 10.

成膜された各配向膜上に液晶を配置して5種類の液晶セル(液晶表示装置1)を作製し、液晶セルの耐光特性評価試験を行った。その評価試験の結果を、底面層の膜厚及び表面層の膜厚と一緒に、下記表7に記載する。   Liquid crystal was arranged on each of the formed alignment films to produce five types of liquid crystal cells (liquid crystal display device 1), and a light resistance evaluation test of the liquid crystal cells was performed. The results of the evaluation test are shown in Table 7 below together with the film thickness of the bottom layer and the film thickness of the surface layer.

Figure 0004846603
Figure 0004846603

底面層の膜厚がゼロであり、表面層だけで配向膜を構成した液晶セルは、800時間で画面の焼きつきが発生したが、配向膜に底面層を100Å(10nm)以上設けた液晶セルでは、2000時間以上焼きつきが発生しなかった。   In the liquid crystal cell in which the film thickness of the bottom layer is zero and the alignment film is composed only of the surface layer, the screen burn-in occurred in 800 hours, but the liquid crystal cell provided with the bottom layer of 100 mm (10 nm) or more on the alignment film Then, no burn-in occurred for 2000 hours or more.

焼きつきは透明電極膜12、22由来のイオンが配向膜を通って液晶に進入することで発生するから、透明電極膜12、22に、ITOのようにイオンを放出する透明導電材料を用いても、底面層の膜厚が10nm以上あれば長時間安定した画像表示可能な液晶表示装置が得られることが分かる。   Burn-in occurs when ions derived from the transparent electrode films 12 and 22 enter the liquid crystal through the alignment film. Therefore, the transparent electrode films 12 and 22 are made of a transparent conductive material that emits ions such as ITO. It can also be seen that a liquid crystal display device capable of displaying images stably for a long time can be obtained if the thickness of the bottom layer is 10 nm or more.

以上は、配向膜を成膜する時に、圧力を二段階に変える場合について説明したが、本発明はこれに限定されるものではなく、少なくとも表面層が高い圧力で成膜され、表面層以外の少なくとも一部が表面層よりも低い圧力で成膜されるのであれば、圧力を3段階以上に変えてもよい。また、圧力は段階的に変えずに、最終的に表面から所定膜厚深さまでを成膜する時に、高い圧力になるように、連続的に増加させてもよい。
また、真空槽51内部の圧力を第一の成膜圧力から第二の成膜圧力へ増加させる間も、蒸着材料54の蒸気を基板11上に到達させ、配向膜の成長を続けてもよい。
As described above, the case where the pressure is changed in two stages when forming the alignment film has been described. However, the present invention is not limited to this, and at least the surface layer is formed at a high pressure. If at least a part of the film is formed at a pressure lower than that of the surface layer, the pressure may be changed in three or more steps. Further, the pressure may not be changed stepwise but may be continuously increased so that the pressure becomes high when the film is finally formed from the surface to a predetermined film thickness depth.
Further, while the pressure inside the vacuum chamber 51 is increased from the first film formation pressure to the second film formation pressure, the vapor of the vapor deposition material 54 may reach the substrate 11 and the growth of the alignment film may be continued. .

蒸着材料54を溶融させる方法は特に限定されず、EBガンから電子ビームを蒸着材料54に照射して加熱する方法、蒸着容器52にヒーターを取り付け、蒸着容器52をヒータで加熱し、熱伝導で蒸着材料54を加熱する方法等を採用することができる。
基板11はガラス基板、プラスチック基板等の透明基板を用いることができる。
The method for melting the vapor deposition material 54 is not particularly limited. A method of heating the vapor deposition material 54 with an electron beam from an EB gun, a heater is attached to the vapor deposition vessel 52, the vapor deposition vessel 52 is heated with the heater, and heat conduction is performed. A method of heating the vapor deposition material 54 can be employed.
The substrate 11 can be a transparent substrate such as a glass substrate or a plastic substrate.

透明電極膜の成膜方法は特に限定されず、スパッタ法、蒸着法等の一般に用いられる成膜方法で成膜することができる。透明導電膜は成膜後、必要に応じてパターニングしてから配向膜を成膜してもよいし、パターニングせずに配向膜を成膜してもよい。   The method for forming the transparent electrode film is not particularly limited, and the film can be formed by a generally used film forming method such as a sputtering method or a vapor deposition method. After forming the transparent conductive film, the alignment film may be formed after patterning as necessary, or the alignment film may be formed without patterning.

透明電極膜を蒸着法で成膜する場合であって、成膜後にウェットエッチングやドライエッチングによるパターニングが不要な場合には、真空槽51内部で、透明導電材料を主成分とする蒸着材料を蒸発させて透明電極膜を成膜した後、同じ真空槽51で、無機材料を主成分とする蒸着材料を蒸発させて配向膜を形成することもできる。この場合、大気に晒すことなく透明電極膜と配向膜を連続して成膜可能なので、透明電極膜と配向膜の膜質が良くなる。   When the transparent electrode film is formed by vapor deposition and patterning by wet etching or dry etching is not necessary after film formation, the vapor deposition material mainly composed of the transparent conductive material is evaporated inside the vacuum chamber 51. Then, after forming the transparent electrode film, the alignment film can be formed by evaporating the vapor deposition material containing the inorganic material as a main component in the same vacuum chamber 51. In this case, since the transparent electrode film and the alignment film can be continuously formed without being exposed to the air, the film quality of the transparent electrode film and the alignment film is improved.

透明電極膜を構成する透明導電材料としては特に限定されず、ITO(インジウム錫酸化物)と、ZnO(酸化亜鉛)と、酸化錫と、酸化錫カドニウムとからなる群より選択されるいずれか1種類以上の透明導電材料を用いることができる。ITOと、ZnOと、酸化錫と、酸化錫カドニウムのいずれを透明電極膜に用いた場合でも、配向膜の屈折率が低いと透明導電材料のイオンが液晶に進入するが、本発明のように配向膜に屈折率の高い底面層を設けることで、イオンが液晶に進入することが防止される。   The transparent conductive material constituting the transparent electrode film is not particularly limited, and any one selected from the group consisting of ITO (indium tin oxide), ZnO (zinc oxide), tin oxide, and tin oxide cadmium. More than one type of transparent conductive material can be used. Even when any of ITO, ZnO, tin oxide and cadmium tin oxide is used for the transparent electrode film, the ions of the transparent conductive material enter the liquid crystal if the refractive index of the alignment film is low. By providing a bottom layer having a high refractive index in the alignment film, ions can be prevented from entering the liquid crystal.

偏光板17、27の配置は特に限定されず、偏光板17、27を偏光方向が互いに直交するよう配置すれば、一方の偏光板17側から入射した光は、オン状態で偏光板27を通過して発光し、オフ状態で偏光板27に吸収される。また、偏光板17、27を偏光方向が互いに平行になるように配置すれば、一方の偏光板17側から入射した光は、オン状態で偏光板27に吸収され、オフ状態で偏光板27を通過して発光する。   The arrangement of the polarizing plates 17 and 27 is not particularly limited. If the polarizing plates 17 and 27 are arranged so that the polarization directions are orthogonal to each other, light incident from one polarizing plate 17 side passes through the polarizing plate 27 in the on state. Light is emitted and absorbed by the polarizing plate 27 in the off state. Further, if the polarizing plates 17 and 27 are arranged so that the polarization directions are parallel to each other, light incident from one polarizing plate 17 side is absorbed by the polarizing plate 27 in the on state, and the polarizing plate 27 is turned off in the off state. Passes through and emits light.

以上は、基板11、21が水平になるよう基板ホルダ57に保持させてから、傾斜角度θが設定角度になるよう回転させる場合について説明したが、本発明はこれに限定されるものではなく、予め基板ホルダ57を傾斜角度θが設定傾斜角度になるよう傾けておき、その基板ホルダ57に基板11、21を保持させてもよい。   In the above, the case where the substrate 11 and 21 are held by the substrate holder 57 so as to be horizontal and then rotated so that the inclination angle θ becomes the set angle has been described, but the present invention is not limited to this, The substrate holder 57 may be previously tilted so that the tilt angle θ becomes the set tilt angle, and the substrates 11 and 21 may be held by the substrate holder 57.

また、第二の成膜圧力と、必要なプレチルト角が変更せず、傾斜角度θを変える必要が無い場合には、基板ホルダ57に回転軸55のような回転手段を取り付けず、基板ホルダ57を、傾斜角度θが設定角度になるよう傾けた状態で固定してもよく、装置の構造がより簡易になる。   Further, when the second film forming pressure and the necessary pretilt angle are not changed and the inclination angle θ does not need to be changed, the substrate holder 57 is not attached with a rotating means such as the rotating shaft 55. May be fixed in an inclined state so that the inclination angle θ becomes the set angle, and the structure of the apparatus becomes simpler.

VA方式の液晶表示装置1の場合、実用的なプレチルト角は2°以上5°以下と言われている。プレチルト角が2°未満であると、オフ状態からオン状態に切り替えた時の応答性が悪く、逆にプレチルト角が5°を超えるとオフ状態でも光の偏光が起こり、光が漏れ出してしまう。従って、第二の成膜圧力で配向膜を成膜した時のプレチルト角が2°以上5°以下の範囲なる傾斜角度で、配向膜を成膜することが望ましい。   In the case of the VA liquid crystal display device 1, it is said that a practical pretilt angle is 2 ° or more and 5 ° or less. If the pretilt angle is less than 2 °, the responsiveness when switching from the off state to the on state is poor. Conversely, if the pretilt angle exceeds 5 °, light polarization occurs even in the off state, and light leaks out. . Therefore, it is desirable to form the alignment film at an inclination angle in which the pretilt angle when the alignment film is formed at the second film formation pressure is in the range of 2 ° to 5 °.

傾斜角度は第二の成膜圧力とプレチルト角との関係で決まるので、特に限定されないが、傾斜角度が35°未満であると、第二の成膜圧力を高くしても配向特性を得るのが困難であり、傾斜角度が50°を超えると成膜速度が極端に遅くなるので、傾斜角度は35°以上50°以下が望ましい。   The tilt angle is determined by the relationship between the second film formation pressure and the pretilt angle, and is not particularly limited. However, if the tilt angle is less than 35 °, alignment characteristics can be obtained even if the second film formation pressure is increased. However, if the tilt angle exceeds 50 °, the film forming speed becomes extremely slow. Therefore, the tilt angle is preferably 35 ° or more and 50 ° or less.

傾斜角度が35°以上50°以下の範囲おいて、第二の成膜圧力は5×10-3Pa以上3×10-2Pa以下の範囲であれば、上述した実用的なプレチルト角の範囲が得られ、また、第一の成膜圧力は1×10-4Pa以上3×10-3Pa以下であれば実用的なバリア性が得られる。 If the tilt angle is in the range of 35 ° to 50 ° and the second film forming pressure is in the range of 5 × 10 −3 Pa to 3 × 10 −2 Pa, the above-described practical pretilt angle range. In addition, if the first film formation pressure is 1 × 10 −4 Pa or more and 3 × 10 −3 Pa or less, practical barrier properties can be obtained.

以上は補助ガスを酸素ガスで構成する場合について説明したが、本発明はこれに限定されず、補助ガスとして酸素ガスと一緒に、N2とArのいずれか一方または両方を真空槽51内に導入し、その補助ガスの導入量を制御することで、第一、第二の成膜圧力を形成することもできる。 The case where the auxiliary gas is composed of oxygen gas has been described above, but the present invention is not limited to this, and either or both of N 2 and Ar are placed in the vacuum chamber 51 together with oxygen gas as the auxiliary gas. The first and second film formation pressures can be formed by introducing and controlling the amount of the auxiliary gas introduced.

真空槽51に酸素ガス、又酸素ガスとArを導入すれば、SiO2を主成分とする配向膜が得られ、酸素ガスとN2、又は酸素ガスとN2とArを導入すれば、SiO2とSiONの両方を含む配向膜が得られる。 If oxygen gas or oxygen gas and Ar are introduced into the vacuum chamber 51, an alignment film mainly composed of SiO 2 is obtained. If oxygen gas and N 2 or oxygen gas and N 2 and Ar are introduced, SiO 2 is obtained. An alignment film containing both 2 and SiON is obtained.

配向膜の成膜に用いる成膜装置を説明するための断面図Sectional drawing for demonstrating the film-forming apparatus used for film-forming of alignment film 本発明の液晶表示装置の一例を説明するための断面図Sectional drawing for demonstrating an example of the liquid crystal display device of this invention 成膜圧力と屈折率との関係を示すグラフGraph showing the relationship between deposition pressure and refractive index 成膜圧力とプレチルト角との関係を示すグラフGraph showing the relationship between deposition pressure and pretilt angle 傾斜角度と屈折率との関係を示すグラフGraph showing the relationship between tilt angle and refractive index 傾斜角度とプレチルト角との関係を示すグラフGraph showing the relationship between tilt angle and pretilt angle 表面層の膜厚とプレチルト角との関係を示すグラフGraph showing the relationship between the thickness of the surface layer and the pretilt angle 表面層の膜厚と屈折率との関係を示すグラフGraph showing the relationship between the film thickness of the surface layer and the refractive index

符号の説明Explanation of symbols

1……液晶表示装置 5……成膜装置 11、21……基板 12、22……透明電極膜 15、25……配向膜 31……液晶 51……真空槽 54……蒸着材料   DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device 5 ... Film-forming apparatus 11, 21 ... Substrate 12, 22 ... Transparent electrode film 15, 25 ... Orientation film 31 ... Liquid crystal 51 ... Vacuum chamber 54 ... Vapor deposition material

Claims (5)

基板上に透明導電膜と二酸化ケイ素を主成分とする配向膜が形成され、前記配向膜表面に液晶が配置される液晶表示装置の前記配向膜を製造する製造方法であって、
前記配向膜を形成する工程は、
前記透明導電膜が形成された基板を水平面に対して所定の傾斜角度で傾斜させた状態で真空雰囲気中に保持し、
前記真空雰囲気中に酸素を導入し、前記真空雰囲気の酸素圧力を第一の成膜圧力にした状態で二酸化ケイ素を主成分とする蒸着材料を溶融させ、前記蒸着材料の蒸気を放出させ、前記透明導電膜表面に前記配向膜の底面層を成長させた後、
前記真空雰囲気の酸素圧力を、前記第一の成膜圧力よりも高い第二の成膜圧力にし、前記配向膜の表面層を前記底面層上に形成する配向膜の製造方法。
A manufacturing method for manufacturing the alignment film of a liquid crystal display device in which an alignment film mainly composed of a transparent conductive film and silicon dioxide is formed on a substrate, and a liquid crystal is disposed on the surface of the alignment film,
The step of forming the alignment film includes:
Holding the substrate on which the transparent conductive film is formed in a vacuum atmosphere in a state inclined at a predetermined inclination angle with respect to a horizontal plane;
Introducing oxygen into the vacuum atmosphere, melting a vapor deposition material mainly composed of silicon dioxide in a state where the oxygen pressure of the vacuum atmosphere is a first film formation pressure, releasing vapor of the vapor deposition material, After growing the bottom layer of the alignment film on the transparent conductive film surface,
A method for producing an alignment film, wherein the oxygen pressure in the vacuum atmosphere is set to a second film formation pressure higher than the first film formation pressure, and a surface layer of the alignment film is formed on the bottom layer.
同一の真空槽内で、前記底面層と前記表面層を成長させる請求項1記載の配向膜の製造方法。   The method for producing an alignment film according to claim 1, wherein the bottom layer and the surface layer are grown in the same vacuum chamber. 前記傾斜角度は、前記底面層を形成する間と前記表面層を形成する間で同じにする請求項2記載の配向膜の製造方法。   The method for producing an alignment film according to claim 2, wherein the inclination angle is the same during the formation of the bottom layer and during the formation of the surface layer. 前記真空雰囲気中に窒素ガスを導入する請求項1乃至請求項3のいずれか1項記載の配向膜の製造方法。   The method for producing an alignment film according to claim 1, wherein nitrogen gas is introduced into the vacuum atmosphere. 前記表面層の膜厚を10nm以上にする請求項1乃至請求項4のいずれか1項記載の配向膜の製造方法。   The method for producing an alignment film according to claim 1, wherein the thickness of the surface layer is 10 nm or more.
JP2007003135A 2007-01-11 2007-01-11 Alignment film manufacturing method Expired - Fee Related JP4846603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003135A JP4846603B2 (en) 2007-01-11 2007-01-11 Alignment film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003135A JP4846603B2 (en) 2007-01-11 2007-01-11 Alignment film manufacturing method

Publications (2)

Publication Number Publication Date
JP2008170668A JP2008170668A (en) 2008-07-24
JP4846603B2 true JP4846603B2 (en) 2011-12-28

Family

ID=39698818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003135A Expired - Fee Related JP4846603B2 (en) 2007-01-11 2007-01-11 Alignment film manufacturing method

Country Status (1)

Country Link
JP (1) JP4846603B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197561A (en) * 1989-01-24 1990-08-06 Nippon Telegr & Teleph Corp <Ntt> Thin organic film and its production
JP3132193B2 (en) * 1991-11-08 2001-02-05 日本ビクター株式会社 Liquid crystal display device and method of manufacturing liquid crystal display device
JPH06214233A (en) * 1992-10-24 1994-08-05 Sony Corp Liquid crystal display element
JP2002365639A (en) * 2001-04-06 2002-12-18 Victor Co Of Japan Ltd Apparatus for manufacturing alignment layer of liquid crystal display element and method for manufacturing alignment layer of liquid crystal display element
JP4000823B2 (en) * 2001-10-30 2007-10-31 セイコーエプソン株式会社 Vapor deposition apparatus, vapor deposition method, and liquid crystal device manufacturing method
JP4289119B2 (en) * 2002-10-23 2009-07-01 日本ビクター株式会社 Manufacturing method of liquid crystal display element
JP3760445B2 (en) * 2003-09-02 2006-03-29 ソニー株式会社 Reflective liquid crystal display element, manufacturing method thereof, and liquid crystal display device
JP5539612B2 (en) * 2006-04-13 2014-07-02 三星ディスプレイ株式會社 Alignment film manufacturing method

Also Published As

Publication number Publication date
JP2008170668A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
CN100520533C (en) Method for obtaining liquid crystal vertical or inclined vertical arrangement and the made structure thereof
JP4974683B2 (en) Manufacturing method of liquid crystal display device
JP2008165221A (en) Manufacturing method of liquid crystal optical device
JP2008268466A (en) Phase difference compensation element and its manufacturing method
US20090142490A1 (en) Film forming method and film forming apparatus
JP4008818B2 (en) Liquid crystal device and manufacturing method thereof
US7728936B2 (en) Method of alignments of liquid crystal employing magnetic thin films
JP4846603B2 (en) Alignment film manufacturing method
US20100181013A1 (en) Film forming method and production process of liquid crystal display device
US20090324845A1 (en) Method for producing orientation film
JP2003222873A (en) Liquid crystal alignment layer, method for manufacturing the same liquid crystal alignment layer, liquid crystal panel and liquid crystal display device
US20080186438A1 (en) Method and apparatus for alignment film, alignment film, and liquid crystal device
JP5303835B2 (en) Vapor deposition film, optical path deflection element, spatial light modulation element, and projection type image display apparatus using the same
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JP2008031501A (en) Film deposition apparatus, and method of manufacturing vapor-deposited thin film
JP4963371B2 (en) Vapor deposition apparatus, vapor deposition method, and inorganic alignment film forming method
WO2008108477A1 (en) Film forming method and production process of liquid crystal display device
JP4782622B2 (en) Formation method of inorganic alignment film
JP2008216994A (en) Method and apparatus for alignment film, alignment film, and liquid crystal device
JPH09226047A (en) Transparent gas barrier film
TWI333584B (en) Equipment and method for forming alignment layer
WO2008108479A1 (en) Liquid crystal alignment film forming method using reactive sputtering of silicon
Kolomzarov et al. ITO layers modified in glow discharge plasma for Nematic Liquid Crystal alignment
JP2009098207A (en) Alignment layer and method for manufacturing the same
US20070195247A1 (en) Complementary anti-parallel substrate alignment in vertically aligned nematic liquid crystal displays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4846603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees