JP4844817B2 - Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object - Google Patents

Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object Download PDF

Info

Publication number
JP4844817B2
JP4844817B2 JP2006075075A JP2006075075A JP4844817B2 JP 4844817 B2 JP4844817 B2 JP 4844817B2 JP 2006075075 A JP2006075075 A JP 2006075075A JP 2006075075 A JP2006075075 A JP 2006075075A JP 4844817 B2 JP4844817 B2 JP 4844817B2
Authority
JP
Japan
Prior art keywords
microelectrode
measurement
electrochemical measurement
electrochemical
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006075075A
Other languages
Japanese (ja)
Other versions
JP2007248384A (en
Inventor
貢 千田
Original Assignee
貢 千田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 貢 千田 filed Critical 貢 千田
Priority to JP2006075075A priority Critical patent/JP4844817B2/en
Publication of JP2007248384A publication Critical patent/JP2007248384A/en
Application granted granted Critical
Publication of JP4844817B2 publication Critical patent/JP4844817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法所定の測定物を電気化学測定するための電気化学測定用集合微小電極(以下、単に「集合微小電極」という。)、該所定の測定物を電気化学測定するための電気化学測定用集合微小電極を用いた電気化学測定法及び該所定の測定物を電気化学測定するための電気化学測定用集合微小電極を備えた電気化学測定装置に関するものである。 The present invention relates to a method for manufacturing an electrochemical measurement aggregate microelectrode for electrochemically measuring a predetermined measurement object, an electrochemical measurement aggregate microelectrode (hereinafter simply referred to as “aggregation”) for electrochemical measurement of the predetermined measurement object. Also referred to as a “microelectrode”.), An electrochemical measurement method using an assembly measurement microelectrode for electrochemical measurement of the predetermined measurement object, and an electrochemical for electrochemical measurement of the predetermined measurement object The present invention relates to an electrochemical measurement apparatus provided with a collective microelectrode for measurement.

周知の通り、電気化学測定法において作用電極に流れる電流には二種類あり、一方は、作用電極の界面において進行する測定物の電気化学反応に起因して流れる電流(以下、「信号電流」という。)であり、他方は、作用電極の素材や測定物を溶解させる基底溶液の組成などに起因して流れる電流(以下、「ノイズ電流」という。)である。   As is well known, there are two types of current flowing through the working electrode in the electrochemical measurement method, and one of them is the current flowing due to the electrochemical reaction of the measurement object that proceeds at the interface of the working electrode (hereinafter referred to as “signal current”). The other is the current that flows due to the composition of the base solution that dissolves the material of the working electrode and the measurement object (hereinafter referred to as “noise current”).

なお、本発明において、「測定物」とは、測定の対象となる物質を示し、「分析物」とは、測定物を基底溶液に溶解させた溶液を示す。   In the present invention, “measurement” indicates a substance to be measured, and “analyte” indicates a solution obtained by dissolving the measurement in a base solution.

電気化学測定法の一種である電流測定分析法(アンペロメトリー)、電量測定分析法(クーロメトリー)、電位測定分析法(ポテンショメトリー)では、作用電極に流れる電流をノイズ電流も含めて信号電流とみなして分析するため、信号電流Sとノイズ電流Nとの比(以下、「S/N比」という。)が十分に高くなければならず、特に、低濃度の分析物を高い精度で分析する場合には非常に重要となる。   In the amperometric analysis method (amperometry), coulometric analysis method (coulometry), and potentiometric analysis method (potentiometry), which are a type of electrochemical measurement method, the current flowing through the working electrode is the signal current including the noise current. Therefore, the ratio of the signal current S to the noise current N (hereinafter referred to as “S / N ratio”) must be sufficiently high. In particular, a low concentration analyte is analyzed with high accuracy. In cases it becomes very important.

前記S/N比を向上させる方法として、後述非特許文献1には、導電材料であるカーボン粉末を絶縁材料である流動パラフィンに混入して練り固めてなるカーボンペースト電極を作用電極として使用する方法が記載されている。当該カーボンペースト電極は、カーボン粉末と流動パラフィンとを特定の比率で練り固めることにより、各カーボン粉末が流動パラフィン中で互いに接触して通電可能な状態となり、流動パラフィンの表面に露出したカーボン粉末からなる導電部を分析物と接触させることによって信号電流を測定することができる。そして、当該カーボンペースト電極は、作用電極に起因して流れるノイズ電流が小さく抑えられるため、S/N比が向上することが知られている。   As a method for improving the S / N ratio, Non-Patent Document 1 described later uses a carbon paste electrode obtained by mixing carbon powder as a conductive material with liquid paraffin as an insulating material and kneading it as a working electrode. Is described. In the carbon paste electrode, carbon powder and liquid paraffin are kneaded and solidified at a specific ratio so that the carbon powders can be brought into contact with each other in liquid paraffin so that they can be energized. The signal current can be measured by bringing the resulting conductive portion into contact with the analyte. The carbon paste electrode is known to improve the S / N ratio because the noise current flowing due to the working electrode is kept small.

また、後述非特許文献2には、導電材料として前記カーボン粉末の代わりにグラファイト粉末を用い、また、絶縁材料として前記流動パラフィンの代わりにポリクロロトリオロエチレン樹脂などの合成樹脂を用いて作製したKel-Fグラファイト電極が記載されており、当該Kel-Fグラファイト電極によっても、前記カーボンペースト電極と同様の作用効果が得られることが知られている。   In Non-Patent Document 2 described later, graphite powder was used instead of the carbon powder as a conductive material, and synthetic resin such as polychlorotrioethylene resin was used as an insulating material instead of the liquid paraffin. A Kel-F graphite electrode is described, and it is known that the same effect as the carbon paste electrode can be obtained by the Kel-F graphite electrode.

D.E.Weisshaar and D.E.Tallman, Anal.Chem., 55(1983)1146-1151, and references cited therein.D.E.Weisshaar and D.E.Tallman, Anal.Chem., 55 (1983) 1146-1151, and references cited within. D.E.Tallman and D.E.Weisshaar, J.Liguid.Chromatography, 6(12), 2157-2172(1983)D.E.Tallman and D.E.Weisshaar, J.Liguid.Chromatography, 6 (12), 2157-2172 (1983)

しかし、前記非特許文献1に記載されたカーボンペースト電極及び前記非特許文献2に記載されたKel-Fグラファイト電極においては、導電性を付与するために一定量以上の導電材料の粉末を含有させる必要があり、また、表面に露出する導電材料の粉末を意図的に調節することができないため、結果として、表面に露出して集合微小電極として作動する導電材料の粉末の形状、数量又は配列を任意に設計して作製することができないという問題であり、これに伴って、製品化する際に安定な品質を保つことができないという問題点もあった。   However, the carbon paste electrode described in Non-Patent Document 1 and the Kel-F graphite electrode described in Non-Patent Document 2 contain a certain amount or more of a powder of a conductive material in order to impart conductivity. As a result, the conductive material powder exposed on the surface cannot be intentionally adjusted, and as a result, the shape, quantity, or arrangement of the conductive material powder exposed on the surface and acting as an aggregated microelectrode This is a problem that it cannot be designed and manufactured arbitrarily. Along with this, there is also a problem that a stable quality cannot be maintained when commercialized.

そこで、本発明者は、分析物と接触する導電部の形状を自由に設計でき、また、S/N比が高い集合微小電極を得ることを技術的課題として、その具現化をはかるべく、研究を重ねた結果、測定物が溶解された分析物に対して電圧を加える電極層を備えた集合微小電極において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部を互いに間隔を空けた状態で縞状に設け、電極層の分析物に接触する部分における隣り合う帯状導電部の間隔を、電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部が隙間なく設けられている仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧を加えてから所定時間経過時に生じる拡散層の厚さを基準として該拡散層の厚さに補正値を乗じて得た補正拡散層の厚さの200%以下の長さにすれば、S/N比を向上させることができ、また、このような形状の導電部からなる電極層であれば、ホトリソグラフィー法を作製方法として採用できるので、自由に設計できるという刮目すべき知見を得、前記技術的課題を達成したものである。   Therefore, the present inventor can freely design the shape of the conductive part in contact with the analyte and obtain a collective microelectrode with a high S / N ratio as a technical problem, and research to realize it. In the assembled microelectrode having an electrode layer that applies a voltage to the analyte in which the measurement object is dissolved, a plurality of strip-like conductive portions are provided over a predetermined range in the portion of the electrode layer that contacts the analyte. It is provided in a striped pattern with a space between each other, and the distance between adjacent band-shaped conductive portions in the portion of the electrode layer that contacts the analyte is set to be planar conductive over the predetermined range in the portion of the electrode layer that contacts the analyte. The thickness of the diffusion layer is determined based on the thickness of the diffusion layer that occurs when a predetermined time elapses after the analyte is brought into contact with the planar conductive portion of the virtual electrochemical measurement electrode provided with no gap and a pulse voltage is applied. Of the corrected diffusion layer obtained by multiplying the correction value by If the length is 200% or less, the S / N ratio can be improved, and a photolithographic method can be adopted as a manufacturing method in the case of an electrode layer composed of a conductive portion having such a shape. The inventors have obtained the remarkable knowledge that they can design freely, and have achieved the technical problem.

前記研究に基づき所定条件で帯状導電部を縞状に並べればS/N比を向上させることができる事実を見出すに至った経緯を説明する。   Based on the above research, the reason why the fact that the S / N ratio can be improved by arranging the strip-like conductive portions in a striped condition under a predetermined condition will be described.

従来から幅2a、長さL(L≫2a)の帯状導電部が1本だけ設けられた電極層を備えた電極(以下、「第一従来電極」という。)によって分析物をノルマル・パルスボルタンメトリー(クロノアンペロメトリー)で測定することに関して研究が行われている(J.Electroanal.Chem,230(1987)61-67 and references cited therein.)。そして、従来の研究を総合すると、第一従来電極に流れる電流の時間変化の信号電流IF1は近似的に次のように表すことができる。
F1=zFD*c2aL{(1/(πDt)1/2)+(γ/2a)} ・・・ (1)
ここで、zは移動する電子数、Fはファラディ定数、Dは測定物の拡散係数、*cは測定物の母液濃度、tは分析物にパルス電圧を加えてから経過した時間である。また、γは補正値であり、近似的に次のように表される。
γ=1−1.1exp{−9.9/ln12(Dt/(2a)} ・・・ (2)
Conventionally width 2a 0, electrode strip conductive portion is provided with an electrode layer provided by one length L (L»2a 0) (hereinafter, referred to as. "First conventional electrode") normal, the analyte by Research has been conducted on measurement by pulse voltammetry (Chronoamperometry) (J. Electroanal. Chem, 230 (1987) 61-67 and references cited within.). When the conventional studies are combined, the signal current I F1 of the time change of the current flowing through the first conventional electrode can be approximately expressed as follows.
I F1 = zFD * c2a 0 L {(1 / (πDt) 1/2 ) + (γ / 2a 0 )} (1)
Here, z is the number of moving electrons, F is the Faraday constant, D is the diffusion coefficient of the measurement object, * c is the mother liquor concentration of the measurement object, and t is the time that has elapsed since the pulse voltage was applied to the analysis object. Further, γ is a correction value and is approximately expressed as follows.
γ = 1-1.1exp {−9.9 / ln12 (Dt / (2a 0 ) 2 )} (2)

そこで、前記帯状導電部が中心間距離2bとして単位長さあたりm本で所定範囲に渡って縞状に設けられた電極層を備えた集合微小電極によって分析物をノルマル・パルスボルタンメトリーで測定した場合における信号電流Iを考察した。この時、
equivalent diffusion zone = 2bL ・・・ (3)
=a+γ{(πDt)1/2/2} ・・・ (4)
の考え方を導入し、前記(1)式から信号電流Iを表す式を、tが小さい領域と大きい領域とに分けて近似的に次のように表した。
(A)tが小さい領域の場合
≧b ・・・ (5)
/q=(zFD*c)(a/b){(1/(πDt)1/2)+(γ/2a)} ・・・ (6)
(B)tが大きい領域の場合
≦b ・・・ (7)
/q=(zFD*c){1/(πDt)1/2} ・・・ (8)
なお、qは前記所定範囲の表面積であり、q=m2bLで表される。
Therefore, to measure the analyte in the normal pulse voltammetry by a set microelectrodes having an electrode layer provided in stripes over a predetermined range in units m present per length the strip conductor section is a center-to-center distance 2b 0 We discussed a signal current I F when. At this time,
equivalent diffusion zone = 2b D L (3)
b D = a 0 + γ {(πDt) 1/2 / 2} (4)
Concept was introduced and the equation representing the signal current I F from equation (1), expressed as follows: approximately divided into a large area and t is small region.
(A) When t is a small region b 0 ≧ b D (5)
I F / q = (zFD * c) (a 0 / b 0 ) {(1 / (πDt) 1/2 ) + (γ / 2a 0 )} (6)
(B) In the case where t is large, b 0 ≦ b D (7)
I F / q = (zFD * c) {1 / (πDt) 1/2 } (8)
In addition, q is a surface area of the predetermined range, and is represented by q = m2b 0 L.

ここで、前記(8)式は、従来から知られている表面積qの面状導電部が設けられた電極層を備えた電極(以下、「第二従来電極」という。本発明における「仮想電気化学測定用電極」)の信号電流ICottrellを表す式と一致しており、集合微小電極の信号電流Iは、前記(7)式の条件下において、第二従来電極の信号電流ICottrellと同一になることが分かった。 Here, the equation (8) is an electrode having an electrode layer provided with a planar conductive portion having a surface area q known conventionally (hereinafter referred to as “second conventional electrode”. consistent with expression for the signal current I Cottrell chemical measurement electrode "), the signal current I F of the set microelectrode, under the conditions of the equation (7), the signal current I Cottrell second conventional electrode It turned out to be the same.

また、前記(7)式を変形すると、
2b−2a≦γδ ・・・ (9)
(なお、δ=(πDt)1/2
となり、この(9)式は、集合微小電極の隣り合う帯状導電部の間隔2b−2aと、第二従来電極の面状導電部に分析物を接触させてパルス電圧を加えてからt経過時に生じる拡散層の厚さδに補正値γを乗じて得た数値δ’(以下、「補正拡散層の厚さ」ともいう。)との関係を示している。
In addition, when the equation (7) is modified,
2b 0 -2a 0 ≦ γδ (9)
(Note that δ = (πDt) 1/2 )
This equation (9) is obtained by applying the pulse voltage by applying an analyte to the interval 2b 0 -2a 0 between adjacent strip-like conductive portions of the aggregate microelectrode and the planar conductive portion of the second conventional electrode, and then t This shows the relationship with the numerical value δ ′ (hereinafter also referred to as “corrected diffusion layer thickness”) obtained by multiplying the correction layer γ by the thickness δ of the diffusion layer generated during the lapse of time.

このことから、前記(9)式の条件を満たす場合、換言すれば、集合微小電極の隣り合う帯状導電部の間隔が、補正拡散層の厚さ以下の場合には、集合微小電極によって分析物を測定した際に生じる信号電流が第二従来電極によって分析物を測定した際に生じる信号電流と同じ大きさになることが分かった。これは、各帯状導電部の周囲に生じる拡散層が時間の経過に伴って成長し、相互に重なり合って電極層全体に一様に広がるためであると理解される。一方、集合微小電極における導電部の全表面積は、第二従来電極における導電部の全表面積に比べて狭いため、集合微小電極によって分析物を測定した際に生じるノイズ電流が第二従来電極によって分析物を測定した際に生じるノイズ電流よりも小さくなる。これによって、S/N比が飛躍的に向上する。   From this, when the condition of the above formula (9) is satisfied, in other words, when the interval between adjacent strip-like conductive portions of the assembly microelectrode is equal to or less than the thickness of the correction diffusion layer, the analyte is detected by the assembly microelectrode. It was found that the signal current generated when measuring the same magnitude as the signal current generated when measuring the analyte with the second conventional electrode. It is understood that this is because the diffusion layer generated around each band-shaped conductive portion grows with the passage of time and overlaps each other and spreads uniformly over the entire electrode layer. On the other hand, since the total surface area of the conductive part in the aggregated microelectrode is narrower than the total surface area of the conductive part in the second conventional electrode, the noise current generated when the analyte is measured by the aggregated microelectrode is analyzed by the second conventional electrode. This is smaller than the noise current generated when measuring an object. As a result, the S / N ratio is dramatically improved.

ところが、集合微小電極の隣り合う帯状導電部の間隔を前記補正拡散層の厚さよりも短くし過ぎると、集合微小電極における導電部の全表面積が第二従来電極における導電部の全表面積に近づき、これに伴って集合微小電極に生じるノイズ電流が大きくなるため、S/N比が僅かしか向上しない。   However, if the interval between the adjacent band-like conductive portions of the collective microelectrode is made too short than the thickness of the correction diffusion layer, the total surface area of the conductive portion in the collective microelectrode approaches the total surface area of the conductive portion in the second conventional electrode, As a result, the noise current generated in the collective microelectrode increases, and the S / N ratio is improved only slightly.

一方、前記(9)式の条件を満たさない場合、換言すれば、集合微小電極における隣り合う帯状導電部の間隔が前記補正拡散層の厚さよりも長くなった場合であっても、ある程度の長さであれば、集合微小電極に生じる信号電流が第二従来電極に生じる信号電流よりも小さくなるものの、集合微小電極における導電部の全表面積も第二従来電極における導電部の全表面積に比べて狭くなるため、これに伴って集合微小電極に生じるノイズ電流も小さくなり、相対的にS/N比が向上する。   On the other hand, if the condition of the formula (9) is not satisfied, in other words, even if the interval between adjacent strip-like conductive portions in the collective microelectrode is longer than the thickness of the correction diffusion layer, a certain length Then, although the signal current generated in the collective microelectrode is smaller than the signal current generated in the second conventional electrode, the total surface area of the conductive portion in the collective microelectrode is also larger than the total surface area of the conductive portion in the second conventional electrode. Accordingly, the noise current generated in the collective microelectrode is also reduced, and the S / N ratio is relatively improved.

そこで、次に、S/N比が向上し、かつ、実際の電気化学測定において高い精度で信号電流を検出することができる集合微小電極を得るために必要となる隣り合う帯状導電部の間隔の範囲を検討した。   Therefore, next, the interval between adjacent strip-shaped conductive parts required for obtaining a collective microelectrode with improved S / N ratio and capable of detecting a signal current with high accuracy in actual electrochemical measurement. The range was examined.

先ず、隣り合う帯状導電部の間隔の下限値を見出すため、隣り合う帯状導電部の間隔と当該間隔を補正拡散層の厚さよりも短くした場合にS/N比の低下に影響を及ぼすノイズ電流との関係を導き出した。   First, in order to find the lower limit value of the interval between adjacent strip-shaped conductive portions, the noise current that affects the decrease in the S / N ratio when the interval between adjacent strip-shaped conductive portions and the interval is made shorter than the thickness of the correction diffusion layer. The relationship was derived.

即ち、第二従来電極と同じ信号電流を維持した状態で最もノイズ電流が小さくなる集合微小電極における隣り合う帯状導電部の間隔と補正拡散層の厚さδ’との関係は、前記(9)式より、
2b−2a=δ’ ・・・ (10)
となる。また、帯状導電部の幅aを維持した状態で隣り合う帯状導電部の間隔をα倍(α<1)すると、
2b’−2a=αδ’ ・・・ (11)
となる。ここで、2b’は、隣り合う帯状導電部の間隔をα倍した後の隣り合う帯状導電部の中心間距離である。
そして、(10)式及び(11)式を変形すると、
(2a/2b)=1/{1+(δ’/2a)} ・・・ (12)
(2a/2b’)=1/{1+α(δ’/2a)} ・・・ (13)
となり、さらに、2aがδ’に比べて充分に小さいことから、(12)式及び(13)式は近似的に、
(2a/2b)≒(2a/δ’)・・・(14)
(2a/2b’)≒(2a/δ’)(1/α) ・・・ (15)
となる。ここで、集合微小電極におけるノイズ電流Iは、比例定数をkとすると、
/q=(a/b)k ・・・ (16)
と表すことができ、ノイズ電流Iがa/bに比例していることから、(14)式及び(15)式は、集合微小電極の隣り合う帯状導電部の間隔をα倍(α<1)とした時、ノイズ電流Iが1/α倍になることを示している。
That is, the relationship between the gap between adjacent strip-shaped conductive portions and the thickness δ ′ of the correction diffusion layer in the collective microelectrode where the noise current is the smallest while maintaining the same signal current as that of the second conventional electrode is the above (9) From the equation
2b 0 -2a 0 = δ '(10)
It becomes. Further, when the interval between the adjacent band-shaped conductive portions in the state in which the width a 0 of the band-shaped conductive portion is maintained is α times (α <1),
2b 0 '-2a 0 = αδ' (11)
It becomes. Here, 2b 0 ′ is the center-to-center distance between the adjacent band-shaped conductive parts after multiplying the interval between the adjacent band-shaped conductive parts by α.
And when transforming (10) and (11),
(2a 0 / 2b 0 ) = 1 / {1+ (δ ′ / 2a 0 )} (12)
(2a 0 / 2b 0 ′) = 1 / {1 + α (δ ′ / 2a 0 )} (13)
Furthermore, since 2a 0 is sufficiently smaller than δ ′, the equations (12) and (13) are approximately:
(2a 0 / 2b 0 ) ≈ (2a 0 / δ ′) (14)
(2a 0 / 2b 0 ′) ≈ (2a 0 / δ ′) (1 / α) (15)
It becomes. Here, noise current I B in the set microelectrodes, a proportionality constant is k B,
I B / q = (a 0 / b 0 ) k B (16)
Since the noise current I B is proportional to a 0 / b 0 , the equations (14) and (15) are expressed as follows: when the alpha <1), the noise current I B indicates that becomes 1 / alpha times.

ここで、経験上、集合微小電極によって分析物を測定した際に生じるノイズ電流が、隣り合う帯状導電部の間隔を補正拡散層の厚さと同一の長さにした集合微小電極によって分析物を測定した際に生じるノイズ電流の2倍よりも大きくなると、高い精度で信号電流を検出し難くなるため、集合微小電極の隣り合う帯状導電部の間隔は補正拡散層の厚さの50%の長さまで短くできることが分かる。   Here, based on experience, the noise current generated when an analyte is measured by the collective microelectrode is measured by the collective microelectrode in which the distance between adjacent band-shaped conductive parts is the same as the thickness of the correction diffusion layer. If the current is larger than twice the noise current generated, it will be difficult to detect the signal current with high accuracy. Therefore, the distance between adjacent band-shaped conductive parts of the aggregate microelectrodes will be up to 50% of the thickness of the correction diffusion layer. You can see that it can be shortened.

次に、集合微小電極の隣り合う帯状導電部の間隔の上限値を見出すため、隣り合う帯状導電部の間隔と当該間隔を補正拡散層の厚さよりも長くした場合にS/N比の低下に影響を及ぼす信号電流との関係を導き出した。   Next, in order to find the upper limit value of the interval between the adjacent strip-shaped conductive portions of the aggregated microelectrode, the S / N ratio is lowered when the interval between the adjacent strip-shaped conductive portions and the interval are longer than the thickness of the correction diffusion layer. The relationship with the influencing signal current was derived.

即ち、隣り合う帯状導電部の間隔をβ倍(β>1)にすると、(9)式より、
2b−2a=βδ’ ・・・ (17)
となり、(17)式を変形すると、
2b=2a+(β/2)δ’+(β/2)δ’ ・・・ (18)
となる。一方、集合微小電極における隣り合う帯状導電部の間隔を補正拡散層の厚さよりも長くした場合における信号電流Iは次のような一般式で表すことができる。
/q=(zFD*c)(1/δ){(2a+δ’)/2b} ・・・ (19)
そして、(18)式を(19)式に代入して変形すると、
/q=(zFD*c)(1/δ){1/(1+((β−1)δ’/(2a+δ’))} ・・・ (20)
となる。(20)式の{1/(1+((β−1)δ’/(2a+δ’))}の部分は、1/βより大きくなり、特に、2aがδ’に比べて充分に小さい場合、1/βに近づく。これは、集合微小電極の隣り合う帯状導電部の間隔を補正拡散層の厚さδ’のβ倍(β>1)とした時、信号電流Iがほぼ1/β倍になることを示している。
That is, when the interval between adjacent strip-like conductive parts is β times (β> 1),
2b 0 -2a 0 = βδ '(17)
And transforming equation (17),
2b 0 = 2a 0 + (β / 2) δ ′ + (β / 2) δ ′ (18)
It becomes. On the other hand, the signal current I F in the case where the distance between the strip conductor portions adjacent in the set microelectrodes made longer than the thickness of the compensation diffusion layer may be represented by the general formula:.
I F / q = (zFD * c) (1 / δ) {(2a 0 + δ ′) / 2b 0 } (19)
And when substituting (18) into (19) and transforming,
I F / q = (zFD * c) (1 / δ) {1 / (1 + ((β−1) δ ′ / (2a 0 + δ ′))}} (20)
It becomes. The part {1 / (1 + ((β−1) δ ′ / (2a 0 + δ ′))} in the equation (20) is larger than 1 / β, and in particular, 2a 0 is sufficiently larger than δ ′. smaller, approaching 1 / beta. This, when the beta times the thickness [delta] 'compensation diffusion layer spacing of the strip conductor portions adjacent set microelectrode (β> 1), the signal current I F approximately 1 / β times.

ここで、経験上、集合微小電極によって分析物を測定した際に生じる信号電流が、隣り合う帯状導電部の間隔を補正拡散層の厚さと同一の長さにした集合微小電極によって分析物を測定した際に生じる信号電流の1/2倍よりも小さくなると、高い精度で信号電流を検出し難くなるため、集合微小電極の隣り合う帯状導電部の間隔は補正拡散層の厚さの200%の長さまで長くできることが分かる。   Here, empirically, the signal current generated when an analyte is measured by the collective microelectrode is measured by the collective microelectrode in which the distance between adjacent strip-shaped conductive portions is the same as the thickness of the correction diffusion layer. If the signal current is smaller than ½ times the signal current generated at this time, it is difficult to detect the signal current with high accuracy. Therefore, the interval between adjacent band-like conductive portions of the collective microelectrode is 200% of the thickness of the correction diffusion layer. It can be seen that the length can be increased.

以上より、集合微小電極の隣り合う帯状導電部の間隔を、補正拡散層の厚さの200%以下の長さにすれば、第二従来電極に比べてS/N比が向上した集合微小電極が得られ、また、補正拡散層の厚さの50〜200%の長さにすれば、S/N比が向上し、しかも、実際の電気化学測定においてより高い精度で信号電流を検出することができる集合微小電極を得られることが分かった。   As described above, when the interval between the adjacent strip-like conductive portions of the assembly microelectrode is set to 200% or less of the thickness of the correction diffusion layer, the assembly microelectrode has an improved S / N ratio compared to the second conventional electrode. In addition, if the length is 50 to 200% of the thickness of the correction diffusion layer, the S / N ratio is improved, and the signal current can be detected with higher accuracy in actual electrochemical measurement. It was found that a collective microelectrode capable of

前記技術的課題は、次の通りの本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

即ち、本発明に係る所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法は、所定の測定物が溶解された分析物に対して電圧を加える電極層を備えた所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部を互いに間隔を空けた状態で縞状に設け、隣り合う帯状導電部の間隔を電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部が隙間なく設けられている仮想電気化学測定用電極の面状導電部に所定の測定物が溶解された分析物を接触させてパルス電圧を加えてから0.1〜10s経過時に生じる拡散層の厚さを基準として当該拡散層の厚さに補正値を乗じて得た補正拡散層の厚さの50〜200%以下の長さとし、
当該補正値が
Dt/(2a 0 2
(Dが所定の測定物の拡散係数、tが仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧を加えてから経過した時間、a 0 が帯状導電部の幅を示している。)
に基づく数値であって当該拡散層の厚さを帯状導電部の幅に合わせて補正するための1以下の数値であるものである。
That is, the method for manufacturing a microelectrode for electrochemical measurement for electrochemical measurement of a predetermined measurement object according to the present invention includes an electrode layer for applying a voltage to an analyte in which the predetermined measurement object is dissolved. In a method for manufacturing a microelectrode for electrochemical measurement for electrochemical measurement of a predetermined measurement object, a state in which a plurality of strip-like conductive parts are spaced apart from each other over a predetermined range in a portion of the electrode layer that contacts the analyte The surface shape of the electrode for virtual electrochemical measurement in which the planar conductive portion is provided across the predetermined range in the portion of the electrode layer in contact with the analyte in the gap between the adjacent strip-shaped conductive portions. Obtained by multiplying the thickness of the diffusion layer by the correction value based on the thickness of the diffusion layer that occurs when 0.1 to 10 seconds elapses after the pulse voltage is applied by contacting the analyte in which the predetermined measurement object is dissolved in the conductive part. 50 to 200% or less of the thickness of the corrected diffusion layer age,
The correction value is
Dt / (2a 0 ) 2
(D is the diffusion coefficient of the predetermined measurement object, t is the time elapsed since the analyte was brought into contact with the planar conductive portion of the virtual electrochemical measurement electrode and the pulse voltage was applied, and a 0 is the width of the strip-shaped conductive portion. Is shown.)
And is a numerical value of 1 or less for correcting the thickness of the diffusion layer in accordance with the width of the strip-shaped conductive portion .

また、本発明は、前記所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法において、補正値が、Further, the present invention provides a method for producing a microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object, wherein the correction value is:
1−1.1exp[−9.9/ln12(Dt/(2a1-1.1exp [-9.9 / ln12 (Dt / (2a 00 ) 22 )])]
から算出される数値のものである。It is a numerical value calculated from

また、本発明に係る所定の測定物を電気化学測定するための電気化学測定用集合微小電極は、所定の測定物が溶解された分析物に対して電圧を加える電極層を備えた所定の測定物を電気化学測定するための電気化学測定用集合微小電極において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部が互いに間隔を空けた状態で縞状に設けられており、電極層の分析物に接触する部分における隣り合う帯状導電部の間隔が、電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部が隙間なく設けられている仮想電気化学測定用電極の面状導電部に所定の測定物が溶解された分析物を接触させてパルス電圧を加えてから0.1〜10s経過時に生じる拡散層の厚さを基準として該拡散層の厚さに補正値を乗じて得た補正拡散層の厚さの50〜200%の長さになっており、The electrochemical measurement aggregate microelectrode for electrochemically measuring a predetermined measurement object according to the present invention includes a predetermined measurement including an electrode layer that applies a voltage to an analyte in which the predetermined measurement object is dissolved. In a collective microelectrode for electrochemical measurement for electrochemically measuring an object, a plurality of strip-like conductive parts are provided in a striped manner over a predetermined range at a portion of the electrode layer that contacts the analyte. The gap between the adjacent band-shaped conductive portions in the portion of the electrode layer that contacts the analyte is virtually equal to the portion of the electrode layer that is in contact with the analyte over the predetermined range without any gap between the planar conductive portions. The thickness of the diffusion layer is determined based on the thickness of the diffusion layer that occurs when 0.1 to 10 seconds elapses after the pulse voltage is applied by bringing the analyte in which the predetermined measurement object is dissolved into contact with the planar conductive portion of the electrochemical measurement electrode. Correction diffusion obtained by multiplying the value by the correction value 50-200% of the thickness of has become a length,
当該補正値がThe correction value is
Dt/(2aDt / (2a 00 ) 22
(Dが所定の測定物の拡散係数、tが仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧を加えてから経過した時間、a(D is the diffusion coefficient of a predetermined measurement object, t is the time elapsed since the analyte was brought into contact with the planar conductive part of the electrode for virtual electrochemical measurement, and the pulse voltage was applied, a 00 が帯状導電部の幅を示している。)Indicates the width of the strip-shaped conductive portion. )
に基づく数値であって当該拡散層の厚さを帯状導電部の幅に合わせて補正するための1以下の数値のものである。And a numerical value of 1 or less for correcting the thickness of the diffusion layer in accordance with the width of the strip-shaped conductive portion.

また、本発明は、前記所定の測定物を電気化学測定するための電気化学測定用集合微小電極において、補正値が、Further, the present invention provides an electrochemical measurement aggregate microelectrode for electrochemically measuring the predetermined measurement object, wherein the correction value is:
1−1.1exp[−9.9/ln12(Dt/(2a1-1.1exp [-9.9 / ln12 (Dt / (2a 00 ) 22 )])]
から算出される数値のものである。It is a numerical value calculated from

また、本発明は、前記いずれかの所定の測定物を電気化学測定するための電気化学測定用集合微小電極において、電極層の分析物に接触する部分における隣り合う帯状導電部の間隔が補正拡散層の厚さの100%の長さになっているものである。Further, according to the present invention, in the collective microelectrode for electrochemical measurement for electrochemical measurement of any one of the predetermined measurement objects, the distance between adjacent band-shaped conductive portions in the portion of the electrode layer that contacts the analyte is corrected and diffused. The length is 100% of the thickness of the layer.

また、本発明は、前記いずれかの所定の測定物を電気化学測定するための電気化学測定用集合微小電極において、電極層の分析物に接触しない部分において複数の帯状導電部が全て通電できるように繋がっているものである。 Further, according to the present invention, in the collective microelectrode for electrochemical measurement for electrochemical measurement of any one of the predetermined measurement objects , the plurality of strip-like conductive parts can be all energized in the portion of the electrode layer that does not contact the analyte. It is connected to.

また、本発明に係る電気化学測定法は、前記いずれかの所定の測定物を電気化学測定するための電気化学測定用集合微小電極を用いたものである。 In addition, the electrochemical measurement method according to the present invention uses an electrochemical measurement collective microelectrode for electrochemically measuring any one of the predetermined measurement objects .

また、本発明は、前記電気化学測定法において、分析物を電極層の分析物に接触する部分における帯状導電部の長手方向に沿うように進行させるものである。   In the electrochemical measurement method according to the present invention, the analyte is advanced along the longitudinal direction of the strip-shaped conductive portion in the portion of the electrode layer that contacts the analyte.

また、本発明は、前記電気化学測定法において、分析物が電極層の分析物に接触する部分を通過する間に測定物の電気化学反応が終了しているものである。   In the electrochemical measurement method of the present invention, the electrochemical reaction of the analyte is completed while the analyte passes through the portion of the electrode layer that contacts the analyte.

また、本発明に係る電気化学測定装置は、前記いずれかの所定の測定物を電気化学測定するための電気化学測定用集合微小電極を備えたものである。
In addition, an electrochemical measurement apparatus according to the present invention includes an electrochemical measurement collective microelectrode for electrochemically measuring any one of the predetermined measurement objects .

さらに、本発明に係る集合微小電極の他の形態としては、隣り合う帯状導電部の間に導電部が設けられており、当該導電部がいずれの帯状導電部とも通電できないようになっていてもよい。また、電極層の分析物に接触しない部分が絶縁材料によって被覆されていてもよい。   Furthermore, as another form of the collective microelectrode according to the present invention, a conductive portion is provided between adjacent strip-shaped conductive portions, and even if the conductive portion cannot pass through any of the strip-shaped conductive portions. Good. In addition, a portion of the electrode layer that does not come into contact with the analyte may be covered with an insulating material.

本発明によれば、集合微小電極において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部を互いに間隔を空けた状態で縞状に設け、隣り合う帯状導電部の間隔を、電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部を隙間なく設けた仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧をかけてから所定時間経過後に生じる拡散層の厚さに補正値を乗じて得られる補正拡散層の厚さの200%以下の長さにしたので、S/N比が向上する。   According to the present invention, in the aggregated microelectrode, a plurality of strip-like conductive portions are provided in a striped manner in a state where they are spaced apart from each other over a predetermined range in the portion of the electrode layer that contacts the analyte, Apply a pulse voltage by contacting the analyte to the planar conductive portion of the electrode for virtual electrochemical measurement in which the planar conductive portion is provided over the predetermined range without gaps in the portion of the electrode layer that contacts the analyte. Since the length of the corrected diffusion layer obtained by multiplying the thickness of the diffusion layer generated after a lapse of a predetermined time by the correction value is 200% or less, the S / N ratio is improved.

また、集合微小電極の隣り合う帯状導電部の間隔を補正拡散層の厚さの50〜200%の長さにすれば、S/N比が向上し、しかも、実際の電気化学測定において高い精度で信号電流を検出することができる。   Further, if the interval between adjacent strip-like conductive portions of the aggregated microelectrode is 50 to 200% of the thickness of the correction diffusion layer, the S / N ratio is improved, and high accuracy is obtained in actual electrochemical measurement. Can detect the signal current.

さらに、本発明に係る集合微小電極は、ホトリソグラフィー法によって作製できるため、導電部の形状を自由に設計することができる。   Furthermore, since the collective microelectrode according to the present invention can be manufactured by a photolithography method, the shape of the conductive portion can be freely designed.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1. Embodiment 1 FIG.

図1は本実施の形態に係る集合微小電極を示した平面図である。図2は図1に示す集合微小電極を示したA−A端面図である。図3は仮想電気化学測定用電極(前出「第二従来電極」)を示した平面図である。図4は図1に示す集合微小電極の作製手順を示した端面図である。これらの図において、1は、絶縁材料からなる絶縁層2と、絶縁層2上に導電材料を積層してなる電極層3と、電極層3上に絶縁材料を積層して該電極層3を部分的に被覆するカバー層4を備えた集合微小電極である。   FIG. 1 is a plan view showing a collective microelectrode according to the present embodiment. FIG. 2 is an AA end view showing the assembled microelectrode shown in FIG. FIG. 3 is a plan view showing a virtual electrochemical measurement electrode (the above-mentioned “second conventional electrode”). FIG. 4 is an end view showing a manufacturing procedure of the collective microelectrode shown in FIG. In these drawings, reference numeral 1 denotes an insulating layer 2 made of an insulating material, an electrode layer 3 formed by laminating a conductive material on the insulating layer 2, and an electrode layer 3 formed by laminating an insulating material on the electrode layer 3. It is a collective microelectrode provided with a cover layer 4 that partially covers.

絶縁層2を形成する絶縁材料としては、セラミック、ガラス、アクリルなどの合成樹脂又はシリコンなどを使用すればよい。なお、絶縁層2は、絶縁材料を成形してなる板状のものであってもよく、基板に絶縁材料を積層してなる膜状のものであってもよい。板状の絶縁層2の厚さは、特に限定されないが、利便性を考慮すると100μm〜200μmが好ましく、より厚くしてもよい。   As an insulating material for forming the insulating layer 2, a synthetic resin such as ceramic, glass, acrylic, or silicon may be used. The insulating layer 2 may be a plate-like material formed by molding an insulating material, or a film-like material obtained by laminating an insulating material on a substrate. The thickness of the plate-like insulating layer 2 is not particularly limited, but is preferably 100 μm to 200 μm in view of convenience, and may be thicker.

電極層3は、分析物に接触する部分5(図1において実線にて示す。)と分析物に接触しない部分6(図1において点線にて示す。)とからなっている。そして、電極層3の分析物に接触する部分5には、絶縁層2上に積層された導電材料からなる複数の帯状導電部7が所定範囲Xに渡って互いに間隔Yを空けた状態で縞状に設けられている。また、電極層3の分析物に接触しない部分6においては、全ての帯状導電部7が通電できるように導電材料からなる一対の端子導電部8,8が各帯状導電部7の両端に架け渡されている。なお、一対の端子導電部8,8は、最も端に位置する帯状導電部7から更に延長されるように伸びており、該延長された部分が端子の役割を果たす。   The electrode layer 3 includes a portion 5 (shown by a solid line in FIG. 1) that contacts the analyte and a portion 6 (shown by a dotted line in FIG. 1) that does not contact the analyte. In the portion 5 of the electrode layer 3 that is in contact with the analyte, a plurality of strip-like conductive portions 7 made of a conductive material laminated on the insulating layer 2 are striped in a state where the gap Y is spaced from each other over a predetermined range X. It is provided in the shape. In the portion 6 of the electrode layer 3 that does not come into contact with the analyte, a pair of terminal conductive portions 8, 8 made of a conductive material are bridged across both ends of each strip-shaped conductive portion 7 so that all the strip-shaped conductive portions 7 can be energized. Has been. The pair of terminal conductive portions 8 and 8 extend so as to be further extended from the strip-shaped conductive portion 7 located at the end, and the extended portions serve as terminals.

電極層3の分析物に接触する部分5における複数の帯状導電部7は、隣り合う帯状導電部7の間隔Yが、図3に示す電極層3の分析物に接触する部分5に所定範囲Xに渡って複数の帯状導電部7を設ける代わりに該所定範囲Xに渡って面状導電部9を設けた仮想電気化学測定用電極10に分析物を接触させてパルス電圧を加えてから所定時間経過時に生じる拡散層の厚さ(以下、単に「拡散層の厚さ」という)に対し、当該拡散層の厚さを帯状導電部の幅に合わせて補正するための1以下の補正値を乗じて得た補正拡散層の厚さ(以下、単に「補正拡散層の厚さ」という)の200%以下の長さ、好ましくは50〜200%の長さ、より好ましくは50〜150%の長さになっている。   The plurality of strip-like conductive portions 7 in the portion 5 in contact with the analyte of the electrode layer 3 is such that the interval Y between the adjacent strip-like conductive portions 7 is within a predetermined range X in the portion 5 in contact with the analyte of the electrode layer 3 shown in FIG. Instead of providing a plurality of strip-like conductive portions 7 over a predetermined range, a predetermined time is elapsed after the analyte is brought into contact with the virtual electrochemical measurement electrode 10 provided with the planar conductive portion 9 over the predetermined range X and a pulse voltage is applied. Multiply the thickness of the diffusion layer generated during the lapse (hereinafter simply referred to as “the thickness of the diffusion layer”) by a correction value of 1 or less for correcting the thickness of the diffusion layer in accordance with the width of the strip-shaped conductive portion. 200% or less of the thickness of the corrected diffusion layer obtained (hereinafter simply referred to as “corrected diffusion layer thickness”), preferably 50 to 200%, more preferably 50 to 150%. It has become.

なお、集合微小電極1における隣り合う帯状導電部7の間隔について詳述すると、隣り合う帯状導電部7の間隔を、補正拡散層の厚さの100%以下の長さとした場合には、集合微小電極1で分析物を測定した場合に生じる信号電流が、仮想電気化学測定用電極10で分析物を測定した場合に生じる信号電流と同じ大きさになる一方、集合微小電極1における導電部7の全表面積が、仮想電気化学測定用電極10における導電部9の全表面積よりも狭くなるため、当該集合微小電極1で分析物を測定した場合に生じるノイズ電流が、仮想電気化学測定用電極10で分析物を測定した場合に生じるノイズ電流よりも小さくなる。従って、隣り合う帯状導電部7の間隔を補正拡散層の厚さの100%以下の長さとした場合には必ずS/N比が向上する。   The interval between adjacent strip-shaped conductive portions 7 in the aggregated microelectrode 1 will be described in detail. When the interval between adjacent strip-shaped conductive portions 7 is 100% or less of the thickness of the correction diffusion layer, the aggregated microelectrode 1 The signal current generated when the analyte is measured with the electrode 1 has the same magnitude as the signal current generated when the analyte is measured with the virtual electrochemical measurement electrode 10, while the conductive portion 7 of the collective microelectrode 1 Since the total surface area is narrower than the total surface area of the conductive portion 9 in the virtual electrochemical measurement electrode 10, noise current generated when the analyte is measured with the aggregated microelectrode 1 is generated in the virtual electrochemical measurement electrode 10. It is smaller than the noise current that occurs when the analyte is measured. Therefore, the S / N ratio is always improved when the interval between the adjacent belt-like conductive portions 7 is set to a length of 100% or less of the thickness of the correction diffusion layer.

また、集合微小電極1における隣り合う帯状導電部7の間隔を、補正拡散層の厚さから除々に長くしていくと、集合微小電極1における導電部7の全表面積が除々に狭くなるため、集合微小電極1で分析物を測定した場合に生じるノイズ電流は除々に小さくなるが、集合微小電極1で分析物を測定した場合に生じる信号電流も、仮想電気化学測定用電極10で分析物を測定した場合に生じる信号電流も除々に小さくなり、隣り合う帯状導電部7の間隔が長くなりすぎると、相対的にS/N比が低下する。このため、高い精度で信号電流を検出することができる集合微小電極1を得るためには、隣り合う帯状導電部7の間隔の上限値を補正拡散層の厚さの200%以下の長さに制限する必要がある。   Moreover, since the total surface area of the conductive portion 7 in the collective microelectrode 1 gradually becomes narrower as the distance between the adjacent band-shaped conductive portions 7 in the collective microelectrode 1 is gradually increased from the thickness of the correction diffusion layer, The noise current generated when the analyte is measured with the collective microelectrode 1 gradually decreases. However, the signal current generated when the analyte is measured with the collective microelectrode 1 is also applied to the virtual electrochemical measurement electrode 10. The signal current generated in the measurement is gradually reduced, and when the interval between the adjacent strip-like conductive portions 7 becomes too long, the S / N ratio is relatively lowered. For this reason, in order to obtain the collective microelectrode 1 capable of detecting the signal current with high accuracy, the upper limit value of the interval between the adjacent strip-like conductive portions 7 is set to a length of 200% or less of the thickness of the correction diffusion layer. Need to be restricted.

また、集合微小電極1における隣り合う帯状導電部7の間隔を、補正拡散層の厚さから除々に短くしていくと、集合微小電極1で分析物を測定した場合に生じる信号電流の大きさは変化しないが、集合微小電極1における導電部7の全表面積が除々に広くなるため、集合微小電極1で分析物を測定した場合に生じるノイズ電流が仮想電気化学測定用電極10で分析物を測定した場合に生じるノイズ電流に近づく。このため、実際の電気化学測定において高い精度で信号電流を検出することができる集合微小電極1を得るためには、隣り合う帯状導電部7の間隔の下限値を補正拡散層の厚さの50%の長さに制限する必要がある。   Further, when the interval between the adjacent band-like conductive portions 7 in the collective microelectrode 1 is gradually shortened from the thickness of the correction diffusion layer, the magnitude of the signal current generated when the analyte is measured by the collective microelectrode 1. However, since the total surface area of the conductive portion 7 in the collective microelectrode 1 gradually increases, noise current generated when the analyte is measured by the collective microelectrode 1 causes the virtual electrochemical measurement electrode 10 to generate the analyte. It approaches the noise current that occurs when measured. For this reason, in order to obtain the collective microelectrode 1 capable of detecting a signal current with high accuracy in actual electrochemical measurement, the lower limit value of the interval between the adjacent strip-like conductive portions 7 is set to 50 of the thickness of the correction diffusion layer. % Should be limited.

帯状導電部7の幅は、狭くすればするほど電極層3における導電部全体の表面積が狭くなるため、集合微小電極1を用いて分析物を測定した際に生じるノイズ電流が低下する。   The narrower the width of the band-like conductive portion 7, the smaller the surface area of the entire conductive portion in the electrode layer 3, so that the noise current generated when the analyte is measured using the collective microelectrode 1 decreases.

仮想電気化学測定用電極10に分析物を接触させてパルス電圧を加える方法としては、電極に対して予め静止状態の分析物を接触させておいて当該分析物にパルス電圧を加える方法と、電極に対して予め一定の電圧を加えておいて当該電極に流動状態の分析物を接触させる方法とがある。なお、本発明においてパルス電圧を加えるとは、瞬間的に一定の電圧を加えた後、その一定の電圧を保持することを示している。   As a method of applying a pulse voltage by bringing an analyte into contact with the virtual electrochemical measurement electrode 10, a method of applying a pulse voltage to the analyte by bringing a stationary analyte in contact with the electrode in advance, In contrast, there is a method in which a constant voltage is applied in advance to bring a flowing analyte into contact with the electrode. In the present invention, adding a pulse voltage means that a constant voltage is instantaneously applied and then the constant voltage is maintained.

また、所定時間とは、電気化学測定において一般的に用いられる分析物にパルス電圧を加えてから測定を行うまでの時間であり、導電部に分析物を接触させてパルス電圧を加えてから0.1〜10s経過時に測定することで高い精度の分析結果が得られることが知られている。なお、0.1sより早いと、ノイズ電流が検出され易くなる傾向にあり、また、10sより遅いと、信号電流が小さくなる傾向にある。   In addition, the predetermined time is a time from when a pulse voltage is applied to an analyte generally used in electrochemical measurement until the measurement is performed. It is known that a highly accurate analysis result can be obtained by measuring when ˜10 s has elapsed. Note that if it is earlier than 0.1 s, the noise current tends to be detected, and if it is later than 10 s, the signal current tends to be small.

補正値は、少なくともDt/(2aをパラメータとして有する数式によって表されるものであり、例えば、前記(2)式のように
1−1.1exp{−9.9/ln12(Dt/(2a)}
と表すことができる。なお、(2)式は、近似的に表されたものである。
The correction value is expressed by a mathematical formula having at least Dt / (2a 0 ) 2 as a parameter. For example, as shown in the above formula (2), 1-1.1exp {−9.9 / ln12 (Dt / (2a 0 ) 2 )}
It can be expressed as. Note that equation (2) is approximately expressed.

電極層3を形成する導電材料としては、白金、金、カーボン、二酸化スズ又はパラジウム・クローム合金などを使用すればよい。   As the conductive material for forming the electrode layer 3, platinum, gold, carbon, tin dioxide, palladium-chrome alloy, or the like may be used.

カバー層4は、電極層3における縞状に並べられた帯状導電部7にのみ分析物を接触させるように、電極層3における縞状に並んでいない端子導電部8を分析物に接触させないように被覆している。なお、カバー層4を形成する絶縁材料としては、エポキシ樹脂(感光性エポキシ樹脂を含む)などを使用すればよい。   The cover layer 4 does not allow the terminal conductive parts 8 not arranged in stripes in the electrode layer 3 to come into contact with the analyte so that the analyte comes into contact only with the strip-like conductive parts 7 arranged in stripes in the electrode layer 3. Is covered. As an insulating material for forming the cover layer 4, an epoxy resin (including a photosensitive epoxy resin) or the like may be used.

次に、本実施の形態に係る集合微小電極の製造方法を説明する。   Next, a method for manufacturing the collective microelectrode according to the present embodiment will be described.

先ず、絶縁材料からなる絶縁層2上に導電材料を積層して未処理電極層11を形成する(図4の(a)参照)。次に、未処理電極層11上に紫外線に反応して硬化するネガタイプのレジストからなるレジスト層12を形成した後(図4の(b)参照)、レジスト層12上に得ようとする導電部の形状に対応する部分以外の部分を隠すマスクパターン13を積層する(図4の(c)参照)。続いて、マスクパターン13の上方から紫外線を照射してレジスト層12のマスクパターンによって隠れていない部分のレジストを紫外線硬化させた後、マスクパターン13を除去すると共に、レジスト層12の紫外線硬化していないレジストを除去することで、未処理電極層11上に得ようとする導電部の形状に対応する部分にのみレジスト層が残存する(図4の(d)参照)。最後に、レジスト層12の上方から導電材料を溶解させる溶剤を噴霧して未処理電極層11のレジスト層12によって被覆されていない部分に位置する導電材料を溶解させた後(図4の(e)参照)、レジスト層12を除去することで得ようとする導電部の形状に成形された電極層3を得る(図4の(f)参照)。そして、この後、電極層3の分析物と接触しない部分を絶縁材料によって被覆してカバー層4を形成して集合微小電極1を得る。   First, an untreated electrode layer 11 is formed by laminating a conductive material on the insulating layer 2 made of an insulating material (see FIG. 4A). Next, a conductive layer to be obtained on the resist layer 12 is formed on the untreated electrode layer 11 after forming a resist layer 12 made of a negative type resist that cures in response to ultraviolet rays (see FIG. 4B). A mask pattern 13 for concealing a portion other than the portion corresponding to the shape is stacked (see FIG. 4C). Subsequently, after irradiating ultraviolet rays from above the mask pattern 13 to cure the portion of the resist not hidden by the mask pattern of the resist layer 12, the mask pattern 13 is removed and the resist layer 12 is ultraviolet cured. By removing the remaining resist, the resist layer remains only on the portion corresponding to the shape of the conductive portion to be obtained on the untreated electrode layer 11 (see FIG. 4D). Finally, a solvent for dissolving the conductive material is sprayed from above the resist layer 12 to dissolve the conductive material located in a portion of the untreated electrode layer 11 that is not covered with the resist layer 12 ((e in FIG. 4). )), And by removing the resist layer 12, the electrode layer 3 formed into the shape of the conductive part to be obtained is obtained (see (f) of FIG. 4). Thereafter, the portion of the electrode layer 3 that does not come into contact with the analyte is covered with an insulating material to form the cover layer 4 to obtain the aggregated microelectrode 1.

本実施の形態に係る集合微小電極1を用いて電気化学測定を行う際には、この集合微小電極1を作用電極とし、参照電極及び対極の三電極からなる電解セルを作製し、この電解セルに分析物を入れ、凡用される電気化学測定装置にこれらの三電極を接続して三電極方式による電気化学測定を行えばよい。なお、条件と目的によっては、参照電極と対極を一つの電極によって共用する二電極方式によって電気化学測定を行ってもよい。   When electrochemical measurement is performed using the collective microelectrode 1 according to the present embodiment, an electrolytic cell including the collective microelectrode 1 as a working electrode and a reference electrode and a counter electrode is manufactured. The three-electrode type electrochemical measurement may be performed by putting the analyte into the sample and connecting these three electrodes to a commonly used electrochemical measurement device. Depending on conditions and purposes, electrochemical measurement may be performed by a two-electrode system in which the reference electrode and the counter electrode are shared by one electrode.

集合微小電極に分析物を接触させてパルス電圧を加える場合には、予め集合微小電極を静止状態にある分析物に接触させた状態でパルス電圧を加えたり、予め集合微小電極に一定の電圧を加えた状態で流動状態にある分析物を接触させたりすればよい。なお、後者の場合には、分析物の流動方向を集合微小電極1における帯状導電部7の長手方向に一致させることが好ましい。これは、分析物の流動方向を集合微小電極における帯状導電部の短手方向と一致させた場合には、分析物は集合微小電極の分析物と接触する部分を通過する際に、帯状導電部が積層された部分と帯状導電部が積層されていない部分とを交互に通過することになり、滑らかに反応が進まないのに対し、分析物の流動方向を集合微小電極における帯状導電部の長手方向と一致させた場合には、分析物は集合微小電極の分析物と接触する部分を通過する際に、常に帯状導電部が積層された部分又は帯状導電部が積層されていない部分に接触した状態で通過することになり、滑らかに反応が進むため、設計が行い易いからである。   When applying a pulse voltage by bringing an analyte into contact with an aggregate microelectrode, a pulse voltage is applied while the aggregate microelectrode is in contact with an analyte in a stationary state in advance, or a constant voltage is applied to the aggregate microelectrode in advance. The added analyte may be brought into contact with the fluidized state. In the latter case, it is preferable that the flow direction of the analyte coincides with the longitudinal direction of the strip-like conductive portion 7 in the collective microelectrode 1. This is because when the flow direction of the analyte is made to coincide with the short direction of the strip-shaped conductive portion in the collective microelectrode, the analyte passes through the portion of the collective microelectrode that contacts the analyte in the strip-shaped conductive portion. Will pass alternately through the part where the electrode is laminated and the part where the band-like conductive part is not laminated, and the reaction will not proceed smoothly, while the flow direction of the analyte will change the length of the band-like conductive part in the collective microelectrode. When matched with the direction, the analyte always touched the part where the band-like conductive part was laminated or the part where the band-like conductive part was not laminated when passing through the part of the aggregated microelectrode contacting the analyte. This is because the reaction proceeds smoothly and the design proceeds easily.

また、流動状態にある分析物を集合微小電極の分析物と接触する部分に接触させてから該部分を通過するまでの間に測定物の電気化学反応が終了するように集合微小電極及び該電極を収容するセルを設計すれば、クーロメトリーにより高い精度で分析ができる。なお、この場合には、セルの厚みや幅、分析物の濃度、分析物を流動させる際の流量や流速、集合微小電極の分析物と接触する部分の帯状導電部の長さなどを調整する必要がある。   In addition, the assembly microelectrode and the electrode are configured so that the electrochemical reaction of the measurement object is completed between the time when the analyte in the fluidized state is brought into contact with the portion of the assembly microelectrode that is in contact with the analyte and the passage through the portion. If a cell that accommodates is designed, analysis can be performed with high accuracy by coulometry. In this case, the thickness and width of the cell, the concentration of the analyte, the flow rate and flow velocity when flowing the analyte, the length of the strip-shaped conductive portion of the portion of the assembly microelectrode that contacts the analyte, and the like are adjusted. There is a need.

本発明に係る集合微小電極の作製方法は、前記実施の形態1で用いたエッチング法に限らず、リフトオフ法など他のホトリソグラフィー法によって形成してもよい。また、帯状導電部の幅が1μm以下の場合には、X線を使用した作製方法によって作製すればよい。なお、これらの作製方法に限定されることなく、電子線(EB)加工法やフォーカスド・イオン・ビーム(FIB)加工法などの他の方法によっても作製することができる。   The method for manufacturing the aggregated microelectrode according to the present invention is not limited to the etching method used in the first embodiment, and may be formed by another photolithography method such as a lift-off method. Further, when the width of the strip-like conductive portion is 1 μm or less, it may be produced by a production method using X-rays. In addition, it is not limited to these manufacturing methods, It can manufacture also by other methods, such as an electron beam (EB) processing method and a focused ion beam (FIB) processing method.

本発明に係る集合微小電極は、ノルマル・パルスボルタメトリーで得られた測定値に基づいて設計されるが、ノルマル・パルスボルタメトリーに限らず、他の電気化学測定法に用いても高いS/N比で信号電流を検出することができる。   The collective microelectrode according to the present invention is designed based on a measurement value obtained by normal pulse voltammetry, but is not limited to normal pulse voltammetry, and has a high S / V even when used in other electrochemical measurement methods. The signal current can be detected by the N ratio.

実施の形態2. Embodiment 2. FIG.

本実施の形態は前記実施の形態1における電極層の変形例である。図5は本実施の形態に係る集合微小電極を示した平面図である。この図において、図1〜図4と同一符号は同一又は相当部分を示している。   The present embodiment is a modification of the electrode layer in the first embodiment. FIG. 5 is a plan view showing the collective microelectrode according to the present embodiment. In this figure, the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding parts.

本実施の形態に係る集合微小電極の電極層は、図5に示すように、隣り合う帯状導電部7の間に導電材料からなる島状導電部14が形成されており、島状導電部14は帯状導電部7と通電できないようになっている。   As shown in FIG. 5, in the electrode layer of the collective microelectrode according to the present embodiment, island-shaped conductive portions 14 made of a conductive material are formed between adjacent strip-shaped conductive portions 7. Cannot be energized with the belt-like conductive portion 7.

本実施の形態においても、前記実施の形態1と同様の作用効果を得ることができる。   Also in the present embodiment, the same operational effects as in the first embodiment can be obtained.

先ず、基底溶液としてpH7.0のリン酸緩衝液0.1mol/lを用意し、測定物としてフェロセンカルボン酸0.5mmol/lを用意し、分析物として該基底溶液に該測定物を混入した溶液を用意し、参照電極として銀塩化銀電極(Ag/AgCl/3.0 mol/l NaCl)(品番:RE-1B、BAS社製)を用意し、対極として直径1.0mmの白金線を用意し、電気化学測定装置としてElecrochemical Analyzer 624B(ALS社製)を用意した。   First, a phosphate buffer solution of pH 7.0 0.1 mol / l is prepared as a basal solution, ferrocenecarboxylic acid 0.5 mmol / l is prepared as an analyte, and a solution in which the analyte is mixed into the basal solution as an analyte is prepared. Prepare a silver / silver chloride electrode (Ag / AgCl / 3.0 mol / l NaCl) (part number: RE-1B, manufactured by BAS) as the reference electrode, and prepare a platinum wire with a diameter of 1.0 mm as the counter electrode. As a measuring device, Elecrochemical Analyzer 624B (manufactured by ALS) was prepared.

実施例1. Example 1.

次に、厚さ200μmのアルミナ基板からなる絶縁層上にスパッタリング法を用いて厚さ1〜1.5μmの金薄膜を積層して未処理電極層を形成した。次に、未処理電極層上にレジスト溶液をスピンコート法を用いて塗布した後、60℃にて3時間乾燥処理してレジスト層を形成した。次に、フィロセンカルボン酸の拡散係数D=5×10-6cm−1と、完成予定の集合微小電極における帯状導電部の幅a=10μmと、分析物を後述する比較例1の電極(本発明における「仮想電気化学測定用電極」)に接触させてパルス電圧をかけてから拡散層の厚さを測定するまでに経過した時間t=1sとを(2)式に代入して補正値0.9を算出した後、当該補正値をt=1s時に生じた拡散層の厚さ40μmに乗じて補正拡散層の厚さ36μmを得た。そして、当該補正拡散層の厚さを参考にして設計した幅10μmの帯状導電部が50μmの間隔を空けて多数並んだ電極層の形状に対応する位置が空いているマスクパターンをレジスト層上に積層した後、マスクパターンの上方から積算露光量が300mJになるように紫外線を照射し、レジスト層のマスクパターンによって被覆されていない部分を硬化させた。続いて、35℃のKOH溶液に1分間浸漬してレジスト層の硬化していない部分を除去した後、40℃の塩化第二鉄を数十秒噴霧し、未処理電極層のレジスト層によって被覆されていない部分を除去した。最後に、露光処理して残存しているレジスト層を除去し、幅10μmの帯状導電部が50μmの間隔で縞状に並んだ電極層を形成した後、電極層の帯状導電部が設けられた部分を分析物に接触する部分として縦1cm×横(幅)1cm残して他の部分をエポキシ樹脂で被覆して実施例1の集合微小電極を得た。なお、隣り合う帯状導電部の間隔50μmは、補正拡散層の厚さ36μmの140%の長さである。 Next, a gold thin film having a thickness of 1 to 1.5 μm was laminated on an insulating layer made of an alumina substrate having a thickness of 200 μm by a sputtering method to form an untreated electrode layer. Next, a resist solution was applied onto the untreated electrode layer by using a spin coating method, and then dried at 60 ° C. for 3 hours to form a resist layer. Next, the diffusion coefficient D of phyrocenecarboxylic acid D = 5 × 10 −6 cm 2 s −1 , the width a 0 of the band-shaped conductive part in the assembly microelectrode scheduled to be completed, a 0 = 10 μm, and Comparative Example 1 in which the analyte is described later Time (t = 1 s) elapsed from applying a pulse voltage to contact with the electrode ("virtual electrochemical measurement electrode" in the present invention) and measuring the thickness of the diffusion layer is substituted into equation (2). After calculating a correction value of 0.9, the correction value was multiplied by the diffusion layer thickness of 40 μm generated at t = 1 s to obtain a correction diffusion layer thickness of 36 μm. Then, a mask pattern in which positions corresponding to the shape of the electrode layer in which a plurality of strip-shaped conductive portions having a width of 10 μm, which are designed with reference to the thickness of the correction diffusion layer are arranged at intervals of 50 μm, is vacant is formed on the resist layer. After the lamination, ultraviolet rays were irradiated from above the mask pattern so that the integrated exposure amount was 300 mJ, and the portion of the resist layer not covered with the mask pattern was cured. Next, after removing the uncured portion of the resist layer by immersing it in a 35 ° C KOH solution for 1 minute, spray it with ferric chloride at 40 ° C for several tens of seconds and cover it with the resist layer of the untreated electrode layer. The part which was not done was removed. Finally, the remaining resist layer was removed by exposure treatment, and after forming an electrode layer in which strip-shaped conductive portions having a width of 10 μm were arranged in stripes at intervals of 50 μm, the strip-shaped conductive portions of the electrode layer were provided. The assembly microelectrode of Example 1 was obtained by covering the other part with epoxy resin while leaving the part in contact with the analyte 1 cm in length and 1 cm in width (width). The interval 50 μm between adjacent strip-like conductive portions is 140% of the correction diffusion layer thickness of 36 μm.

実施例2. Example 2

完成予定の集合微小電極における帯状導電部の幅を3μmとした外は、前記実施例1と同様の条件で補正値0.8を算出し、補正拡散層の厚さ32μmを得た。そして、当該補正拡散層の厚さを参考にして設計した幅3μmの帯状導電部が40μmの間隔を空けて多数並んだ電極層の形状に対応する位置が空いているマスクパターンを用いた外は、前記実施例1と同様の作製方法によって、幅3μmの帯状導電部が40μmの間隔で縞状に並んだ電極層を形成した後、電極層の帯状導電部が設けられた部分を分析物に接触する部分として縦1cm×横(幅)1cm残して他の部分をエポキシ樹脂で被覆して実施例2の集合微小電極を得た。なお、隣り合う帯状導電部の間隔40μmは、補正拡散層の厚さ32μmの125%の長さである。   A correction value of 0.8 was calculated under the same conditions as in Example 1 except that the width of the strip-like conductive portion in the assembly microelectrode to be completed was set to 3 μm, and a correction diffusion layer thickness of 32 μm was obtained. Then, using a mask pattern that is designed with reference to the thickness of the correction diffusion layer and that has a pattern corresponding to the shape of the electrode layer in which a plurality of strip-shaped conductive portions having a width of 3 μm are arranged at intervals of 40 μm. After forming an electrode layer in which strip-shaped conductive portions having a width of 3 μm are arranged in stripes at intervals of 40 μm by the same production method as in Example 1, the portion of the electrode layer provided with the strip-shaped conductive portions is used as an analyte. The other part was covered with an epoxy resin while leaving 1 cm in length and 1 cm in width (width) as a part to be contacted to obtain an assembled microelectrode of Example 2. The interval 40 μm between adjacent strip-like conductive portions is 125% of the correction diffusion layer thickness of 32 μm.

比較例1. Comparative Example 1

前記実施例1と同様の作製方法によって、面状導電部が設けられた電極層を形成した後、電極層の面状導電部が設けられた部分を分析物に接触する部分として縦1cm×横(幅)1cm残して他の部分をエポキシ樹脂で被覆して比較例1の電極(本発明における「仮想電気化学測定用電極」)を得た。   After forming the electrode layer provided with the planar conductive portion by the same manufacturing method as in Example 1, the portion provided with the planar conductive portion of the electrode layer is defined as 1 cm in length × width as the portion in contact with the analyte. (Width) 1 cm was left, and the other part was covered with an epoxy resin to obtain an electrode of Comparative Example 1 (“electrode for virtual electrochemical measurement” in the present invention).

そして、前記実施例1及び2、比較例1を用いて次の各測定実験を行った。   Then, the following measurement experiments were performed using Examples 1 and 2 and Comparative Example 1.

先ず、電気化学測定装置に繋がれた実施例1の集合微小電極、銀塩化銀電極及び白金線を静止状態にある分析物に浸し、電位掃引速度10mV/s、電圧(E)0〜0.6Vの条件下でサイクリック・ボルタンメトリーによってフィロセンカルボン酸を測定した。また、同様に比較例1の電極を用いてサイクリック・ボルタンメトリーによってフィロセンカルボン酸を測定した。この測定によって得られたサイクリック・ボルタモグラムを図6に示す。なお、図6において、横軸は、実施例1の銀塩化銀電極を基準とした集合微小電極の電位を示し、縦軸は、集合微小電極を流れる電流を示しており、実施例1の集合微小電極の測定結果を実線にて示し、比較例1の電極の測定結果を点線にて示している。   First, the aggregated microelectrode, silver-silver chloride electrode, and platinum wire of Example 1 connected to the electrochemical measurement apparatus are immersed in the stationary analyte, and the potential sweep rate is 10 mV / s and the voltage (E) is 0 to 0.6 V. The phylocene carboxylic acid was measured by cyclic voltammetry under the following conditions. Similarly, phylocenecarboxylic acid was measured by cyclic voltammetry using the electrode of Comparative Example 1. A cyclic voltammogram obtained by this measurement is shown in FIG. In FIG. 6, the horizontal axis indicates the potential of the collective microelectrode based on the silver-silver chloride electrode of Example 1, and the vertical axis indicates the current flowing through the collective microelectrode. The measurement result of the microelectrode is shown by a solid line, and the measurement result of the electrode of Comparative Example 1 is shown by a dotted line.

図6によれば、集合微小電極を測定した場合においても、電気化学測定用電極として従来から使用されている比較例1の電極と同様の可逆な電流−電位曲線が表れており、帯状導電部を縞状に設けた電極層を備える集合微小電極においても正常な電気化学測定が可能であることが分かる。   According to FIG. 6, even when the aggregated microelectrode is measured, a reversible current-potential curve similar to that of the electrode of Comparative Example 1 conventionally used as an electrode for electrochemical measurement appears, and the strip-shaped conductive portion It can be seen that normal electrochemical measurement is possible even in an assembled microelectrode having an electrode layer provided in a striped pattern.

次に、電気化学測定装置に繋がれた実施例1の集合微小電極、銀塩化銀電極及び白金線を静止状態にある基底溶液に浸し、電位掃引速度10mV/s、電圧(E)0〜0.6Vの条件下でサイクリック・ボルタンメトリーによってボルタモグラムを測定した。また、同様に比較例1の電極を用いてサイクリック・ボルタンメトリーによってボルタモグラムを測定した。この測定によって得られたサイクリック・ボルタモグラムを図7に示す。なお、図7において、横軸は、実施例1の銀塩化銀電極を基準とした集合微小電極の電位を示し、縦軸は、集合微小電極を流れる電流を示しており、実施例1の集合微小電極の測定結果を実線にて示し、比較例1の電極の測定結果を点線にて示している。   Next, the aggregated microelectrode, silver-silver chloride electrode, and platinum wire of Example 1 connected to the electrochemical measurement apparatus were immersed in a basal solution in a stationary state, and the potential sweep rate was 10 mV / s and the voltage (E) was 0 to 0.6. Voltammograms were measured by cyclic voltammetry under conditions of V. Similarly, the voltammogram was measured by cyclic voltammetry using the electrode of Comparative Example 1. A cyclic voltammogram obtained by this measurement is shown in FIG. In FIG. 7, the horizontal axis indicates the potential of the collective microelectrode based on the silver-silver chloride electrode of Example 1, and the vertical axis indicates the current flowing through the collective microelectrode. The measurement result of the microelectrode is shown by a solid line, and the measurement result of the electrode of Comparative Example 1 is shown by a dotted line.

図7によれば、比較例1の電極を測定した場合に比べて、実施例1の集合微小電極で測定した場合の電流の値が小さくなった。このことから、帯状導電部を縞状に設けた電極層を備える集合微小電極においては、S/N比の低下させる要因となる基底溶液から生じるノイズ電流を小さく抑えられることが分かる。   According to FIG. 7, compared with the case where the electrode of Comparative Example 1 was measured, the value of the current when measured with the collective microelectrode of Example 1 was smaller. From this, it can be seen that in a collective microelectrode provided with an electrode layer in which strip-like conductive portions are provided in stripes, the noise current generated from the base solution, which causes a decrease in the S / N ratio, can be kept small.

次に、電気化学測定装置に繋がれた実施例1の集合微小電極、銀塩化銀電極及び白金線を静止状態にある分析物に浸し、加電圧0.6V、電流サンプリング時間1sの条件下でパルス・ボルタンメトリーによってフェロセンカルボン酸を測定した。また、同様に実施例2の集合微小電極又は比較例1の電極を用いてパルス・ボルタンメトリーによってフェロセンカルボン酸を測定した。この測定によって得られた信号電流値をフェロセンカルボン酸の濃度に対してプロットした検量線を図8〜図10に示す。なお、図8〜図10において、横軸は、フェロセンカルボン酸の濃度を示し、縦軸は、信号電流値を示しおり、丸印は5回の測定結果の平均を示し、丸印を挟む二本の横線は信頼限界を示している。   Next, the aggregated microelectrode, silver-silver chloride electrode, and platinum wire of Example 1 connected to the electrochemical measurement apparatus are immersed in the stationary analyte, and pulsed under the conditions of applied voltage of 0.6 V and current sampling time of 1 s. -Ferrocene carboxylic acid was measured by voltammetry. Similarly, ferrocenecarboxylic acid was measured by pulse voltammetry using the assembled microelectrode of Example 2 or the electrode of Comparative Example 1. A calibration curve in which the signal current value obtained by this measurement is plotted against the concentration of ferrocenecarboxylic acid is shown in FIGS. 8 to 10, the horizontal axis indicates the concentration of ferrocenecarboxylic acid, the vertical axis indicates the signal current value, the circle indicates an average of five measurement results, and two circles are sandwiched between the circles. The horizontal line of the book indicates the confidence limit.

図8〜図10を用いて各電極におけるフェロセンカルボン酸の検出限界を3s法を用いて算出すると、実施例1の検出限界は1.3μmol/l、実施例2の検出限界は0.31μmol/l、比較例1の検出限界は5.2μmol/lとなり、実施例1及び2の集合微小電極は比較例1の電極に比べて検出限界が向上していることが分かる。 When the detection limit of ferrocenecarboxylic acid at each electrode is calculated using the 3s B method with reference to FIGS. 8 to 10, the detection limit of Example 1 is 1.3 μmol / l, and the detection limit of Example 2 is 0.31 μmol / l. The detection limit of Comparative Example 1 is 5.2 μmol / l, and it can be seen that the detection limit of the assembled microelectrodes of Examples 1 and 2 is improved as compared with the electrode of Comparative Example 1.

実施の形態1に係る集合微小電極を示した平面図である。FIG. 3 is a plan view showing the collective microelectrode according to the first embodiment. 図1に示す集合微小電極を示したA−A端面図である。FIG. 2 is an AA end view showing the assembled microelectrode shown in FIG. 1. 仮想電気化学測定用電極を示した平面図である。It is the top view which showed the electrode for virtual electrochemical measurements. 図1に示す集合微小電極の作製手順を示した端面図である。It is the end elevation which showed the preparation procedure of the assembly | stacking microelectrode shown in FIG. 実施の形態2に係る集合微小電極を示した平面図である。FIG. 5 is a plan view showing a collective microelectrode according to a second embodiment. 分析物を実施例1の集合微小電極及び比較例1の電極によって測定したサイクリック・ボルタモグラムである。2 is a cyclic voltammogram in which an analyte is measured with the assembled microelectrode of Example 1 and the electrode of Comparative Example 1. FIG. 基底溶液を実施例1の集合微小電極及び比較例1の電極によって測定したサイクリック・ボルタモグラムである。2 is a cyclic voltammogram of the basal solution measured by the assembled microelectrode of Example 1 and the electrode of Comparative Example 1. FIG. 分析物を実施例1の集合微小電極によって測定した検量線である。2 is a calibration curve obtained by measuring an analyte with the collective microelectrode of Example 1. FIG. 分析物を実施例2の集合微小電極によって測定した検量線である。3 is a calibration curve obtained by measuring an analyte with the collective microelectrode of Example 2. FIG. 分析物を比較例1の電極によって測定した検量線である。2 is a calibration curve obtained by measuring an analyte with the electrode of Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 電気化学測定用集合微小電極
2 絶縁層
3 電極層
4 カバー層
5 分析物と接触する部分
6 分析物と接触しない部分
7 帯状導電部
8 端子導電部
9 面状導電部
10 仮想電気化学測定用電極
11 未処理電極層
12 レジスト層
13 マスクパターン
14 島状導電部
DESCRIPTION OF SYMBOLS 1 Collective microelectrode for electrochemical measurements 2 Insulating layer 3 Electrode layer 4 Cover layer 5 Part in contact with analyte 6 Part in non-contact with analyte 7 Strip-like conductive part 8 Terminal conductive part 9 Planar conductive part 10 For virtual electrochemical measurement Electrode 11 Untreated electrode layer 12 Resist layer 13 Mask pattern 14 Island-like conductive part

Claims (10)

所定の測定物が溶解された分析物に対して電圧を加える電極層を備えた所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部を互いに間隔を空けた状態で縞状に設け、隣り合う帯状導電部の間隔を電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部が隙間なく設けられている仮想電気化学測定用電極の面状導電部に所定の測定物が溶解された分析物を接触させてパルス電圧を加えてから0.1〜10s経過時に生じる拡散層の厚さを基準として当該拡散層の厚さに補正値を乗じて得た補正拡散層の厚さの50〜200%以下の長さとし、In the method of manufacturing an aggregate microelectrode for electrochemical measurement for electrochemical measurement of a predetermined measurement object having an electrode layer for applying a voltage to an analyte in which the predetermined measurement object is dissolved, A plurality of strip-shaped conductive portions are provided in a striped pattern in a state where they are in contact with each other over a predetermined range, and the interval between adjacent strip-shaped conductive portions is extended to the portion in contact with the analyte of the electrode layer over the predetermined range. Occurred 0.1 to 10 seconds after applying a pulse voltage by bringing an analyte in which a predetermined measurement substance is dissolved into contact with the planar conductive portion of the electrode for virtual electrochemical measurement in which the planar conductive portion is provided without gaps. The length of the corrected diffusion layer obtained by multiplying the thickness of the diffusion layer by the correction value with reference to the thickness of the diffusion layer is 50 to 200% or less,
当該補正値がThe correction value is
Dt/(2aDt / (2a 00 ) 22
(Dが所定の測定物の拡散係数、tが仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧を加えてから経過した時間、a(D is the diffusion coefficient of a predetermined measurement object, t is the time elapsed since the analyte was brought into contact with the planar conductive part of the electrode for virtual electrochemical measurement, and the pulse voltage was applied, a 00 が帯状導電部の幅を示している。)Indicates the width of the strip-shaped conductive portion. )
に基づく数値であって当該拡散層の厚さを帯状導電部の幅に合わせて補正するための1以下の数値であることを特徴とする所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法。Electrochemical measurement for electrochemical measurement of a predetermined measurement object, characterized in that the numerical value is based on the above and is a numerical value of 1 or less for correcting the thickness of the diffusion layer in accordance with the width of the strip-like conductive portion For producing a microelectrode for an assembly.
補正値が、The correction value is
1−1.1exp[−9.9/ln12(Dt/(2a1-1.1exp [-9.9 / ln12 (Dt / (2a 00 ) 22 )])]
から算出される数値である請求項1記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極の製造方法。The method for producing an assembled microelectrode for electrochemical measurement for electrochemical measurement of a predetermined measurement object according to claim 1, which is a numerical value calculated from:
所定の測定物が溶解された分析物に対して電圧を加える電極層を備えた所定の測定物を電気化学測定するための電気化学測定用集合微小電極において、電極層の分析物に接触する部分に所定範囲に渡って複数の帯状導電部が互いに間隔を空けた状態で縞状に設けられており、電極層の分析物に接触する部分における隣り合う帯状導電部の間隔が、電極層の分析物に接触する部分に前記所定範囲に渡って面状導電部が隙間なく設けられている仮想電気化学測定用電極の面状導電部に所定の測定物が溶解された分析物を接触させてパルス電圧を加えてから0.1〜10s経過時に生じる拡散層の厚さを基準として該拡散層の厚さに補正値を乗じて得た補正拡散層の厚さの50〜200%の長さになっており、A portion of an electrode layer in contact with an analyte in an electrochemical measurement aggregate microelectrode for electrochemically measuring a predetermined measurement object having an electrode layer for applying a voltage to an analyte in which the predetermined measurement object is dissolved A plurality of strip-shaped conductive portions are provided in a striped manner in a state of being spaced apart from each other over a predetermined range, and the interval between adjacent strip-shaped conductive portions in the portion of the electrode layer that contacts the analyte is analyzed in the electrode layer. A pulse is obtained by bringing an analyte in which a predetermined measurement substance is dissolved into contact with a planar conductive portion of an electrode for virtual electrochemical measurement in which a planar conductive portion is provided over the predetermined range with no gap at a portion in contact with the target. Based on the thickness of the diffusion layer that occurs when 0.1 to 10 seconds elapses after the voltage is applied, the thickness of the diffusion layer is multiplied by the correction value to be 50 to 200% of the corrected diffusion layer thickness. And
当該補正値がThe correction value is
Dt/(2aDt / (2a 00 ) 22
(Dが所定の測定物の拡散係数、tが仮想電気化学測定用電極の面状導電部に分析物を接触させてパルス電圧を加えてから経過した時間、a(D is the diffusion coefficient of a predetermined measurement object, t is the time elapsed since the analyte was brought into contact with the planar conductive part of the electrode for virtual electrochemical measurement, and the pulse voltage was applied, a 00 が帯状導電部の幅を示している。)Indicates the width of the strip-shaped conductive portion. )
に基づく数値であって当該拡散層の厚さを帯状導電部の幅に合わせて補正するための1以下の数値であることを特徴とする所定の測定物を電気化学測定するための電気化学測定用集合微小電極。Electrochemical measurement for electrochemical measurement of a predetermined measurement object, characterized in that the numerical value is based on the above and is a numerical value of 1 or less for correcting the thickness of the diffusion layer in accordance with the width of the strip-like conductive portion Assembly microelectrode.
補正値が、The correction value is
1−1.1exp[−9.9/ln12(Dt/(2a1-1.1exp [-9.9 / ln12 (Dt / (2a 00 ) 22 )])]
から算出される数値である請求項3記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極。The collective microelectrode for electrochemical measurement for electrochemically measuring a predetermined measurement object according to claim 3, which is a numerical value calculated from:
電極層の分析物に接触する部分における隣り合う帯状導電部の間隔が補正拡散層の厚さの100%の長さになっている請求項3又は4のいずれかに記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極。5. The predetermined measurement object according to claim 3, wherein an interval between adjacent band-shaped conductive portions in a portion in contact with the analyte of the electrode layer is 100% of the thickness of the correction diffusion layer. Collective microelectrode for electrochemical measurements for electrochemical measurements. 電極層の分析物に接触しない部分において複数の帯状導電部が全て通電できるように繋がっている請求項3乃至5のいずれかに記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極。 6. For electrochemical measurement for electrochemical measurement of a predetermined measurement object according to any one of claims 3 to 5, wherein all of the plurality of strip-like conductive parts are connected so that they can be energized in a portion of the electrode layer that does not contact the analyte. Aggregated microelectrode. 前記請求項3乃至6のいずれかに記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極を用いた電気化学測定法。 An electrochemical measurement method using an assembled microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object according to any one of claims 3 to 6. 分析物を電極層の分析物に接触する部分における帯状導電部の長手方向に沿うように進行させる請求項7記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極を用いた電気化学測定法。 8. The electrochemical measurement collective microelectrode for electrochemically measuring a predetermined measurement object according to claim 7, wherein the analyte is advanced along the longitudinal direction of the strip-shaped conductive portion in the portion of the electrode layer that contacts the analyte. Had electrochemical measurements. 分析物が電極層の分析物に接触する部分を通過する間に測定物の電気化学反応が終了している請求項8記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極を用いた電気化学測定法。 9. The electrochemical measurement aggregate microparticle for electrochemical measurement of a predetermined measurement object according to claim 8, wherein the electrochemical reaction of the measurement object is completed while the analyte passes through a portion of the electrode layer that contacts the analyte. Electrochemical measurement method using electrodes. 前記請求項3乃至6のいずれかに記載の所定の測定物を電気化学測定するための電気化学測定用集合微小電極を備えた電気化学測定装置。 An electrochemical measurement apparatus comprising an assembled microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object according to any one of claims 3 to 6.
JP2006075075A 2006-03-17 2006-03-17 Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object Expired - Fee Related JP4844817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075075A JP4844817B2 (en) 2006-03-17 2006-03-17 Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075075A JP4844817B2 (en) 2006-03-17 2006-03-17 Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object

Publications (2)

Publication Number Publication Date
JP2007248384A JP2007248384A (en) 2007-09-27
JP4844817B2 true JP4844817B2 (en) 2011-12-28

Family

ID=38592831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075075A Expired - Fee Related JP4844817B2 (en) 2006-03-17 2006-03-17 Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object

Country Status (1)

Country Link
JP (1) JP4844817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240910B2 (en) * 2008-08-22 2013-07-17 国立大学法人東京工業大学 Surface current measuring device and surface current measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590004B2 (en) * 1988-07-08 1997-03-12 日本電信電話株式会社 Comb-shaped modified microelectrode cell and method for producing the same
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
JP4082142B2 (en) * 2002-08-30 2008-04-30 富士レビオ株式会社 Solution measuring microelectrode, electrochemical measuring device, electrode manufacturing method, and solution measuring method

Also Published As

Publication number Publication date
JP2007248384A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
Kalimuthu et al. Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid
Berduque et al. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions
Shahrokhian et al. Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid
Sandison et al. Optimization of the geometry and porosity of microelectrode arrays for sensor design
Ojani et al. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly (o-anisidine)/SDS/Ni modified carbon paste electrode
Mezour et al. Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol− porphyrin monolayers on gold using secm and nanoelectrodes
Rouhani et al. A new selective carbon paste electrode for potentiometric analysis of olanzapine
Li et al. A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode
Ko et al. Continuous electrochemical detection of hydrogen peroxide by Au-Ag bimetallic nanoparticles in microfluidic devices
Xiong et al. Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids
Bartoszewicz et al. Calibration free solid contact electrodes with two PVC based membranes
Elashery et al. Novel and selective potentiometric sensors for Cinchocaine HCl determination in its pure and Co-formulated dosage form: A comparative study of in situ carbon sensors based on different ion pairing agents
Levent et al. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples
EP3435076B1 (en) Electrochemical measurement method, electrochemical measurement apparatus, and transducer
Blaz et al. Multielectrode potentiometry in a one-drop sample
Sairi et al. Chronoamperometric response at nanoscale liquid–liquid interface arrays
Mazloum-Ardakani et al. Electrochemical determination of captopril in the presence of acetaminophen, tryptophan, folic acid, and l-cysteine at the surface of modified carbon nanotube paste electrode
Rohanifar et al. Determination of L-DOPA at an optimized poly (caffeic acid) modified glassy carbon electrode
Muratova et al. Voltammetric vs. potentiometric sensing of dopamine: advantages and disadvantages, novel cell designs, fundamental limitations and promising options
Guziejewski Electrode mechanisms with coupled chemical reaction—Amplitude effect in square-wave voltammetry
Twomey et al. Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue
JP4844817B2 (en) Electrochemical measurement assembly microelectrode for electrochemical measurement of a predetermined measurement object, electrochemical measurement aggregate microelectrode for electrochemical measurement of the predetermined measurement object, electrochemical measurement of the predetermined measurement object Electrochemical measurement method using assembly microelectrode for electrochemical measurement and electrochemical measurement apparatus provided with assembly microelectrode for electrochemical measurement for electrochemical measurement of the predetermined measurement object
Alexander et al. A photo-cured coated-wire calcium ion selective electrode for use in flow injection potentiometry
Şen et al. A simple microfluidic redox cycling-based device for high-sensitive detection of dopamine released from PC12 cells
Gmucová A review of non-Cottrellian diffusion towards micro-and nano-structured electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees