JP2006283581A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2006283581A
JP2006283581A JP2005101231A JP2005101231A JP2006283581A JP 2006283581 A JP2006283581 A JP 2006283581A JP 2005101231 A JP2005101231 A JP 2005101231A JP 2005101231 A JP2005101231 A JP 2005101231A JP 2006283581 A JP2006283581 A JP 2006283581A
Authority
JP
Japan
Prior art keywords
cylinder
oil
roller
rotary
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101231A
Other languages
Japanese (ja)
Inventor
Kosuke Ogasawara
弘丞 小笠原
Takehiro Nishikawa
剛弘 西川
Masayuki Hara
正之 原
Hiroyuki Sawabe
浩幸 沢辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005101231A priority Critical patent/JP2006283581A/en
Priority to TW095107399A priority patent/TW200634232A/en
Priority to EP06005113.3A priority patent/EP1707817B1/en
Priority to KR1020060024184A priority patent/KR101103097B1/en
Priority to US11/378,753 priority patent/US7473081B2/en
Priority to CN2006100574923A priority patent/CN1834461B/en
Publication of JP2006283581A publication Critical patent/JP2006283581A/en
Priority to US11/972,731 priority patent/US7632082B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cooling efficiency, by improving sealability between a roller and a cylinder. <P>SOLUTION: This hermetic rotary compressor 100 stores a motor-driven element 2 and a rotary compression element 4 driven by a crankshaft 3 of the motor-driven element 2 in a sealed vessel 1. The rotary compression element 4 has the cylinder 41 arranged between a main bearing 7A and a sub-bearing 7B for supporting the crankshaft, and the roller 45 arranged in the cylinder 41 and eccentrically rotating by the crankshaft 3. Oil 8 of a quantity of soaking the rotary compression element 4 is stored in the sealed vessel 1. A groove 61 is arranged on the cylinder 41 side in a contact surface between the sub-bearing 7B and the cylinder 41, and an oil passage 60 is formed for introducing the oil 8 in a suction process into a compression space 43 between the cylinder 41 and the roller 45. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍用、空調用などに用いられる密閉型圧縮機に係り、特に、密閉型圧縮機のCOPを向上させるための技術に関する。   The present invention relates to a hermetic compressor used for refrigeration, air conditioning, and the like, and more particularly to a technique for improving COP of a hermetic compressor.

従来、密閉容器内に電動要素と、この電動要素に駆動されて冷媒を圧縮する回転圧縮要素とを収容した密閉型ロータリ圧縮機が知られている。この種の密閉型ロータリ圧縮機は、一般に、偏心回転運動するローラが所定のクリアランスを保ってシリンダに内設されてシリンダ内に三日月状の空間(いわゆる圧縮室)を形成するとともに、ローラに摺接するベーンが設けられて、シリンダ内の三日月状の空間が、ベーンにより、冷媒を吸気する低圧室側と冷媒を圧縮する高圧室側とに圧力的に仕切られるように構成されている(例えば、特許文献1参照)。
特開平6−323276号公報
2. Description of the Related Art Conventionally, a hermetic rotary compressor in which an electric element and a rotary compression element that is driven by the electric element and compresses a refrigerant is housed in an airtight container is known. In this type of hermetic rotary compressor, generally, a roller that rotates eccentrically is installed in a cylinder with a predetermined clearance to form a crescent-shaped space (so-called compression chamber) in the cylinder, and the roller slides on the roller. A vane that is in contact is provided, and the crescent-shaped space in the cylinder is configured to be pressure-divided by the vane into a low-pressure chamber side that sucks in the refrigerant and a high-pressure chamber side that compresses the refrigerant (for example, Patent Document 1).
JP-A-6-323276

しかしながら、従来の技術においては、上記シリンダにおける三日月状の空間のシール性の向上が十分には図られておらず、密閉型ロータリ圧縮機の冷却効率(COP:Coefficient Of Performance:冷凍能力/入力電力)の低下を招くといった問題があった。
本発明は、上述した事情に鑑みてなされたものであり、ローラとシリンダとの間のシール性を向上させ、以って、冷却効率を高めることのできる密閉型圧縮機を提供することを目的とする。
However, in the conventional technology, the sealing performance of the crescent-shaped space in the cylinder is not sufficiently improved, and the cooling efficiency (COP: Coefficient Of Performance: refrigeration capacity / input power) of the hermetic rotary compressor is not achieved. ).
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a hermetic compressor that can improve the sealing performance between a roller and a cylinder and thereby increase the cooling efficiency. And

上記目的を達成するために、本発明は、密閉容器内に電動要素と、前記電動要素の回転軸により駆動される回転圧縮要素とを収容した密閉型圧縮機において、前記回転圧縮要素が前記回転軸を支持する2つの軸受けの間に配設されたシリンダと、前記シリンダに内設され前記回転軸により偏心回転するローラとを備え、前記密閉容器内に前記回転圧縮要素が浸る量のオイルを貯留するとともに、前記軸受けと前記シリンダとの接触面内の前記シリンダ側に溝を設けて、前記オイルを前記シリンダと前記ローラとの間の圧縮室に吸入工程中に導く油路を形成したことを特徴とする。   In order to achieve the above object, the present invention provides a hermetic compressor in which an electric element and a rotary compression element driven by a rotating shaft of the electric element are housed in an airtight container. A cylinder disposed between two bearings that support the shaft, and a roller installed in the cylinder and rotated eccentrically by the rotating shaft, and an amount of oil that the rotary compression element is immersed in the sealed container In addition to storing, a groove was provided on the cylinder side in the contact surface between the bearing and the cylinder to form an oil passage that guides the oil to the compression chamber between the cylinder and the roller during the suction process. It is characterized by.

上記目的を達成するために、本発明は、密閉容器内に電動要素と、前記電動要素の回転軸により駆動される回転圧縮要素とを収容した密閉型圧縮機において、前記回転圧縮要素が前記回転軸を支持する2つの軸受けの間に、板状部材を挟んで配設された2基のシリンダと、前記シリンダのそれぞれに内設され前記回転軸により偏心回転するローラとを備え、前記密閉容器内に前記回転圧縮要素が浸る量のオイルを貯留するとともに、前記板状部材と前記2基のシリンダのそれぞれとの接触面内のシリンダ側に溝を設けて、前記オイルを前記シリンダと前記ローラとの間の圧縮室に吸入工程中に導く油路を形成したことを特徴とする。   In order to achieve the above object, the present invention provides a hermetic compressor in which an electric element and a rotary compression element driven by a rotating shaft of the electric element are housed in an airtight container. Two sealed cylinders sandwiched between two bearings that support a shaft, and a roller that is provided in each of the cylinders and that rotates eccentrically with the rotating shaft. An amount of oil immersed in the rotary compression element is stored therein, and a groove is provided on a cylinder side in a contact surface between the plate member and each of the two cylinders, and the oil is supplied to the cylinder and the roller. An oil passage leading to the compression chamber is formed in the compression chamber therebetween.

また、本発明は、上記発明において、前記油路の断面積と前記圧縮室の排除容積との比率が所定の範囲内となるように前記溝を設けたことを特徴とする。   Further, the present invention is characterized in that, in the above-mentioned invention, the groove is provided so that a ratio of a cross-sectional area of the oil passage and an excluded volume of the compression chamber is within a predetermined range.

本発明によれば、回転圧縮要素を構成するシリンダとローラとの間の圧縮室に密閉容器内のオイルを吸入工程中に導く油路を設ける構成としたため、このオイルによりシリンダとローラとの間に十分な油膜が形成されてシール性が高められる。この結果、圧縮室内において、圧縮工程中の冷媒の低圧側への漏れが防止されるため、圧縮効率が高められ、以って、冷却効率が高められる。
特に、本発明によれば、軸受けとシリンダとの接触面内のシリンダ側に溝を設けて油路を形成する構成としたため、軸受けとシリンダとを固定する際に生じるずれに影響されることなく、設計通りのオイル量を圧縮室に注入することができる。
According to the present invention, the oil passage for guiding the oil in the hermetic container during the suction process is provided in the compression chamber between the cylinder and the roller constituting the rotary compression element. A sufficient oil film is formed to improve the sealing performance. As a result, the refrigerant is prevented from leaking to the low pressure side during the compression process in the compression chamber, so that the compression efficiency is enhanced, and thus the cooling efficiency is enhanced.
In particular, according to the present invention, the oil passage is formed by providing a groove on the cylinder side in the contact surface between the bearing and the cylinder, so that it is not affected by the deviation generated when the bearing and the cylinder are fixed. The amount of oil as designed can be injected into the compression chamber.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本実施の形態に係る密閉型ロータリ圧縮機100の一態様を示す縦断面図であり、図2は回転圧縮要素を拡大して示す縦断面図である。この密閉型ロータリ圧縮機100は、冷媒の凝縮器と蒸発器との間に配管接続されて冷凍機ユニットを構成するものであり、図1に示すように、密閉容器1を有し、この密閉容器1の上側に電動要素2が、下側にこの電動要素2のクランクシャフト3によって駆動されて冷媒を圧縮する回転圧縮要素4が収納されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an aspect of a hermetic rotary compressor 100 according to the present embodiment, and FIG. 2 is an enlarged longitudinal sectional view showing a rotary compression element. The hermetic rotary compressor 100 is connected to a pipe between a refrigerant condenser and an evaporator to form a refrigerator unit. As shown in FIG. The electric element 2 is housed on the upper side of the container 1, and the rotary compression element 4 that is driven by the crankshaft 3 of the electric element 2 to compress the refrigerant is housed on the lower side.

密閉容器1は、筒状のシェル部10と、このシェル部10にアーク溶接などにより固着されたエンドキャップ11とを備え、このエンドキャップ11には電動要素2に電力を供給する際の中継端子をなすターミナル12が設けられると共に、圧縮された冷媒を機外に吐出する吐出管13が設けられている。また、シェル部10の底部近くには、アキュムレータ5から回転圧縮要素4に冷媒を導く吸込管6が溶接などにより固着されている。   The hermetic container 1 includes a cylindrical shell portion 10 and an end cap 11 fixed to the shell portion 10 by arc welding or the like. The end cap 11 is a relay terminal for supplying electric power to the electric element 2. And a discharge pipe 13 for discharging the compressed refrigerant to the outside of the machine. A suction pipe 6 that guides the refrigerant from the accumulator 5 to the rotary compression element 4 is fixed by welding or the like near the bottom of the shell portion 10.

電動要素2は、いわゆるDCブラシレスモータなどの直流モータからなるものであり、回転子(ロータ)31と、シェル部10に固着された固定子(ステータ)32とを備え、回転子31にクランクシャフト3が固定されて、回転子31の回転力が回転圧縮要素4に伝達するようになっている。このクランクシャフト3は主軸受け7A(支持部材)および副軸受け7Bにより回転自在に支持されている。   The electric element 2 is composed of a direct current motor such as a so-called DC brushless motor, and includes a rotor (rotor) 31 and a stator (stator) 32 fixed to the shell portion 10. 3 is fixed, and the rotational force of the rotor 31 is transmitted to the rotary compression element 4. The crankshaft 3 is rotatably supported by a main bearing 7A (support member) and a sub bearing 7B.

図1および図2に示すように、回転圧縮要素4は、円筒形状を有するシリンダ41を有し、このシリンダ41は主軸受け7Aと副軸受け7Bとの間で、図示せぬボルトなどにより主軸受け7Aおよび副軸受け7Bと一体的に固定され、主軸受け7Aが密閉容器1の内側面に溶接により固着されて、この主軸受け7Aにシリンダ41が支持される。また、シリンダ41の上側の開口が主軸受け7Aに、下側の開口が副軸受け7Bにより閉塞されて、このシリンダ41内に圧縮室43が形成される。   As shown in FIGS. 1 and 2, the rotary compression element 4 includes a cylinder 41 having a cylindrical shape. The cylinder 41 is connected to a main bearing by a bolt or the like (not shown) between the main bearing 7A and the auxiliary bearing 7B. The main bearing 7A is fixed to the inner surface of the sealed container 1 by welding, and the cylinder 41 is supported by the main bearing 7A. Further, the upper opening of the cylinder 41 is closed by the main bearing 7 </ b> A and the lower opening is closed by the auxiliary bearing 7 </ b> B, and a compression chamber 43 is formed in the cylinder 41.

圧縮室43には、クランクシャフト3に一体成形された偏心部44に嵌合されて偏心回転するローラ45が内設されている。また、図3に示すように、シリンダ41には、冷媒の吸込口48と吐出口40との間にベーン溝47が設けられ、このベーン溝47にはベーン46が摺動自在に配設されている。このベーン46は図示せぬスプリングなどの付勢部材によって常時ローラ45方向に押圧され、偏心部44およびローラ45の回転に応じてローラ45の外周面に摺接しながらベーン溝47内を往復動し、圧縮室43の内部を低圧室側43Aと高圧室側43Bに圧力的に仕切る役割を果たしている。   In the compression chamber 43, a roller 45 that is fitted into an eccentric portion 44 that is integrally formed with the crankshaft 3 and rotates eccentrically is provided. As shown in FIG. 3, the cylinder 41 is provided with a vane groove 47 between the refrigerant suction port 48 and the discharge port 40, and the vane 46 is slidably disposed in the vane groove 47. ing. The vane 46 is always pressed in the direction of the roller 45 by a biasing member such as a spring (not shown), and reciprocates in the vane groove 47 while sliding on the outer peripheral surface of the roller 45 in accordance with the rotation of the eccentric portion 44 and the roller 45. The inside of the compression chamber 43 serves to partition the pressure chamber side into the low pressure chamber side 43A and the high pressure chamber side 43B.

具体的には、ローラ45はその外側面の一端がシリンダ41の内側面49と常に所定のクリアランスで接するように設けられ、シリンダ41とローラ45との間の空間である圧縮室43が三日月状に形成される。そして、ベーン46がローラ45の外側面に当接し、このベーン46により三日月状の圧縮室43が低圧室側43Aと高圧室側43Bに仕切られる。   Specifically, the roller 45 is provided such that one end of the outer surface thereof is always in contact with the inner surface 49 of the cylinder 41 with a predetermined clearance, and the compression chamber 43 that is a space between the cylinder 41 and the roller 45 has a crescent shape. Formed. The vane 46 comes into contact with the outer surface of the roller 45, and the crescent-shaped compression chamber 43 is partitioned by the vane 46 into a low pressure chamber side 43A and a high pressure chamber side 43B.

前掲図1および図2に示すように、シリンダ41の吸込口48には吸込管6が挿嵌され、また、上記吐出口40には、図示しない吐出バルブが設けられており、冷媒がこの吐出バルブで規定される吐出圧に達すると吐出口40から密閉容器1内に吐出される。
したがって、密閉型ロータリ圧縮機100にあっては、電動要素2がクランクシャフト3を回転駆動することによってローラ45を圧縮室43内において偏心回転させることにより、アキュムレータ5を介して機外から供給された冷媒が吸込管6を介して圧縮室43の低圧室側43Aに吸入され、その冷媒を高圧室側43Bに移動させながら圧縮して吐出口40から密閉容器1内に吐出し、吐出管13から機外に吐出することになる。
As shown in FIGS. 1 and 2, the suction pipe 6 is inserted into the suction port 48 of the cylinder 41, and a discharge valve (not shown) is provided in the discharge port 40. When the discharge pressure defined by the valve is reached, it is discharged from the discharge port 40 into the sealed container 1.
Therefore, in the hermetic rotary compressor 100, the electric element 2 is supplied from the outside through the accumulator 5 by rotating the roller 45 in the compression chamber 43 eccentrically by driving the crankshaft 3 to rotate. The refrigerant is sucked into the low-pressure chamber side 43A of the compression chamber 43 through the suction pipe 6, compressed while moving the refrigerant to the high-pressure chamber side 43B, and discharged from the discharge port 40 into the sealed container 1, and the discharge pipe 13 Will be discharged out of the machine.

また、前掲図1および図2に示すように、密閉容器1の底部には、主軸受け7Aの下面(図中A−A’線にて示す)までオイル8が貯留されており、このオイル8を主軸受け7A、副軸受け7Bおよび回転圧縮要素4とクランクシャフト3との間の摺擦部分や回転圧縮要素4の摺動部分に給油するオイルピックアップ50がクランクシャフト3の下端部3Aに設けられている。   As shown in FIGS. 1 and 2, oil 8 is stored at the bottom of the sealed container 1 up to the lower surface of the main bearing 7A (indicated by the line AA ′ in the figure). An oil pickup 50 is provided at the lower end portion 3A of the crankshaft 3 to supply oil to the main bearing 7A, the sub-bearing 7B, the sliding portion between the rotary compression element 4 and the crankshaft 3, and the sliding portion of the rotary compression element 4. ing.

具体的には、クランクシャフト3は円筒状に形成され、その下端部3Aに円筒状のオイルピックアップ50が圧入して取付けられている。オイルピックアップ50の内部には、図2に示すように、螺旋形のオイル流路を構成するパドル51が一体成形されており、クラックシャフト3の回転により生じる遠心力によりオイルピックアップ50が下端50Aから密閉容器1に貯留されたオイル8を吸込み、パドル51がオイル8を上向きに送給する。そして、このオイル8がオイルピックアップ50に穿たれた給油孔52を経て、クランクシャフト3の周面、特に、主軸受け7A、副軸受け7Bおよび回転圧縮要素4とクランクシャフト3との各摺擦部分に供給される。   Specifically, the crankshaft 3 is formed in a cylindrical shape, and a cylindrical oil pickup 50 is press-fitted and attached to the lower end portion 3A thereof. As shown in FIG. 2, a paddle 51 constituting a spiral oil flow path is integrally formed inside the oil pickup 50, and the oil pickup 50 is separated from the lower end 50A by a centrifugal force generated by the rotation of the crack shaft 3. The oil 8 stored in the airtight container 1 is sucked, and the paddle 51 feeds the oil 8 upward. Then, the oil 8 passes through an oil supply hole 52 formed in the oil pickup 50, and the peripheral surface of the crankshaft 3, in particular, the main bearing 7 </ b> A, the sub-bearing 7 </ b> B, and each sliding portion between the rotary compression element 4 and the crankshaft 3. To be supplied.

ここで、上述の通り、ローラ45は、シリンダ41の内側面49と常に所定のクリアランスで接するように内設されているため、圧縮室43のシール性が十分なものでなく冷却効率の低下を招くことになる。
そこで、本実施の形態では、密閉容器1に貯留されているオイル8を冷媒の吸入工程中に圧縮室43に導く油路60を密閉型ロータリ圧縮機100に設ける構成とし、この油路60を経由して注入されたオイル8によりローラ45とシリンダ41との間に十分な油膜を形成してシール性を高めるようにしている。以下、かかる構成について詳述する。
Here, as described above, since the roller 45 is installed so as to be always in contact with the inner surface 49 of the cylinder 41 with a predetermined clearance, the sealing performance of the compression chamber 43 is not sufficient and the cooling efficiency is lowered. Will be invited.
Therefore, in the present embodiment, the oil rotary 60 that guides the oil 8 stored in the sealed container 1 to the compression chamber 43 during the refrigerant suction process is provided in the sealed rotary compressor 100, and the oil path 60 is A sufficient oil film is formed between the roller 45 and the cylinder 41 by the oil 8 injected therethrough so as to improve the sealing performance. Hereinafter, this configuration will be described in detail.

図4に示すように、シリンダ41の上下面のそれぞれには主軸受け7Aおよび副軸受け7Bとの接触面を構成する段部70A、70Bが形成されている。そして、副軸受け7Bとシリンダ41との接触面内のシリンダ41側である下側の段部70Bに溝61を切削加工により形成し、この段部70Bと副軸受け7Bとが接触することで、副軸受け7Bシリンダ41の内側面49に一端60Aが開口し、密閉容器1内に貯留されているオイル8中に他端60Bが開口する油路60が形成される。なお、主軸受け7Aがオイル8に浸る構成である場合には、主軸受け7Aとシリンダ41の接触面内のシリンダ41側に溝61を形成して油路60を構成しても良い。   As shown in FIG. 4, step portions 70 </ b> A and 70 </ b> B constituting contact surfaces with the main bearing 7 </ b> A and the sub-bearing 7 </ b> B are formed on the upper and lower surfaces of the cylinder 41. Then, the groove 61 is formed by cutting in the lower step portion 70B on the cylinder 41 side in the contact surface between the sub bearing 7B and the cylinder 41, and the step portion 70B and the sub bearing 7B come into contact with each other. One end 60 </ b> A opens on the inner side surface 49 of the sub-bearing 7 </ b> B cylinder 41, and an oil passage 60 is formed in the oil 8 stored in the sealed container 1. The other end 60 </ b> B opens. When the main bearing 7A is immersed in the oil 8, the oil passage 60 may be configured by forming a groove 61 on the cylinder 41 side in the contact surface between the main bearing 7A and the cylinder 41.

この油路60の一端60Aは、冷媒の圧縮室43への吸入工程中に、オイル8を圧縮室43に注入すべく、低圧室側43Aのシリンダ内側面49に開口するように形成され、特に、図3に示すように、油路60の一端60Aが、吸込口48とシリンダ41の中心点Oを結ぶ基準線Lを基準にして所定の角度θ1〜θ2(θ1:0°、θ2:170°(より好ましくは、θ1:125°、θ2:165°))の範囲に開口するように形成されている(図示例では約125°)。   One end 60A of the oil passage 60 is formed so as to open to the cylinder inner surface 49 of the low-pressure chamber side 43A in order to inject the oil 8 into the compression chamber 43 during the step of sucking the refrigerant into the compression chamber 43. 3, one end 60A of the oil passage 60 has a predetermined angle θ1 to θ2 (θ1: 0 °, θ2: 170) with reference to a reference line L connecting the suction port 48 and the center point O of the cylinder 41. It is formed so as to open in the range of ° (more preferably θ1: 125 °, θ2: 165 °) (about 125 ° in the illustrated example).

以上の構成の下、密閉容器1内のオイル8には冷媒の吐出圧(例えば3MPa)が作用しているため、この高圧のオイル8が、圧縮室43の低圧室側43Aの内圧(例えば1.1MPa)との差圧により、油路60を経由して、シリンダ41の圧縮室43の低圧室側43Aに注入される。
したがって、冷媒の吸入工程中にオイル8が圧縮室43に注入され、このオイル8によって、シリンダ内側面49とローラ45との間に十分な油膜が形成されシール性が高められる。この結果、シリンダ41の圧縮室43において低圧室側43Aと高圧室側43Bとがより確実に分離されるため、低圧室側43Aに吸入された冷媒が高圧室側43Bに圧縮される過程(圧縮工程)で低圧室側43Aへの圧縮冷媒の漏れが防止され、冷媒の圧縮効率が高められ、以って、密閉型ロータリ圧縮機100の冷却効率の向上が図られる。
Since the refrigerant discharge pressure (for example, 3 MPa) is acting on the oil 8 in the sealed container 1 under the above configuration, the high pressure oil 8 is applied to the internal pressure (for example, 1 on the low pressure chamber side 43A of the compression chamber 43). .1 MPa) is injected into the low pressure chamber side 43 </ b> A of the compression chamber 43 of the cylinder 41 via the oil passage 60.
Therefore, the oil 8 is injected into the compression chamber 43 during the refrigerant suction process, and a sufficient oil film is formed between the cylinder inner surface 49 and the roller 45 by the oil 8 to improve the sealing performance. As a result, the low pressure chamber side 43A and the high pressure chamber side 43B are more reliably separated in the compression chamber 43 of the cylinder 41, so that the refrigerant sucked into the low pressure chamber side 43A is compressed into the high pressure chamber side 43B (compression In the step), leakage of the compressed refrigerant to the low-pressure chamber side 43A is prevented, and the compression efficiency of the refrigerant is increased, so that the cooling efficiency of the hermetic rotary compressor 100 is improved.

また、本実施の形態では、シリンダ内側面49に開口する油路60の断面積D(すなわち、溝61の断面積)を調整することで、圧縮室43に注入されるオイル量を調整することとし、このとき、油路60の断面積Dを圧縮室43の排除容積をVとの比率R(=D/V)が所定の範囲内に収まるように決定することとしている。詳細には、上記比率Rが小さ過ぎる場合には、油路60が狭くなり過ぎてオイル8が圧縮室43内に注入されなくなってしまい、これとは逆に、上記比率Rが大きすぎる場合には、圧縮室43内にオイル8が過度に注入されて液圧縮が生じてしまう。そこで、上記比率Rを0.004〜0.03(mm2/cc)の範囲に収めることが望ましく、これにより、オイル8の過度の注入による液圧縮を防止しつつ、シリンダ内側面49とローラ45との間のシール性が高められる。 Further, in the present embodiment, the amount of oil injected into the compression chamber 43 is adjusted by adjusting the cross-sectional area D of the oil passage 60 that opens to the cylinder inner surface 49 (that is, the cross-sectional area of the groove 61). At this time, the cross-sectional area D of the oil passage 60 is determined so that the ratio R (= D / V) of the displacement volume of the compression chamber 43 to V falls within a predetermined range. In detail, when the ratio R is too small, the oil passage 60 becomes too narrow and the oil 8 is not injected into the compression chamber 43. On the contrary, when the ratio R is too large. If the oil 8 is excessively injected into the compression chamber 43, liquid compression occurs. Therefore, it is desirable to keep the ratio R in the range of 0.004 to 0.03 (mm 2 / cc), thereby preventing liquid compression due to excessive injection of the oil 8 and preventing the cylinder inner surface 49 and the roller from being compressed. The sealing property between 45 is improved.

以上説明したように、本実施の形態によれば、シリンダ41とローラ45との間の圧縮室43に密閉容器1内のオイル8を吸入工程中に導く油路60を設ける構成としたため、圧縮室43に注入されたオイル8によりシリンダ41とローラ45との間に油膜が形成されシール性が高められる。したがって、圧縮室43内において圧縮工程中の冷媒の低圧室側43Aへの漏れが防止されるため、圧縮効率が高められ、以って、密閉圧縮機100の冷却効率を高めることができる。   As described above, according to the present embodiment, the compression passage 43 between the cylinder 41 and the roller 45 is provided with the oil passage 60 that guides the oil 8 in the sealed container 1 during the suction process. An oil film is formed between the cylinder 41 and the roller 45 by the oil 8 injected into the chamber 43, and the sealing performance is improved. Therefore, the refrigerant is prevented from leaking to the low pressure chamber side 43A during the compression process in the compression chamber 43, so that the compression efficiency is increased, and thus the cooling efficiency of the hermetic compressor 100 can be increased.

また本実施の形態によれば、油路62を構成する主油路64の断面積Dと圧縮室43の排除容積Vとの比率が所定の範囲内となるようにしたため、オイル8の過度の注入による液圧縮を防止しつつ、シリンダ内側面49とローラ45Aとの間のシール性を高めることができる。   Further, according to the present embodiment, the ratio of the cross-sectional area D of the main oil passage 64 constituting the oil passage 62 and the excluded volume V of the compression chamber 43 is set within a predetermined range. The sealing performance between the cylinder inner surface 49 and the roller 45A can be enhanced while preventing liquid compression due to injection.

特に、本実施の形態によれば、副軸受け7Bとシリンダ41との接触面内のシリンダ41側に溝61を設けて油路60を形成する構成としたため、副軸受け7Bとシリンダ41とを固定した際に生じるずれに影響されることなく、設計通りのオイル量を圧縮室43に注入することができる。詳述すると、副軸受け7Bとシリンダ41との接触面内の副軸受け7B側に溝を設けて油路を構成した場合、この油路の一端は圧縮室43の底面に開口する。このとき、シリンダ41に副軸受け7Bをボルトなどで固定する際には位置ずれが生じ易く、これにより、油路の圧縮室43側の開口面積が設計値からずれ、オイル8の注入量が設計値からずれることになる。
これに対して、本実施の形態によれば、シリンダ41側に溝61を設ける構成としているため、シリンダ41に副軸受け7Bをボルトなどで固定する際に位置ずれが生じたとしても、油路60の圧縮室43側の開口面積を一定に維持することができ、以って、圧縮室43に注入するオイル量を設計通りとすることができる。
In particular, according to the present embodiment, since the groove 61 is provided on the cylinder 41 side in the contact surface between the sub-bearing 7B and the cylinder 41 to form the oil passage 60, the sub-bearing 7B and the cylinder 41 are fixed. The amount of oil as designed can be injected into the compression chamber 43 without being affected by the deviation that occurs. More specifically, when a groove is provided on the side of the sub-bearing 7B in the contact surface between the sub-bearing 7B and the cylinder 41 to form an oil passage, one end of the oil passage opens at the bottom surface of the compression chamber 43. At this time, when the auxiliary bearing 7B is fixed to the cylinder 41 with a bolt or the like, a positional deviation is likely to occur. As a result, the opening area of the oil passage on the compression chamber 43 side deviates from the design value, and the injection amount of the oil 8 is designed It will deviate from the value.
On the other hand, according to the present embodiment, since the groove 61 is provided on the cylinder 41 side, even if a displacement occurs when the auxiliary bearing 7B is fixed to the cylinder 41 with a bolt or the like, the oil passage The opening area on the compression chamber 43 side of 60 can be kept constant, so that the amount of oil injected into the compression chamber 43 can be made as designed.

上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形可能である。
例えば、上述した実施の形態では、1基のシリンダ41を備える密閉型ロータリ圧縮機100を例示したが、これに限らず、シリンダが2基の密閉型ロータリ圧縮機100にも本発明を適用することが可能である。
The above-described embodiments merely show one aspect of the present invention, and can be arbitrarily modified within the scope of the present invention.
For example, in the above-described embodiment, the hermetic rotary compressor 100 including one cylinder 41 is illustrated. However, the present invention is not limited thereto, and the present invention is also applied to the hermetic rotary compressor 100 having two cylinders. It is possible.

詳述すると、2基のシリンダを有する構成においては、図5および図6に示すように、シリンダ41A、41Bが主軸受け7Aと副軸受け7Bとの間に板状の仕切板42を挟んで上下に配設され、上段のシリンダ41Aの上側の開口面が主軸受け7Aに、下側の開口面が仕切板42により閉塞され、また、下段のシリンダ41Bの下側の開口面が副軸受け7Bに、上側の開口面が仕切板42により閉塞されて、シリンダ41A、41B内に圧縮室43が形成される。これらのシリンダ41A、41Bやローラ45などの回転圧縮要素4は、主軸受け7Aまたは上段のシリンダ41A(図示例ではシリンダ41A)が密閉容器1に溶接されて固着され、密閉容器1に貯留されているオイル8に浸される。   More specifically, in the configuration having two cylinders, as shown in FIGS. 5 and 6, the cylinders 41A and 41B are vertically moved with a plate-like partition plate 42 sandwiched between the main bearing 7A and the sub-bearing 7B. The upper opening surface of the upper cylinder 41A is closed to the main bearing 7A, the lower opening surface is closed by the partition plate 42, and the lower opening surface of the lower cylinder 41B is connected to the sub-bearing 7B. The upper opening surface is closed by the partition plate 42, and the compression chamber 43 is formed in the cylinders 41A and 41B. The rotary compression elements 4 such as the cylinders 41A and 41B and the rollers 45 are fixed by welding the main bearing 7A or the upper cylinder 41A (cylinder 41A in the illustrated example) to the hermetic container 1, and are stored in the hermetic container 1. Soaked in oil 8

図6に示すように、上段のシリンダ41Aの上下面のそれぞれには主軸受け7Aおよび仕切板42との接触面を構成する段部71Aが形成され、また、下段のシリンダ41Bの上下面のそれぞれには副軸受け7Bおよび仕切板42との接触面を構成する段部71Bが形成されている。そして、上段のシリンダ41Aにあっては、仕切板42とシリンダ41Aとの接触面内のシリンダ41A側である下側の段部71Aに油路60を構成する溝61が形成され、また、下段のシリンダ41Bにあっては、仕切板42とシリンダ41Bとの接触面内のシリンダ41B側である上側の段部71Bに油路60を構成する溝61が形成される。これにより、吸入工程中に、各油路60を経由して、各シリンダ41A、41Bの圧縮室43にオイル8が注入され、ローラ45とシリンダ41A、41Bとの間のシール性が高められる。   As shown in FIG. 6, step portions 71A constituting contact surfaces with the main bearing 7A and the partition plate 42 are formed on the upper and lower surfaces of the upper cylinder 41A, and the upper and lower surfaces of the lower cylinder 41B are respectively formed. Is formed with a stepped portion 71B that constitutes a contact surface with the auxiliary bearing 7B and the partition plate 42. In the upper cylinder 41A, the groove 61 constituting the oil passage 60 is formed in the lower step portion 71A on the cylinder 41A side in the contact surface between the partition plate 42 and the cylinder 41A. In the cylinder 41B, the groove 61 constituting the oil passage 60 is formed in the upper step portion 71B on the cylinder 41B side in the contact surface between the partition plate 42 and the cylinder 41B. Thus, during the suction process, the oil 8 is injected into the compression chambers 43 of the cylinders 41A and 41B via the oil passages 60, and the sealing performance between the roller 45 and the cylinders 41A and 41B is improved.

本発明の実施の形態に係る密閉型ロータリ圧縮機の一態様を示す縦断面図である。It is a longitudinal section showing one mode of a hermetic rotary compressor concerning an embodiment of the invention. 回転圧縮要素を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows a rotation compression element. シリンダの平面図である。It is a top view of a cylinder. 油路を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows an oil path. 2基のシリンダを備える密閉型ロータリ圧縮機の回転圧縮要素を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotary compression element of a sealed rotary compressor provided with two cylinders. 油路を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows an oil path.

符号の説明Explanation of symbols

1 密閉容器
2 電動要素
4 回転圧縮要素
7A 主軸受け
7B 副軸受け
8 オイル
41、41A、41B シリンダ
43 圧縮室
43A 低圧室側
43B 高圧室側
45A、45B ローラ
46 ベーン
48 吸込口
60 油路
61 溝
DESCRIPTION OF SYMBOLS 1 Sealed container 2 Electric element 4 Rotation compression element 7A Main bearing 7B Sub bearing 8 Oil 41, 41A, 41B Cylinder 43 Compression chamber 43A Low pressure chamber side 43B High pressure chamber side 45A, 45B Roller 46 Vane 48 Suction port 60 Oil path 61 Groove

Claims (3)

密閉容器内に電動要素と、前記電動要素の回転軸により駆動される回転圧縮要素とを収容した密閉型圧縮機において、
前記回転圧縮要素が前記回転軸を支持する2つの軸受けの間に配設されたシリンダと、前記シリンダに内設され前記回転軸により偏心回転するローラとを備え、
前記密閉容器内に前記回転圧縮要素が浸る量のオイルを貯留するとともに、前記軸受けと前記シリンダとの接触面内の前記シリンダ側に溝を設けて、前記オイルを前記シリンダと前記ローラとの間の圧縮室に吸入工程中に導く油路を形成した
ことを特徴とする密閉型圧縮機。
In a hermetic compressor in which an electric element and a rotary compression element driven by a rotating shaft of the electric element are accommodated in a sealed container,
The rotary compression element includes a cylinder disposed between two bearings that support the rotary shaft, and a roller that is provided in the cylinder and rotates eccentrically by the rotary shaft;
The amount of oil that can be immersed in the rotary compression element is stored in the sealed container, and a groove is provided on the cylinder side in the contact surface between the bearing and the cylinder so that the oil is placed between the cylinder and the roller. A hermetic compressor characterized in that an oil passage leading to the suction chamber is formed in the compression chamber.
密閉容器内に電動要素と、前記電動要素の回転軸により駆動される回転圧縮要素とを収容した密閉型圧縮機において、
前記回転圧縮要素が前記回転軸を支持する2つの軸受けの間に、板状部材を挟んで配設された2基のシリンダと、前記シリンダのそれぞれに内設され前記回転軸により偏心回転するローラとを備え、
前記密閉容器内に前記回転圧縮要素が浸る量のオイルを貯留するとともに、前記板状部材と前記2基のシリンダのそれぞれとの接触面内のシリンダ側に溝を設けて、前記オイルを前記シリンダと前記ローラとの間の圧縮室に吸入工程中に導く油路を形成した
ことを特徴とする密閉型圧縮機。
In a hermetic compressor in which an electric element and a rotary compression element driven by a rotating shaft of the electric element are accommodated in a sealed container,
Two cylinders arranged with a plate-like member sandwiched between two bearings on which the rotary compression element supports the rotary shaft, and a roller provided in each of the cylinders and eccentrically rotated by the rotary shaft And
An amount of oil that the rotary compression element is immersed in is stored in the sealed container, and a groove is provided on a cylinder side in a contact surface between the plate member and each of the two cylinders, and the oil is supplied to the cylinder. An oil passage is formed in the compression chamber between the roller and the roller and led to the suction process.
前記油路の断面積と前記圧縮室の排除容積との比率が所定の範囲内となるように前記溝を設けたことを特徴とする請求項1または2に記載の密閉型圧縮機。

3. The hermetic compressor according to claim 1, wherein the groove is provided so that a ratio between a cross-sectional area of the oil passage and an excluded volume of the compression chamber is within a predetermined range.

JP2005101231A 2005-03-17 2005-03-31 Hermetic compressor Pending JP2006283581A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005101231A JP2006283581A (en) 2005-03-31 2005-03-31 Hermetic compressor
TW095107399A TW200634232A (en) 2005-03-17 2006-03-06 Hermeyically sealed compressor and method of manufacturing the same
EP06005113.3A EP1707817B1 (en) 2005-03-17 2006-03-13 Hermetically sealed compressor and method of manufacturing the same
KR1020060024184A KR101103097B1 (en) 2005-03-17 2006-03-16 Hermetically sealed compressor and method of manufacturing the same
US11/378,753 US7473081B2 (en) 2005-03-17 2006-03-16 Hermetically sealed compressor and method of manufacturing the same
CN2006100574923A CN1834461B (en) 2005-03-17 2006-03-17 Hermetically sealed compressor and method of manufacturing the same
US11/972,731 US7632082B2 (en) 2005-03-17 2008-01-11 Hermetically sealed compressor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101231A JP2006283581A (en) 2005-03-31 2005-03-31 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2006283581A true JP2006283581A (en) 2006-10-19

Family

ID=37405773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101231A Pending JP2006283581A (en) 2005-03-17 2005-03-31 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2006283581A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336704U (en) * 1976-09-06 1978-03-31
JPS57120790U (en) * 1981-01-19 1982-07-27
JPS61204989U (en) * 1985-06-13 1986-12-24
JPH07174089A (en) * 1993-12-20 1995-07-11 Matsushita Electric Ind Co Ltd Rotary type motor-driven compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336704U (en) * 1976-09-06 1978-03-31
JPS57120790U (en) * 1981-01-19 1982-07-27
JPS61204989U (en) * 1985-06-13 1986-12-24
JPH07174089A (en) * 1993-12-20 1995-07-11 Matsushita Electric Ind Co Ltd Rotary type motor-driven compressor

Similar Documents

Publication Publication Date Title
JP4605290B2 (en) Hermetic compressor
KR20060051788A (en) Compressor
US7581936B2 (en) Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure
JP3874016B2 (en) Rotary compressor
JP2010090859A (en) Scroll type fluid machine
JP2006257960A (en) Hermetic compressor
JP4854209B2 (en) Hermetic compressor
US20080273998A1 (en) Fluid machine
JP4779889B2 (en) Rotary compressor
KR101099094B1 (en) Scroll compressor
JP4545030B2 (en) Hermetic compressor and manufacturing method
JP2006283581A (en) Hermetic compressor
JP4845409B2 (en) Hermetic compressor
JP4632822B2 (en) Hermetic compressor
JP4407253B2 (en) Scroll compressor
JP2007002850A5 (en)
JP2006283583A (en) Hermetic compressor
JP2004225578A (en) Rotary compressor
JP2010053778A (en) Hermetic compressor and refrigerating cycle device using the same
JP4797548B2 (en) Hermetic electric compressor
JP2008128098A (en) Rotary compressor
JP2005256816A (en) Horizontal rotary compressor
CN114829776A (en) Scroll compressor having a discharge port
JP2006266123A (en) Scroll compressor
KR20190129371A (en) Compressor having oldham&#39;s ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301