JP4844291B2 - Time division pulse oximetry and pulse oximeter - Google Patents

Time division pulse oximetry and pulse oximeter Download PDF

Info

Publication number
JP4844291B2
JP4844291B2 JP2006229794A JP2006229794A JP4844291B2 JP 4844291 B2 JP4844291 B2 JP 4844291B2 JP 2006229794 A JP2006229794 A JP 2006229794A JP 2006229794 A JP2006229794 A JP 2006229794A JP 4844291 B2 JP4844291 B2 JP 4844291B2
Authority
JP
Japan
Prior art keywords
light
time
sao2
converted
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006229794A
Other languages
Japanese (ja)
Other versions
JP2007090047A (en
Inventor
卓雄 青柳
政好 布施
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP2006229794A priority Critical patent/JP4844291B2/en
Publication of JP2007090047A publication Critical patent/JP2007090047A/en
Application granted granted Critical
Publication of JP4844291B2 publication Critical patent/JP4844291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Psychiatry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、脈拍による組織内動脈血の血液量変動を利用することにより、動脈血の酸素飽和度(SaO2)を連続的無侵襲的に測定するためのパルスオキシメトリおよびこれを実施するパルスオキシメータに関し、組織透過光の時系列データを所要の時間で区分して演算処理することにより、体動によるアーテファクトを適正に消去して、高精度の動脈血の酸素飽和度を求めることができる時間区分パルスオキシメトリおよびパルスオキシメータに関するものである。   The present invention relates to pulse oximetry for continuously and non-invasively measuring arterial oxygen saturation (SaO2) by utilizing blood volume fluctuations of intraarterial blood due to pulse, and a pulse oximeter for performing the same. Time-division pulses that can accurately eliminate artefacts due to body movements and obtain high-precision oxygen saturation of arterial blood by processing the time-series data of tissue transmitted light according to the required time. It relates to oximetry and pulse oximeters.

今日、パルスオキシメトリと呼ばれる手法では、動脈血の酸素飽和度(SaO2)を求める場合において、次のような手順が一般的に使用されている。
(1)複数の波長により組織透過光を連続測定する。
(2)測定される組織透過光の脈動の山と谷とを判定し、それぞれの透過光をL+ΔL,Lとする。
(3)ΔA≡log[(L+ΔL)/L]≒ΔL/Lを求める。
(4)Φij≡ΔAi/ΔAjを求める。
(5)ΦijはSaO2とほぼ1対1で対応するので、これをSaO2に換算する。
Today, in a technique called pulse oximetry, the following procedure is generally used when determining oxygen saturation (SaO2) of arterial blood.
(1) The tissue transmitted light is continuously measured with a plurality of wavelengths.
(2) The peak and valley of the pulsation of the tissue transmitted light to be measured are determined, and the transmitted light is set as L + ΔL and L, respectively.
(3) ΔA≡log [(L + ΔL) / L] ≈ΔL / L is obtained.
(4) Find Φij≡ΔAi / ΔAj.
(5) Since Φij has a one-to-one correspondence with SaO2, it is converted to SaO2.

現在市販されている動脈血の酸素飽和度を測定する装置においては、前記ΦijをSaO2に換算するに際し、変換表を使用している。変換表の使用については、2波長式の装置の場合には特に問題はないが、測定精度を向上させるために、より多くの波長を使用する装置の場合には、理論的かつ実験的に得られた計算式によることが必要である。   In a device for measuring oxygen saturation of arterial blood currently on the market, a conversion table is used when converting the above-mentioned Φij to SaO2. The use of the conversion table is not particularly problematic in the case of a two-wavelength type apparatus, but in order to improve the measurement accuracy, it is obtained theoretically and experimentally in the case of an apparatus using a larger number of wavelengths. It is necessary to use the calculated formula.

例えば、本出願人は、先に、脈拍による動脈の血液量変動を利用して、連続的無侵襲的に動脈血の酸素飽和度を測定する装置として、5個の異なる波長の光をそれぞれ生体組織に照射する5波長式のパルスオキシメータを提案した(特許文献1参照)。   For example, the present applicant previously used five different wavelengths of light as biological tissue as a device that continuously and non-invasively measures arterial blood oxygen saturation by utilizing arterial blood volume fluctuations due to pulse. Proposed a five-wavelength pulse oximeter for irradiating (see Patent Document 1).

すなわち、前記特許文献1に記載のパルスオキシメータは、5個の異なる波長の光をそれぞれ生体組織に照射する発光部と、前記発光部から発せられ生体組織を透過または反射した光を受光してそれぞれ電気信号に変換する受光部と、前記受光部から出力される各波長の透過光または反射光の変動分に基づいてそれぞれ生体組織に対する減光度変動分を求める減光度変動分計算部と、前記減光度変動分計算部で得られた5個の減光度変動分についてそれぞれ相互の比を少なくとも4個求める減光度変動分比計算部と、前記減光度変動分比計算部で得られる減光度変動分比に基づいて動脈血酸素飽和度、静脈血酸素飽和度、動脈血と静脈血との変動分の比および組織項の4個を未知数とし血中の酸素飽和度を計算する酸素飽和度計算部とを備え、静脈血の変動および組織の変動の影響を消去して動脈血の酸素飽和度を求めるように構成したことを特徴とするものである。   That is, the pulse oximeter described in Patent Document 1 receives a light emitting unit that irradiates a living tissue with light of five different wavelengths, and receives light emitted from the light emitting unit and transmitted or reflected through the living tissue. A light receiving unit for converting each into an electric signal, a light intensity variation calculation unit for obtaining a light intensity variation for a living tissue based on a variation of transmitted light or reflected light of each wavelength output from the light receiving unit, and A dimming degree fluctuation ratio calculating part for obtaining at least four ratios of the five dimming degree fluctuations obtained by the dimming degree fluctuation calculating part, and a dimming degree fluctuation obtained by the dimming degree fluctuation ratio calculating part. An oxygen saturation calculator that calculates oxygen saturation in the blood using arterial blood oxygen saturation, venous blood oxygen saturation, arterial blood to venous blood ratio, and tissue terms as unknowns With To erase the effects of variation of the variation of the venous blood and tissue is characterized in that it has configured to determine the oxygen saturation of arterial blood.

従って、このような構成からなる前記特許文献1に記載のパルスオキシメータは、静脈血が何等かの原因で拍動している場合に、その影響を確実に消去して、動脈血の酸素飽和度を時間的遅れおよび平滑化を生じることなく高精度に測定することができるものである。また、脈波が小さくてパルスオキシメトリが不可能であるような場合に、意図的に体動を与えて、その際に含まれる動脈血の酸素飽和度を求めることが可能となる。さらに、静脈血の酸素飽和度についても、同時に測定することができるという利点を有している。   Therefore, the pulse oximeter described in Patent Document 1 having such a configuration reliably eliminates the influence when venous blood is pulsating for some reason, and oxygen saturation of arterial blood Can be measured with high accuracy without causing time delay and smoothing. In addition, when the pulse wave is small and pulse oximetry is impossible, it is possible to intentionally give a body motion and obtain the oxygen saturation of arterial blood included at that time. Furthermore, the oxygen saturation of venous blood has the advantage that it can be measured simultaneously.

パルスオキシメトリにおける長年の問題は、体動等の機械的外乱によって透過光が乱れることである。すなわち、透過光の外乱により測定された脈動波形の山谷を適切に見出すことが困難になる。また、測定された脈動波形の山谷について補正をすることが必要になる。そして、前記補正をしなければ、最終的に得られる動脈血酸素飽和度(SaO2)の時系列データは、誤差が大きくなるという不都合を生じるのみならず、山谷の値以外の情報を利用することが体動消去のために必須である。   A long-standing problem in pulse oximetry is that transmitted light is disturbed by mechanical disturbances such as body movements. That is, it becomes difficult to properly find the peaks and valleys of the pulsation waveform measured by the disturbance of the transmitted light. In addition, it is necessary to correct the peaks and valleys of the measured pulsation waveform. If the correction is not made, the time series data of arterial blood oxygen saturation (SaO2) finally obtained not only has the disadvantage of increasing the error, but can also use information other than the value of the valley. Indispensable for body movement elimination.

このような問題を解消する対策として、従来において提案ないし採用されている手法は、正しいSaO2の値を前後のデータから推定するという統計的手法である。しかし、この場合には、次のような問題を生じる。
(1)大きな時間遅れを生じるので、例えばSaO2が低下し始めたことを見出すのが遅れる。
(2)SaO2の変化が平滑化されるので、例えばSaO2が激しく低下した場合にも、どの程度であったかが不明である。
As a countermeasure for solving such a problem, a conventionally proposed or adopted method is a statistical method in which a correct value of SaO2 is estimated from previous and subsequent data. However, in this case, the following problem occurs.
(1) Since a large time delay occurs, for example, it is delayed to find that SaO2 starts to decrease.
(2) Since the change in SaO2 is smoothed, for example, when SaO2 is drastically reduced, it is unclear how much it was.

特開2005−95606号公報JP-A-2005-95606

前述した従来のパルスオキシメトリ手法において、今後さらに期待されることは、患者に対してSaO2の変化を早く見出して、早く対処することであるが、このようなパルスオキシメトリ手法本来の特長を生かすには、前述したような問題を解決しなくてはならないことである。
また、患者の体動が非常に激しい場合、測定される透過光の脈動波形の山谷の判定に基づく従来のパルスオキシメトリ手法では、十分な測定結果が得られないことが判明した。すなわち、体動が激しい場合には、前記測定波形の山谷の判定が一義的に決まらないため、測定波形についてのベースライン補正等による手法も、十分な効果が期待できないという難点がある。
In the above-described conventional pulse oximetry method, what is expected further in the future is to quickly find out the change in SaO2 for the patient and cope with it quickly, but make use of the original features of such pulse oximetry method. In other words, the above-mentioned problems must be solved.
Further, it has been found that when the patient's body movement is very intense, the conventional pulse oximetry technique based on the determination of the peak and valley of the pulsation waveform of the transmitted light to be measured cannot obtain a sufficient measurement result. That is, when the body movement is intense, the determination of the peaks and valleys of the measurement waveform is not uniquely determined, so that a method using baseline correction for the measurement waveform cannot be expected to have a sufficient effect.

そこで、本発明者等は、種々検討並びに試行を重ねた結果、測定される透過光の脈動波形について、測定される透過光の信号全体を用いることにより、動脈血の酸素飽和度(SaO2)を適正に測定することができることを突き止めた。
すなわち、測定される透過光の脈動波形の山谷の点だけでなく、透過光の時系列データ全体を用いることにより、前記測定波形の山谷の判定の必要がなくなる。
Accordingly, as a result of various examinations and trials, the present inventors have appropriately determined the oxygen saturation (SaO2) of arterial blood by using the entire transmitted light signal for the measured pulsation waveform of the transmitted light. I found out that it can be measured.
That is, by using not only the points of the peaks and valleys of the pulsation waveform of the transmitted light to be measured but also the entire time series data of the transmitted light, it is not necessary to determine the peaks and valleys of the measured waveform.

本発明の目的は、測定される透過光の脈動波形について、透過光の時系列データ全体を用いることにより、体動の影響を消去すると共に、動脈血酸素飽和度(SaO2)の測定精度の改善に寄与することができる時間区分パルスオキシメトリおよびパルスオキシメータを提供することにある。   The object of the present invention is to eliminate the influence of body motion and improve the measurement accuracy of arterial oxygen saturation (SaO2) by using the entire time-series data of transmitted light for the pulsation waveform of transmitted light to be measured. It is to provide a time segmented pulse oximetry and pulse oximeter that can contribute.

前記の目的を達成するため、本発明の請求項1に記載のパルスオキシメトリは、発光素子により複数個の異なる波長の光をそれぞれ生体組織に照射し、前記生体組織を透過または反射した光を受光素子により受光してそれぞれ電気信号に変換し、前記受光素子により得られる電気信号の時系列データを一定時間毎に区分し、それぞれ一定時間毎に区分された時系列データについて異なる2波長間の回帰直線の傾斜値をそれぞれ算出し、算出された傾斜値をそれぞれSaO2に換算後、平滑し、あるいは傾斜値の時系列を平滑化後SaO2に換算し、体動による影響を消去した動脈血の酸素飽和度を求めることを特徴とする。   In order to achieve the above object, the pulse oximetry according to claim 1 of the present invention irradiates a living tissue with light of a plurality of different wavelengths by a light emitting element, and transmits light reflected or reflected by the living tissue. Light is received by the light receiving element and converted into electric signals, and the time series data of the electric signal obtained by the light receiving element is divided at regular intervals, and the time series data divided at regular intervals is between two different wavelengths. Calculate the slope value of the regression line and convert the calculated slope value to SaO2, respectively, and smooth it, or smooth the time series of the slope value and convert it to SaO2 to eliminate the influence of body movement, and oxygen in arterial blood It is characterized by obtaining saturation.

本発明の請求項2に記載のパルスオキシメータは、複数個の異なる波長の光をそれぞれ生体組織に照射する発光部と、前記発光部から発せられ生体組織を透過または反射した光を受光して、それぞれ電気信号に変換する受光部と、前記受光部から変換出力される各波長の透過光または反射光の電気信号からなる時系列データを一定時間毎に区分する処理装置と、区分された時間毎の前記時系列データについて異なる2波長間の回帰直線の傾斜値をそれぞれ算出する傾斜値演算装置と、前記算出された傾斜値をそれぞれSaO2に換算して平滑化し、あるいは前記算出された傾斜値を平滑化してSaO2に換算する換算平滑化装置とを備え、体動による影響を消去した動脈血の酸素飽和度を求めることを特徴とする。   A pulse oximeter according to claim 2 of the present invention receives a light emitting unit that irradiates a living tissue with a plurality of light beams having different wavelengths, and light that is transmitted from or reflected by the living tissue. A light receiving unit for converting each into an electric signal, a processing device for dividing time-series data consisting of electric signals of transmitted light or reflected light of each wavelength converted and output from the light receiving unit at regular intervals, and a divided time An inclination value calculating device for calculating an inclination value of a regression line between two different wavelengths for each time-series data, and smoothing the calculated inclination value by converting each of the calculated inclination values to SaO2, or the calculated inclination value And a conversion smoothing device for smoothing and converting to SaO2, and determining the oxygen saturation of arterial blood from which the influence of body motion has been eliminated.

本発明の時間区分パルスオキシメトリおよびパルスオキシメータによれば、測定される透過光の脈動波形について、その山谷の判定をすることなく、透過光の時系列データ全体を用いることにより、体動の影響を消去すると共に、動脈血酸素飽和度(SaO2)の測定精度の改善に寄与し、測定部位の自由度拡大を図ることができる。   According to the time-segment pulse oximetry and the pulse oximeter of the present invention, by using the entire time-series data of transmitted light without determining the peaks and valleys of the pulsation waveform of the transmitted light to be measured, While eliminating the influence, it contributes to the improvement of the measurement accuracy of arterial blood oxygen saturation (SaO2), and the degree of freedom of the measurement site can be expanded.

次に、本発明に係る時間区分パルスオキシメトリの実施例につき、これを実施するパルスオキシメータの装置構成との関係において、添付図面を参照しながら以下詳細に説明する。   Next, an embodiment of the time-division pulse oximetry according to the present invention will be described in detail below with reference to the accompanying drawings in relation to the apparatus configuration of a pulse oximeter that implements this.

I.パルスオキシメータの装置構成の概要
図1は、本発明に係る時間区分パルスオキシメトリを実施するパルスオキシメータとしての装置構成を示す概略説明図である。すなわち、図1において、参照符号10は発光部を示し、それぞれ5個の異なる波長の光をそれぞれ生体組織に照射する5個の発光素子LED1〜LED5が設けられている。参照符号12は前記発光部10から発せられる光によって照射される生体組織を示す。参照符号14は受光部を示し、前記生体組織12を透過した光を受光する受光素子PDと、電流電圧変換器16と、AD変換器18とから構成されている。
I. Outline of Apparatus Configuration of Pulse Oximeter FIG. 1 is a schematic explanatory diagram showing an apparatus configuration as a pulse oximeter for carrying out time segmented pulse oximetry according to the present invention. That is, in FIG. 1, reference numeral 10 denotes a light emitting unit, and five light emitting elements LED1 to LED5 that respectively irradiate a living tissue with light of five different wavelengths are provided. Reference numeral 12 indicates a living tissue irradiated by light emitted from the light emitting unit 10. Reference numeral 14 denotes a light receiving unit, which includes a light receiving element PD that receives light transmitted through the living tissue 12, a current-voltage converter 16, and an AD converter 18.

参照符号20は記憶部を示し、前記受光部14の受光素子PDにより得られた透過光信号を、波長毎にそれぞれ時系列的に一時記憶する透過光信号一時記憶器20A〜20Eにより構成されている。   Reference numeral 20 denotes a storage unit, which is composed of transmitted light signal temporary storage devices 20A to 20E that temporarily store a transmitted light signal obtained by the light receiving element PD of the light receiving unit 14 in time series for each wavelength. Yes.

参照符号30は計算部を示し、前記透過光信号一時記憶器20A〜20Eにおいてそれぞれ時系列的に一時記憶された透過光信号L1〜L5に基づいて、(1)前記透過光信号L1〜L5を一定時間毎に区分し、(2)次いで一定時間毎に区分された透過光信号L1〜L5の時系列データについて異なる波長の時系列データ相互の回帰直線の傾斜値を算出し、(3)算出された傾斜値をそれぞれSaO2(動脈血酸素飽和度)に換算し、(4)換算されたSaO2の時系列データを平滑化することによって、血中の酸素飽和度[SpO2]を計算する酸素飽和度計算器としての機能を有する。なお、SaO2への換算と平滑化とは、順序が逆でもよい。   Reference numeral 30 denotes a calculation unit. Based on the transmitted light signals L1 to L5 temporarily stored in time series in the transmitted light signal temporary storage devices 20A to 20E, respectively, (1) the transmitted light signals L1 to L5 are stored. (2) Next, calculate the slope of the regression line between the time-series data of different wavelengths for the time-series data of the transmitted light signals L1 to L5 divided every fixed time, and (3) Calculate The calculated slope values are converted into SaO2 (arterial blood oxygen saturation), respectively, and (4) oxygen saturation in blood is calculated by smoothing the converted time series data of SaO2 [SpO2]. It has a function as a calculator. Note that the order of conversion to SaO2 and smoothing may be reversed.

なお、参照符号22はタイミング器を示し、前記発光部10の各発光素子LED1〜LED5による発光タイミングと、前記記憶部20の各透過光信号一時記憶器20A〜20Eにおける透過光信号の記憶保持タイミングとの制御を行うように構成される。   Reference numeral 22 denotes a timing device, the light emission timing by each of the light emitting elements LED1 to LED5 of the light emitting unit 10, and the transmission light signal storage holding timing in each of the transmitted light signal temporary storage devices 20A to 20E of the storage unit 20. It is comprised so that control may be performed.

図2は、前記計算部30としての酸素飽和度計算器において前述した計算処理を行うためのシステム構成図を示すものである。すなわち、図2において、参照符号32は透過光信号の区分記憶部を示し、前記透過光信号一時記憶器20A〜20Eから入力される透過光信号L1〜L5を、一定時間(例えば、0.5秒)毎に区分して、この区分された時間毎にそれぞれ透過光信号を時系列的に逐次記憶する区分記憶回路32A〜32Eとして構成されている。   FIG. 2 shows a system configuration diagram for performing the above-described calculation processing in the oxygen saturation calculator as the calculation unit 30. That is, in FIG. 2, reference numeral 32 denotes a transmitted light signal section storage unit, and the transmitted light signals L1 to L5 inputted from the transmitted light signal temporary storage devices 20A to 20E are set to a predetermined time (for example, 0.5 seconds). Each of the divided storage circuits 32A to 32E stores the transmitted light signal sequentially in time series for each divided time.

また、参照符号34は回帰直線の傾斜値計算部を示し、前記透過光信号の区分記憶部32にそれぞれ記憶された一定時間毎に区分された透過光信号L1〜L5について回帰直線の傾斜値Φ12、Φ32、Φ42、Φ52をそれぞれ算出する傾斜値計算回路34a、34b、34c、34dとして構成されている。   Reference numeral 34 denotes a regression line slope value calculation unit, and the regression line slope value Φ12 for the transmitted light signals L1 to L5 that are stored in the transmitted light signal section storage unit 32 at regular intervals. , Φ32, Φ42, and Φ52 are configured as inclination value calculation circuits 34a, 34b, 34c, and 34d, respectively.

そして、参照符号36は前記傾斜値計算回路34a、34b、34c、34dにより得られた回帰直線の傾斜値Φ12、Φ32、Φ42、Φ52に関して連立方程式の解を求める第1計算回路を示し、参照符号38は前記連立方程式の解を平滑化する第2計算回路を示す。従って、前記第2計算回路38において、血中の酸素飽和度[SpO2]が算出される。なお、傾斜値を平滑化してその後に解を求めてもよい。   Reference numeral 36 indicates a first calculation circuit for obtaining a solution of simultaneous equations with respect to the slope values Φ12, Φ32, Φ42, and Φ52 of the regression line obtained by the slope value calculation circuits 34a, 34b, 34c, and 34d. Reference numeral 38 denotes a second calculation circuit for smoothing the solution of the simultaneous equations. Therefore, in the second calculation circuit 38, the blood oxygen saturation [SpO2] is calculated. Note that the solution may be obtained after smoothing the slope value.

II.パルスオキシメータの計算処理操作時間区分パルスオキシメトリ
次に、前述したパルスオキシメータの装置構成による動脈血の酸素飽和度の計算処理操作、すなわち本発明に係る時間区分パルスオキシメトリについて、前記パルスオキシメータの作用と共に説明する。
II. Pulse oximeter calculation processing operation ( time division pulse oximetry )
Next, the calculation processing operation of the arterial blood oxygen saturation by the above-described apparatus configuration of the pulse oximeter, that is, the time segmented pulse oximetry according to the present invention will be described together with the operation of the pulse oximeter.

(1)透過光信号の時間区分処理
まず、発光部10の5個の発光素子LED1〜LED5を、それぞれタイミング器22の信号に基づいて、順次交互に異なる波長λ1,λ2,λ3,λ4,λ5で発光させる。これにより、生体組織12を透過した光を受光部14で受信して、発光素子LED1〜LED5の各波長に対応して、各透過光信号L1,L2,L3,L4,L5を、それぞれ所定のタイミングで記憶部20の各透過光信号一時記憶器20A〜20Eに記憶保持する。なお、これらの透過光信号一時記憶器20A〜20Eは、受光部14のAD変換器18の出力(デジタル値としてのデータ)の一定時間におけるデータを記憶する(図1参照)。
(1) Time division processing of transmitted light signal First, the five light emitting elements LED1 to LED5 of the light emitting unit 10 are sequentially and alternately changed to wavelengths λ1, λ2, λ3, λ4, and λ5 based on the signals of the timing device 22, respectively. Light up with. As a result, the light transmitted through the living tissue 12 is received by the light receiving unit 14, and the transmitted light signals L1, L2, L3, L4, and L5 are respectively transmitted to predetermined wavelengths corresponding to the wavelengths of the light emitting elements LED1 to LED5. At each timing, the transmitted light signal temporary storage devices 20A to 20E of the storage unit 20 are stored and held. In addition, these transmitted light signal temporary storage devices 20A to 20E store data for a certain period of time (data as digital values) of the AD converter 18 of the light receiving unit 14 (see FIG. 1).

このようにして、前記透過光信号一時記憶器20A〜20Eにそれぞれ記憶保持された透過光信号L1〜L5は、前記計算部30における区分記憶部32の各区分記憶回路32A〜32Eに入力されて、一定時間(例えば、0.5秒)毎に区分され、この区分された時間毎にそれぞれ透過光信号を時系列的に逐次記憶される(図2参照)。   In this way, the transmitted light signals L1 to L5 stored and held in the transmitted light signal temporary storage devices 20A to 20E, respectively, are input to the respective division storage circuits 32A to 32E of the division storage unit 32 in the calculation unit 30. Then, it is divided every fixed time (for example, 0.5 seconds), and the transmitted light signal is sequentially stored in time series for each divided time (see FIG. 2).

(2)時間区分された透過光信号に関する回帰直線の傾斜値を求める計算処理
血中の酸素飽和度(SpO2)の計算は、例えば5波長の透過光について得られる減光度変動分(ΔAi)に基づき、これら減光度変動分の比(Φij:i,jは波長)として、次式により求められる。
なお、透過光の脈動を構成する要素は、動脈血(a)、静脈血(v)および血液以外の組織すなわち純組織(t)である。
(2) Calculation processing for obtaining the slope value of the regression line relating to the time- divided transmitted light signal The oxygen saturation (SpO2) in the blood is calculated by, for example, the change in attenuation (ΔAi) obtained for transmitted light of 5 wavelengths. Based on this, the ratio of these dimming fluctuations (Φij: i, j is the wavelength) is obtained by the following equation.
The elements constituting the pulsation of transmitted light are arterial blood (a), venous blood (v), and tissues other than blood, that is, pure tissue (t).

Φij≡ΔAi/ΔAj
=[√Eai(Eai+F)+√Evi(Evi+F)*V+Exi]
/[√Eaj(Eaj+F)+√Evj(Evj+F)*V+Exj]
但し、
ΔAi≡log[(Li+ΔLi)/Li]≒ΔLi/Li
Eai≡SaEoi+(1―Sa)Eri
Evi≡SvEoi+(1―Sv)Eri
V≡ΔDv/ΔDa
Exi≡ZtiΔDt/(HbΔDa)≡AiEx2+Bi
Φij≡ΔAi / ΔAj
= [√Eai (Eai + F) + √Evi (Evi + F) * V + Exi]
/ [√Eaj (Eaj + F) + √Evj (Evj + F) * V + Exj]
However,
ΔAi≡log [(Li + ΔLi) / Li] ≈ΔLi / Li
Eai≡SaEoi + (1-Sa) Eri
Evi≡SvEoi + (1-Sv) Eri
V≡ΔDv / ΔDa
Exi≡ZtiΔDt / (HbΔDa) ≡AiEx2 + Bi

上記式において、Liは組織透過光、ΔAiは減光度の変化分、Eoiは酸素化ヘモグロビンの吸光係数、Eriは脱酸素ヘモグロビンの吸光係数、Saは動脈血の酸素飽和度(SaO2)、Svは末梢静脈血の酸素飽和度(SvO2)、ΔDaは動脈血の実効的厚みの変化分、ΔDvは静脈血の実効的厚みの変化分、ΔDtは純組織の厚みの変化分、Ztiは純組織の減光の定数、Ex2は第2波長におけるExiの値、Ai,Biは組織定数(実測で決定される)である。
従って、上記式において、未知数はSa、Sv、V、Ex2の4個である。
In the above formula, Li is the tissue transmitted light, ΔAi is the change in attenuation, Eoi is the extinction coefficient of oxygenated hemoglobin, Eri is the extinction coefficient of deoxygenated hemoglobin, Sa is the oxygen saturation of arterial blood (SaO2), and Sv is the peripheral. Venous blood oxygen saturation (SvO2), ΔDa is the change in effective arterial thickness, ΔDv is the change in effective venous blood thickness, ΔDt is the change in pure tissue thickness, and Zti is the attenuation of pure tissue , Ex2 is the value of Exi at the second wavelength, and Ai, Bi are tissue constants (determined by actual measurement).
Therefore, in the above formula, there are four unknowns, Sa, Sv, V, and Ex2.

この場合、SaO2を精度良く測定するため、また体動等の影響を消去するため、適当な5波長で組織透過光を測定して、上記式に関し4元連立方程式を立て、それらの解としてSaを求めることができる。なお、前記5波長としては、例えばλ1=805nm、λ2=875nm、λ3=660nm、λ4=700nm、λ5=730nmが好ましい波長選択の一例である。   In this case, in order to measure SaO2 with high accuracy and to eliminate the influence of body movement and the like, tissue transmitted light is measured at an appropriate five wavelengths, a quaternary simultaneous equation is established with respect to the above equation, and the solution is Sa. Can be requested. For example, λ1 = 805 nm, λ2 = 875 nm, λ3 = 660 nm, λ4 = 700 nm, and λ5 = 730 nm are preferable examples of wavelength selection.

そこで、本発明の時間区分オキシメトリにおいては、前記区分記憶回路32において、それぞれ時間区分されて記憶された5波長(λ1〜λ5)の透過光信号L1〜L5に基づいて、それぞれ回帰直線の傾斜値(Φij:但し、i,jは波長)を次式により求める。すなわち、この場合の傾斜値(Φij)は、前記のΦij=ΔAi/ΔAjに相当するものである。なお、次式において、nは時間区分内のデータの個数、tは区分された時間(例えば、0.5秒)、Σは時間区分内のデータについての和である。   Therefore, in the time division oximetry of the present invention, the slope values of the regression lines are respectively obtained based on the transmitted light signals L1 to L5 of the five wavelengths (λ1 to λ5) stored in the division storage circuit 32 by time division. (Φij: where i and j are wavelengths) is obtained by the following equation. That is, the slope value (Φij) in this case corresponds to the aforementioned Φij = ΔAi / ΔAj. In the following equation, n is the number of data in the time segment, t is the segmented time (for example, 0.5 seconds), and Σ is the sum of the data in the time segment.

Φij≡{nΣ[Li(t)*Lj(t)]−ΣLi(t)*ΣLj(t)}
/{nΣLj(t)2−[ΣLj(t)]2
Φij≡ {nΣ [Li (t) * Lj (t)] − ΣLi (t) * ΣLj (t)}
/ {NΣLj (t) 2 − [ΣLj (t)] 2 }

(3)傾斜値に関する連立方程式の解を求める計算処理
前記式に基づいて、それぞれ5波長(λ1〜λ5)の組織透過光についての回帰直線の傾斜値(Φ12、Φ32、Φ42、Φ52)に関する4元連立方程式を立て、それらの解としてSaを求める計算を行う(図2参照)。
(3) Calculation processing for obtaining solutions of simultaneous equations related to inclination values 4 on the inclination values (Φ12, Φ32, Φ42, Φ52) of regression lines for tissue transmitted light of 5 wavelengths (λ1 to λ5), respectively The former simultaneous equations are set up and a calculation for obtaining Sa as a solution thereof is performed (see FIG. 2).

(4)連立方程式の解を平滑化する計算処理
前記4元連立方程式の解として得られたSa値は、経時的に連続するデータを時間区分して計算したものであるから、時間区分毎に大きな変化を示しているため、これを平滑化処理する。これにより、自然なSaO2の変化を求めることができる。
(4) Calculation processing for smoothing the solution of simultaneous equations The Sa value obtained as the solution of the quaternary simultaneous equations is calculated by time-dividing data that is continuous over time. Since a large change is shown, this is smoothed. Thereby, a natural change of SaO2 can be obtained.

前述した本発明に係る時間区分パルスオキシメトリにより、被験者による動脈血酸素飽和度(SaO2)の計算処理例につき、従来のパルスオキシメトリによる場合と比較し、それぞれの測定結果を示すグラフと共に説明する。   An example of calculation processing of arterial blood oxygen saturation (SaO2) by a subject using the time-segmented pulse oximetry according to the present invention described above will be described together with a graph showing respective measurement results as compared with the case of conventional pulse oximetry.

被験者の指尖に発光部10および受光部14を装着して、息こらえによってSaO2を低下させると共に、手首から先を激しく振った状態でSpO2を測定した。図3は、5波長を使用した本発明の時間区分パルスオキシメトリにより測定したSpO2の変化を示す。図4は、従来の2波長式の計算により測定したSpO2の変化を示す(この場合、体動消去の操作は行っていない)。図5は、市販のパルスオキシメータを反対の手に装着して測定したSpO2の変化を示す。
このように、本発明の時間区分パルスオキシメトリによれば、体動の影響は十分に消去され、しかもSaO2の急激な変化が明確に測定されている。特に、SaO2の低下の始まる時点が早く見出せることが確認された。
The light emitting unit 10 and the light receiving unit 14 were attached to the subject's fingertips, and SaO2 was lowered by holding the breath, and SpO2 was measured while shaking the tip of the wrist vigorously. FIG. 3 shows the change in SpO2 measured by the time segmented pulse oximetry of the present invention using 5 wavelengths. FIG. 4 shows the change in SpO2 measured by the conventional two-wavelength calculation (in this case, the body motion elimination operation is not performed). FIG. 5 shows the change in SpO2 measured with a commercially available pulse oximeter attached to the opposite hand.
Thus, according to the time-segment pulse oximetry of the present invention, the influence of body movement is sufficiently eliminated, and a rapid change in SaO2 is clearly measured. In particular, it was confirmed that the point in time at which SaO2 starts to decrease can be found early.

そして、図6の(a)、(b)、(c)は、第1計算回路36において前記回帰直線の傾斜値Φ12、Φ32、Φ42、Φ52に関する連立方程式の解として計算されたSpO2の値を示す波形図であり、(a)は平滑化をしていない状態を示し、(b)は第2計算回路38により10個のデータを平均して平滑化した状態を示し、(c)は同じく20個のデータを平均して平滑化した状態を示すものである。   6 (a), 6 (b), and 6 (c) show SpO2 values calculated by the first calculation circuit 36 as solutions of simultaneous equations relating to the slope values Φ12, Φ32, Φ42, and Φ52 of the regression line. (A) shows a state where smoothing is not performed, (b) shows a state where 10 data are averaged and smoothed by the second calculation circuit 38, and (c) is the same. This shows a state in which 20 data are averaged and smoothed.

以上、本発明の好適な実施例について説明したが、本発明は前記実施例に限定されることなく、例えば5波長を用いる場合について説明したが、波長がそれよりも多い場合にも、あるいは少ない場合にも適用できるばかりでなく、測定対象としては、血中のCOヘモグロビンや体外から注入した色素の希釈状態等の動脈血と共に拍動するもの全ての測定に適用することができ、その他本発明の精神を逸脱しない範囲内において、多くの設計変更が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. For example, the case where five wavelengths are used has been described, but the number of wavelengths is larger or smaller than that. In addition to being applicable to the case, the measurement object can be applied to the measurement of all pulsating with arterial blood such as CO hemoglobin in blood or a diluted state of dye injected from outside the body. Many design changes can be made without departing from the spirit.

本発明に係る時間区分パルスオキシメトリを実施するパルスオキシメータとしての装置構成を示す概略構成図である。It is a schematic block diagram which shows the apparatus structure as a pulse oximeter which implements the time division pulse oximetry which concerns on this invention. 図1に示すパルスオキシメータの計算部におけるパルスオキシメトリのシステム構成を示す説明図である。It is explanatory drawing which shows the system structure of the pulse oximetry in the calculation part of the pulse oximeter shown in FIG. 本発明に係る時間区分パルスオキシメトリにより測定されたSpO2の変化を示す波形図である。It is a wave form diagram which shows the change of SpO2 measured by the time division pulse oximetry which concerns on this invention. 従来の2波長式パルスオキシメトリにより測定されたSpO2の変化を示す波形図である。It is a wave form diagram which shows the change of SpO2 measured by the conventional 2 wavelength type pulse oximetry. 市販のパルスオキシメータにより測定されたSpO2の変化を示す波形図である。It is a wave form diagram which shows the change of SpO2 measured with the commercially available pulse oximeter. (a)〜(c)は本発明に係る時間区分パルスオキシメトリにより測定されたSpO2の変化を示す波形図であって、(a)は平滑化処理をしていない状態の波形図、(b)は10個のデータを平均する平滑化処理をした状態の波形図、(c)は20個のデータを平均する平滑化処理をした状態の波形図である。(A)-(c) is a wave form diagram which shows the change of SpO2 measured by the time division pulse oximetry which concerns on this invention, Comprising: (a) is a wave form diagram in the state which has not performed the smoothing process, (b) ) Is a waveform diagram in a state in which smoothing processing is performed to average 10 data, and (c) is a waveform diagram in a state in which smoothing processing is performed to average 20 data.

符号の説明Explanation of symbols

10 発光部
12 生体組織
14 受光部
16 電流電圧変換器
18 AD変換器
20 記憶部
20A〜20E 透過光信号一時記憶器
22 タイミング器
30 計算部
32 透過光信号の区分記憶部
32A〜32E 区分記憶回路
34 回帰直線の傾斜値計算部
34a〜34d 傾斜値計算回路
36 第1計算回路
38 第2計算回路
LED1〜LED5 発光素子
PD 受光素子
DESCRIPTION OF SYMBOLS 10 Light emission part 12 Biological tissue 14 Light reception part 16 Current voltage converter 18 AD converter 20 Memory | storage parts 20A-20E Transmitted light signal temporary storage 22 Timing unit 30 Calculation part 32 Transmitted light signal division | segmentation memory | storage parts 32A-32E 34. Regression line inclination value calculation units 34a to 34d Inclination value calculation circuit 36 First calculation circuit 38 Second calculation circuit LED1 to LED5

Claims (2)

発光素子により複数個の異なる波長の光をそれぞれ生体組織に照射し、
前記生体組織を透過または反射した光を受光素子により受光してそれぞれ電気信号に変換し、
前記受光素子により得られる電気信号の時系列データを一定時間毎に区分し、
それぞれ一定時間毎に区分された時系列データについて異なる2波長間の回帰直線の傾斜値をそれぞれ算出し、
算出された傾斜値をそれぞれSaO2に換算後、平滑し、
あるいは傾斜値の時系列を平滑化後SaO2に換算し、
体動による影響を消去した動脈血の酸素飽和度を求めることを特徴とするパルスオキシメトリ。
Irradiate a living tissue with light of a plurality of different wavelengths by a light emitting element,
The light transmitted through or reflected by the living tissue is received by a light receiving element and converted into electrical signals, respectively.
The time series data of the electrical signal obtained by the light receiving element is divided at regular intervals,
Calculate the slope of the regression line between two different wavelengths for each time-series data divided at regular intervals.
Each calculated slope value is converted into SaO2, smoothed,
Alternatively, the time series of slope values is converted into SaO2 after smoothing,
Pulse oximetry characterized by determining the oxygen saturation of arterial blood that has eliminated the effects of body movement.
複数個の異なる波長の光をそれぞれ生体組織に照射する発光部と、
前記発光部から発せられ生体組織を透過または反射した光を受光して、それぞれ電気信号に変換する受光部と、
前記受光部から変換出力される各波長の透過光または反射光の電気信号からなる時系列データを一定時間毎に区分する処理装置と、
区分された時間毎の前記時系列データについて異なる2波長間の回帰直線の傾斜値をそれぞれ算出する傾斜値演算装置と、
前記算出された傾斜値をそれぞれSaO2に換算して平滑化し、あるいは前記算出された傾斜値を平滑化してSaO2に換算する換算平滑化装置とを備え、
体動による影響を消去した動脈血の酸素飽和度を求めることを特徴とするパルスオキシメータ。
A light emitting unit for irradiating a living tissue with light of different wavelengths,
A light receiving unit that receives light emitted from the light emitting unit and transmitted or reflected through the living tissue, and converts the light into electrical signals;
A processing device that divides time-series data composed of electrical signals of transmitted light or reflected light of each wavelength converted and output from the light receiving unit at regular intervals;
An inclination value calculation device for calculating an inclination value of a regression line between two different wavelengths for the time-series data for each divided time;
Each of the calculated slope values is converted to SaO2 for smoothing, or the calculated slope value is smoothed and converted to SaO2 for smoothing,
A pulse oximeter characterized by obtaining the oxygen saturation of arterial blood from which the influence of body movement has been eliminated.
JP2006229794A 2005-08-30 2006-08-25 Time division pulse oximetry and pulse oximeter Active JP4844291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229794A JP4844291B2 (en) 2005-08-30 2006-08-25 Time division pulse oximetry and pulse oximeter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005248922 2005-08-30
JP2005248922 2005-08-30
JP2006229794A JP4844291B2 (en) 2005-08-30 2006-08-25 Time division pulse oximetry and pulse oximeter

Publications (2)

Publication Number Publication Date
JP2007090047A JP2007090047A (en) 2007-04-12
JP4844291B2 true JP4844291B2 (en) 2011-12-28

Family

ID=37976376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229794A Active JP4844291B2 (en) 2005-08-30 2006-08-25 Time division pulse oximetry and pulse oximeter

Country Status (1)

Country Link
JP (1) JP4844291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115855B2 (en) 2008-06-19 2013-01-09 日本光電工業株式会社 Pulse oximetry and pulse oximeter
CN103608661B (en) * 2011-05-04 2017-07-11 西门子医疗保健诊断公司 For the mthods, systems and devices of specimen illumination

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172443A (en) * 1988-12-23 1990-07-04 Minolta Camera Co Ltd Photoelectric pulse wave type oxymeter
JP3364819B2 (en) * 1994-04-28 2003-01-08 日本光電工業株式会社 Blood absorption substance concentration measurement device
JP3270917B2 (en) * 1994-06-02 2002-04-02 日本光電工業株式会社 Oxygen saturation measuring device, blood light absorbing substance concentration measuring device, and biological signal processing method
JP2000037371A (en) * 1998-07-24 2000-02-08 Nippon Koden Corp Blood light absorptive material concentration measuring instrument
JP2003194714A (en) * 2001-12-28 2003-07-09 Omega Wave Kk Measuring apparatus for blood amount in living-body tissue
JP2003339678A (en) * 2002-05-30 2003-12-02 Minolta Co Ltd Instrument for measuring blood state
JP4399847B2 (en) * 2003-08-27 2010-01-20 日本光電工業株式会社 Pulse oximeter

Also Published As

Publication number Publication date
JP2007090047A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5115855B2 (en) Pulse oximetry and pulse oximeter
US8024021B2 (en) Time-segmented pulse oximetry and pulse oximeter performing the same
EP1121051B1 (en) Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6754515B1 (en) Stabilization of noisy optical sources in photoplethysmography
US8777867B2 (en) Detection of oximetry sensor sites based on waveform characteristics
JP5096310B2 (en) Method and apparatus for determining blood perfusion in a body part
CN103381094B (en) Monitoring system and method for fetus pulse blood oxygen saturation
US8649838B2 (en) Wavelength switching for pulse oximetry
US20090247849A1 (en) Pulse Oximeter With Adaptive Power Conservation
US8401608B2 (en) Method of analyzing photon density waves in a medical monitor
JPH10262957A (en) Method and device monitoring oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methohemoglobin by improved optical plethysmography
JP2003530189A (en) Pulse oximeter sensor with piecewise function
US20050049469A1 (en) Pulse oximeter
US8870783B2 (en) Pulse rate determination using Gaussian kernel smoothing of multiple inter-fiducial pulse periods
CN109497977A (en) Human heart rate and method for detecting blood oxygen saturation and device
US20120310060A1 (en) Method of analyzing photon density waves in a medical monitor
EP3928689A1 (en) Apparatus and method for compensating assessment of peripheral arterial tone
JP3107630B2 (en) Pulse oximeter
JP2023532318A (en) Method and apparatus for assessing peripheral arterial tone
US20110071378A1 (en) Signal Processing Warping Technique
JP4399847B2 (en) Pulse oximeter
JP4844291B2 (en) Time division pulse oximetry and pulse oximeter
JP2007295973A (en) Pulse oxymeter
EP2552317A1 (en) Multi-wavelength photon density wave system using an optical switch
US20140187884A1 (en) Systems and methods for ensemble averaging in pulse oximetry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250