JP4845409B2 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP4845409B2
JP4845409B2 JP2005101232A JP2005101232A JP4845409B2 JP 4845409 B2 JP4845409 B2 JP 4845409B2 JP 2005101232 A JP2005101232 A JP 2005101232A JP 2005101232 A JP2005101232 A JP 2005101232A JP 4845409 B2 JP4845409 B2 JP 4845409B2
Authority
JP
Japan
Prior art keywords
oil
cylinder
rotary
valve
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005101232A
Other languages
Japanese (ja)
Other versions
JP2006283582A (en
Inventor
弘丞 小笠原
剛弘 西川
正之 原
吉久 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005101232A priority Critical patent/JP4845409B2/en
Priority to TW095104317A priority patent/TW200634231A/en
Priority to EP06005114.1A priority patent/EP1707818B1/en
Priority to US11/378,800 priority patent/US7581936B2/en
Priority to KR1020060024182A priority patent/KR20060101304A/en
Priority to CN2006100574938A priority patent/CN1834462B/en
Priority to CN2008102118746A priority patent/CN101354037B/en
Publication of JP2006283582A publication Critical patent/JP2006283582A/en
Application granted granted Critical
Publication of JP4845409B2 publication Critical patent/JP4845409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷凍用、空調用などに用いられる密閉型圧縮機に係り、特に、密閉型圧縮機のCOPを向上させるための技術に関する。   The present invention relates to a hermetic compressor used for refrigeration, air conditioning, and the like, and more particularly to a technique for improving COP of a hermetic compressor.

従来、密閉容器内に電動要素と、この電動要素に駆動されて冷媒を圧縮する回転圧縮要素とを収容した密閉型ロータリ圧縮機が知られている。この種の密閉型ロータリ圧縮機は、一般に、偏心回転運動するローラが所定のクリアランスを保ってシリンダに内設されてシリンダ内に三日月状の空間(いわゆる圧縮室)を形成するとともに、ローラに摺接するベーンが設けられて、シリンダ内の三日月状の空間が、ベーンにより、冷媒を吸気する低圧室側と冷媒を圧縮する高圧室側とに圧力的に仕切られるように構成されている(例えば、特許文献1参照)。
特開平6−323276号公報
2. Description of the Related Art Conventionally, a hermetic rotary compressor in which an electric element and a rotary compression element that is driven by the electric element and compresses a refrigerant is housed in an airtight container is known. In this type of hermetic rotary compressor, generally, a roller that rotates eccentrically is installed in a cylinder with a predetermined clearance to form a crescent-shaped space (so-called compression chamber) in the cylinder, and the roller slides on the roller. A vane that is in contact is provided, and the crescent-shaped space in the cylinder is configured to be pressure-divided by the vane into a low-pressure chamber side that sucks in the refrigerant and a high-pressure chamber side that compresses the refrigerant (for example, Patent Document 1).
JP-A-6-323276

しかしながら、従来の技術においては、上記シリンダにおける三日月状の空間のシール性の向上が十分には図られておらず、密閉型ロータリ圧縮機の冷却効率(COP:Coefficient Of Performance:冷凍能力/入力電力)の低下を招くといった問題があった。
本発明は、上述した事情に鑑みてなされたものであり、ローラとシリンダとの間のシール性を向上させ、以って、冷却効率を高めることのできる密閉型圧縮機を提供することを目的とする。
However, in the conventional technology, the sealing performance of the crescent-shaped space in the cylinder is not sufficiently improved, and the cooling efficiency (COP: Coefficient Of Performance: refrigeration capacity / input power) of the hermetic rotary compressor is not achieved. ).
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a hermetic compressor that can improve the sealing performance between a roller and a cylinder and thereby increase the cooling efficiency. And

上記目的を達成するために、本発明は、密閉容器内に電動要素と、前記電動要素により駆動され冷媒を圧縮する回転圧縮要素とを収容した密閉型圧縮機において、前記回転圧縮要素の回転軸を支持する主軸受け及び副軸受けの間に配設されたシリンダと、前記シリンダに内設され前記回転軸により偏心回転するローラとを備えて前記回転圧縮要素を構成し、前記回転圧縮要素を構成するシリンダとローラとの間の圧縮室に開口した一端から水平に延びて他端が前記密閉容器内に開口し当該密閉容器内のオイルを吸入工程中に導く油路を前記シリンダと前記主軸受け又は前記副軸受けとの間に溝を形成して設けるとともに、前記一端の開口の断面積Dと前記圧縮室の排除容積Vとの比率Rを0.004〜0.03(mm2/cc)とし、前記油路の経路途中に当該経路を開閉する開閉弁を前記経路を開くように付勢した状態で設け、前記回転圧縮要素により圧縮された圧縮冷媒を前記開閉弁の付勢に抗するように導いて前記開閉弁に作用させて、前記圧縮冷媒の圧力が低い場合に前記開閉弁が前記付勢によって開状態となるようにしたことを特徴とする。
To achieve the above object, the present invention includes: a motor element in a sealed container, the rotary compression element and the hermetic compressor that houses a for compressing refrigerant is driven by the electric element, the rotary shaft of said rotary compression element The rotary compression element includes the cylinder disposed between the main bearing and the sub-bearing that supports the rotary bearing, and a roller that is installed in the cylinder and rotates eccentrically by the rotary shaft. An oil passage that extends horizontally from one end opened to the compression chamber between the cylinder and the roller to be opened and the other end opens into the sealed container and guides the oil in the sealed container during the suction process. The cylinder and the main bearing Alternatively, a groove is formed between the auxiliary bearing and the ratio R between the sectional area D of the opening at the one end and the displacement volume V of the compression chamber is 0.004 to 0.03 (mm 2 / cc). And said oil Provided in a state where the opening and closing valve and biased to open the path for opening and closing the way to the path the path of the guides to the compressed refrigerant compressed against the bias of the on-off valve by the rotary compressing element When the pressure of the compressed refrigerant is low, the open / close valve is opened by the biasing by acting on the open / close valve.

また本発明は、上記発明において、前記密閉容器の吐出管から吐出された圧縮冷媒を前記開閉弁に導く圧縮冷媒導入路を設けたことを特徴とする。   Further, the present invention is characterized in that, in the above invention, a compressed refrigerant introduction passage is provided for guiding the compressed refrigerant discharged from the discharge pipe of the closed container to the on-off valve.

本発明によれば、回転圧縮要素を構成するシリンダとローラとの間の圧縮室に密閉容器内のオイルを吸入工程中に導く油路を設ける構成としたため、このオイルによりシリンダとローラとの間に十分な油膜が形成されてシール性が高められる。この結果、圧縮室内において、圧縮工程中の冷媒の低圧側への漏れが防止されるため、圧縮効率が高められ、以って、冷却効率が高められる。
特に本発明によれば、回転圧縮要素により圧縮された圧縮冷媒を開閉弁に作用させて、圧縮冷媒の圧力差が小さい場合に開閉弁が開状態となる構成としたため、オイル注入によりシール性が大きく向上する所定の運転条件(低速回転かつ低圧力差)の場合にだけオイル注入を行うことができ、これにより、密閉容器に貯留されているオイルの消耗を抑えつつ、冷却効率を効率的に向上させることができる。
According to the present invention, the oil passage for guiding the oil in the hermetic container during the suction process is provided in the compression chamber between the cylinder and the roller constituting the rotary compression element. A sufficient oil film is formed to improve the sealing performance. As a result, the refrigerant is prevented from leaking to the low pressure side during the compression process in the compression chamber, so that the compression efficiency is enhanced, and thus the cooling efficiency is enhanced.
In particular, according to the present invention, the compressed refrigerant compressed by the rotary compression element is applied to the on-off valve so that the on-off valve is opened when the pressure difference of the compressed refrigerant is small. Oil injection can be performed only under certain operating conditions (low speed rotation and low pressure difference), which greatly improves cooling efficiency while suppressing the consumption of oil stored in a sealed container. Can be improved.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本実施の形態に係る密閉型ロータリ圧縮機100の一態様を示す縦断面図であり、図2は回転圧縮要素を拡大して示す縦断面図である。この密閉型ロータリ圧縮機100は、冷媒の凝縮器と蒸発器との間に配管接続されて冷凍機ユニットを構成するものであり、図1に示すように、密閉容器1を有し、この密閉容器1の上側に電動要素2が、下側にこの電動要素2のクランクシャフト3(回転軸)によって駆動されて冷媒を圧縮する回転圧縮要素4が収納されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an aspect of a hermetic rotary compressor 100 according to the present embodiment, and FIG. 2 is an enlarged longitudinal sectional view showing a rotary compression element. The hermetic rotary compressor 100 is connected to a pipe between a refrigerant condenser and an evaporator to form a refrigerator unit. As shown in FIG. An electric element 2 is housed on the upper side of the container 1, and a rotary compression element 4 that is driven by a crankshaft 3 (rotary shaft) of the electric element 2 to compress the refrigerant is housed on the lower side.

密閉容器1は、筒状のシェル部10と、このシェル部10にアーク溶接などにより固着されたエンドキャップ11とを備え、このエンドキャップ11には電動要素2に電力を供給する際の中継端子をなすターミナル12が設けられると共に、圧縮された冷媒を機外に吐出する吐出管13が設けられている。また、シェル部10の底部近くには、アキュムレータ5から回転圧縮要素4に冷媒を導く吸込管6が溶接などにより固着されている。   The hermetic container 1 includes a cylindrical shell portion 10 and an end cap 11 fixed to the shell portion 10 by arc welding or the like. The end cap 11 is a relay terminal for supplying electric power to the electric element 2. And a discharge pipe 13 for discharging the compressed refrigerant to the outside of the machine. A suction pipe 6 that guides the refrigerant from the accumulator 5 to the rotary compression element 4 is fixed by welding or the like near the bottom of the shell portion 10.

電動要素2は、いわゆるDCブラシレスモータなどの直流モータからなるものであり、回転子(ロータ)31と、シェル部10に固着された固定子(ステータ)32とを備え、回転子31にクランクシャフト3が固定されて、回転子31の回転力が回転圧縮要素4に伝達するようになっている。このクランクシャフト3は主軸受け7A(支持部材)および副軸受け7Bにより回転自在に支持されている。   The electric element 2 is composed of a direct current motor such as a so-called DC brushless motor, and includes a rotor (rotor) 31 and a stator (stator) 32 fixed to the shell portion 10. 3 is fixed, and the rotational force of the rotor 31 is transmitted to the rotary compression element 4. The crankshaft 3 is rotatably supported by a main bearing 7A (support member) and a sub bearing 7B.

図1および図2に示すように、回転圧縮要素4は、円筒形状を有するシリンダ41を有し、このシリンダ41は主軸受け7Aと副軸受け7Bとの間で、図示せぬボルトなどにより主軸受け7Aおよび副軸受け7Bに一体的に固定され、主軸受け7Aが密閉容器1の内側面に溶接により固着されて、この主軸受け7Aにシリンダ41が支持される。また、シリンダ41の上側の開口が主軸受け7Aに、下側の開口が副軸受け7Bにより閉塞されて、このシリンダ41内に圧縮室43が形成される。   As shown in FIGS. 1 and 2, the rotary compression element 4 includes a cylinder 41 having a cylindrical shape. The cylinder 41 is connected to a main bearing by a bolt or the like (not shown) between the main bearing 7A and the auxiliary bearing 7B. The main bearing 7A is fixed to the inner surface of the sealed container 1 by welding, and the cylinder 41 is supported by the main bearing 7A. Further, the upper opening of the cylinder 41 is closed by the main bearing 7 </ b> A and the lower opening is closed by the auxiliary bearing 7 </ b> B, and a compression chamber 43 is formed in the cylinder 41.

圧縮室43には、クランクシャフト3に一体成形された偏心部44に嵌合されて偏心回転するローラ45が内設されている。また、図3に示すように、シリンダ41には、冷媒の吸込口48と吐出口40との間にベーン溝47が設けられ、このベーン溝47にはベーン46が摺動自在に配設されている。このベーン46は図示せぬスプリングなどの付勢部材によって常時ローラ45方向に押圧され、偏心部44およびローラ45の回転に応じてローラ45の外周面に摺接しながらベーン溝47内を往復動し、圧縮室43の内部を低圧室側43Aと高圧室側43Bに圧力的に仕切る役割を果たしている。   In the compression chamber 43, a roller 45 that is fitted into an eccentric portion 44 that is integrally formed with the crankshaft 3 and rotates eccentrically is provided. As shown in FIG. 3, the cylinder 41 is provided with a vane groove 47 between the refrigerant suction port 48 and the discharge port 40, and the vane 46 is slidably disposed in the vane groove 47. ing. The vane 46 is always pressed in the direction of the roller 45 by a biasing member such as a spring (not shown), and reciprocates in the vane groove 47 while sliding on the outer peripheral surface of the roller 45 in accordance with the rotation of the eccentric portion 44 and the roller 45. The inside of the compression chamber 43 serves to partition the pressure chamber side into the low pressure chamber side 43A and the high pressure chamber side 43B.

具体的には、ローラ45はその外側面の一端がシリンダ41の内側面49と常に所定のクリアランスで接するように設けられ、シリンダ41とローラ45との間の空間である圧縮室43が三日月状に形成される。そして、ベーン46がローラ45の外側面に当接し、このベーン46により三日月状の圧縮室43が低圧室側43Aと高圧室側43Bに仕切られる。   Specifically, the roller 45 is provided such that one end of the outer surface thereof is always in contact with the inner surface 49 of the cylinder 41 with a predetermined clearance, and the compression chamber 43 that is a space between the cylinder 41 and the roller 45 has a crescent shape. Formed. The vane 46 comes into contact with the outer surface of the roller 45, and the crescent-shaped compression chamber 43 is partitioned by the vane 46 into a low pressure chamber side 43A and a high pressure chamber side 43B.

前掲図1および図2に示すように、シリンダ41の吸込口48には吸込管6が挿嵌され、また、上記吐出口40には、図示しない吐出バルブが設けられており、冷媒がこの吐出バルブで規定される吐出圧に達すると吐出口40から密閉容器1内に吐出される。
したがって、密閉型ロータリ圧縮機100にあっては、電動要素2がクランクシャフト3を回転駆動することによってローラ45を圧縮室43内において偏心回転させることにより、アキュムレータ5を介して機外から供給された冷媒が吸込管6を介して圧縮室43の低圧室側43Aに吸入され、その冷媒を高圧室側43Bに移動させながら圧縮して吐出口40から密閉容器1内に吐出し、吐出管13から機外に吐出することになる。
As shown in FIGS. 1 and 2, the suction pipe 6 is inserted into the suction port 48 of the cylinder 41, and a discharge valve (not shown) is provided in the discharge port 40. When the discharge pressure defined by the valve is reached, it is discharged from the discharge port 40 into the sealed container 1.
Therefore, in the hermetic rotary compressor 100, the electric element 2 is supplied from the outside through the accumulator 5 by rotating the roller 45 eccentrically in the compression chamber 43 by driving the crankshaft 3 to rotate. The refrigerant is sucked into the low-pressure chamber side 43A of the compression chamber 43 through the suction pipe 6, compressed while moving the refrigerant to the high-pressure chamber side 43B, and discharged from the discharge port 40 into the sealed container 1, and the discharge pipe 13 Will be discharged out of the machine.

また、前掲図1および図2に示すように、密閉容器1の底部には、主軸受け7Aの下面(図中A−A’線にて示す)までオイル8が貯留されており、このオイル8を主軸受け7A、副軸受け7Bおよび回転圧縮要素4とクランクシャフト3との間の摺擦部分や回転圧縮要素4の摺動部分に給油するオイルピックアップ50(給油装置)がクランクシャフト3の下端部3Aに設けられている。   As shown in FIGS. 1 and 2, oil 8 is stored at the bottom of the sealed container 1 up to the lower surface of the main bearing 7A (indicated by the line AA ′ in the figure). An oil pickup 50 (oil supply device) for supplying oil to the main bearing 7A, the sub-bearing 7B, the rubbing portion between the rotary compression element 4 and the crankshaft 3 and the sliding portion of the rotary compression element 4 is a lower end portion of the crankshaft 3. 3A is provided.

具体的には、クランクシャフト3は円筒状に形成され、その下端部3Aに円筒状のオイルピックアップ50が圧入して取付けられている。オイルピックアップ50の内部には、図2に示すように、螺旋形のオイル流路を構成するパドル51が一体成形されており、クラックシャフト3の回転により生じる遠心力によりオイルピックアップ50が下端50Aから密閉容器1に貯留されたオイル8を吸込み、パドル51がオイル8を上向きに送給する。そして、このオイル8がオイルピックアップ50に穿たれた給油孔52を経て、クランクシャフト3の周面、特に、主軸受け7A、副軸受け7Bおよび回転圧縮要素4とクランクシャフト3との各摺擦部分に供給される。   Specifically, the crankshaft 3 is formed in a cylindrical shape, and a cylindrical oil pickup 50 is press-fitted and attached to the lower end portion 3A thereof. As shown in FIG. 2, a paddle 51 constituting a spiral oil flow path is integrally formed inside the oil pickup 50, and the oil pickup 50 is separated from the lower end 50A by a centrifugal force generated by the rotation of the crack shaft 3. The oil 8 stored in the airtight container 1 is sucked, and the paddle 51 feeds the oil 8 upward. Then, the oil 8 passes through an oil supply hole 52 formed in the oil pickup 50, and the peripheral surface of the crankshaft 3, in particular, the main bearing 7 </ b> A, the sub-bearing 7 </ b> B, and each sliding portion between the rotary compression element 4 and the crankshaft 3. To be supplied.

ここで、上述の通り、ローラ45は、シリンダ41の内側面49と常に所定のクリアランスで接するように内設されているため、圧縮室43のシール性が十分なものでなく冷却効率の低下を招くことになる。
そこで、本実施の形態では、密閉容器1に貯留されているオイル8を冷媒の吸入工程中に圧縮室43に導く油路60を密閉型ロータリ圧縮機100に設ける構成とし、この油路60を経由して注入されたオイル8によりローラ45とシリンダ41との間に十分な油膜を形成してシール性を高めるようにしている。以下、かかる構成について詳述する。
Here, as described above, since the roller 45 is installed so as to be always in contact with the inner surface 49 of the cylinder 41 with a predetermined clearance, the sealing performance of the compression chamber 43 is not sufficient and the cooling efficiency is lowered. Will be invited.
Therefore, in the present embodiment, the oil rotary 60 that guides the oil 8 stored in the sealed container 1 to the compression chamber 43 during the refrigerant suction process is provided in the sealed rotary compressor 100, and the oil path 60 is A sufficient oil film is formed between the roller 45 and the cylinder 41 by the oil 8 injected therethrough so as to improve the sealing performance. Hereinafter, this configuration will be described in detail.

図4に示すように、シリンダ41の上下面のそれぞれには主軸受け7Aおよび副軸受け7Bとの接触面を構成する段部70A、70Bが形成されている。そして、副軸受け7Bと接触するシリンダ41側の下側の段部70Bに溝61を切削加工により形成し、この段部70Bと副軸受け7Bとを接触させることで、シリンダ41の内側面49に一端60Aが開口し、他端60Bが副軸受け7Bの外周端7B1で開口する油路60が形成される。なお、主軸受け7Aがオイル8に浸る構成である場合には、主軸受け7Aと接触するシリンダ41側の段部70Aに溝61を形成して油路60を構成しても良い。   As shown in FIG. 4, step portions 70 </ b> A and 70 </ b> B constituting contact surfaces with the main bearing 7 </ b> A and the sub-bearing 7 </ b> B are formed on the upper and lower surfaces of the cylinder 41. Then, a groove 61 is formed by cutting in the lower step portion 70B on the cylinder 41 side that comes into contact with the sub-bearing 7B, and the step portion 70B and the sub-bearing 7B are brought into contact with each other to form an inner surface 49 of the cylinder 41. An oil passage 60 is formed in which one end 60A is opened and the other end 60B is opened at the outer peripheral end 7B1 of the auxiliary bearing 7B. In the case where the main bearing 7A is immersed in the oil 8, the oil passage 60 may be configured by forming a groove 61 in the step portion 70A on the cylinder 41 side that contacts the main bearing 7A.

この油路60の一端60Aは、冷媒の圧縮室43への吸入工程中に、オイル8を圧縮室43に注入すべく、低圧室側43Aのシリンダ内側面49に開口するように形成され、特に、図3に示すように、油路60の一端60Aが、吸込口48とシリンダ41の中心点Oを結ぶ基準線Lを基準にして所定の角度θ1〜θ2(θ1:0°、θ2:170°、より望ましくは、θ1:125°、θ2:165°)の範囲に開口するように形成されている(図示例では約125°)。   One end 60A of the oil passage 60 is formed so as to open to the cylinder inner surface 49 of the low-pressure chamber side 43A in order to inject the oil 8 into the compression chamber 43 during the step of sucking the refrigerant into the compression chamber 43. 3, one end 60A of the oil passage 60 has a predetermined angle θ1 to θ2 (θ1: 0 °, θ2: 170) with reference to a reference line L connecting the suction port 48 and the center point O of the cylinder 41. It is formed so as to open in the range of θ, more desirably θ1: 125 °, θ2: 165 ° (about 125 ° in the illustrated example).

以上の構成の下、密閉容器1内のオイル8には冷媒の吐出圧(例えば3MPa)が作用しているため、この高圧のオイル8が、圧縮室43の低圧室側43Aの内圧(例えば1.1MPa)との差圧により、油路60を経由して、シリンダ41の圧縮室43の低圧室側43Aに注入される。   Since the refrigerant discharge pressure (for example, 3 MPa) is acting on the oil 8 in the sealed container 1 under the above configuration, the high pressure oil 8 is applied to the internal pressure (for example, 1 on the low pressure chamber side 43A of the compression chamber 43). .1 MPa) is injected into the low pressure chamber side 43 </ b> A of the compression chamber 43 of the cylinder 41 via the oil passage 60.

したがって、冷媒の吸入工程中にオイル8が圧縮室43に注入され、このオイル8によって、シリンダ内側面49とローラ45との間に十分な油膜が形成されシール性が高められる。この結果、シリンダ41の圧縮室43において低圧室側43Aと高圧室側43Bとがより確実に分離されるため、低圧室側43Aに吸入された冷媒が高圧室側43Bに圧縮される過程(圧縮工程)で低圧室側43Aへの圧縮冷媒の漏れが防止され、冷媒の圧縮効率が高められ、以って、密閉型ロータリ圧縮機100の冷却効率の向上が図られる。   Therefore, the oil 8 is injected into the compression chamber 43 during the refrigerant suction process, and a sufficient oil film is formed between the cylinder inner surface 49 and the roller 45 by the oil 8 to improve the sealing performance. As a result, the low pressure chamber side 43A and the high pressure chamber side 43B are more reliably separated in the compression chamber 43 of the cylinder 41, so that the refrigerant sucked into the low pressure chamber side 43A is compressed into the high pressure chamber side 43B (compression In the step), leakage of the compressed refrigerant to the low-pressure chamber side 43A is prevented, and the compression efficiency of the refrigerant is increased, so that the cooling efficiency of the hermetic rotary compressor 100 is improved.

また、本実施の形態では、シリンダ内側面49に開口する油路60の断面積D(すなわち、溝61の断面積)を調整することで、圧縮室43に注入されるオイル量を調整することとし、このとき、油路60の断面積Dを圧縮室43の排除容積をVとの比率R(=D/V)が所定の範囲内に収まるように決定することとしている。詳細には、上記比率Rが小さ過ぎる場合には、油路60が狭くなり過ぎてオイル8が圧縮室43内に注入されなくなってしまい、これとは逆に、上記比率Rが大きすぎる場合には、圧縮室43内にオイル8が過度に注入されて液圧縮が生じてしまう。そこで、上記比率Rを0.004〜0.03(mm2/cc)の範囲に収めることが望ましく、これにより、オイル8の過度の注入による液圧縮を防止しつつ、シリンダ内側面49とローラ45との間のシール性が高められる。 Further, in the present embodiment, the amount of oil injected into the compression chamber 43 is adjusted by adjusting the cross-sectional area D of the oil passage 60 that opens to the cylinder inner surface 49 (that is, the cross-sectional area of the groove 61). At this time, the cross-sectional area D of the oil passage 60 is determined so that the ratio R (= D / V) of the displacement volume of the compression chamber 43 to V falls within a predetermined range. In detail, when the ratio R is too small, the oil passage 60 becomes too narrow and the oil 8 is not injected into the compression chamber 43. On the contrary, when the ratio R is too large. If the oil 8 is excessively injected into the compression chamber 43, liquid compression occurs. Therefore, it is desirable to keep the ratio R in the range of 0.004 to 0.03 (mm 2 / cc), thereby preventing liquid compression due to excessive injection of the oil 8 and preventing the cylinder inner surface 49 and the roller from being compressed. The sealing property between 45 is improved.

ところで、回転圧縮要素4が高周波数領域で駆動されて高速回転しているときよりも低周波数領域(例えば15Hz〜30Hz)で駆動されて吐出圧と吸入圧との差圧が小さいときの方が、圧縮室43へのオイル注入によるシール性の効果は大きい。したがって、圧縮室43へのオイル注入を差圧が小さいときに限定することで、密閉容器1に貯留されているオイル8の消耗を抑えつつ、冷却効率の向上を効率的に図ることが可能となる。そこで本実施の形態では、開閉弁80を油路62に設け、回転圧縮要素4かにより圧縮された圧縮冷媒の圧力差が小さいときにだけ開閉弁80が開状態となって圧縮室43にオイル8を注入する構成としている。   By the way, when the rotary compression element 4 is driven in a high frequency region and rotated at a high speed, it is driven in a low frequency region (for example, 15 Hz to 30 Hz) and the differential pressure between the discharge pressure and the suction pressure is smaller. The effect of sealing by oil injection into the compression chamber 43 is great. Therefore, by limiting the oil injection into the compression chamber 43 when the differential pressure is small, it is possible to efficiently improve the cooling efficiency while suppressing the consumption of the oil 8 stored in the sealed container 1. Become. Therefore, in the present embodiment, the opening / closing valve 80 is provided in the oil passage 62, and the opening / closing valve 80 is opened only when the pressure difference of the compressed refrigerant compressed by the rotary compression element 4 is small. 8 is injected.

詳述すると、シリンダ41には上下(厚さ方向)に円柱状に貫通して油路60を横断する貫通穴71が設けられ、この貫通穴71に開閉弁80が設けられる。開閉弁80は貫通穴71に挿嵌される略円筒状の弁体81と、この弁体81の内側に設けられ、弁体81を主軸受け7A側に付勢する付勢部材としてのバネ82とを有して構成されている。バネ82の付勢力によって弁体81が主軸受け7A側に押し上げられている状態(開状態)にあっては、弁体81の底部81Aと副軸受け7Bの上面との間に隙間が生じ、貫通穴71によって切断された油路60が連通して、圧縮室43へのオイル注入が行われる。   More specifically, the cylinder 41 is provided with a through-hole 71 that passes through the oil passage 60 in a cylindrical shape vertically (thickness direction), and an on-off valve 80 is provided in the through-hole 71. The on-off valve 80 is a substantially cylindrical valve body 81 that is inserted into the through hole 71, and a spring 82 that is provided inside the valve body 81 and serves as a biasing member that biases the valve body 81 toward the main bearing 7A. And is configured. When the valve body 81 is pushed up to the main bearing 7A side by the urging force of the spring 82 (open state), a gap is generated between the bottom 81A of the valve body 81 and the upper surface of the sub-bearing 7B. The oil passage 60 cut by the hole 71 communicates, and oil is injected into the compression chamber 43.

また、主軸受け7Aには貫通穴71に対応して凹部72が設けられ、弁体81がバネ82により押し上げられたときには、弁体81の上部81Bが凹部72の上面に当接した状態となる。この凹部72には、主軸受け7Aに内設された圧縮冷媒導入路90の一端が接続され、圧縮冷媒導入路90の他端には密閉容器1を貫通して固着された導入管91が接続される。この導入管91には、図1に示すように、図示せぬ接続管を介して密閉容器1の吐出管13から吐出された圧縮冷媒の一部が導かれ、圧縮導入路90を経由して、弁体81の上部81Bに圧縮冷媒の圧力が作用することになる。このとき、圧縮冷媒の圧力と吸込圧との差圧が所定値以上になった場合に弁体81が押し下げられるように、上記バネ82のばね定数(付勢力)が決定されている。   The main bearing 7A is provided with a recess 72 corresponding to the through hole 71. When the valve body 81 is pushed up by the spring 82, the upper portion 81B of the valve body 81 is in contact with the upper surface of the recess 72. . One end of a compressed refrigerant introduction path 90 provided in the main bearing 7 </ b> A is connected to the recess 72, and the other end of the compressed refrigerant introduction path 90 is connected to an introduction pipe 91 that is fixed through the sealed container 1. Is done. As shown in FIG. 1, a part of the compressed refrigerant discharged from the discharge pipe 13 of the hermetic container 1 is guided to the introduction pipe 91 via a connection pipe (not shown), and then via the compression introduction path 90. The pressure of the compressed refrigerant acts on the upper portion 81B of the valve body 81. At this time, the spring constant (biasing force) of the spring 82 is determined so that the valve body 81 is pushed down when the differential pressure between the pressure of the compressed refrigerant and the suction pressure exceeds a predetermined value.

したがって、圧縮冷媒の圧力差が小さい間はバネ82の付勢力により弁体81が主軸受け7A側に押し上げられ、油路60が接続された状態、すなわち、開状態となる。また、回転圧縮要素4の吐出圧が高まり、吸込圧との差圧が大きくなった場合には、圧縮冷媒の圧力によりバネ82の付勢に抗して弁体81が押し下げられて、弁体81の底部81Aにより油路60が閉じられて、圧縮室43のオイル8の注入が停止することになる。   Therefore, while the pressure difference of the compressed refrigerant is small, the valve body 81 is pushed up to the main bearing 7A side by the urging force of the spring 82, and the oil passage 60 is connected, that is, the open state. Further, when the discharge pressure of the rotary compression element 4 increases and the differential pressure from the suction pressure increases, the valve body 81 is pushed down against the bias of the spring 82 by the pressure of the compressed refrigerant, and the valve body The oil passage 60 is closed by the bottom 81 </ b> A of 81, and the injection of the oil 8 in the compression chamber 43 is stopped.

これにより、圧縮室43へのオイル注入が回転圧縮要素4の低周波数駆動、かつ、低差圧駆動時に限定され、密閉容器1に貯留されているオイル8の消耗を抑えつつ、冷却効率の向上を効率的に図ることが可能となる。   As a result, oil injection into the compression chamber 43 is limited to low-frequency driving and low-pressure differential driving of the rotary compression element 4, and the cooling efficiency is improved while suppressing the consumption of the oil 8 stored in the sealed container 1 Can be efficiently achieved.

以上説明したように、本実施の形態によれば、シリンダ41とローラ45との間の圧縮室43に密閉容器1内のオイル8を吸入工程中に導く油路62を設ける構成としたため、圧縮室43に注入されたオイル8によりシリンダ41とローラ45との間に十分な油膜が形成されシール性が高められる。したがって、圧縮室43内において圧縮工程中の冷媒の低圧室側43Aへの漏れが防止されるため、圧縮効率が高められ、以って、密閉圧縮機100の冷却効率を高めることができる。   As described above, according to the present embodiment, the compression chamber 43 between the cylinder 41 and the roller 45 is provided with the oil passage 62 that guides the oil 8 in the sealed container 1 during the suction process. A sufficient oil film is formed between the cylinder 41 and the roller 45 by the oil 8 injected into the chamber 43, and the sealing performance is improved. Therefore, the refrigerant is prevented from leaking to the low pressure chamber side 43A during the compression process in the compression chamber 43, so that the compression efficiency is increased, and thus the cooling efficiency of the hermetic compressor 100 can be increased.

特に、本実施の形態によれば、圧縮冷媒の圧力差が小さい場合、すなわち、回転圧縮要素4の吐出圧と吸入圧との差圧が小さい領域で駆動されている間だけ開状態となる開閉弁80を油路62に設ける構成としたため、圧縮室43へのオイル注入が回転圧縮要素4の低周波数駆動時、かつ、低差圧時に限定され、これにより、密閉容器1に貯留されているオイル8の消耗を抑えつつ、冷却効率の向上を効率的に図ることが可能となる。   In particular, according to the present embodiment, when the pressure difference of the compressed refrigerant is small, that is, the opening / closing state that is opened only while the differential pressure between the discharge pressure and the suction pressure of the rotary compression element 4 is driven. Since the valve 80 is provided in the oil passage 62, oil injection into the compression chamber 43 is limited when the rotary compression element 4 is driven at a low frequency and at a low differential pressure, and is thereby stored in the sealed container 1. It is possible to efficiently improve the cooling efficiency while suppressing the consumption of the oil 8.

また、本実施の形態によれば、油路60の断面積Dと圧縮室43の排除容積Vとの比率が所定の範囲内となるようにしたため、オイル8の過度の注入による液圧縮を防止しつつ、シリンダ内側面49とローラ45との間のシール性を高めることができる。   Further, according to the present embodiment, the ratio between the cross-sectional area D of the oil passage 60 and the excluded volume V of the compression chamber 43 is set within a predetermined range, so that liquid compression due to excessive injection of the oil 8 is prevented. However, the sealing performance between the cylinder inner surface 49 and the roller 45 can be enhanced.

なお、上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形可能である。例えば、上述した実施の形態では、1基のシリンダ41を備える密閉型ロータリ圧縮機100を例示したが、これに限らず、シリンダが2基の密閉型ロータリ圧縮機100にも本発明を適用することが可能であることは勿論である。   Note that the above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified within the scope of the present invention. For example, in the above-described embodiment, the hermetic rotary compressor 100 including one cylinder 41 is illustrated. However, the present invention is not limited thereto, and the present invention is also applied to the hermetic rotary compressor 100 having two cylinders. Of course it is possible.

本発明の実施の形態に係る密閉型ロータリ圧縮機の一態様を示す縦断面図である。It is a longitudinal section showing one mode of a hermetic rotary compressor concerning an embodiment of the invention. 回転圧縮要素を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows a rotation compression element. シリンダの平面図である。It is a top view of a cylinder. 油路と開閉弁とを拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows an oil path and an on-off valve.

符号の説明Explanation of symbols

1 密閉容器
2 電動要素
4 回転圧縮要素
7A 主軸受け
7B 副軸受け
8 オイル
41 シリンダ
43 圧縮室
43A 低圧室側
43B 高圧室側
45 ローラ
46 ベーン
48 吸込口
60 油路
80 開閉弁
90 圧縮冷媒導入路
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric element 4 Rotation compression element 7A Main bearing 7B Sub bearing 8 Oil 41 Cylinder 43 Compression chamber 43A Low pressure chamber side 43B High pressure chamber side 45 Roller 46 Vane 48 Suction port 60 Oil path 80 On-off valve 90 Compressed refrigerant introduction path

Claims (2)

密閉容器内に電動要素と、前記電動要素により駆動され冷媒を圧縮する回転圧縮要素とを収容した密閉型圧縮機において、
前記回転圧縮要素の回転軸を支持する主軸受け及び副軸受けの間に配設されたシリンダと、前記シリンダに内設され前記回転軸により偏心回転するローラとを備えて前記回転圧縮要素を構成し、
前記回転圧縮要素を構成するシリンダとローラとの間の圧縮室に開口した一端から水平に延びて他端が前記密閉容器内に開口し当該密閉容器内のオイルを吸入工程中に導く油路を前記シリンダと前記主軸受け又は前記副軸受けとの間に溝を形成して設けるとともに、前記一端の開口の断面積Dと前記圧縮室の排除容積Vとの比率Rを0.004〜0.03(mm2/cc)とし、
前記油路の経路途中に当該経路を開閉する開閉弁を前記経路を開くように付勢した状態で設け、前記回転圧縮要素により圧縮された圧縮冷媒を前記開閉弁の付勢に抗するように導いて前記開閉弁に作用させて、前記圧縮冷媒の圧力が低い場合に前記開閉弁が前記付勢によって開状態となるようにしたことを特徴とする密閉型圧縮機。
In a hermetic compressor containing an electric element in a hermetic container and a rotary compression element that is driven by the electric element and compresses refrigerant,
The rotary compression element comprises a cylinder disposed between a main bearing and a sub-bearing for supporting a rotary shaft of the rotary compression element, and a roller installed in the cylinder and rotated eccentrically by the rotary shaft. ,
An oil passage extending horizontally from one end opened in a compression chamber between a cylinder and a roller constituting the rotary compression element and having the other end opened in the sealed container and guides oil in the sealed container during the suction process. A groove is formed between the cylinder and the main bearing or the sub-bearing, and the ratio R between the sectional area D of the opening at the one end and the displacement volume V of the compression chamber is 0.004 to 0.03. (Mm 2 / cc)
An on-off valve that opens and closes the passage is provided in the middle of the oil passage so as to open the passage, and the compressed refrigerant compressed by the rotary compression element is resisted against the bias of the on-off valve. by acting on the opening and closing valve guides, hermetic compressor, characterized in that the said opening and closing valve when the pressure of the compressed refrigerant is low is set to be opened by the biasing.
前記密閉容器の吐出管から吐出された圧縮冷媒を前記開閉弁に導く圧縮冷媒導入路を設けたことを特徴とする請求項1に記載の密閉型圧縮機。   2. The hermetic compressor according to claim 1, further comprising a compressed refrigerant introduction path that guides the compressed refrigerant discharged from a discharge pipe of the sealed container to the on-off valve.
JP2005101232A 2005-03-17 2005-03-31 Hermetic compressor Active JP4845409B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005101232A JP4845409B2 (en) 2005-03-31 2005-03-31 Hermetic compressor
TW095104317A TW200634231A (en) 2005-03-17 2006-02-09 Hermetically sealed compressor
EP06005114.1A EP1707818B1 (en) 2005-03-17 2006-03-13 Hermetically sealed rotary piston compressor with oil injection
KR1020060024182A KR20060101304A (en) 2005-03-17 2006-03-16 Hermetically sealed compressor
US11/378,800 US7581936B2 (en) 2005-03-17 2006-03-16 Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure
CN2006100574938A CN1834462B (en) 2005-03-17 2006-03-17 Hermetically sealed compressor
CN2008102118746A CN101354037B (en) 2005-03-17 2006-03-17 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101232A JP4845409B2 (en) 2005-03-31 2005-03-31 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2006283582A JP2006283582A (en) 2006-10-19
JP4845409B2 true JP4845409B2 (en) 2011-12-28

Family

ID=37405774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101232A Active JP4845409B2 (en) 2005-03-17 2005-03-31 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP4845409B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336704A (en) * 1976-09-17 1978-04-05 Ntn Toyo Bearing Co Ltd Vane type pump
JPS6346699A (en) * 1986-08-13 1988-02-27 Texas Instr Japan Ltd Shift register circuit
JPH0658273A (en) * 1992-08-03 1994-03-01 Daikin Ind Ltd Horizontal scroll compressor
JPH07174089A (en) * 1993-12-20 1995-07-11 Matsushita Electric Ind Co Ltd Rotary type motor-driven compressor
JP3448469B2 (en) * 1997-09-26 2003-09-22 三洋電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2006283582A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4605290B2 (en) Hermetic compressor
JP5516651B2 (en) Scroll compressor
KR20060051788A (en) Compressor
US7581936B2 (en) Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure
JP3874016B2 (en) Rotary compressor
JP2006257960A (en) Hermetic compressor
JP4854209B2 (en) Hermetic compressor
JP4845409B2 (en) Hermetic compressor
JP4779889B2 (en) Rotary compressor
KR101099094B1 (en) Scroll compressor
JP4632822B2 (en) Hermetic compressor
JP4545030B2 (en) Hermetic compressor and manufacturing method
JP2007002850A5 (en)
JP2006283583A (en) Hermetic compressor
JP4407253B2 (en) Scroll compressor
JP2006283581A (en) Hermetic compressor
JP2003065236A (en) Hermetic electric compressor
JP4367094B2 (en) Scroll compressor
WO2021124973A1 (en) Scroll compressor
JP7241915B2 (en) compressor
JP2008128098A (en) Rotary compressor
KR100548449B1 (en) Gas leakage prevented scroll compressor
JP2005256816A (en) Horizontal rotary compressor
JPH07247979A (en) Vertical rotary compressor
JPH11125193A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4845409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3