JP4845866B2 - Power supply for terminal network controller - Google Patents

Power supply for terminal network controller Download PDF

Info

Publication number
JP4845866B2
JP4845866B2 JP2007322322A JP2007322322A JP4845866B2 JP 4845866 B2 JP4845866 B2 JP 4845866B2 JP 2007322322 A JP2007322322 A JP 2007322322A JP 2007322322 A JP2007322322 A JP 2007322322A JP 4845866 B2 JP4845866 B2 JP 4845866B2
Authority
JP
Japan
Prior art keywords
terminal network
network control
control device
power supply
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007322322A
Other languages
Japanese (ja)
Other versions
JP2009148064A (en
Inventor
俊一郎 中野
哲一郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007322322A priority Critical patent/JP4845866B2/en
Publication of JP2009148064A publication Critical patent/JP2009148064A/en
Application granted granted Critical
Publication of JP4845866B2 publication Critical patent/JP4845866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、通信回線を利用して遠隔検針を行うテレメータシステムの端末網制御装置用電源装置に関する。   The present invention relates to a power supply device for a terminal network control device of a telemeter system that performs remote meter reading using a communication line.

従来、図4に示すような、電話回線のような通信回線2を利用してガス、水道、電気などのメータ4をセンタ側装置1より遠隔検針するテレメータシステムが構築されている。端末側には水道、ガス、電気などのメータに接続された端末網制御装置(NCU)33が設けられており、端末網制御装置33が通信回線2を介してセンタ側装置と交信可能である。   Conventionally, as shown in FIG. 4, a telemeter system has been constructed in which a meter 4, such as gas, water, electricity, etc., is remotely measured from the center side device 1 using a communication line 2 such as a telephone line. A terminal network control unit (NCU) 33 connected to a meter such as water, gas or electricity is provided on the terminal side, and the terminal network control device 33 can communicate with the center side device via the communication line 2. .

端末網制御装置33は、主に屋外に設置されるため、工事性の面から商用電源を使わず、電池駆動など独立した電源が求められる。端末網制御装置33は超低消費電力タイプの機器であり、待機時の消費電力が数十マイクロワットと少なく、リチウム電池1本で約10年間動作可能となっている。   Since the terminal network controller 33 is mainly installed outdoors, an independent power source such as a battery drive is required without using a commercial power source in terms of workability. The terminal network control device 33 is an ultra-low power consumption type device that consumes as little as several tens of microwatts during standby and can operate for about 10 years with a single lithium battery.

しかし最近、図3に示すような、無線通信6を利用した端末網制御装置(NCU)23が増えている。センタ側装置1は通信回線網2を介して無線基地局5と接続されており、NCU23は、無線通信6、更には無線基地局5及び通信回線網2を介してセンタ側装置1と通信可能となっている。こうしたNCU23が増えた理由は、無線通信6のエリア内であれば、通信回線がない場所にも設置できる、或いは電話回線などの配線工事が不要である、というメリットがあるためである。テレメータシステムにおいては、端末網制御装置23に親機を接続し、各メータ4に子機を接続し、親機と複数の子機とを、例えば特定小電力方式の無線通信で接続したものが知られている。複数の子機は、メータ4の月次の検針データを、親機を介して端末網制御装置23にデータ送信するので、端末網制御装置23が検針データを無線基地局5を介してセンタ側装置1に送信することにより、メータ4の遠隔検針を行うことができる。 Recently, however, the number of terminal network control units (NCUs) 23 using the wireless communication 6 as shown in FIG. The center side apparatus 1 is connected to the radio base station 5 via the communication line network 2, and the NCU 23 can communicate with the center side apparatus 1 via the radio communication 6 and further via the radio base station 5 and the communication line network 2. It has become. The reason why the number of NCUs 23 is increased is that there is a merit that if it is within the area of the wireless communication 6, it can be installed in a place where there is no communication line, or wiring work such as a telephone line is unnecessary. In the telemeter system, a master unit is connected to the terminal network control device 23, a slave unit is connected to each meter 4, and the master unit and a plurality of slave units are connected by, for example, specific low power wireless communication. Are known. Since the plurality of slave units transmit the monthly meter reading data of the meter 4 to the terminal network control device 23 via the master unit, the terminal network control device 23 sends the meter reading data to the center side via the radio base station 5. By transmitting to the apparatus 1, remote meter reading of the meter 4 can be performed.

無線通信には既存の携帯電話網が利用される。携帯電話網は通信可能エリアが広く、全国の各家庭のメータ検針を行うNCU23にとっては最適である。携帯電話網を利用するには、NCU23に携帯電話無線モジュール7を搭載する。携帯電話無線モジュール7は、携帯電話網を利用したデータ通信に特化したモジュールであり、携帯電話機からデータ通信に不要な通話部や表示部、操作部を除き、データ通信に必要な無線部とデータ通信部のみをモジュール化したものである。   An existing mobile phone network is used for wireless communication. The cellular phone network has a wide communicable area and is most suitable for the NCU 23 that performs meter reading in each household in the country. In order to use the mobile phone network, the mobile phone wireless module 7 is mounted on the NCU 23. The mobile phone wireless module 7 is a module specialized for data communication using a mobile phone network, except for a call unit, a display unit, and an operation unit that are unnecessary for data communication from the mobile phone, Only the data communication unit is modularized.

しかしながら、携帯電話無線モジュール7も低消費電力化が図られているとはいえ、待機時でも数ミリワットから十数ミリワットの消費電力がある。この電力量は、従来のNCU33に比べると100倍以上の消費電力である。こうした消費電力量が多い理由は、従来のNCU33ではマイコンと電話回線モデムなど、数個のLSIしか搭載していないのに比べ、携帯電話無線モジュール7は多くのLSIが集積されており、それらの待機電力が重なっている上、データ通信をしていない待機時であっても、無線部が定期的に基地局5と位置情報などの遣り取りなどの動作を間欠的に行っているためである。   However, even though the mobile phone wireless module 7 is also reduced in power consumption, it consumes power of several milliwatts to tens of milliwatts even during standby. This power consumption is 100 times or more of the power consumption compared with the conventional NCU33. The reason for such a large amount of power consumption is that, compared with the conventional NCU 33, which has only a few LSIs such as a microcomputer and a telephone line modem, the mobile phone wireless module 7 is integrated with many LSIs. This is because standby power overlaps and the wireless unit periodically performs operations such as exchange of position information with the base station 5 even during standby when data communication is not being performed.

このような、無線通信6を利用したNCU23の場合は、消費電力が大きく、従来のようにリチウム電池1本または数本では電池の寿命が短すぎて頻繁に電池交換が必要となり実際には運用できない。商用電源を利用するとなれば電源工事が必要となるため、NCU23の設置場所を選ぶことになる。このため、商用電源を利用できない場合は40本や80本など、多数のリチウム電池を搭載した電源装置24で運用している。しかしながら、これだけ多数のリチウム電池を搭載しても、従来のNCU33のように10年の電池寿命には遠く及ばない。   In the case of the NCU 23 using the wireless communication 6 as described above, the power consumption is large, and in the case of one or several lithium batteries as in the past, the battery life is too short and the battery needs to be replaced frequently. Can not. If commercial power is used, power supply work is required, so the installation location of the NCU 23 is selected. For this reason, when a commercial power source cannot be used, it operates with the power supply device 24 which mounts many lithium batteries, such as 40 pieces and 80 pieces. However, even when such a large number of lithium batteries are mounted, the battery life of 10 years is not far from that of the conventional NCU33.

携帯電話網を利用したNCU23の消費電力が大きいとはいえ、トータルの消費電力量の大部分を占める待機時の消費電力は数十ミリワット程度でしかない。このレベルの消費電力量は、数年単位の期間を電池で賄うには上記のように多数の電池を必要とするものの、商用電源を使用するには小さい電力量である。   Although the power consumption of the NCU 23 using the mobile phone network is large, the power consumption during standby, which accounts for the majority of the total power consumption, is only about several tens of milliwatts. Although this level of power consumption requires a large number of batteries as described above to cover a period of several years with batteries, it is a small amount of power to use a commercial power source.

この程度の消費電力にフィットする電源として太陽電池が考えられる。特許文献1にあるように、太陽電池と蓄電池を組み合わせれば独立型の電源となる。しかし、この方法では、天候不良が続いた上に端末網制御装置の動作が多い場合などに、電源供給が途絶える恐れがある。即ち、検針時に端末の電源が落ちている可能性があり、検針業務に支障が出る。それでも再検針などを繰り返せば検針可能であるが、ガス残量低下通報、ボンベ交換通報、セキュリティ緊急通報など、端末からの通報を利用している用途には信頼性がなく、使用できない。   A solar cell is conceivable as a power source that fits this level of power consumption. As described in Patent Document 1, if a solar battery and a storage battery are combined, an independent power source is obtained. However, in this method, there is a risk that the power supply may be interrupted when the bad weather continues and the terminal network control device operates frequently. That is, there is a possibility that the terminal is turned off at the time of meter reading, which hinders meter reading work. Still, meter reading is possible by repeating re-reading, but it is unreliable and cannot be used for applications that use reports from terminals such as low gas level notifications, cylinder replacement notifications, and security emergency notifications.

携帯電話網を使用した端末網制御装置の動作時の消費電力は、待機時に比べて何十倍も大きく数ワットとなる。これは、端末網制御装置がトータルで必要とする電力量が端末の運用条件により大きく左右されることを意味する。   The power consumption during operation of the terminal network control device using the cellular phone network is several tens of times larger than that during standby. This means that the total amount of power required by the terminal network control device depends greatly on the operating conditions of the terminal.

悪天候かつ最悪の運用条件で使用されても端末網制御装置に電源供給できる能力を電源装置に持たせると、太陽電池パネルや蓄電素子があまりに大きくなってしまい、現実性がないという問題がある。   If the power supply device has the ability to supply power to the terminal network control device even if it is used in bad weather and the worst operating conditions, there is a problem that the solar cell panel and the power storage element become too large and are not realistic.

端末網制御装置には、通常、ガスメータの10年寿命と同等の寿命が求められる。蓄電素子として鉛蓄電池やリチウムイオン電池を使用する場合はエネルギー密度が大きく、小さい体積で大きな容量を得られるが、充放電回数や時間経過による劣化などで10年の寿命は期待できない。   The terminal network control device is normally required to have a life equivalent to the 10-year life of the gas meter. When a lead storage battery or a lithium ion battery is used as a power storage element, the energy density is large and a large capacity can be obtained with a small volume. However, a 10-year life cannot be expected due to the number of times of charge / discharge and deterioration over time.

これら選定した大きな太陽電池パネルや蓄電素子を電源装置として採用することは、悪天候と最悪の運用条件を根拠とするものである。そのような条件は実使用においてはまれな状態であり、そうした電源装置は殆どの場合過剰仕様となってしまう。また太陽電池と蓄電素子のみの構成の場合、使用開始時などに蓄電素子に充電されていない状態のときには、太陽電池からの電力が充電されるまで時間を要する。もしくは、別途充電するなどの必要がある。
特開2000−102191号公報
Adopting these selected large solar cell panels and power storage elements as power supply devices is based on bad weather and worst operating conditions. Such a condition is a rare state in actual use, and such a power supply device is almost over-specified. In the case of a configuration including only a solar battery and a power storage element, it takes time until the power from the solar battery is charged when the power storage element is not charged at the start of use. Or it needs to be charged separately.
JP 2000-102191 A

そこで、待機時の消費電力が少ないながら長期に渡って電源供給可能とすべき端末網制御装置用電源装置において、充電される大容量の蓄電素子と予備電池とを併用することで、効率的な電源仕様を得る点で解決すべき課題がある。   Therefore, in a power supply device for a terminal network control device that should be able to supply power for a long time while having low power consumption during standby, it is efficient by using a large-capacity storage element to be charged and a spare battery in combination. There is a problem to be solved in terms of obtaining power supply specifications.

この発明の目的は、待機時の消費電力が少ないながら長期に渡って電源供給可能とすべき端末網制御装置用電源装置において、電源の仕様が過剰となることを防止して、構成が簡素で製作コストを抑制できる端末網制御装置用電源装置を提供することである。   An object of the present invention is to provide a power supply device for a terminal network control device that should be able to supply power over a long period of time while having low power consumption during standby. The object is to provide a power supply device for a terminal network control device capable of suppressing the manufacturing cost.

この発明による端末網制御装置用電源装置は、センタ側装置に携帯電話回線を介して無線接続された親機である端末網制御装置と、前記親機と接続された複数の子機と、前記子機に接続されたメータと、から構成されるテレメータシステムであって、前記複数の子機は、前記メータの月次の検針データを前記端末網制御装置にデータ送信し、前記無線通信によって、前記端末網制御装置が前記検針データを前記センタ側装置に送信することにより前記メータの遠隔検針を行うテレメータシステムの前記端末網制御装置用の電源装置であって、前記センタ側装置と前記端末網制御装置は前記携帯電話回線を介して無線通信を行い、前記電源装置は、太陽電池電源と、該太陽電池電源によって得られた電力を蓄電し供給するための大容量キャパシタと、該大容量キャパシタが電力供給できない時に前記端末網制御装置の電源バックアップを行うためのリチウム電池と、を具備し、前記リチウム電池は、前記端末網制御装置の前記無線通信に要する電力以外の電力を10年間供給できる容量を有し、前記太陽電池電源及び前記大容量キャパシタは、晴天日に前記大容量キャパシタをフル充電した時前記遠隔検針を4日間実行する電力を蓄電できる発電容量と蓄電容量をそれぞれ有することを特徴としている。 A power supply device for a terminal network control device according to the present invention includes a terminal network control device that is a parent device wirelessly connected to a center side device via a mobile phone line, a plurality of child devices connected to the parent device, A telemeter system comprising a meter connected to a slave unit, wherein the plurality of slave units transmit monthly meter reading data of the meter to the terminal network control device, and through the wireless communication, The terminal network control device is a power supply device for the terminal network control device of a telemeter system that performs remote meter reading of the meter by transmitting the meter reading data to the center side device, the center side device and the terminal network The control device performs wireless communication via the mobile phone line, and the power supply device has a solar cell power source and a large capacity capacity for storing and supplying electric power obtained by the solar cell power source. And a lithium battery for performing power source backup of the terminal network control device when the large-capacity capacitor cannot supply power, and the lithium battery has a power other than the power required for the wireless communication of the terminal network control device. The solar cell power supply and the large-capacity capacitor have a capacity capable of supplying electric power for 10 years, and the power generation capacity and the electric storage capable of storing electric power for executing the remote meter reading for four days when the large-capacity capacitor is fully charged on a fine day It is characterized by having each capacity .

大容量キャパシタは、経年により容量減となるものの、充放電回数による劣化はあまりなく、蓄電素子として使用すれば10年間蓄電の機能を果たすという長寿命が期待できる。キャパシタの容量は悪天候と標準条件で余裕を持たせて設定されるが、キャパシタはエネルギー密度が小さいために体積が大きくなる傾向があるので、大きさを抑えることによる電力不足については予備のリチウム電池で補うこととされる。即ち、使用開始時や端末網制御装置が標準条件以上に動作した場合など、キャパシタが一定電圧以下になる場合には、予備電池からの電源供給に切り替えて電源供給が動作される。   Although the capacity of the large-capacity capacitor is reduced with the lapse of time, there is not much deterioration due to the number of times of charging / discharging, and if it is used as a power storage element, it can be expected to have a long life of 10 years. Capacitor capacity is set with a margin in bad weather and standard conditions, but capacitors tend to increase in volume due to their low energy density, so spare lithium batteries for power shortages due to reduced size It is supposed to be supplemented with. That is, when the capacitor falls below a certain voltage, such as when the use starts or when the terminal network control device operates above the standard condition, the power supply is switched to the power supply from the spare battery.

標準条件で電池が消耗することはほとんどないが、運用条件の厳しい端末や、一時的に多く動作する場合は電池が消耗する場合がある。電池の寿命が来る前にセンタに通報する機能を備えることによって、システムのさらに円滑な運用を図ることができる。   The battery is rarely consumed under the standard condition, but the battery may be consumed when the terminal is severely operated or when a large number of temporary operations are performed. By providing a function for reporting to the center before the end of the battery life, the system can be operated more smoothly.

また、大容量キャパシタは耐電圧を超えて充電してはならない。DC/DCコンバータによって電圧を調整して充電する場合は、耐電圧を超えて充電することはない。しかしながら、回路を簡単にするために太陽電池からの出力を直列にダイオードのみで大容量キャパシタに接続するような場合には、耐電圧を超えることがあるため、バイパス回路が必要となる。バイパス回路は、大容量キャパシタの耐電圧を超える前に電流をバイパスし、耐電圧を超えて充電させないようにする。   Also, the large-capacity capacitor must not be charged beyond the withstand voltage. When charging by adjusting the voltage by the DC / DC converter, charging does not exceed the withstand voltage. However, in order to simplify the circuit, when the output from the solar cell is connected to the large-capacity capacitor in series only with a diode, the withstand voltage may be exceeded, so a bypass circuit is required. The bypass circuit bypasses the current before exceeding the withstand voltage of the large-capacity capacitor, and prevents charging beyond the withstand voltage.

バイパス回路は、太陽電池の最大出力電流をバイパスする必要があり、満充電時に発熱する。バイパス回路の近傍には大容量キャパシタもあり、バイパス回路が長時間発熱することは望ましくない。よってバイパス回路をなくし、DC/DCコンバータのみで耐電圧以下の電圧で充電する回路構成とすることが望まれるところである。しかし、大容量キャパシタは耐電圧が低いため、直列に接続して使用する場合があり、その場合はDC/DCコンバータの出力電圧を大容量キャパシタの耐電圧の和に調整していても、各キャパシタの電圧バランスがくずれた場合に過電圧で充電される可能性があるため、やはりバイパス回路は必要である。   The bypass circuit needs to bypass the maximum output current of the solar cell and generates heat when fully charged. There are also large capacitors near the bypass circuit, and it is not desirable that the bypass circuit generate heat for a long time. Therefore, it is desirable to have a circuit configuration in which the bypass circuit is eliminated and charging is performed with a voltage equal to or lower than the withstand voltage only by the DC / DC converter. However, since the withstand voltage of the large capacity capacitor is low, it may be used by connecting in series. In that case, even if the output voltage of the DC / DC converter is adjusted to the sum of the withstand voltage of the large capacity capacitor, A bypass circuit is still necessary because the capacitor may be charged with overvoltage if the voltage balance of the capacitor is lost.

そして、バイパス回路が満充電時に発熱しないようにするには、DC/DCコンバータの出力電圧を、耐電圧の和ではなく、各バイパス回路の設定電圧の和より低くする必要がある。   In order to prevent the bypass circuit from generating heat when fully charged, the output voltage of the DC / DC converter needs to be lower than the sum of the set voltages of the bypass circuits, not the sum of the withstand voltages.

本発明による端末網制御装置用電源装置によれば、消費電力の大きい携帯電話網を利用した端末網制御装置であっても、電源工事を必要としない独立した小型の太陽電池電源を得ることができる。また、殆どの運用条件で10年以上の寿命が期待でき、電池交換などのメンテナンスの必要がない。即ち、電力会社やガス会社が契約先である需要者宅の電気、ガスなどの月間使用量を検針するシステムにおいては、予め設定した検針日の夜間等の空き時間にデータ送信を運用するものであり、定常的にデータ送信するものではなく、且つNCUは検針に長時間を要するものではないので、検針日の稼働率も非常に低水準にあり、総合して、無線テレメータシステムは、稼働時間は短く稼働率が極めて低水準である。本発明は、太陽電池電源と、該太陽電池電源によって得られた電力を蓄電し供給するための大容量キャパシタと、該大容量キャパシタが電力供給できない時に端末網制御装置の電源バックアップを行うためのリチウム電池と、を具備し、リチウム電池の容量、並びに太陽電池電源及び大容量キャパシタの発電容量と蓄電容量を定めることで、稼働率の極めて低いシステムに適した電源装置を構成することができる。 According to the power supply device for a terminal network control device according to the present invention, it is possible to obtain an independent small-sized solar battery power source that does not require power supply work even in a terminal network control device using a mobile phone network with high power consumption. it can. In addition, a lifetime of 10 years or more can be expected under most operating conditions, and there is no need for maintenance such as battery replacement. In other words, in a system that measures the monthly usage of electricity, gas, etc. at the customer's home that the power company or gas company has a contract with, the data transmission is operated during a free time such as at night on a preset meter reading day. Yes, it does not regularly transmit data, and the NCU does not require a long time for meter reading, so the operation rate on the meter reading day is also very low. Is short and the utilization rate is extremely low. The present invention relates to a solar cell power source, a large-capacity capacitor for storing and supplying electric power obtained by the solar cell power source, and a power source backup for a terminal network control device when the large-capacity capacitor cannot supply electric power. By defining the capacity of the lithium battery and the power generation capacity and storage capacity of the solar battery power source and the large capacity capacitor, a power supply device suitable for a system with a very low operating rate can be configured.

以下、図面を参照して、この発明による端末網制御装置用電源装置の実施形態を説明する。本発明による端末網制御装置用電源装置の一実施例のブロック図を図1に示す。端末網制御装置用電源装置が適用されるテレメータシステムとしては、NCUの電源装置を除き、図3に示すものと同様であって良く、システムについての再度の説明を省略する。   Embodiments of a power supply apparatus for a terminal network control apparatus according to the present invention will be described below with reference to the drawings. A block diagram of an embodiment of a power supply device for a terminal network control device according to the present invention is shown in FIG. The telemeter system to which the power supply device for the terminal network control device is applied may be the same as that shown in FIG. 3 except for the NCU power supply device, and the description of the system will be omitted.

図1に示す電源装置10は、太陽電池9を電源とし、蓄電素子として大容量キャパシタ(以下、「キャパシタ」と略す)11を用い、キャパシタ11の電力不足を補うリチウム電池12を予備電池として持たせた電源装置である。キャパシタ11であれば経年により容量減はあるものの、充放電回数による劣化はあまりなく10年間蓄電の機能を果たすことができる。キャパシタ11の容量は、悪天候と標準条件で余裕を持たせて設定される。   A power supply device 10 shown in FIG. 1 uses a solar cell 9 as a power source, uses a large-capacity capacitor (hereinafter abbreviated as “capacitor”) 11 as a storage element, and has a lithium battery 12 that compensates for power shortage of the capacitor 11 as a spare battery. Power supply. Although the capacity of the capacitor 11 is reduced with the lapse of time, the capacitor 11 does not deteriorate much due to the number of charge / discharge, and can function for 10 years. The capacity of the capacitor 11 is set with a margin in bad weather and standard conditions.

使用開始時や端末網制御装置が標準条件以上に動作した場合など、キャパシタ11が一定電圧以下になると予備電池であるリチウム電池12からの電源供給に切り替えて、電力不足を補って電源供給するように動作する。   When the capacitor 11 falls below a certain voltage, such as at the start of use or when the terminal network control device operates above the standard condition, the power supply is switched from the lithium battery 12 as a spare battery to compensate for the power shortage. To work.

標準条件で電池が消耗することはほとんどないが、運用条件の厳しい端末や、一時的に多く動作する場合はリチウム電池12が消耗する場合がある。リチウム電池12の寿命が来る前にセンタに通報する機能を備えることによって、テレメータシステムの更に円滑な運用を図ることができる。   Although the battery is hardly consumed under the standard conditions, the lithium battery 12 may be consumed when the terminal has severe operating conditions or when a large number of temporary operations are performed. By providing a function for reporting to the center before the end of the life of the lithium battery 12, the telemeter system can be operated more smoothly.

また、前述したように、太陽電池9からの出力を直列にダイオードのみで大容量キャパシタに接続するような場合はキャパシタの耐電圧を超えるため、当該耐電圧を超える前に電流をバイパスし、キャパシタ11に耐電圧を超えて充電させないようにするバイパス回路が必要である。そして、各キャパシタの電圧バランスがくずれた場合に過電圧で充電されるのを回避し、バイパス回路が満充電時に発熱しないようにするため、DC/DCコンバータの出力電圧は、耐電圧の和ではなく、各バイパス回路の設定電圧の和より低く設定される。   In addition, as described above, when the output from the solar cell 9 is connected to a large-capacity capacitor in series with only a diode, the withstand voltage of the capacitor is exceeded, so that the current is bypassed before the withstand voltage is exceeded. A bypass circuit is required to prevent 11 from being charged beyond the withstand voltage. In order to avoid overcharging when the voltage balance of each capacitor is lost and to prevent the bypass circuit from generating heat when fully charged, the output voltage of the DC / DC converter is not the sum of the withstand voltage. The voltage is set lower than the sum of the set voltages of the bypass circuits.

本発明の実施形態の回路例を図2に示す。太陽電池9からの出力は充電制御部13に接続されている。充電制御部13は、太陽電池9への逆流防止のダイオード17とDC/DCコンバータ18を通して、太陽電池9からの出力電力をキャパシタ11に充電する。   A circuit example of the embodiment of the present invention is shown in FIG. The output from the solar cell 9 is connected to the charge control unit 13. The charge control unit 13 charges the capacitor 11 with the output power from the solar cell 9 through the diode 17 and the DC / DC converter 18 that prevent backflow to the solar cell 9.

本実施例に接続する端末網制御装置は3V動作であり、キャパシタ11は2つの2.5V耐圧品11a,11aを直列に接続している。直列のキャパシタ11a,11aにはそれぞれにバイパス回路19a,19aを設けてある。各バイパス回路19aは、シャントレギュレータとトランジスタで構成されている。バイパス回路19aの設定電圧は、各キャパシタ11aの耐電圧の2.5Vを超えない値に設定される。こうした構成・設定により、極端な例であるが、一つのキャパシタ11aが2.5V満充電、他の一つのキャパシタ11aが0Vの空の状態から充電を開始しても、既に満充電のキャパシタ側のバイパス回路が働いて電流をバイパスするので、満充電のキャパシタは耐圧を超えて充電されることはなく、空のキャパシタはバイパス回路を通した電流で充電されていく。   The terminal network control apparatus connected to this embodiment is 3V operation, and the capacitor 11 connects two 2.5V withstand voltage products 11a and 11a in series. The series capacitors 11a and 11a are provided with bypass circuits 19a and 19a, respectively. Each bypass circuit 19a includes a shunt regulator and a transistor. The set voltage of the bypass circuit 19a is set to a value not exceeding 2.5V of the withstand voltage of each capacitor 11a. This configuration and setting is an extreme example, but even if one capacitor 11a is fully charged by 2.5V and the other capacitor 11a is charged from 0V, it is already fully charged. Since the bypass circuit operates to bypass the current, the fully charged capacitor will not be charged beyond the withstand voltage, and the empty capacitor will be charged with the current through the bypass circuit.

また、すべて満充電時の不要な発熱を避けるために充電制御部13のDC/DCコンバータ18の出力電圧は2.5V+2.5V=5.0Vよりも小さい4.9Vに設定する。この設定により、満充電時にバイパス回路19は働かず、不要な発熱が抑えられる。   Further, in order to avoid unnecessary heat generation at the time of full charge, the output voltage of the DC / DC converter 18 of the charge control unit 13 is set to 4.9 V which is smaller than 2.5V + 2.5V = 5.0V. By this setting, the bypass circuit 19 does not work at full charge, and unnecessary heat generation is suppressed.

切替部14は、キャパシタ11が充電されていない場合にリチウム電池12を接続する働きをする。本実施例では、後段の出力部15の能力と端末網制御装置23の負荷条件を考慮して、閾値を3.5Vとした。切替部14内の電圧検知部20でキャパシタ11の電圧を検知し、3.5Vから4.9Vの満充電の場合はキャパシタ11を電源とするため切替部14内のFET(電界効果トランジスタ)21はオフである。キャパシタ11の電圧が0Vから3.5Vとなった場合にFET21をオンにしてリチウム電池12を電源として供給する。本実施例では、リチウム電池12は2本直列で約6Vとなるため、キャパシタ側への逆流防止のためダイオード22が挿入されている。   The switching unit 14 serves to connect the lithium battery 12 when the capacitor 11 is not charged. In the present embodiment, the threshold is set to 3.5 V in consideration of the capability of the output unit 15 in the subsequent stage and the load condition of the terminal network control device 23. The voltage detection unit 20 in the switching unit 14 detects the voltage of the capacitor 11, and the FET (field effect transistor) 21 in the switching unit 14 is used as a power source in the case of full charge from 3.5 V to 4.9 V. Is off. When the voltage of the capacitor 11 changes from 0V to 3.5V, the FET 21 is turned on to supply the lithium battery 12 as a power source. In this embodiment, two lithium batteries 12 are about 6V in series, and therefore a diode 22 is inserted to prevent backflow to the capacitor side.

出力部15は、DC/DCコンバータで構成されており、接続する端末網制御装置23に適合した電圧を出力する。   The output unit 15 is composed of a DC / DC converter, and outputs a voltage suitable for the terminal network control device 23 to be connected.

電池寿命検知部16ではリチウム電池12の電池寿命を判断する。寿命と判断した場合には最終的に端末網制御装置23からセンタ側装置1へ通報されなければならない。そのために端末網制御装置23への信号線を追加するなどの方法もあるが、本実施例では出力部15を制御して出力電圧を2.4V程度に意図的に低下させ、端末網制御装置23に電池電圧低下通報させる方式としている。   The battery life detection unit 16 determines the battery life of the lithium battery 12. When it is determined that the service life is reached, the terminal network control device 23 must finally notify the center device 1. For this purpose, there is a method of adding a signal line to the terminal network control device 23. However, in this embodiment, the output unit 15 is controlled to intentionally lower the output voltage to about 2.4 V, and the terminal network control device. 23, the battery voltage drop notification is made.

次に、本実施例において、キャパシタ11とリチウム電池12を併用する根拠を示す。本実施例において太陽電池9は出力が3ワット品、キャパシタ11は1400ファラド2本11a,11aを直列として700ファラドとしている。3ワットの太陽電池9のパネルは、一般的な多結晶太陽電池でも150mm×250mm程度である。キャパシタ11も多数の電池を使う端末網制御装置23の電池収納部に入る程度の大きさである。これらの電源は端末網制御装置23の電源として問題のない大きさである。   Next, in this embodiment, the grounds for using the capacitor 11 and the lithium battery 12 together will be described. In this embodiment, the solar cell 9 has an output of 3 watts and the capacitor 11 has 700 farads in which two 1400 farads 11a and 11a are connected in series. The panel of the 3-watt solar cell 9 is about 150 mm × 250 mm even in a general polycrystalline solar cell. The capacitor 11 is also large enough to fit in the battery storage unit of the terminal network control device 23 that uses a large number of batteries. These power supplies are of a size that does not cause a problem as a power supply for the terminal network control device 23.

本実施例において、キャパシタ11に蓄え、電源として使用できる電力量は、4.9Vから3.5Vまで700ファラドであるので計算から約1ワットアワーとなる。   In the present embodiment, the amount of power that can be stored in the capacitor 11 and used as a power source is 700 farads from 4.9 V to 3.5 V, so that it is about 1 watt hour from the calculation.

端末網制御装置23としては待機時15ミリワット、動作時1.5ワットと仮定する。運用条件としては簡単に配下の端末1台につき1分間動作するものとする。例えば、配下に10台の端末を持つ端末網制御装置23で、月に1回の検針を行うのであれば、月の動作時間は10分となる。   The terminal network control device 23 is assumed to be 15 milliwatts during standby and 1.5 watts during operation. As an operating condition, it is assumed that each terminal under operation is easily operated for one minute. For example, if the terminal network control device 23 having 10 terminals under its control performs meter reading once a month, the operation time of the month is 10 minutes.

電源装置の待機時の動作について説明する。1ワットアワーの充電電力であれば、太陽電池9が接続されていなくても約2日は待機状態で動作可能である。   The operation of the power supply device during standby will be described. If the charging power is 1 watt hour, it can operate in a standby state for about 2 days even if the solar cell 9 is not connected.

太陽電池9は直射日光だけでなく拡散光でも発電する。曇りの場合でも約3分の1程度発電でき、約1ワット程度あるので、これでも十分、端末網制御装置23の待機電力を上回り、キャパシタ11を充電することができる。また、雨や雪など非常に暗くなる場合の太陽電池9の発電量は晴れた日の場合の10分の1以下となる。しかし、発電量が100分の1となっても30ミリワットあるため、キャパシタ11に充電するのは厳しいが、端末網制御装置23の待機電力程度は殆どの場合、賄うことができ、キャパシタ11の電圧を維持できる。これらのことから、最悪でも日の出から日の入りはキャパシタ11の電圧を維持できると仮定すれば、待機状態で約4日間動作可能である。   The solar cell 9 generates power not only with direct sunlight but also with diffused light. Even when it is cloudy, about one third of the power can be generated and there is about 1 watt. Therefore, even this is sufficiently higher than the standby power of the terminal network control device 23 and the capacitor 11 can be charged. In addition, the amount of power generated by the solar cell 9 when it becomes very dark, such as rain or snow, is 1/10 or less of that on a sunny day. However, even if the power generation amount is 1/100, it is 30 milliwatts, so it is difficult to charge the capacitor 11. However, in most cases, the standby power of the terminal network control device 23 can be covered. The voltage can be maintained. From these facts, assuming that the voltage of the capacitor 11 can be maintained from sunrise to sunset at worst, it can operate for about 4 days in a standby state.

次に、電源装置の充電能力について説明する。使用開始時以外は3.5Vから4.9Vへの充電となる。キャパシタ11に蓄えられる充電量は約1ワットアワーであるので、晴れの場合は1時間以内に充電できる。曇りの場合でも数時間で充電が完了する程度である。本実施例では必要とする充電量が最大でも約1ワットアワーであるので、出力3ワットの太陽電池9でも十分である。   Next, the charging capability of the power supply device will be described. It is charged from 3.5V to 4.9V except when starting to use. Since the charge amount stored in the capacitor 11 is about 1 watt hour, it can be charged within one hour when it is fine. Even when it is cloudy, the charging is completed within a few hours. In this embodiment, the required amount of charge is about 1 watt hour at the maximum, so that the solar cell 9 with an output of 3 watts is sufficient.

次に、電源装置の動作時について説明する。通常検針動作は月に数回というオーダーでなされる。本実施例のシステムでは、夜に放電した電力分を朝から充電して回復するというサイクルを巡るので、検針周期が月に1回でも月に2回でも基本的にあまり関係ない。毎日検針するというのは現実的にはないと想定される。それよりも配下の端末が多いと1回の検針時の動作時間が比例して大きくなるのでこちらが問題となる。   Next, the operation of the power supply device will be described. Normally, the meter reading operation is performed on the order of several times a month. In the system of the present embodiment, the cycle of charging and recovering the electric power discharged at night from the morning is repeated, and therefore, the meter reading cycle is basically irrelevant whether it is once a month or twice a month. It is assumed that daily meter reading is not realistic. If there are more subordinate terminals, the operation time for one meter reading increases proportionally, which is a problem.

検針動作を昼に行うと逐次充電されるので都合が良いのであるが、夜に検針動作を行うと電力を消費するのみとなる。しかし運用に条件をつけるのは困難であるので、夜に検針されると仮定する。
待機状態は一晩で約0.25ワットアワーを消費する。残りの約0.75ワットアワーで検針動作分を賄うとすれば、約30分の動作、つまり端末網制御装置23の配下の端末は30台までとなる。
If the meter reading operation is performed in the daytime, the battery is sequentially charged, which is convenient. However, if the meter reading operation is performed at night, only power is consumed. However, since it is difficult to condition the operation, it is assumed that the meter is read at night.
The standby state consumes about 0.25 watt-hours overnight. If the remaining 0.75 watt hour covers the meter reading operation, the operation is about 30 minutes, that is, the number of terminals under the terminal network control device 23 is 30.

以上のことから、本実施例において、リチウム電池12を使用せずに動作可能な標準条件としては、待機時で4日間動作するという条件であり、運用条件としては端末網制御装置23の配下の端末は30台までとなる。   From the above, in this embodiment, the standard condition that can be operated without using the lithium battery 12 is that it operates for four days in standby, and the operation condition is under the control of the terminal network controller 23. Up to 30 terminals.

もちろん前記条件で使用していても、天候不良が4日続いた後に検針が重なるなどの悪条件が重なればキャパシタ11の電荷がなくなるが、その場合はリチウム電池12が動作を担保する。これら悪条件が重なることは稀であり、リチウム電池12の消耗はあまりないはずであるが、万が一消耗した場合はセンタ側装置1に通報が上がるので運用に支障は出ない。   Of course, even if it is used under the above conditions, the charge of the capacitor 11 disappears if an adverse condition such as the meter readings overlap after 4 days of bad weather, the lithium battery 12 guarantees the operation. It is rare that these adverse conditions overlap, and the lithium battery 12 should not be consumed so much. However, if the battery is exhausted, a notification will be sent to the center side device 1 and there will be no trouble in operation.

ここで、リチウム電池12を備えない場合を考える。リチウム電池12がない場合、キャパシタ11の電荷がなくなると端末網制御装置23の電源が落ちるため、悪条件が重なった場合であっても電源供給できなければならない。つまり、本実施例同様のシステムで、天候不良が4日続いたあと配下の端末30台の検針ができなければならない。
このような場合にも検針動作を確保するには、単純にキャパシタ11の容量を倍にする必要がある。しかし、そうした対応では、倍に増えたキャパシタが全体として端末網制御装置23の電池収納部分に入らなくなるため、別筐体を備える必要があり、しかも高価なキャパシタの数が倍になることでコストも大幅にアップし商品性が低下する。また、上記最悪条件よりも条件が悪くなることも考えられる。端末のテストなどでイレギュラーな動作が入ることも考えられる。このように、キャパシタ11の容量を倍にする対策は、稀にしか発生しない事象のために過剰仕様となることが判る。本発明によるキャパシタ11とリチウム電池9を併用することのメリットが大きいかが理解される。
Here, the case where the lithium battery 12 is not provided is considered. When the lithium battery 12 is not provided, the terminal network control device 23 is turned off when the charge of the capacitor 11 is exhausted. Therefore, it is necessary to be able to supply power even when adverse conditions overlap. In other words, the system similar to the present embodiment must be able to perform meter reading of 30 terminals under the control of bad weather for 4 days.
In such a case, it is necessary to simply double the capacitance of the capacitor 11 in order to ensure the meter reading operation. However, in such a response, the doubled capacitor does not enter the battery storage part of the terminal network control device 23 as a whole, so it is necessary to provide a separate housing, and the number of expensive capacitors is doubled, resulting in a cost reduction. Will increase significantly and the merchantability will decrease. It is also conceivable that the condition becomes worse than the worst condition. It is also possible that irregular operations are entered in terminal tests. Thus, it can be seen that the measure for doubling the capacitance of the capacitor 11 is over-specification due to an event that occurs rarely. It is understood whether the merit of using the capacitor 11 and the lithium battery 9 according to the present invention is great.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。   The present invention is not limited to the above embodiment, and it is needless to say that many modifications and changes can be made to the above embodiment within the scope of the present invention.

本発明の端末網制御装置用電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the power supply device for terminal network control apparatuses of this invention. 図1に示す端末網制御装置用電源装置の一実施例を示す回路図。The circuit diagram which shows one Example of the power supply device for terminal network control apparatuses shown in FIG. 無線通信を利用した端末網制御装置のシステム構成図。The system block diagram of the terminal network control apparatus using radio | wireless communication. 従来の通信回線を利用した端末網制御装置のシステム構成図。The system block diagram of the terminal network control apparatus using the conventional communication line.

符号の説明Explanation of symbols

1 センタ側装置 2 通信回路網
4 メータ 5 無線基地局
6 無線通信 7 携帯電話無線モジュール
9 太陽電池 10 電源装置
11(11a,11a) 大容量キャパシタ
12 リチウム電池 13 充電制御部
14 切替部 15 出力部
16 電池寿命検知部 17 ダイオード
18 DC/DCコンバータ 19(19a,19a) バイパス回路
20 電圧検知部 21 FET
22 ダイオード 23 端末網制御装置
DESCRIPTION OF SYMBOLS 1 Center side apparatus 2 Communication network 4 Meter 5 Wireless base station 6 Wireless communication 7 Mobile phone wireless module 9 Solar cell 10 Power supply device 11 (11a, 11a) Large capacity capacitor 12 Lithium battery 13 Charge control part 14 Switching part 15 Output part 16 Battery Life Detection Unit 17 Diode 18 DC / DC Converter 19 (19a, 19a) Bypass Circuit 20 Voltage Detection Unit 21 FET
22 Diode 23 Terminal network controller

Claims (4)

センタ側装置に携帯電話回線を介して無線接続された親機である端末網制御装置と、
前記親機と接続された複数の子機と、前記子機に接続されたメータと、から構成されるテレメータシステムであって、
前記複数の子機は、前記メータの月次の検針データを前記端末網制御装置にデータ送信し、前記無線通信によって、前記端末網制御装置が前記検針データを前記センタ側装置に送信することにより前記メータの遠隔検針を行うテレメータシステムの前記端末網制御装置用の電源装置であって、
前記センタ側装置と前記端末網制御装置は前記携帯電話回線を介して無線通信を行い、
前記電源装置は、太陽電池電源と、該太陽電池電源によって得られた電力を蓄電し供給するための大容量キャパシタと、
該大容量キャパシタが電力供給できない時に前記端末網制御装置の電源バックアップを行うためのリチウム電池と、を具備し、
前記リチウム電池は、前記端末網制御装置の前記無線通信に要する電力以外の電力を10年間供給できる容量を有し、
前記太陽電池電源及び前記大容量キャパシタは、晴天日に前記大容量キャパシタをフル充電した時前記遠隔検針を4日間実行する電力を蓄電できる発電容量と蓄電容量をそれぞれ有する
ことを特徴とする端末網制御装置用電源装置
A terminal network control device which is a master unit wirelessly connected to the center side device via a mobile phone line;
A telemeter system comprising a plurality of slave units connected to the master unit and a meter connected to the slave unit,
The plurality of slave units transmit monthly meter reading data of the meter to the terminal network control device, and the terminal network control device transmits the meter reading data to the center side device by the wireless communication. A power supply device for the terminal network control device of a telemeter system that performs remote meter reading of the meter,
The center side device and the terminal network control device perform wireless communication via the mobile phone line,
The power supply device includes a solar cell power source, a large-capacity capacitor for storing and supplying electric power obtained by the solar cell power source,
A lithium battery for performing power backup of the terminal network control device when the large-capacity capacitor cannot supply power; and
The lithium battery has a capacity capable of supplying power other than the power required for the wireless communication of the terminal network control device for 10 years,
The solar cell power supply and the large-capacity capacitor each have a power generation capacity and a storage capacity capable of storing electric power for executing the remote meter reading for 4 days when the large-capacity capacitor is fully charged on a clear day. Power supply for control device
請求項1に記載の端末網制御装置用電源供給装置において、
前記リチウム電池の寿命の到来を検知しその旨をセンタ側に通報する電池寿命検知手段を具備することを特徴とする端末網制御装置用電源装置。
The power supply device for a terminal network control device according to claim 1,
A power supply device for a terminal network control device, comprising battery life detection means for detecting the arrival of the life of the lithium battery and reporting the fact to the center.
請求項1又は2に記載の端末網制御装置用電源装置において、
前記大容量キャパシタは複数個のキャパシタを直列に接続して構成されてなり、それぞれの前記キャパシタに過電圧防止のバイパス回路が設けられており、前記大容量キャパシタへの充電電圧は前記各バイパス回路のバイパス設定電圧の和より低く制御されることを特徴とする端末網制御装置用電源装置。
The power supply apparatus for a terminal network control device according to claim 1 or 2,
The large-capacity capacitor is formed by connecting a plurality of capacitors in series, and each of the capacitors is provided with a bypass circuit for preventing overvoltage, and the charging voltage to the large-capacity capacitor is the voltage of each bypass circuit. A power supply apparatus for a terminal network control apparatus, wherein the power supply apparatus is controlled to be lower than a sum of bypass setting voltages.
請求項1に記載の端末網制御装置用電源装置において、
前記太陽電池で得られた電力の前記大容量キャパシタへの充電を制御する充電制御部と、当該充電制御部に接続されており前記大容量キャパシタの出力電圧に応じて前記大容量キャパシタと前記リチウム電池とのいずれかを切り替えて出力する切替部と、前記切替部に接続され且つ後続に前記端末網制御装置が接続されており前記リチウム電池の電池寿命に応じて当該電池寿命情報を出力可能な出力部とを備えることを特徴とする端末網制御装置用電源装置。
The power supply device for a terminal network control device according to claim 1,
A charge control unit that controls charging of the electric power obtained by the solar cell to the large-capacitance capacitor; and the large-capacity capacitor and the lithium that are connected to the charge control unit and that correspond to an output voltage of the large-capacity capacitor A switching unit that switches between and outputs one of the batteries; and the terminal network control device that is connected to the switching unit and is connected to the switching unit, and can output the battery life information according to the battery life of the lithium battery. And a power supply device for a terminal network control device.
JP2007322322A 2007-12-13 2007-12-13 Power supply for terminal network controller Active JP4845866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322322A JP4845866B2 (en) 2007-12-13 2007-12-13 Power supply for terminal network controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322322A JP4845866B2 (en) 2007-12-13 2007-12-13 Power supply for terminal network controller

Publications (2)

Publication Number Publication Date
JP2009148064A JP2009148064A (en) 2009-07-02
JP4845866B2 true JP4845866B2 (en) 2011-12-28

Family

ID=40918045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322322A Active JP4845866B2 (en) 2007-12-13 2007-12-13 Power supply for terminal network controller

Country Status (1)

Country Link
JP (1) JP4845866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173096A (en) * 2019-04-08 2020-10-22 Innovation Farm株式会社 Gas meter reading robot and gas meter automatic reading system using gas meter reading robot

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370854B2 (en) * 2010-01-28 2013-12-18 サクサ株式会社 Information collection system
JP5570897B2 (en) * 2010-07-16 2014-08-13 シャープ株式会社 Terminal network control device and telemeter system
JP2012039279A (en) * 2010-08-05 2012-02-23 Sharp Corp Terminal network control apparatus and telemeter system
US9490636B2 (en) 2010-12-08 2016-11-08 Panasonic Intellectual Property Management Co., Ltd. Power supply circuit, power supply method and power supply system
JP5857200B2 (en) * 2011-09-26 2016-02-10 パナソニックIpマネジメント株式会社 Independent power supply for containers
WO2013078668A1 (en) * 2011-12-02 2013-06-06 拓实电子(深圳)有限公司 Solar dual-supply circuit
US9525305B2 (en) 2012-08-22 2016-12-20 Sharp Kabushiki Kaisha Electric system and vehicle
JP6051927B2 (en) * 2013-02-25 2016-12-27 株式会社村田製作所 Power supply device and wireless sensor network device
JP6890464B2 (en) * 2016-11-25 2021-06-18 マクセルホールディングス株式会社 A power source with power generation means and a communication system with a power source with power generation means
CN106849329A (en) * 2017-01-25 2017-06-13 青岛盛邦慧通能源科技有限公司 A kind of electric energy meter power supply circuit
JP7306212B2 (en) * 2019-10-17 2023-07-11 日本ゼオン株式会社 power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191574A (en) * 1996-12-26 1998-07-21 Japan Tobacco Inc Charging equipment
JP2000102191A (en) * 1998-09-21 2000-04-07 Ntt Electornics Corp Power supply system for radio remote meter reading device
JP2005287178A (en) * 2004-03-30 2005-10-13 Yokogawa Electric Corp Electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173096A (en) * 2019-04-08 2020-10-22 Innovation Farm株式会社 Gas meter reading robot and gas meter automatic reading system using gas meter reading robot

Also Published As

Publication number Publication date
JP2009148064A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4845866B2 (en) Power supply for terminal network controller
US10574085B2 (en) Power supply unit
US6127801A (en) Battery pack assembly
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP5401003B2 (en) Solar power system
US20110199044A1 (en) Modular System For Unattended Energy Generation And Storage
KR100992397B1 (en) Solar led lamp controller having dc-dc converter
JP2015012705A (en) Power storage system and operation method therefor
KR20180104873A (en) Lithium battery protection system
KR20150033971A (en) Photovoltaics System, apparatus and method for operating of storage battery
CN114430195A (en) Power supply scheduling circuit of communication base station
JP5570897B2 (en) Terminal network control device and telemeter system
JP5947270B2 (en) Power supply system
JP2009118054A (en) Power supply system for terminal network controller
JP6207196B2 (en) DC power supply system
JP3091637U (en) Auxiliary charger for mobile phone
JP7158916B2 (en) power system
JP2005278334A (en) Uninterruptible power supply
JP2005210776A (en) Portable power system fitted with battery charger
JP2007267469A (en) Portable tool for emergency/disaster
JP5629179B2 (en) Self-supporting power supply device and optical equipment using the same
JP2012039279A (en) Terminal network control apparatus and telemeter system
CN220209989U (en) Battery pack and energy storage device
JP4086800B2 (en) Power supply
JP7163518B2 (en) power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150