JP4846260B2 - Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp - Google Patents

Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp Download PDF

Info

Publication number
JP4846260B2
JP4846260B2 JP2005107876A JP2005107876A JP4846260B2 JP 4846260 B2 JP4846260 B2 JP 4846260B2 JP 2005107876 A JP2005107876 A JP 2005107876A JP 2005107876 A JP2005107876 A JP 2005107876A JP 4846260 B2 JP4846260 B2 JP 4846260B2
Authority
JP
Japan
Prior art keywords
arc tube
double spiral
winding
double
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005107876A
Other languages
Japanese (ja)
Other versions
JP2006286539A (en
Inventor
幸平 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005107876A priority Critical patent/JP4846260B2/en
Publication of JP2006286539A publication Critical patent/JP2006286539A/en
Application granted granted Critical
Publication of JP4846260B2 publication Critical patent/JP4846260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

本発明は、二重渦巻き状発光管の製造方法、二重渦巻き状発光管及び二重渦巻き状蛍光ランプに関する。   The present invention relates to a method for manufacturing a double spiral arc tube, a double spiral arc tube, and a double spiral fluorescent lamp.

近年、照明分野において、省エネ・省資源光源として種々のコンパクト形蛍光ランプが開発されている。その中でも、二重渦巻き形の放電路を有する外観視略円盤形状の発光管を備えた蛍光ランプ(以下、「二重渦巻き状蛍光ランプ」という。)が注目されている。
このような、二重渦巻き状蛍光ランプは、従来の同程度の光束を発する環形蛍光ランプに比べてコンパクトであり、かつ被照射面が円形となる好ましい配光分布を有する。用途としては、店舗・住宅照明等で天井直付ダウンライト等に適用できる。
特開平9−92154号公報 ドイツ特許860675号 ドイツ特許871927号
In recent years, various compact fluorescent lamps have been developed as energy- and resource-saving light sources in the lighting field. Among them, a fluorescent lamp (hereinafter, referred to as “double spiral fluorescent lamp”) having an arc tube having a substantially disc shape in appearance and having a double spiral discharge path has attracted attention.
Such a double spiral fluorescent lamp is more compact than a conventional annular fluorescent lamp that emits the same luminous flux, and has a preferable light distribution in which the irradiated surface is circular. As an application, it can be applied to a downlight directly attached to a ceiling in a store / house lighting or the like.
JP-A-9-92154 German patent 860675 German patent 871927

上記二重渦巻き状蛍光ランプの発光管は、まず、軟化させたガラス管を略円錐体形状の成形治具の錐面に沿って二重螺旋状に巻き付けて外観視略円錐体形状の二重螺旋体に形成し、次に、この二重螺旋体に圧力を加える等して外観視略円盤形状に変形させることによって製造されている。発光管の渦巻き部分における管同士の隙間は、略一定であることが外観上望ましい。   The arc tube of the double spiral fluorescent lamp is a double tube having a generally conical shape in appearance by first winding a softened glass tube in a double spiral shape along the conical surface of a substantially conical shape forming jig. It is manufactured by forming a spiral body and then deforming the double spiral body into a substantially disk shape by applying pressure or the like. It is desirable in terms of appearance that the gap between the tubes in the spiral portion of the arc tube is substantially constant.

ところで、本発明者の検討によると、従来の製造方法で製造された外観視略円盤形状の二重渦巻き状蛍光ランプの発光管は、上記渦巻き部分のうち中央部のS字状部を包囲する最も内側の巻回部と、この巻回部と向かい合いかつ前記巻回部の一つ外側の巻回部との隙間が、その他の管同士の隙間、すなわち前記最も内側の巻回部より外側に位置する渦巻き部における管同士の隙間に比べて狭くなり、全体として渦巻き部の管同士の隙間が不均一となる問題が発生することがわかった。   By the way, according to the study of the present inventor, the arc tube of the double spiral fluorescent lamp having a substantially disc-like appearance manufactured by the conventional manufacturing method surrounds the S-shaped part at the center of the spiral part. The gap between the innermost winding part and the winding part that faces this winding part and is one outside of the winding part is the gap between the other pipes, that is, outside the innermost winding part. It has been found that there is a problem that the gap between the tubes in the spiral portion is narrower than the gap between the tubes in the spiral portion, and the gap between the tubes in the spiral portion is not uniform as a whole.

本発明者の検討によれば、係る問題は、膨出部を形成するために外観視略円錐体形状の二重螺旋体の中央部を膨出させる際に、この膨出に連動して、中央部のS字状部と上記最も内側の巻回部との境界部分が局所的に膨らむことが原因であることがわかった。
本発明は、上述した問題に鑑みてなされたものであって、二重渦巻き状発光管の製造方法において、渦巻き部分のうち中央部のS字状部を包囲する最も内側の巻回部と、この巻回部と向かい合いかつ前記巻回部の一つ外側の巻回部の巻回部との隙間が、前記最も内側の巻回部より外側に位置する渦巻き部における管同士の隙間に比べて狭くなることを防ぎ、渦巻き部分における管同士の隙間が略同等な発光管を得ることのできる発光管の製造方法と、渦巻き部分における管同士の隙間が略同等な発光管と、この発光管を用いた外観形状のすぐれた二重渦巻き状蛍光ランプを提供することを目的とする。
According to the inventor's study, the problem is that when the central portion of the double spiral body having a substantially conical shape in appearance is bulged to form the bulging portion, It was found that the cause was that the boundary portion between the S-shaped part of the part and the innermost winding part swelled locally.
The present invention has been made in view of the above-described problems, and in the method of manufacturing a double spiral arc tube, the innermost winding portion surrounding the central S-shaped portion of the spiral portion, The gap between the winding portion facing the winding portion and the winding portion on the one outer side of the winding portion is larger than the gap between the tubes in the spiral portion located outside the innermost winding portion. An arc tube manufacturing method capable of preventing arc narrowing and obtaining an arc tube having substantially the same gap between the tubes in the spiral portion, an arc tube having substantially the same gap between the tubes in the spiral portion, and the arc tube An object of the present invention is to provide a double spiral fluorescent lamp having an excellent appearance and shape.

上記目的を達成するために、請求項1に記載の本発明に係る二重渦巻き状発光管の製造方法は、軟化させたガラス管の中央部を、略円錐体形状の成形治具の頂部に係止した状態で、前記ガラス管を前記成形治具の錐面に沿って巻き付けて、外観視略円錐体形状をした二重螺旋体を形成する第1の工程と、前記二重螺旋体としてのガラス管を管軸が略一平面上に並ぶところまで扁平に変形させる第2の工程とを含む二重渦巻き状発光管の製造方法であって、前記第1の工程において、前記二重螺旋体中央部のS字状部を包囲する最も内側の第1巻回部と、この第1巻回部と向かい合いかつ前記第1巻回部の一つ外側に位置する第2巻回部との隙間を、前記第1巻回部よりも外側に位置する巻回部同士の隙間よりも広く保ちながら、前記成形治具に前記ガラス管を巻き付けることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a method for producing a double spiral arc tube, wherein the central portion of a softened glass tube is placed on the top of a substantially conical shaped forming jig. In a locked state, the glass tube is wound along the conical surface of the forming jig to form a double helix having a substantially conical shape in appearance, and glass as the double helix And a second step of deforming the tube into a flat shape until the tube axis is aligned on a substantially flat surface, wherein the double spiral central portion is formed in the first step. A gap between the innermost first winding part that surrounds the S-shaped part and the second winding part that faces the first winding part and is located outside one of the first winding parts, The forming jig while keeping the gap wider than the gap between the winding portions located outside the first winding portion. And wherein the winding the glass tube.

また、請求項2に記載の本発明に係る二重渦巻き状発光管の製造方法は、請求項1に記載の二重渦巻き状発光管の製造方法において、前記成形治具の頂部にはS字状の係止路が形成されると共に、前記錐面には前記係止路の両端から延在する二重螺旋状の誘導路が形成されており、前記誘導路は底壁と前記底壁の最奥から立ち上がった縦壁とからなり、前記第1の工程においては、前記ガラス管を前記誘導路の前記縦壁に沿って巻き付けるものであって、前記誘導路の最も内側の第1縦壁と、前記第1縦壁の外側かつ直近に位置する誘導路の第2縦壁との間隔は、前記第1縦壁より外側の縦壁同士の間隔よりも広いことを特徴とする。   According to a second aspect of the present invention, there is provided a method of manufacturing a double spiral arc tube according to the present invention, wherein the top of the forming jig is S-shaped. And a double spiral guide path extending from both ends of the lock path is formed on the conical surface. The guide path is formed between a bottom wall and a bottom wall. A vertical wall rising from the innermost part, and in the first step, the glass tube is wound along the vertical wall of the taxiway, and the innermost first vertical wall of the taxiway And the distance between the first vertical wall and the second vertical wall of the guide path located nearest to the first vertical wall is wider than the distance between the vertical walls outside the first vertical wall.

また、上記目的を達成するために、請求項3に記載の二重渦巻き状発光管は、請求項1または2に記載の発光管の製造方法により製造されたことを特徴とする。
さらに、請求項4に記載の二重渦巻き状発光管は、請求項3に記載の二重渦巻き状発光管であって、前記二重渦巻き状発光管の渦巻き部分における管同士の隙間が、1.0mm〜2.0mmであることを特徴とする。
In order to achieve the above object, a double spiral arc tube according to claim 3 is manufactured by the arc tube manufacturing method according to claim 1 or 2.
Furthermore, the double spiral arc tube according to claim 4 is the double spiral arc tube according to claim 3, wherein a gap between the tubes in the spiral portion of the double spiral arc tube is 1. 0.0 mm to 2.0 mm.

また、請求項5に記載の二重渦巻き状蛍光ランプは、請求項3または4に記載の二重渦巻き状発光管を備えることを特徴とする。   A double spiral fluorescent lamp according to claim 5 includes the double spiral luminous tube according to claim 3 or 4.

本発明に係る二重渦巻き状発光管の製造方法によれば、軟化させたガラス管を成形治具に巻き付けて外観視略円錐体形状をした二重螺旋体を形成する第1の工程において、前記二重螺旋体中央部のS字状部を包囲する最も内側の第1巻回部と、この第1巻回部と向かい合いかつ前記第1巻回部の一つ外側に位置する第2巻回部との隙間を、前記第1巻回部よりも外側に位置する巻回部同士の隙間よりも広く保ちながら、前記成形治具に前記ガラス管を巻き付けるため、二重螺旋体の渦巻き部分における管同士の隙間を略同等に設定すること可能となる。   According to the method for manufacturing a double spiral arc tube according to the present invention, in the first step of forming a double helix having a substantially conical shape in appearance by winding a softened glass tube around a forming jig, An innermost first winding part that surrounds the S-shaped part of the center of the double helix, and a second winding part that faces the first winding part and is located outside one of the first winding parts In order to wind the glass tube around the forming jig while keeping the gap between the winding parts positioned outside the first winding part, the tubes in the spiral part of the double helix It is possible to set substantially the same gap.

このように第1の工程で形成された外観視略円錐体形状をした二重螺旋体は、上記管同士の隙間が略同等であるので、第2の工程において、扁平に変形させて得られる二重渦巻き状発光管の渦巻き部分における管同士の隙間も略同等にすることが可能となる。   In this way, the double helix formed in the first step and having a substantially conical shape in appearance has substantially the same gap between the tubes, so that it is obtained by deforming flatly in the second step. It is also possible to make the gaps between the tubes in the spiral portion of the heavy spiral arc tube substantially equal.

以下、図面を参照しながら本発明の実施の形態について説明する。なお、二重渦巻き状蛍光ランプ及び発光管は、所定の軸または点を中心に対称な形状をしているので、対称な部位については一部のみ説明することがある。また、図面間の縮尺を統一していない場合がある。
二重渦巻き状蛍光ランプの構成について説明した後、かかるランプの発光管の製造方法について説明する。
1.二重渦巻き状蛍光ランプの構成
図1(a)は、本実施の形態に係る二重渦巻き状蛍光ランプ1の平面図、図1(b)は同じく正面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Since the double spiral fluorescent lamp and the arc tube have a symmetric shape around a predetermined axis or point, only a part of the symmetric part may be described. Moreover, the scale between drawings may not be unified.
After describing the configuration of the double spiral fluorescent lamp, a method for manufacturing the arc tube of the lamp will be described.
1. Configuration of Double Spiral Fluorescent Lamp FIG. 1A is a plan view of a double spiral fluorescent lamp 1 according to this embodiment, and FIG. 1B is a front view of the same.

二重渦巻き状蛍光ランプ1は管入力25Wタイプであって、二重渦巻き状をした発光管10と、発光管10の両端部に取り付けられた口金20a,20bとを備えている。口金20a,20bは例えばG型であって、電源接続端子ピン21a,21bを有している。二重渦巻き状蛍光ランプ1は、口金20a,20bを介して図示しない灯具に取り付けられ、この灯具に設けられた高周波専用の電子安定器によって点灯される。   The double spiral fluorescent lamp 1 is a tube input 25 W type, and includes a double spiral arc tube 10 and caps 20 a and 20 b attached to both ends of the arc tube 10. The bases 20a and 20b are, for example, G-type and have power connection terminal pins 21a and 21b. The double spiral fluorescent lamp 1 is attached to a lamp (not shown) via a cap 20a, 20b, and is turned on by a high frequency electronic ballast provided in the lamp.

図2(a)発光管10の一部破断平面図、図2(b)は同じく正面図である。
発光管10は、外観視略円盤形状であって、発光管本体100と、この発光管本体100の両端部110a,110bに配設された一対の電極5a,5bとから構成される。発光管10の外径は9mm、内径は7.4mm、管全長は900mm、電極5a,5b間の距離は780mm、管壁負荷は約0.18W/cmである。
2A is a partially broken plan view of the arc tube 10, and FIG. 2B is a front view of the same.
The arc tube 10 has a substantially disk shape when viewed from the outside, and includes an arc tube main body 100 and a pair of electrodes 5a and 5b disposed at both ends 110a and 110b of the arc tube main body 100. The arc tube 10 has an outer diameter of 9 mm, an inner diameter of 7.4 mm, a total length of 900 mm, a distance between the electrodes 5a and 5b of 780 mm, and a tube wall load of about 0.18 W / cm 2 .

発光管10の内面には図示しない蛍光体層が形成され、その内部には図示しない水銀及び希ガスが封入されている。
蛍光体層は、例えば、赤(Y:Eu3+)、緑(LaPO:Ce3+,Tb3+)及び青(BaMgAl1627:Eu2+)の各色を発光する蛍光体を混合した希土類蛍光体を塗布することで形成されている。
A phosphor layer (not shown) is formed on the inner surface of the arc tube 10, and mercury and a rare gas (not shown) are sealed therein.
For example, the phosphor layer includes phosphors that emit red (Y 2 O 3 : Eu 3+ ), green (LaPO 4 : Ce 3+ , Tb 3+ ) and blue (BaMg 2 Al 16 O 27 : Eu 2+ ). It is formed by applying a mixed rare earth phosphor.

発光物質である水銀は、発光管本体100内に水銀単体の形態で5mg封入されている。なお、水銀の封入形態は、上記水銀単体の形態の他に、ビスマス・インジウム水銀などのアマルガムの形態で封入してもよい。
希ガスとしては、発光管本体100内に、アルゴン(Ar)が封入圧が約400Paとなるように封入されている。なお、希ガスは、アルゴンに限定されず、ネオン(Ne)やクリプトン(Kr)、或いはアルゴン、ネオン及びクリプトンを所定の比率で混合させた混合ガスでもよい。
Mercury, which is a luminescent substance, is sealed in the arc tube main body 100 in the form of mercury alone in an amount of 5 mg. The mercury may be enclosed in the form of amalgam such as bismuth / indium mercury in addition to the form of mercury alone.
As the rare gas, argon (Ar) is sealed in the arc tube main body 100 so that the sealing pressure is about 400 Pa. The rare gas is not limited to argon, and may be neon (Ne) or krypton (Kr), or a mixed gas obtained by mixing argon, neon, and krypton at a predetermined ratio.

発光管本体100は、例えばバリウム・ストロンチウムシリケートガラス(軟化点675℃の軟質ガラス)製であって、横断面の形状は略円形であり、S字状部を有する中央部120と、この中央部120を挟んで対向する両端部110a,110bと、この両端部110a,110bと中央部120との間の渦巻き部を有し、約四重に渦を巻いている巻回部130とからなる。   The arc tube main body 100 is made of, for example, barium strontium silicate glass (soft glass having a softening point of 675 ° C.), has a substantially circular cross section, and has a central portion 120 having an S-shaped portion, and the central portion. The two end portions 110a and 110b are opposed to each other with 120 interposed therebetween, and the winding portion 130 has a spiral portion between the both end portions 110a and 110b and the central portion 120 and has a vortex approximately fourfold.

なお、発光管本体100は、必ずしも管軸が全長に亘って同一平面内に含まれている必要はなく、少なくとも巻回部130の管軸が略同一平面内に含まれていればよい。
両端部110a,110bには、それぞれ電極5a,5bが封着されている。電極5a,5bは、それぞれ一対のリード線7a,7bを有しており、このリード線7a,7bは、発光管本体100から延出した部分が適当な長さにカットされた後、上記した口金20a,20bの電源接続端子ピン21a,21bと電気的に接続される。
In the arc tube main body 100, the tube axis does not necessarily need to be included in the same plane over the entire length, and at least the tube axis of the winding portion 130 may be included in the substantially same plane.
Electrodes 5a and 5b are sealed at both ends 110a and 110b, respectively. The electrodes 5a and 5b have a pair of lead wires 7a and 7b, respectively. The lead wires 7a and 7b are described above after the portion extending from the arc tube main body 100 is cut to an appropriate length. It is electrically connected to the power supply connection terminal pins 21a and 21b of the caps 20a and 20b.

中央部120は、発光管本体100の管軸の中間点付近に対応しており、渦巻きの中心となる部分である。また、中央部120には、巻回部130の管外径(9mm)よりも太くなった膨出部分121(最大管外径:約13mm)が形成されている。この膨出部分121は、点灯時において最冷点箇所が形成されるものであって、特にランプ効率が最大となる50℃〜60℃の範囲の最冷点温度になるように、膨出部分121の形状は設計されている。   The central portion 120 corresponds to the vicinity of the midpoint of the tube axis of the arc tube main body 100 and is a portion that becomes the center of the spiral. In addition, a bulging portion 121 (maximum tube outer diameter: about 13 mm) that is thicker than the tube outer diameter (9 mm) of the winding portion 130 is formed in the central portion 120. The bulging portion 121 is formed with the coldest spot at the time of lighting, and the bulging portion particularly has a coldest spot temperature in a range of 50 ° C. to 60 ° C. at which the lamp efficiency is maximized. The shape of 121 is designed.

ここで、(1)上記発光管本体100の管軸が含まれる平面と平行な方向における、中央部120のS字状部122を包囲する最も内側の巻回部130a(以下、「第1巻回部130a」と呼ぶ。)とこの第1巻回部130aと向かい合い第1巻回部130aの一つ外側に位置する巻回部130b(以下、この「第2巻回部130b」と呼ぶ。)との隙間を隙間Gaとする。   Here, (1) the innermost winding portion 130a (hereinafter referred to as “first winding”) surrounding the S-shaped portion 122 of the central portion 120 in a direction parallel to the plane including the tube axis of the arc tube main body 100. And a winding portion 130b (hereinafter, referred to as "second winding portion 130b") that faces the first winding portion 130a and is positioned outside one of the first winding portions 130a. ) Is defined as a gap Ga.

より詳しく説明すると、隙間Gaは、S字状部122と第1巻回部130aの内との境界部分と、この部分の外側に位置する第1巻回部130aと第2巻回部130bとの境界部分との隙間である。
(2)上記平面と平行な方向における、第1巻回部130aよりも外側に位置する巻回部同士の隙間(第1巻回部130aと第2巻回部130bとの境界部分と、第2巻回部130bと第3巻回部130cとの境界部分との隙間、及び、第2巻回部130bと第3巻回部130cとの境界部分と、第3巻回部130cと第4巻回部130dとの境界部分との隙間)を隙間Gbとする。隙間Gaと隙間Gbとは略等しくなっている。
More specifically, the gap Ga includes a boundary portion between the S-shaped portion 122 and the inside of the first winding portion 130a, and the first winding portion 130a and the second winding portion 130b located outside the portion. It is a gap with the boundary part.
(2) A gap between the winding portions located outside the first winding portion 130a in the direction parallel to the plane (the boundary portion between the first winding portion 130a and the second winding portion 130b, and the first winding portion 130a). The clearance between the second winding portion 130b and the third winding portion 130c, the boundary portion between the second winding portion 130b and the third winding portion 130c, the third winding portion 130c and the fourth winding portion 130c. The gap between the winding portion 130d and the boundary portion) is defined as a gap Gb. The gap Ga and the gap Gb are substantially equal.

すなわち、渦巻き部分である巻回部130における管同士の隙間が略同等という外観上望ましい形状になっている。なお、省資源面光源としてコンパクトな外囲形状と輝度むらの目立たない好ましい発光面を得るためには、上記略同等の隙間Ga及びGbは、管外径9mmに比べて狭い1.0mm〜5.0mmとすることが好ましい。
なお、図2ではS字状部122、巻回部130a,130b,130cの区別を容易にするためそれぞれ異なるハッチングを施している。
That is, it has a desirable shape in terms of appearance such that the gaps between the tubes in the winding portion 130 which is a spiral portion are substantially equal. In addition, in order to obtain a compact outer shape and a preferable light-emitting surface with no noticeable luminance unevenness as a resource-saving surface light source, the substantially equivalent gaps Ga and Gb are narrower than 1.0 mm to 5 mm compared to a tube outer diameter of 9 mm. 0.0 mm is preferable.
In FIG. 2, different hatchings are applied to facilitate the distinction between the S-shaped portion 122 and the winding portions 130 a, 130 b, and 130 c.

また、巻回部130は、端部110bに近づくにつれて広がっている。つまり、電極5bが封着されている端部110bとこの端部110bに隣接する管との隙間Geは、Ga及びGbより長くなっている。
これは、隙間Geを隙間Gbに比べてある程度(例えば、隙間Geを3〜10mm程度にする。)広くすると、電極封着工程において端部110bをバーナー等で加熱する際に、この加熱に起因するガラス管のクラックやリーク等の不良発生を防止できるためである。また、発光管10に口金20a,20bを取り付け易くするためである。
2.二重渦巻き状蛍光ランプ1の製造方法
次に、上記した二重渦巻き状蛍光ランプ1の製造方法について、特に発光管10の製造方法を中心にして説明する。
Moreover, the winding part 130 has spread as it approaches the edge part 110b. That is, the gap Ge between the end portion 110b to which the electrode 5b is sealed and the tube adjacent to the end portion 110b is longer than Ga and Gb.
This is because when the gap Ge is made wider than the gap Gb to some extent (for example, the gap Ge is about 3 to 10 mm), the end 110b is heated by a burner or the like in the electrode sealing step. This is because the occurrence of defects such as cracks and leaks in the glass tube can be prevented. Moreover, it is for making it easy to attach the caps 20 a and 20 b to the arc tube 10.
2. 2. Manufacturing Method of Double Spiral Fluorescent Lamp 1 Next, a manufacturing method of the above-described double spiral fluorescent lamp 1 will be described, particularly focusing on a manufacturing method of the arc tube 10.

(1)全体の流れ
最初に、二重渦巻き状蛍光ランプ1の製造方法の全体の流れについて簡単に説明する。
(A)二重螺旋体形成工程:二重螺旋体形成工程では、軟化させたガラス管を成形治具に巻き付けることによって、外観視略円錐体形状をした二重螺旋体を形成する。図3、図4は、軟化させたガラス管を二重螺旋体に形成する二重螺旋体形成工程を説明するための図であって、図3(a)はガラス管300を電気炉298内で加熱するステップを示す図、図3(b)は加熱によって軟化させたガラス管300を成形治具400の頂部に垂下させるステップを示す図、図4(c)は成形治具400にガラス管300を巻き付けるステップを示す図、図4(d)は成形治具400からガラス管300を外すステップを示す図である。
(1) Overall Flow First, the overall flow of the manufacturing method of the double spiral fluorescent lamp 1 will be briefly described.
(A) Double spiral body forming step: In the double spiral body forming step, the softened glass tube is wound around a forming jig to form a double spiral body having a substantially conical shape in appearance. FIGS. 3 and 4 are views for explaining a double helix forming process for forming a softened glass tube into a double helix, and FIG. 3 (a) shows that the glass tube 300 is heated in an electric furnace 298. FIG. 3B is a diagram showing a step of dropping the glass tube 300 softened by heating on the top of the forming jig 400, and FIG. 4C is a diagram showing the step of dropping the glass tube 300 on the forming jig 400. FIG. 4D is a diagram showing the winding step, and FIG. 4D is a diagram showing the step of removing the glass tube 300 from the forming jig 400.

(B)蛍光体層形成工程:蛍光体層形成工程では、二重螺旋体の内面に蛍光体を塗布し、その後塗布した蛍光体を焼き付けることにより蛍光体層を形成する。
(C)変形工程:変形工程では、外観視略円錐体形状の二重螺旋体を、外観視円盤形状に変形させる。図5は、変形工程を説明するための図であって、図5(a)は二重螺旋体を変形装置に設置するステップを示す図、図5(b)は二重螺旋体を加熱するステップを示す図、図5(c)は二重螺旋体に圧力を加え変形させるステップを示す図である。
(B) Phosphor layer forming step: In the phosphor layer forming step, the phosphor layer is formed by applying the phosphor to the inner surface of the double helix and then baking the applied phosphor.
(C) Deformation step: In the deformation step, the double spiral body having a substantially conical shape in appearance is deformed into a disk shape in appearance. 5A and 5B are diagrams for explaining the deformation process, in which FIG. 5A shows a step of installing the double helix in the deformation device, and FIG. 5B shows a step of heating the double helix. FIG. 5C is a diagram showing a step of deforming the double helix by applying pressure.

(D)電極封着工程:電極封着工程では、発光管本体の端部に電極を封着する。
(E)口金取り付け工程:口金取り付け工程では、(A)〜(D)の工程を経て作成された発光管の端部に口金が取り付けられる。
(A)〜(E)の工程を経て二重渦巻き状蛍光ランプ1が完成する。
(2)二重螺旋体形成工程
二重螺旋体形成工程について説明する。
(D) Electrode sealing step: In the electrode sealing step, the electrode is sealed to the end of the arc tube body.
(E) Base attachment step: In the base attachment step, the base is attached to the end of the arc tube created through the steps (A) to (D).
The double spiral fluorescent lamp 1 is completed through the steps (A) to (E).
(2) Double helix formation process A double helix formation process is demonstrated.

図3(a)に示すように、電気炉298は、その内周に多数のヒータ298aを有している。この電気炉298内には、両端が把持部材296a,296bで把持された直管状のガラス管300が位置している。
このガラス管300(軟化点675℃)における二重螺旋形状に形成される予定の領域(この領域を、以下、「二重螺旋形成予定域」といい、図3において符号Faとして表示する。)を電気炉298内で800℃程度に加熱する。
As shown in FIG. 3A, the electric furnace 298 has a large number of heaters 298a on its inner periphery. In the electric furnace 298, a straight tubular glass tube 300 having both ends held by holding members 296a and 296b is located.
A region planned to be formed in a double helix shape in this glass tube 300 (softening point 675 ° C.) (this region is hereinafter referred to as “double helix formation planned region” and is indicated as a reference symbol Fa in FIG. 3). Is heated to about 800 ° C. in an electric furnace 298.

電気炉298においては、その中央部の温度が最も高くなる(この温度分布は電気炉の形状、使用環境等によって変わる場合もある。)。このため、ガラス管300においても、長手方向の中央部301がそれ以外の部分に比べて高い温度となる。
ガラス管300の加熱が進むと、二重螺旋形成予定域Faが徐々に垂れ始める。
続いて、図3(b)に示すように、電気炉298から取り出した軟化した状態のガラス管300を成形治具400の上方まで移送させる。
In the electric furnace 298, the temperature at the center is the highest (this temperature distribution may vary depending on the shape of the electric furnace, the use environment, etc.). For this reason, also in the glass tube 300, the center part 301 of a longitudinal direction becomes high temperature compared with the other part.
As the heating of the glass tube 300 proceeds, the double helix formation planned area Fa begins to droop gradually.
Subsequently, as shown in FIG. 3B, the softened glass tube 300 taken out from the electric furnace 298 is transferred to above the forming jig 400.

成形治具400は、外観視略円錐体形状であって、頂部には一対の係止部401a,401bと、S字状の係止路408[図6(a)参照]とが設けられ、錐面には二重螺旋状の誘導路402が形成されている。
この係止部401a,401bの間に上記移送させたガラス管300の垂れ下がり部分を当接させて設置する。
The forming jig 400 has a substantially conical shape as viewed from the outside, and a pair of locking portions 401a and 401b and an S-shaped locking path 408 [see FIG. 6 (a)] are provided at the top. A double spiral guide path 402 is formed on the conical surface.
The hanging portion of the transferred glass tube 300 is placed in contact between the locking portions 401a and 401b.

そして、図4(c)に示すように、成形治具400は、回転軸Aを中心に回転する駆動装置(不図示)に取り付けられており、上記軟化したガラス管300を成形治具400の頂部に設置させた状態で、この駆動装置を駆動させて、成形治具400を矢印Cの方向に回転させながら上昇させる。なお、この回転軸Aは成形治具400の軸と一致している。
これにより、ガラス管300の中央部301が、係止部401a,401b間の係止路408上の位置で係止され、ガラス管300が成形治具400の誘導路402に沿って巻回される。
4C, the forming jig 400 is attached to a driving device (not shown) that rotates about the rotation axis A, and the softened glass tube 300 is attached to the forming jig 400. In a state where it is installed at the top, this driving device is driven to raise the forming jig 400 while rotating it in the direction of arrow C. The rotation axis A coincides with the axis of the forming jig 400.
As a result, the central portion 301 of the glass tube 300 is locked at a position on the locking path 408 between the locking portions 401 a and 401 b, and the glass tube 300 is wound along the guide path 402 of the forming jig 400. The

この際、ガラス管300が潰れて変形しないように、前記ガラス管300内に圧力制御されたエア(空気)、窒素、アルゴン等のガスが吹き込まれている。
なお、前述のようにガラス管300は中央部301の温度が相対的に高いため、上記圧力ガスの吹き込みにより、高温により特に軟らかくなった中央部301が膨出して膨出部314(図5参照)が形成される。
At this time, in order to prevent the glass tube 300 from being crushed and deformed, a pressure-controlled gas (air), nitrogen, argon, or the like is blown into the glass tube 300.
As described above, since the temperature of the central portion 301 of the glass tube 300 is relatively high, the central portion 301 that has become particularly soft due to the high temperature is expanded by blowing the pressure gas, and the expanded portion 314 (see FIG. 5). ) Is formed.

成形治具400への巻き付けが終了し、ガラス管300の温度が下がってガラスが硬化した後、図4の(c)に示すように、硬化したガラス管300を成形治具400から取り外す。そして、取り外したガラス管300から二重螺旋形状に形成した領域を除く部分を切断して二重螺旋体310を完成させる。
(3)変形工程
変形工程について詳細に説明する。
After the winding around the forming jig 400 is completed and the temperature of the glass tube 300 is lowered and the glass is cured, the cured glass tube 300 is removed from the forming jig 400 as shown in FIG. And the part except the area | region formed in the double helix shape is cut | disconnected from the removed glass tube 300, and the double helix 310 is completed.
(3) Deformation process
The deformation process will be described in detail.

図5に示すように、変形装置340を用いて二重螺旋体310を扁平に変形させて発光管本体100を作製する。変形装置340は、可動板341、固定板342、複数のガイド棒343および複数の規制部材344を備える。
可動板341および固定板342は、例えばステンレス鋼製であって、二重螺旋体310挟んで上下に対向配置される。可動板341は、固定板342に対して略平行な状態を保ちながら上下に移動可能である。また、可動板341には、二重螺旋体310の膨出部314が収まるような貫通孔345が、前記可動板341の略中央に形成されている。
As shown in FIG. 5, the arc tube body 100 is manufactured by deforming the double helix 310 into a flat shape using a deforming device 340. The deformation device 340 includes a movable plate 341, a fixed plate 342, a plurality of guide bars 343, and a plurality of regulating members 344.
The movable plate 341 and the fixed plate 342 are made of, for example, stainless steel, and are opposed to each other up and down across the double spiral body 310. The movable plate 341 can move up and down while maintaining a state substantially parallel to the fixed plate 342. The movable plate 341 is formed with a through hole 345 in the approximate center of the movable plate 341 so that the bulging portion 314 of the double helix 310 can be accommodated.

ガイド棒343は、固定板342の上面に立設され、可動板341の孔部(不図示)を貫通している。規制部材344は、固定板342の上面の四隅に配置されており、可動板341が前記固定板342に近づき過ぎることを規制する。
変形工程においては、まず、図5(a)に示すように、二重螺旋体310を可動板341と固定板342との間に配置する。二重螺旋体310は、固定板342の上面の略中央であって、前記二重螺旋体310の膨出部314が可動板341の貫通孔345の真下となる位置に配置されている。このとき、可動板341における貫通孔345の周辺は、二重螺旋体310の巻回部313の上面側に当接している。
The guide bar 343 is erected on the upper surface of the fixed plate 342 and passes through a hole (not shown) of the movable plate 341. The restricting members 344 are disposed at the four corners of the upper surface of the fixed plate 342 and restrict the movable plate 341 from being too close to the fixed plate 342.
In the deformation step, first, as shown in FIG. 5A, the double helix 310 is disposed between the movable plate 341 and the fixed plate 342. The double helix 310 is arranged at the approximate center of the upper surface of the fixed plate 342 and at a position where the bulging portion 314 of the double helix 310 is directly below the through hole 345 of the movable plate 341. At this time, the periphery of the through hole 345 in the movable plate 341 is in contact with the upper surface side of the winding part 313 of the double helix 310.

次に、可動板341を二重螺旋体310の巻回部313に当接させた状態で、図5(b)に示すように、前記二重螺旋体310の外周面の温度が例えば約620になるよう加熱する。なお、620は、二重螺旋体310の内面に塗布されている蛍光体を焼成可能な温度であって、これにより、二重螺旋体310の内面に蛍光体層が焼成される。
なお、加熱温度は620に限定されないが、ガラス(軟質ガラス)の軟化点(675)よりも低く設定されていることが好ましい。二重螺旋体310の温度が軟化点以上になると、ガラスが自重で変形するため前記二重螺旋体310の形状の保持が困難となる。また、ガラスの軟化点付近まで温度を上げると、二重螺旋体310の内面に形成された蛍光体層が剥離し始める等の不具合も生じる。
Next, in a state where the movable plate 341 is in contact with the winding part 313 of the double helix 310, the temperature of the outer peripheral surface of the double helix 310 becomes, for example, about 620, as shown in FIG. Heat like so. Reference numeral 620 denotes a temperature at which the phosphor applied to the inner surface of the double helix 310 can be baked, whereby the phosphor layer is baked on the inner surface of the double helix 310.
The heating temperature is not limited to 620, but is preferably set lower than the softening point (675) of glass (soft glass). When the temperature of the double helix 310 is equal to or higher than the softening point, the glass is deformed by its own weight, so that it is difficult to maintain the shape of the double helix 310. Further, when the temperature is raised to the vicinity of the softening point of the glass, there is a problem that the phosphor layer formed on the inner surface of the double helix 310 starts to peel off.

二重螺旋体310の外周面の温度が約620になると、二重螺旋体310は塑性変形可能となり、可動板341が自重により下降し始める。つまり、二重螺旋体310が上下方向に圧縮され変形し始める。なお、可動板341の下降は、前記可動板341が規制部材344に当接すると止まる。
図5(c)に示すように、可動板341が規制部材344に当接した状態になると、二重螺旋体310の発光管本体100への変形が完了する。この発光管本体100の管軸は略一平面上に並んでいる。
3.成形治具400と二重螺旋体300の形状
成形治具400の形状と、この成形治具を用いて形成された二重螺旋体310について説明する。
When the temperature of the outer peripheral surface of the double helix 310 reaches about 620, the double helix 310 can be plastically deformed, and the movable plate 341 starts to descend due to its own weight. That is, the double helix 310 is compressed in the vertical direction and starts to deform. The lowering of the movable plate 341 stops when the movable plate 341 comes into contact with the regulating member 344.
As shown in FIG. 5C, when the movable plate 341 comes into contact with the regulating member 344, the deformation of the double helix 310 into the arc tube body 100 is completed. The tube axes of the arc tube main body 100 are arranged on a substantially single plane.
3. Shape of Molding Jig 400 and Double Helical Body 300 The shape of the molding jig 400 and the double helix 310 formed using this molding jig will be described.

図6(a)成形治具400の平面図、図6(b)は同じく正面図である。
図6(a)において、成形治具400の頂部405を通る両端部404a,404bの端を結ぶ直線を符号L4で示し、この直線L4に直交する直線を符号L3で示している。
この直線L4は成形治具400の軸Aと略直交し、また変形後の巻回部130(図2参照)の管軸が含まれる平面と略平行である。
FIG. 6A is a plan view of the forming jig 400, and FIG. 6B is a front view of the same.
In FIG. 6A, a straight line connecting the ends of both end portions 404a and 404b passing through the top portion 405 of the forming jig 400 is denoted by reference numeral L4, and a straight line orthogonal to the straight line L4 is denoted by reference numeral L3.
The straight line L4 is substantially orthogonal to the axis A of the forming jig 400, and is substantially parallel to a plane including the tube axis of the wound portion 130 (see FIG. 2) after deformation.

成形治具400は、外観視略円錐体形状[山形(山に似た形)]であって、頂部405(山の頂上部)は一対の係止部401a,401bと、S字状の係止路408とを備えている。
錐面には係止路408の両端から延在する誘導路402が形成されている。誘導路402は、係止路408から端部404a,404b(山の麓部に位置している。)まで旋回する二重螺旋状である。
The forming jig 400 has a substantially conical shape [mountain shape (a shape resembling a mountain)], and the top portion 405 (the top portion of the mountain) has a pair of locking portions 401a and 401b and an S-shaped engagement. And a stop path 408.
Guidance paths 402 extending from both ends of the locking path 408 are formed on the conical surface. The guide path 402 has a double spiral shape that turns from the locking path 408 to the end portions 404a and 404b (located at the ridge of the mountain).

ここで、誘導路402の内、頂部405を包囲する最も内側の誘導路を第1誘導路402aとし、第1誘導路402aの外側に位置する誘導路を第2誘導路402b、さらに外側に位置する誘導路を順に第3誘導路402c、第4誘導路402dとする。図6(a)では、係止路408、第1誘導路402a、第2誘導路402b、第3誘導路402cの区別を容易にするためそれぞれ異なるハッチングを施している。   Here, the innermost guideway that surrounds the top portion 405 of the guideway 402 is defined as a first guideway 402a, and the guideway located outside the first guideway 402a is positioned further outside the second guideway 402b. The taxi paths to be performed are sequentially designated as a third taxiway 402c and a fourth taxiway 402d. In FIG. 6A, different hatching is applied to facilitate the distinction of the locking path 408, the first guide path 402a, the second guide path 402b, and the third guide path 402c.

図7は、図6(a)の直線L4における断面の、図6(b)のE部の領域における拡大図である。なお、図7では、ガラス管を仮想線で示す。
図7に示すように、第1誘導路402aは、底壁407aと、この底壁407aの最奥から立ち上がる縦壁403aとを備えている(なお、以下、縦壁同士を区別するため、例えば第1誘導路402aの備える縦壁403aを「第1縦壁403a」と呼ぶ場合がある。)。他の誘導路402b〜402dについても同様である
なお、縦壁403a〜403dの形状は、ガラス管の断面形状に対応した円弧状にしても構わない。
FIG. 7 is an enlarged view of the cross section along the straight line L4 in FIG. 6A in the region E of FIG. 6B. In addition, in FIG. 7, a glass tube is shown with a virtual line.
As shown in FIG. 7, the first guide path 402a includes a bottom wall 407a and a vertical wall 403a that rises from the deepest of the bottom wall 407a (hereinafter, in order to distinguish the vertical walls, for example, (The vertical wall 403a included in the first guide path 402a may be referred to as a “first vertical wall 403a”.) The same applies to the other guide paths 402b to 402d. The shape of the vertical walls 403a to 403d may be an arc shape corresponding to the cross-sectional shape of the glass tube.

二重螺旋体形成工程においては、成形治具400の誘導路402a〜402dの縦壁403a〜403dに、ガラス管を沿わせて巻き付けて、二重螺旋体310が形成される。
図7における間隔Dpaは、第1縦壁403aと、第1縦壁403aの外側かつ直近に位置する第2縦壁403bとの間隔である。また、間隔Dpbは上記第1縦壁403aより外側の縦壁同士の間隔(第2縦壁403bと第3縦壁403cの間隔及び第3縦壁403cと第4縦壁403dの間隔)である。
In the double helix formation step, the double helix 310 is formed by winding the glass tube along the vertical walls 403a to 403d of the guide paths 402a to 402d of the forming jig 400.
The distance Dpa in FIG. 7 is the distance between the first vertical wall 403a and the second vertical wall 403b located on the outer side and closest to the first vertical wall 403a. The interval Dpb is the interval between the vertical walls outside the first vertical wall 403a (the interval between the second vertical wall 403b and the third vertical wall 403c and the interval between the third vertical wall 403c and the fourth vertical wall 403d). .

間隔Dpaは、間隔Dpbより広くなっている(Dpa>Dpb)。このように間隔の寸法に差異を設けている理由については後ほど詳述する。
図8(a)は、二重螺旋体310の平面図、図8(b)は(a)の直線L5における一部破断正面図である。
図8(a)に示すように、二重螺旋体310は、中央部312と、両端部311a,311bと、中央部312と両端部311a,311bとの間の部分で形成される渦巻き状の巻回部313とからなる。二重螺旋体310は、外観視略円錐体形状であり、その管軸は二重螺旋状となる。
The interval Dpa is wider than the interval Dpb (Dpa> Dpb). The reason for the difference in the distance dimension will be described in detail later.
Fig.8 (a) is a top view of the double helix 310, FIG.8 (b) is a partially broken front view in the straight line L5 of (a).
As shown in FIG. 8 (a), the double helix 310 has a spiral winding formed by a central portion 312, both end portions 311a and 311b, and a portion between the central portion 312 and both end portions 311a and 311b. It consists of a turning part 313. The double helix 310 has a substantially conical shape in appearance, and the tube axis thereof is a double helix.

直線L5は、端部311aと端部311bの端を通る直線である。この直線L5は、直線L4(図6参照)と略平行である。
中央部312は、発光管本体100の中央部120に対応する部分であって、二重螺旋の中心となる部分であり、S字状部312aを有している。また、中央部120は巻回部313および端部311a,311bよりも管外径の太くなった膨出部314を有しており、この膨出部314が発光管10の膨出部121となる。
The straight line L5 is a straight line passing through the ends of the end 311a and the end 311b. The straight line L5 is substantially parallel to the straight line L4 (see FIG. 6).
The central portion 312 is a portion corresponding to the central portion 120 of the arc tube main body 100 and is a portion that becomes the center of the double helix, and has an S-shaped portion 312a. Further, the central portion 120 has a bulging portion 314 having a tube outer diameter larger than that of the winding portion 313 and the end portions 311 a and 311 b, and this bulging portion 314 is connected to the bulging portion 121 of the arc tube 10. Become.

巻回部313は、中央部312のS字状部312aを包囲する最も内側の第1巻回部313aと、この第1巻回部313aと向かい合いかつ第1巻回部313aよりも外側に位置する第2巻回部313b、第2巻回部313bの外側に位置する第3巻回部313cを有している。
図8(b)において、隙間Ga1は、二重螺旋体310の軸Aと直交する方向における第1巻回部313aと、第2巻回部313bの隙間である。隙間Gb1は、軸Aと直交する方向における第1巻回部313aよりもさらに外側の管同士の隙間(第2巻回部313bと第3巻回部313cとの隙間、第3巻回部313cとその外側の第4巻回部313dとの隙間)である。
The winding portion 313 is located on the innermost first winding portion 313a surrounding the S-shaped portion 312a of the central portion 312 and facing the first winding portion 313a and outside the first winding portion 313a. The second winding part 313b and the third winding part 313c located outside the second winding part 313b.
In FIG. 8B, the gap Ga1 is a gap between the first winding part 313a and the second winding part 313b in the direction orthogonal to the axis A of the double helix 310. The gap Gb1 is a gap between the tubes further outside the first winding portion 313a in the direction orthogonal to the axis A (a gap between the second winding portion 313b and the third winding portion 313c, a third winding portion 313c. And a gap between the fourth winding portion 313d on the outside and the fourth winding portion 313d.

隙間Ga1は、隙間Gb1は略等しくなっている(Ga1=Gb1)ので、巻回部313における管同士の隙間は略等しいといえる。
上述の変形工程によって二重螺旋体310が円盤状に変形される際には、管同士の隙間は略維持された状態で変形されることとなるので、発光管本体100(図2参照)の巻回部130における管同士隙間も略等しくなり(Ga=Gb)、外観上好ましい発光管10を得ることができる。
Since the gap Ga1 is substantially equal to the gap Gb1 (Ga1 = Gb1), it can be said that the gaps between the tubes in the winding portion 313 are substantially equal.
When the double helix 310 is deformed into a disk shape by the above-described deformation process, the gap between the tubes is deformed in a substantially maintained state, so that the arc tube body 100 (see FIG. 2) is wound. The gaps between the tubes in the turning portion 130 are also substantially equal (Ga = Gb), and the arc tube 10 that is preferable in appearance can be obtained.

なお、隙間Ge1は二重螺旋体310の端部311bと巻回部313の隙間であり、巻回部313における管同士の隙間より広くなっている理由は前に述べた通りである。
4.間隔Dpa>間隔Dpbに到達した経緯
本発明者が、このような巻回部における間隔を設定した成形治具を用いるに到ったのは、従来の成型治具に対する綿密な分析の考察の結果によるものである。
The gap Ge1 is a gap between the end 311b of the double helix 310 and the winding part 313. The reason why the gap Ge1 is wider than the gap between the tubes in the winding part 313 is as described above.
4). The process of reaching the distance Dpa> the distance Dpb The present inventor has come to use a forming jig in which the interval in the winding part is set as a result of careful analysis of the conventional forming jig. Is due to.

そこで、次に従来用いられていた成形治具の形状、問題が発生した状況等について説明する。
(1)従来の成形治具の形状
図9は、従来用いられていた成形治具を示す平面図である。
成形治具500の各部材の500番台の符号の下2桁は、成形治具400の各部材と同様の符号を付してその説明を省略する。従来の発光管の製造方法は、本実施の形態で説明した(A)〜(D)の工程と同様にして製造されていたものである。
Then, the shape of a conventionally used molding jig, the situation where a problem has occurred, etc. will be described.
(1) Shape of Conventional Molding Jig FIG. 9 is a plan view showing a conventional molding jig.
The last two digits of the numbers in the 500 series of each member of the forming jig 500 are denoted by the same reference numerals as those of the members of the forming jig 400, and description thereof is omitted. A conventional arc tube manufacturing method is manufactured in the same manner as the steps (A) to (D) described in this embodiment.

直線L6は、端部504a及び端部504bの端を通る直線である。
直線L6上における、誘導路502の間隔(縦壁同士の間隔)DpOは略等しくなっている。
これは、成形治具を用いて形成すべき二重螺旋体の巻回部における管同士の隙間を略等しくするには、成形治具の誘導路の間隔を略等しくするのが通常であると考えられたためである。
The straight line L6 is a straight line passing through the ends of the end portion 504a and the end portion 504b.
On the straight line L6, the distance between the guide paths 502 (the distance between the vertical walls) DpO is substantially equal.
In order to make the gaps between the tubes in the winding portion of the double helix to be formed using the forming jig substantially equal, it is normal to make the intervals between the guide paths of the forming jig generally equal. It was because of it.

図10(a)は、従来の成形治具500を用いて形成された外観視略円錐体形状の二重螺旋体610の平面図、(b)は(a)の直線L7における一部破断正面図である。二重螺旋体610においても、実施の形態に係る二重螺旋体310と同様の部材には、符号の下2桁を、二重螺旋体310の対応する部材と同様に付してその説明を省略する。
図10に示すように、第1巻回部613aとその外側の第2巻回部613bとの隙間Ga1は、より外側の管同士部分の隙間Gb1に比べて狭くなっている。
FIG. 10A is a plan view of a double helix 610 having a substantially conical shape in appearance and formed using a conventional forming jig 500, and FIG. 10B is a partially broken front view of the straight line L7 in FIG. It is. Also in the double helix 610, the same members as those of the double helix 310 according to the embodiment are given the last two digits as in the corresponding members of the double helix 310, and the description thereof is omitted.
As shown in FIG. 10, the gap Ga1 between the first winding part 613a and the second winding part 613b outside the first winding part 613a is narrower than the gap Gb1 between the outer pipes.

このように巻回部613の最も内側の管同士の隙間が狭いと、二重螺旋体610を扁平に変形させて得られる外観視略円盤状をした発光管においても、最も内側の管同士の隙間だけが狭くなり、外観上の美感が損なわれてしまうこととなる。極端な場合では、この近接部分が相互に接触することで、ガラス管が破損するという問題が発生する。
二重渦巻き状蛍光ランプのコンパクト化の要請に応えるため、巻回部の管同士の隙間をより狭くすることが求められている。このコンパクト化により、係る問題が顕在化したとも考えられる。
As described above, when the gap between the innermost tubes of the winding part 613 is narrow, the gap between the innermost tubes can be obtained even in a light emitting tube having a substantially disc shape in appearance, which is obtained by deforming the double helix 610 into a flat shape. Only narrows and the aesthetics of the appearance are impaired. In an extreme case, a problem that the glass tube breaks due to the proximity of the adjacent portions contacting each other.
In order to meet the demand for a compact double spiral fluorescent lamp, it is required to further narrow the gap between the tubes of the winding part. It is thought that this problem has become apparent due to this compactness.

(2)本発明者の検討
本発明者の検討によると、隙間Ga1が隙間Gb1に比べて狭くなったのは、膨出部614を形成するために二重螺旋体610の中央部612を膨出させる際に、この中央部612近傍の、S字状部612aと第1巻回部613aとの境界の部分が局所的に外側に膨らむことに原因があることがわかった。
(2) Study by the Inventor According to the study by the present inventor, the gap Ga1 is narrower than the gap Gb1 because the central portion 612 of the double helix 610 bulges to form the bulge 614. It was found that there is a cause that the boundary portion between the S-shaped portion 612a and the first winding portion 613a locally bulges outside in the vicinity of the center portion 612.

実際、従来の成形治具500を用いて製造された管外径9mmの発光管の各寸法を測定すると、その中央部の最大菅外径を約13mmに広げたことに連動して、S字状部612aと第1巻回部613aとの境界部分における最大菅外径は約11.5mmまで広げられていた。
本実施の形態における成形治具400は、間隔Dpa>間隔Dpb(図7参照)であるので、この成形治具400を用いて形成される二重螺旋体310のS字状部312aと第1巻回部313aとの境界部分は、従来より内側に位置する。したがって、膨出部314形成の際にこの部分が外側に膨らんだとしても二重螺旋体310の管同士の隙間(Ga1及びGb1)を略同等にすることが可能となる。
In fact, when measuring the dimensions of a 9 mm tube outer diameter arc tube manufactured using the conventional forming jig 500, the S-shape is linked to the increase in the maximum outer diameter of the tube at the center to about 13 mm. The maximum heel outer diameter at the boundary portion between the shape portion 612a and the first winding portion 613a was expanded to about 11.5 mm.
Since the forming jig 400 in the present embodiment satisfies the interval Dpa> the interval Dpb (see FIG. 7), the S-shaped portion 312a and the first winding of the double helix 310 formed using the forming jig 400 are used. The boundary part with the turning part 313a is located on the inner side than in the prior art. Therefore, even when this portion bulges outward when the bulging portion 314 is formed, the gaps (Ga1 and Gb1) between the tubes of the double helix 310 can be made substantially equal.

なお、間隔Dpaを間隔Dpbに比べてどの程度長くするべきかは、設定する発光管の管同士の隙間、製造実験の結果等を考慮して定めればよい。
なお、二重螺旋体を形成するために用いる成形治具は、本実施の形態に係る成形治具400に限られない。要は、第1巻回部と第2巻回部との隙間を、前記第1巻回部よりも外側に位置する巻回部同士の隙間よりも広く保ちながら、ガラス管を巻き付けることができるのであれば、他の形状の成形治具を用いてもよい。
5.その他
(1)実施例
実施の形態で説明した成形治具400において、間隔Dpa(図7参照)を12.5mmに、間隔Dpbを14.5mmに設定して、上記(A)〜(D)の工程を経て二重渦巻き状の発光管を製造したところ、巻回部130の最も内側の隙間Ga(図2参照)が隙間Gbに比べて狭くなることもなく、約3mmと両者ともに略同等の間隔とすることができた。
It should be noted that how long the interval Dpa should be compared to the interval Dpb may be determined in consideration of the gap between the arc tubes to be set, the result of a manufacturing experiment, and the like.
Note that the forming jig used to form the double helix is not limited to the forming jig 400 according to the present embodiment. In short, the glass tube can be wound while keeping the gap between the first winding part and the second winding part wider than the gap between the winding parts located outside the first winding part. If it is, you may use the shaping | molding jig of another shape.
5). Others (1) Examples In the forming jig 400 described in the embodiment, the interval Dpa (see FIG. 7) is set to 12.5 mm, the interval Dpb is set to 14.5 mm, and the above (A) to (D). When the double spiral arc tube is manufactured through the above process, the innermost gap Ga (see FIG. 2) of the winding portion 130 is not narrower than the gap Gb, and both are approximately equal to about 3 mm. It was possible to be interval.

また、この二重渦巻き状の発光管を備えたランプは、管入力25Wにおいて光束2310(lm)及び発光効率92.4(lm/W)と優れた特性が得られた。
(2)管同士の隙間
本発明は、巻回部130における管同士の隙間が特に狭い(例えば1.0mm〜2.0mm)発光管の製造方法に適用することが好適である。
Further, the lamp provided with the double spiral arc tube has excellent characteristics such as a luminous flux 2310 (lm) and luminous efficiency 92.4 (lm / W) at a tube input 25W.
(2) Gap between Tubes The present invention is preferably applied to a method for manufacturing an arc tube in which the gap between the tubes in the winding portion 130 is particularly narrow (for example, 1.0 mm to 2.0 mm).

(3)膨出部314(膨出部121)の形成方法
膨出部314は実施の形態で述べた方法に限られない。例えば、ガラス管を曲げた後、中心部を加熱し、金型に当てて高圧エアーを送り込むことによって中心部を部分的に膨らませて形成する手法もある。
この手法を用いれば、中央部近傍のS字状部と第1巻回部との境界の部分が連動して外側に膨らむ事はないが、部分的に膨らませるとその部分でガラス管の肉厚が薄くなり割れやすくなる上、工程が一つ増えるので採用しにくい。
(3) Formation method of bulging part 314 (bulging part 121) The bulging part 314 is not restricted to the method described in embodiment. For example, after bending a glass tube, there is also a method in which the center portion is heated and applied to a mold, and high-pressure air is sent to partially inflate the center portion.
If this method is used, the boundary portion between the S-shaped portion in the vicinity of the center portion and the first winding portion will not swell to the outside in conjunction with it. It is difficult to adopt because it is thin and easy to break and it adds one process.

本発明によれば、巻回部における管同士の隙間が略一定な二重渦巻き状の発光管の製造方法、この製造方法により製造された渦巻き部分における管同士の隙間が略同等な発光管、この発光管を用いた外観形状のすぐれた二重渦巻き状蛍光ランプを提供することが可能となる。   According to the present invention, a method of manufacturing a double spiral arc tube in which the gap between the tubes in the winding portion is substantially constant, an arc tube having substantially the same gap between the tubes in the spiral portion manufactured by this manufacturing method, It becomes possible to provide a double spiral fluorescent lamp having an excellent external shape using this arc tube.

(a)本実施の形態に係る二重渦巻き状蛍光ランプ1の平面図 (b)同じく正面図(A) Plan view of double spiral fluorescent lamp 1 according to the present embodiment (b) Front view (a)発光管10の一部破断平面図 (b)同じく正面図(A) Partially broken plan view of arc tube 10 (b) Front view (a)軟化させたガラス管を外観視略円錐体形状(二重螺旋体)に形成する二重螺旋体形成工程のガラス管300を電気炉298内で加熱するステップを示す図 (b)同じく加熱によって軟化させたガラス管300を成形治具400の頂部に垂下させるステップを示す図(A) The figure which shows the step which heats the glass tube 300 of the double helix formation process in which the softened glass tube is formed in a cone shape (double helix) in external appearance in the electric furnace 298. The figure which shows the step which hangs down the softened glass tube 300 on the top part of the shaping | molding jig 400. FIG. (c)同じく成形治具400にガラス管300を巻き付けるステップを示す図 (d)同じく成形治具400からガラス管300を外すステップを示す図(C) The figure which similarly shows the step which winds the glass tube 300 around the shaping | molding jig 400. (d) The figure which shows the step which removes the glass tube 300 from the shaping | molding jig 400 similarly. (a)二重螺旋体を変形装置に設置するステップを示す図 (b)二重螺旋体を加熱するステップを示す図 (c)二重螺旋体に圧力を加え変形させるステップを示す図(A) The figure which shows the step which installs a double helix in a deformation | transformation apparatus (b) The figure which shows the step which heats a double helix (c) The figure which shows the step which applies a pressure to a double helix and deform | transforms it (a)成形治具400の平面図 (b)同じく正面図(A) Plan view of forming jig 400 (b) Front view 図6(a)の直線L4における断面の、図6(b)のE部の領域における拡大図6B is an enlarged view of the cross section along the straight line L4 in FIG. 6A in the region E of FIG. 6B. (a)二重螺旋体310の平面図 (b)図8(a)の直線L5における一部破断正面図(A) Plan view of double spiral body 310 (b) Front view partially broken along line L5 in FIG. 8 (a) 従来用いられていた成形治具を示す平面図Plan view showing a conventional forming jig (a)従来の成形治具500を用いて形成された二重螺旋体610の平面図 (b)図10(a)の直線L7における一部破断正面図(A) Plan view of double helix 610 formed using conventional molding jig 500 (b) Front view partially broken along line L7 in FIG. 10 (a)

符号の説明Explanation of symbols

1 二重渦巻き状蛍光ランプ
10 発光管
100 発光管本体
120 発光管本体の中央部
121 発光管の膨出部
122 S字状部
130 発光管の巻回部(渦巻き部分)
130a 第1巻回部
130b 第2巻回部
300 ガラス管
301 ガラス管の中央部
310 二重螺旋体
313 二重螺旋体の巻回部(渦巻き部分)
314 二重螺旋体の膨出部
400 成形治具
401a,401b 係止部
402 誘導路
403a 第1縦壁
403b 第2縦壁
407a〜407d 底壁
408 係止路
Dpa 第1縦壁403aと、第1縦壁403aの外側かつ直近に位置する第2縦壁403bとの間隔
Dpb 第1縦壁403aより外側の縦壁同士の間隔
Ga 中央部120のS字状部122を包囲する最も内側の第1巻回部130aとこの第1巻回部130aと向かい合い第1巻回部130aの一つ外側に位置する第2巻回部130bとの隙間
Gb 第1巻回部130aよりも外側に位置する巻回部同士の隙間
Ga1 第1巻回部313aと、第2巻回部313bの隙間
Gb1 第1巻回部313aよりもさらに外側の管同士の隙間
DESCRIPTION OF SYMBOLS 1 Double spiral fluorescent lamp 10 Arc tube 100 Arc tube main body 120 Center part 121 of arc tube body Swelling part 122 of arc tube S-shaped part 130 Winding part (spiral part) of arc tube
130a 1st winding part 130b 2nd winding part 300 Glass tube 301 Center part 310 of a glass tube Double spiral body 313 Winding part (vortex part) of a double spiral body
314 Double spiral bulge 400 Molding jigs 401a, 401b Locking portion 402 Guide path 403a First vertical wall 403b Second vertical walls 407a-407d Bottom wall 408 Locking path Dpa First vertical wall 403a and first Distance Dpb between the second vertical wall 403b located on the outer side and the nearest side of the vertical wall 403a Ga between the vertical walls on the outer side of the first vertical wall 403a The innermost first surrounding the S-shaped part 122 of the central portion 120 A gap Gb between the winding portion 130a and the second winding portion 130b that faces the first winding portion 130a and is positioned on the outer side of the first winding portion 130a. The winding is positioned on the outer side of the first winding portion 130a. Gap Ga1 between the winding portions Ga1 between the first winding portion 313a and the gap Gb1 between the second winding portion 313b Gap between the tubes further outside the first winding portion 313a

Claims (5)

軟化させたガラス管の中央部を、略円錐体形状の成形治具の頂部に係止した状態で、前記ガラス管を前記成形治具の錐面に沿って巻き付けて、外観視略円錐体形状をした二重螺旋体を形成する第1の工程と、前記二重螺旋体としてのガラス管を管軸が略一平面上に並ぶところまで扁平に変形させる第2の工程とを含む二重渦巻き状発光管の製造方法であって、
前記第1の工程において、前記二重螺旋体中央部のS字状部を包囲する最も内側の第1巻回部と、この第1巻回部と向かい合いかつ前記第1巻回部の一つ外側に位置する第2巻回部との隙間を、前記第1巻回部よりも外側に位置する巻回部同士の隙間よりも広く保ちながら、前記成形治具に前記ガラス管を巻き付け
前記第1の工程と同時および/または前記第1の工程後に前記ガラス管中央部に膨出部を形成し、前記二重螺旋体の端部より内側の巻回部同士の隙間を略同等とすることを特徴とする二重渦巻き状発光管の製造方法。
In the state where the central portion of the softened glass tube is locked to the top of a substantially conical shaped forming jig, the glass tube is wound along the conical surface of the forming jig, and the outer shape is substantially conical. A double spiral light emission including a first step of forming a double helix having the shape and a second step of deforming the glass tube as the double helix into a flat shape until the tube axis is aligned on a substantially flat surface. A method of manufacturing a tube,
In the first step, an innermost first winding part that surrounds the S-shaped part of the central part of the double helix, and one outer side of the first winding part that faces the first winding part Wrapping the glass tube around the forming jig while keeping the gap with the second winding part located at a position wider than the gap between the winding parts located outside the first winding part ,
At the same time as the first step and / or after the first step, a bulging portion is formed in the central portion of the glass tube, and the gaps between the winding portions inside the end portion of the double helix are made substantially equal. A method of manufacturing a double spiral arc tube, characterized in that:
前記成形治具の頂部にはS字状の係止路が形成されると共に、前記錐面には前記係止路の両端から延在する二重螺旋状の誘導路が形成されており、前記誘導路は底壁と前記底壁の最奥から立ち上がった縦壁とからなり、前記第1の工程においては、前記ガラス管を前記誘導路の前記縦壁に沿って巻き付けるものであって、
前記誘導路の最も内側の第1縦壁と、前記第1縦壁の外側かつ直近に位置する誘導路の第2縦壁との間隔は、前記第1縦壁より外側の縦壁同士の間隔よりも広いことを特徴とする請求項1に記載の二重渦巻き状発光管の製造方法。
An S-shaped locking path is formed at the top of the forming jig, and a double spiral guide path extending from both ends of the locking path is formed on the conical surface. The guide path is composed of a bottom wall and a vertical wall rising from the innermost part of the bottom wall, and in the first step, the glass tube is wound along the vertical wall of the guide path,
The distance between the innermost first vertical wall of the taxiway and the second vertical wall of the taxiway located outside and closest to the first vertical wall is the distance between the vertical walls outside the first vertical wall. The method of manufacturing a double spiral arc tube according to claim 1, characterized in that it is wider.
請求項1または2に記載の発光管の製造方法により製造されたことを特徴とする二重渦巻き状発光管。   A double spiral arc tube manufactured by the arc tube manufacturing method according to claim 1 or 2. 前記二重渦巻き状発光管の渦巻き部分における管同士の隙間が、1.0mm〜2.0mmであることを特徴とする請求項3に記載の二重渦巻き状発光管。   The double spiral arc tube according to claim 3, wherein a gap between the tubes in the spiral portion of the double spiral arc tube is 1.0 mm to 2.0 mm. 請求項3または4の二重渦巻き状発光管を備えることを特徴とする二重渦巻き状蛍光ランプ。   A double spiral fluorescent lamp comprising the double spiral arc tube according to claim 3 or 4.
JP2005107876A 2005-04-04 2005-04-04 Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp Expired - Fee Related JP4846260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107876A JP4846260B2 (en) 2005-04-04 2005-04-04 Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107876A JP4846260B2 (en) 2005-04-04 2005-04-04 Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2006286539A JP2006286539A (en) 2006-10-19
JP4846260B2 true JP4846260B2 (en) 2011-12-28

Family

ID=37408210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107876A Expired - Fee Related JP4846260B2 (en) 2005-04-04 2005-04-04 Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp

Country Status (1)

Country Link
JP (1) JP4846260B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4871523B2 (en) * 2005-04-06 2012-02-08 パナソニック株式会社 Manufacturing method of arc tube, arc tube and fluorescent lamp
JP2008243624A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Electrodeless discharge lamp, and lighting fixture using the same
JP4775295B2 (en) * 2007-03-27 2011-09-21 パナソニック電工株式会社 lighting equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945283A (en) * 1995-07-28 1997-02-14 Matsushita Electric Works Ltd Fluorescent lamp
JPH10134718A (en) * 1996-10-28 1998-05-22 Hitachi Lighting Ltd Manufacture of annular fluorescent lamp
JP4723802B2 (en) * 2003-09-02 2011-07-13 パナソニック株式会社 Arc tube, low pressure mercury lamp, lighting device, jig, and method of manufacturing arc tube
JP4061263B2 (en) * 2003-11-25 2008-03-12 松下電器産業株式会社 Manufacturing method of arc tube
JP2006249125A (en) * 2005-03-08 2006-09-21 Kuraray Co Ltd Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2006286539A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US7699681B2 (en) Manufacturing method of an arc tube formed from a glass tube and having a spirally wound section within one plane
US7423370B2 (en) Arc tube with shortened total length, manufacturing method for arc tube, and low-pressure mercury lamp
US7064488B2 (en) Easily-assembled compact self-ballasted fluorescent lamp
US7479049B2 (en) Manufacturing method of arc tube having a glass tube of a flat-spiral shape, arc tube, and fluorescent lamp
US7411350B2 (en) Small arc tube, low-pressure mercury lamp, lighting apparatus, mandrel for forming the arc tube, and production method of the arc tube
JPWO2004021396A1 (en) Fluorescent lamp, manufacturing method thereof, and lighting apparatus
US7275971B2 (en) Arc tube, Discharge lamp, and production method of such arc tube, which enables brighter illuminance
JP4846260B2 (en) Method for manufacturing double spiral arc tube, double spiral arc tube and double spiral fluorescent lamp
JP4871523B2 (en) Manufacturing method of arc tube, arc tube and fluorescent lamp
JP4099095B2 (en) Low pressure mercury lamp
JP2006085943A (en) Light emitting tube, fluorescent lamp, and illumination device
JP4095650B2 (en) Manufacturing method of arc tube
JP4176800B2 (en) Arc tube, low pressure mercury lamp and lighting device
JP2010251243A (en) Fluorescent lamp
JP2005276515A (en) Arc tube, low pressure mercury discharge lamp and lighting system
JP2912863B2 (en) Manufacturing method of annular fluorescent lamp
JP4820051B2 (en) Arc tube, arc tube manufacturing method, and low-pressure mercury lamp
JP3658926B2 (en) Fluorescent lamp, fluorescent lamp device and lighting device
JP4332201B2 (en) Arc tube, low pressure mercury lamp and lighting device
JP2005294242A (en) Fluorescent lamp and lighting apparatus
JP2007103168A (en) Arc tube and method of manufacturing arc tube
JP2005243527A (en) Fluorescent lamp and lighting fixture
JP2004186076A (en) Fluorescent lamp and lighting equipment
JP2005100745A (en) Fluorescent lamp and lighting apparatus
JP2004119392A (en) Fluorescent lamp and lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees