JP4844087B2 - Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input - Google Patents

Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input Download PDF

Info

Publication number
JP4844087B2
JP4844087B2 JP2005317029A JP2005317029A JP4844087B2 JP 4844087 B2 JP4844087 B2 JP 4844087B2 JP 2005317029 A JP2005317029 A JP 2005317029A JP 2005317029 A JP2005317029 A JP 2005317029A JP 4844087 B2 JP4844087 B2 JP 4844087B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrogen concentration
degassing
molten steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005317029A
Other languages
Japanese (ja)
Other versions
JP2007119894A (en
Inventor
健治 安藤
隆司 高岡
芳和 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005317029A priority Critical patent/JP4844087B2/en
Publication of JP2007119894A publication Critical patent/JP2007119894A/en
Application granted granted Critical
Publication of JP4844087B2 publication Critical patent/JP4844087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空脱ガス処理による溶鋼中の窒素濃度調整方法、及びそれを利用した、例えば造船向けの厚板に適した大入熱用鋼の製造方法に関するものである。   The present invention relates to a method for adjusting a nitrogen concentration in molten steel by vacuum degassing treatment, and a method for producing steel for high heat input suitable for a thick plate for shipbuilding, for example.

溶鋼中の窒素濃度の調整方法としては、例えば特許文献1に記載した技術がある。この特許文献1には、窒素ガス及びアルゴンガスをそれぞれ単独で吹き込む第1の従来技術として、(1)真空脱ガス処理前に決められた窒素吹込時間だけ窒素を吹き込んで真空脱ガス処理を行った後に、吹き込む不活性ガスをアルゴンガスに切り替えて、溶鋼が所定温度となるまでアルゴンガスを吹き込む技術が開示されている。
また、第2の従来技術として、窒素ガスを吹き込みながら真空脱ガス処理を行い、その脱ガス処理中に溶鋼の窒素濃度を測定し、測定結果に基づき真空脱ガス装置内の圧力を調整して溶鋼中の窒素濃度を調整する方法が開示されている。
特開2000-34513号公報
As a method for adjusting the nitrogen concentration in molten steel, for example, there is a technique described in Patent Document 1. In Patent Document 1, as a first conventional technique in which nitrogen gas and argon gas are individually blown, (1) vacuum degassing is performed by blowing nitrogen for a nitrogen blowing time determined before vacuum degassing. After that, a technique is disclosed in which the inert gas to be blown is switched to argon gas and the argon gas is blown until the molten steel reaches a predetermined temperature.
As a second prior art, vacuum degassing is performed while blowing nitrogen gas, and the nitrogen concentration of the molten steel is measured during the degassing, and the pressure in the vacuum degassing apparatus is adjusted based on the measurement result. A method for adjusting the nitrogen concentration in molten steel is disclosed.
JP 2000-34513 A

しかし、第1の従来技術では、目標窒素濃度の的中率が悪いと共に、アルゴンガスの吹込時間が変動する結果、脱ガス処理に要する時間が変動して、後工程の操業に悪影響が出る。例えば、決まった時間に後工程の連続鋳造などの処理を行うことができない。
また、第2の技術では、真空脱ガスの処理中に処理中の溶鋼の窒素濃度を測定する必要があると共に、測定結果に基づき圧力を変更する制御が必要であり制御が複雑になるおそれがある。特に、真空脱ガス処理中の圧力を変動させることが外乱となるおそれがある結果、窒素濃度の的中の精度が落ちる可能性がある。
本発明は、上記のような点に着目してなされたもので、簡易な調整で窒素濃度の的中精度を向上できると共に、要求される窒素濃度の範囲が小さな鋼種であっても目的とする窒素濃度の鋼を製造しやすくすることを課題としている。
However, in the first prior art, the target nitrogen concentration has a poor target ratio, and the argon gas blowing time fluctuates. As a result, the time required for the degassing treatment fluctuates, which adversely affects the subsequent process operation. For example, processing such as continuous casting in a subsequent process cannot be performed at a fixed time.
Further, in the second technique, it is necessary to measure the nitrogen concentration of the molten steel being processed during the vacuum degassing process, and it is necessary to control to change the pressure based on the measurement result, which may be complicated. is there. In particular, there is a possibility that fluctuation of the pressure during the vacuum degassing process may cause disturbance, and as a result, the accuracy of the nitrogen concentration may be reduced.
The present invention has been made paying attention to the above points, and can improve the accuracy of the nitrogen concentration by simple adjustment, and is intended even for a steel type having a small range of the required nitrogen concentration. The task is to make it easier to manufacture steel with a nitrogen concentration.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、真空脱ガス装置内に収容した溶鋼に対し、予め設定した所定吹込時間だけ不活性ガスとして窒素ガス若しくはアルゴンガスを吹き込んで脱ガス処理を行う際に、まず窒素吹込時間だけ窒素ガスを吹き込んで加窒を行った後、残りの吹込時間、アルゴンガスを吹き込んで脱窒を行う溶鋼中の窒素濃度調整方法において、
脱ガス処理を開始する際に溶鋼のサンプルを採取し、脱ガス処理中にサンプルを分析して脱ガス処理開始時の溶鋼の窒素濃度に求め、その求めた窒素濃度に基づき、予め求めた下式を用いて脱ガス処理終了時の窒素濃度が目標窒素濃度Ntargetとなる上記窒素吹込時間Tnを算出し、その算出した窒素吹込時間Tnとなったら、窒素ガスからアルゴンガスに吹き込む不活性ガスを切り替えることを特徴とするものである。
Tn =(Ntarget −K×N0 +Vr×T)/(Vn−Vr)
ここで、
K:脱ガス処理前の窒素濃度の脱ガス処理後の窒素濃度への影響係数
N0:脱ガス処理前の窒素濃度
Vn:窒素吹き込みによる加窒速度
Vr:アルゴン吹き込みよる脱窒速度
T:脱ガス処理時間
である。
次に、請求項2に記載した発明は、真空脱ガス処理を行った溶鋼をタンディッシュに供給して連続鋳造を行って、溶接熱影響部靭性の優れた高張力鋼である大入熱用鋼のスラブを製造する大入熱用鋼の製造方法において、
上記タンディッシュに供給する溶鋼中の窒素濃度を40〜60ppm、Ti濃度を0.010〜0.014質量%、且つTi/N質量比を2.00〜3.17となるように、上記請求項1に記載した窒素濃度調整方法で上記真空脱ガス処理を行うことを特徴とするものである。
In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention uses nitrogen gas or argon gas as an inert gas for a preset predetermined blowing time with respect to the molten steel accommodated in the vacuum degassing apparatus. When performing degassing by blowing, first nitrogen gas is blown for the nitrogen blowing time and then nitriding, and then the remaining blowing time, in the nitrogen concentration adjustment method in the molten steel that blows argon gas to perform denitrification,
Taken molten steel sample at the start of degassing, by analyzing the samples during degassing required in the nitrogen concentration of the molten steel at the start of degassing, on the basis of the nitrogen concentration obtained were determined in advance under The nitrogen blowing time Tn at which the nitrogen concentration at the end of the degassing process becomes the target nitrogen concentration Ntarget is calculated using the equation, and when the calculated nitrogen blowing time Tn is reached, the inert gas blown into the argon gas from the nitrogen gas is calculated. It is characterized by switching.
Tn = (Ntarget−K × N0 + Vr × T) / (Vn−Vr)
here,
K: Influence coefficient of nitrogen concentration before degassing treatment on nitrogen concentration after degassing treatment
N0: Nitrogen concentration before degassing
Vn: Nitrogen blowing speed by nitrogen blowing
Vr: Denitrification rate by blowing argon
T: Degassing processing time
It is.
Next, the invention described in claim 2 is for high heat input, which is a high strength steel having excellent weld heat affected zone toughness by supplying molten steel that has been vacuum degassed to a tundish and performing continuous casting. In the manufacturing method of steel for large heat input that manufactures steel slabs,
The above claim so that the nitrogen concentration in the molten steel supplied to the tundish is 40 to 60 ppm , the Ti concentration is 0.010 to 0.014 mass%, and the Ti / N mass ratio is 2.00 to 3.17. The vacuum degassing treatment is performed by the nitrogen concentration adjusting method described in Item 1.

本発明によれば、簡易な調整で窒素濃度の的中精度を向上できると共に、要求される窒素濃度の範囲が小さな鋼種であっても目的とする窒素濃度の鋼を製造しやすくなる。
これによって、所望の窒素濃度の大入熱用鋼を歩留まり良く製造することが容易となる。このとき、窒素濃度を40〜60ppm好ましくは40〜55ppmに調整することで、溶接熱影響部靭性が向上すると共に、連続鋳造時におけるスラブ粒界割れが起こりにくい大入熱用鋼を製造できるようになる。
According to the present invention, the accuracy of the nitrogen concentration can be improved by simple adjustment, and it becomes easy to produce a steel having a target nitrogen concentration even if the required steel concentration range is small.
This makes it easy to produce a high heat input steel having a desired nitrogen concentration with a high yield. At this time, by adjusting the nitrogen concentration to 40 to 60 ppm, preferably 40 to 55 ppm, the weld heat affected zone toughness can be improved, and a steel for high heat input that can hardly cause slab grain boundary cracking during continuous casting can be produced. become.

次に、本発明の実施形態について図面を参照しつつ説明する。
本実施形態は、大入熱用鋼のスラブを製造するものであって、その溶鋼を、図1に示すように、RH法の真空脱ガス装置で脱ガス処理を行う工程(A)、CaSiの添加工程(B)、及び連続鋳造工程(C)が施される。なお、CaSiの添加工程(B)は省略する場合もある。
Next, embodiments of the present invention will be described with reference to the drawings.
This embodiment manufactures a slab of steel for high heat input, and the molten steel is degassed with an RH vacuum degassing apparatus as shown in FIG. The addition step (B) and the continuous casting step (C) are performed. The CaSi addition step (B) may be omitted.

上記真空脱ガス装置は、公知のように、鍋1内の溶鋼2を真空槽3内に吸い上げ真空と接触させて真空精錬を行うもので、2本の浸漬管4,5のうちの一方の上昇用浸漬管4内を通過する溶鋼に不活性ガスを吹込ながらリフトポンプの原理で溶鋼を真空槽3に吸い上げ、また他方の下降用浸漬管5を通じて真空槽3内から鍋4内に溶鋼2を戻すことで、溶鋼2を循環させつつ脱ガスを行うものである。なお、真空槽3内の雰囲気ガスは排気される。本実施形態では、上記上昇用浸漬管4内に吹き込む不活性ガスとして、窒素ガス及びアルゴンガスが排他的に吹き込み可能となっている。   The vacuum degassing apparatus, as is well known, performs vacuum refining by sucking the molten steel 2 in the pan 1 into the vacuum chamber 3 and bringing it into contact with the vacuum. One of the two dip tubes 4 and 5 is used. While the inert gas is blown into the molten steel passing through the ascending dip tube 4, the molten steel is sucked into the vacuum chamber 3 by the principle of a lift pump, and the molten steel 2 is introduced into the pan 4 from the vacuum vessel 3 through the other dip tube 5. By degassing, degassing is performed while circulating the molten steel 2. Note that the atmospheric gas in the vacuum chamber 3 is exhausted. In the present embodiment, nitrogen gas and argon gas can be exclusively blown as the inert gas blown into the ascending dip tube 4.

そして、真空脱ガス処理装置による脱ガス処理の脱ガス処理時間Tは、後工程である連続鋳造機による予定の鋳込み時刻が設定されるが、予め決められており、図2に示すように、その脱ガス処理中、前半が窒素ガスを吹き込みながら脱ガス処理が行われ、途中でガスの切り替えが行われ、後半はアルゴンガスを吹き込みながら脱ガス処理が行われる。ここで、窒素ガスを吹き込む窒素吹込時間をTnとし、アルゴンガスを吹き込むアルゴン吹込時間をTrとしたとき、脱処理時間T=Tn+Trの関係にあり、初期値として所定の窒素吹込時間Tn0が設定されている。なお、上記時間の単位を分とする。   And the degassing time T of the degassing process by the vacuum degassing apparatus is set to a predetermined casting time by the continuous casting machine as a subsequent process, and as shown in FIG. During the degassing process, the first half is degassed while nitrogen gas is being blown in, the gas is switched halfway, and the second half is degassed while being blown in argon gas. Here, assuming that the nitrogen blowing time for blowing nitrogen gas is Tn and the argon blowing time for blowing argon gas is Tr, there is a relationship of detreatment time T = Tn + Tr, and a predetermined nitrogen blowing time Tn0 is set as an initial value. ing. The unit of time is minutes.

予め決められた真空脱ガス処理の条件下における、窒素吹き込みによる加窒速度Vn、アルゴン吹き込みよる脱窒速度Vr、及び、脱ガス処理前の窒素濃度の脱ガス処理後の窒素濃度への影響係数Kを、実験などによって予め求めておく。上記窒息ガス及びアルゴンガスの流量は一定に設定されている。
なお、加窒速度Vn、脱窒速度Vrは処理前窒素濃度により変化するため、鋼種及び処理前窒素濃度による影響を予め求めておくことにより、的中精度はより向上できる。
Nitrogen blowing rate Vn by nitrogen blowing, denitrification rate Vr by argon blowing, and influence coefficient of nitrogen concentration before degassing treatment on nitrogen concentration after degassing treatment under predetermined vacuum degassing treatment conditions K is obtained in advance by experiments or the like. The flow rates of the suffocation gas and argon gas are set constant.
In addition, since the nitriding speed Vn and the denitrification speed Vr vary depending on the nitrogen concentration before treatment, the accuracy of hitting can be further improved by obtaining in advance the influence of the steel type and the nitrogen concentration before treatment.

そして、目標窒濃度をNtargetとし、脱ガス処理前の窒素濃度をN0(ppm)とすると、下記式を満足するように制御をすれば良いことが分かる。
Ntarget =K×N0 +Vn×Tn −Vr×Tr・・・(1)
ここで、T =Tn +Trであるから、次のように記載できるので、下記式となる。
Ntarget =K×N0 +Vn×Tn −Vr×(T−Tn)
この式を変形すると、
Tn =(Ntarget −K×N0 +Vr×T)/(Vn−Vr)・・・(2)
Then, the target nitrogen concentration of Ntarget, when the nitrogen concentration before degassing N0 (ppm), or it can be seen that if the control so as to satisfy the following equation.
Ntarget = K * N0 + Vn * Tn-Vr * Tr (1)
Here, since T = Tn + Tr, since it can be described as follows, the following equation is obtained.
Ntarget = K * N0 + Vn * Tn-Vr * (T-Tn)
If this equation is transformed,
Tn = (Ntarget−K × N0 + Vr × T) / (Vn−Vr) (2)

そして、本実施形態では、脱ガス直前に鍋内の溶鋼からサンプルを採取した後に、窒素ガスを吹き込みながら脱ガス処理を開始する。この脱ガス処理中に、採取したサンプルを分析して処理前の窒素濃度N0を算出する。上記サンプルの分析は例えば10分程度の時間を要する。処理前の窒素濃度N0を算出したら、上記(2)式に基づき、窒素吹込時間Tnを求め、脱ガス処理開始から時間Tnだけ経過したら、吹き込むガスを窒素からアルゴンに変更し、Trの時間アルゴンを吹き込みながら脱ガス処理を行う。
これによって、目標とする窒素濃度Ntargetに脱ガス処理後の窒素濃度を的中させる。
上記脱ガス処理の工程が終了したら、前述の通り、CaSiの添加工程、及び連続鋳造工程を行いスラブを形成する。
And in this embodiment, after taking a sample from the molten steel in a pan just before degassing, degassing processing is started, blowing nitrogen gas. During this degassing process, the collected sample is analyzed to calculate the nitrogen concentration N0 before the process. The analysis of the sample requires, for example, about 10 minutes. After calculating the nitrogen concentration N0 before the treatment, the nitrogen blowing time Tn is obtained based on the above equation (2). When the time Tn has elapsed from the start of the degassing treatment, the blowing gas is changed from nitrogen to argon, and the time of Tr Degassing is performed while blowing.
As a result, the target nitrogen concentration N target is set to the target nitrogen concentration after degassing.
When the degassing process is completed, as described above, a CaSi addition process and a continuous casting process are performed to form a slab.

Figure 0004844087
Figure 0004844087

ここで、表1に記載する成分の大入熱用鋼を製造するに当たり、上記(1)式の各係数について重回帰を使用して求めたところ、
窒素吹き込みによる加窒速度Vn=0.616
アルゴン吹き込みよる脱窒速度Vr=0.203
影響係数K=0.025
となった。
つまり、(1)式が
Ntarget =0.025×N0 +0.616×Tn −0.203×Tr
・・・(3)
と表された。なお、上記係数は、脱ガス処理の条件、例えば真空度や溶鋼の温度や量によって変わるものである。予め実験などによって、決定しておく。
Here, when producing the steel for large heat input having the components described in Table 1, the coefficients of the above equation (1) were determined using multiple regression,
Nitrogen blowing rate for nitriding Vn = 0.616
Denitrification rate Vr = 0.203 by blowing argon
Influence coefficient K = 0.025
It became.
That is, the equation (1) is expressed as follows: Ntarget = 0.025 × N0 + 0.616 × Tn−0.203 × Tr
... (3)
It was expressed. In addition, the said coefficient changes with conditions of degassing processing, for example, a vacuum degree, the temperature and quantity of molten steel. It is determined in advance by experiments or the like.

そして、上記(3)式を使用して脱ガス処理中に窒素吹込時間Tnを算出し、目標とする窒素濃度Ntargetとなるように、窒素吹込時間Tnとなったら、窒素ガスからアルゴンガスへ吹き込む不活性ガスを切り替えて脱ガス処理を行ったところ、高い的中精度で脱ガス処理後の窒素濃度を目標窒素濃度Ntargetにすることができた。
なお、実験は、目標窒素濃度Ntarget=50ppmとし、50±10ppmに収まったかどうかで判断した。
Then, the nitrogen blowing time Tn is calculated during the degassing process using the above formula (3), and when the nitrogen blowing time Tn is reached, the nitrogen blowing time Tn is blown into the argon gas so that the target nitrogen concentration Ntarget is obtained. When the degassing process was performed by switching the inert gas, the nitrogen concentration after the degassing process could be set to the target nitrogen concentration Ntarget with high accuracy.
In the experiment, the target nitrogen concentration Ntarget = 50 ppm was determined based on whether it was within 50 ± 10 ppm.

ここで、上記窒素濃度調整方法では、全体の処理時間Tを変更しないため、後工程の処理に影響が出ることがない。また、予め決定した時間Tで処理が終了すると共に、脱ガス処理の真空度などを変更しないため、処理後の溶鋼温度を予め決定した所望の温度で後工程に送ることが出来る。また、不活性ガスの切り替え時を調整するだけであるので、窒素濃度調整以外の脱ガス処理への外乱も小さくて済み、精度良く脱ガス処理を行うことができる。   Here, in the nitrogen concentration adjusting method, since the entire processing time T is not changed, the subsequent processing is not affected. Further, since the process is completed at a predetermined time T and the degree of vacuum of the degassing process is not changed, the molten steel temperature after the process can be sent to a subsequent process at a predetermined desired temperature. Further, since only the adjustment of the inert gas is adjusted, disturbance to the degassing process other than the nitrogen concentration adjustment can be reduced, and the degassing process can be performed with high accuracy.

上記のように真空脱ガス処理での窒素ガス濃度調整によって、窒素濃度を40〜60ppm、好ましくは40〜55ppmに調整した溶鋼を、連続鋳造機のタンディッシュに供給して、連続鋳造を行い大入熱用鋼のスラブを製造する。
ここで、上記表1のように、Tiを0.010〜0.014質量%にすることで、
(Ti/N)を2.00〜3.17の範囲に調整される。これによって、すなわち、図3に示す目標範囲にTi及びNの成分量が調整されている。
By adjusting the nitrogen gas concentration in the vacuum degassing treatment as described above, the molten steel adjusted to a nitrogen concentration of 40 to 60 ppm, preferably 40 to 55 ppm, is supplied to the tundish of a continuous casting machine to perform continuous casting and perform large casting. Manufactures steel slabs for heat input.
Here, as shown in Table 1 above, by setting Ti to 0.010 to 0.014% by mass,
(Ti / N) is adjusted to a range of 2.00 to 3.17. Accordingly, that is, the component amounts of Ti and N are adjusted within the target range shown in FIG.

上記のような窒素濃度の大入熱用の溶鋼で連続鋳造を行った場合には、鋳造の曲げ部において、Nb(C,N)やAlを媒体として発生するおそれのあるスラブ粒界割れを防止できた。
また、上記製造した大入熱用鋼のスラブからなる大入熱用鋼は、鋼中に、TiNが微細析出してγ結晶粒の粗大化が抑制された鋼材となり、溶接熱影響部(HAZ)の靭性が優れた高張力鋼であることが確認できた。
When continuous casting is performed with molten steel for high heat input with a nitrogen concentration as described above, slab intergranular cracking that may occur using Nb (C, N) or Al as a medium in the bent portion of the casting. I was able to prevent it.
Moreover, the high heat input steel made of the slab of the high heat input steel produced above becomes a steel material in which TiN is finely precipitated in the steel and the coarsening of the γ crystal grains is suppressed, and the heat affected zone (HAZ) It was confirmed that the steel was a high strength steel with excellent toughness.

ここで、窒素が40ppm未満であると、TiNが微細析出しがたくなり、窒素が60ppmを越えると連続鋳造時にスラブ粒界割れが起こり易いことを突き止めたため、窒素成分を40〜60ppmの範囲に規定している。
ここで、CaSiの添加工程を行う場合には、図4のように、CaSiの添加によって窒素濃度が上がることを考慮して、その分、真空脱ガス処理後の目標窒素濃度Ntargetを小さく、例えば40ppmに設定する。
Here, when nitrogen is less than 40 ppm, TiN hardly precipitates, and when nitrogen exceeds 60 ppm, it has been found that slab grain boundary cracking is likely to occur during continuous casting, so the nitrogen component is in the range of 40 to 60 ppm. It prescribes.
Here, when performing the addition process of CaSi, as shown in FIG. 4, considering that the nitrogen concentration increases due to the addition of CaSi, the target nitrogen concentration Ntarget after the vacuum degassing process is reduced accordingly, for example, Set to 40 ppm.

本発明に基づく実施形態に係る処理工程を示す図である。It is a figure which shows the process process which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る脱ガス処理時の窒素濃度調整を説明する図である。It is a figure explaining nitrogen concentration adjustment at the time of degassing processing concerning an embodiment based on the present invention. 本発明に基づく実施形態に係る成分範囲を説明する図である。It is a figure explaining the component range which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る窒素濃度の挙動を示す図である。It is a figure which shows the behavior of the nitrogen concentration which concerns on embodiment based on this invention.

符号の説明Explanation of symbols

1 鍋
2 溶鋼
3 真空槽
T トータルな吹込時間
Tn 窒素吹込時間
Tr アルゴン吹込時間
N0 処理前の窒素濃度
Ntarget 目標窒素濃度
Vn 加窒速度
Vr 脱窒速度
1 Pan 2 Molten Steel 3 Vacuum Tank T Total Blow Time Tn Nitrogen Blow Time Tr Argon Blow Time N0 Nitrogen Concentration Before Treatment Ntarget Target Nitrogen Concentration Vn Nitrogenation Rate Vr Denitrification Rate

Claims (2)

真空脱ガス装置内に収容した溶鋼に対し、予め設定した所定吹込時間だけ不活性ガスとして窒素ガス若しくはアルゴンガスを吹き込んで脱ガス処理を行う際に、まず窒素吹込時間だけ窒素ガスを吹き込んで加窒を行った後、残りの吹込時間、アルゴンガスを吹き込んで脱窒を行う溶鋼中の窒素濃度調整方法において、
脱ガス処理を開始する際に溶鋼のサンプルを採取し、脱ガス処理中にサンプルを分析して脱ガス処理開始時の溶鋼の窒素濃度に求め、その求めた窒素濃度に基づき、予め求めた下式を用いて脱ガス処理終了時の窒素濃度が目標窒素濃度Ntargetとなる上記窒素吹込時間Tnを算出し、その算出した窒素吹込時間Tnとなったら、窒素ガスからアルゴンガスに吹き込む不活性ガスを切り替えることを特徴とする溶鋼中の窒素濃度調整方法。
Tn =(Ntarget −K×N0 +Vr×T)/(Vn−Vr)
ここで、
K:脱ガス処理前の窒素濃度の脱ガス処理後の窒素濃度への影響係数
N0:脱ガス処理前の窒素濃度
Vn:窒素吹き込みによる加窒速度
Vr:アルゴン吹き込みよる脱窒速度
T:脱ガス処理時間
である。
When nitrogen gas or argon gas is blown into the molten steel contained in the vacuum degassing apparatus as an inert gas for a preset predetermined blowing time to perform the degassing treatment, nitrogen gas is first blown in for the nitrogen blowing time. In the method of adjusting the nitrogen concentration in the molten steel, after performing nitrogen, the remaining blowing time, argon gas is blown to denitrify,
Taken molten steel sample at the start of degassing, by analyzing the samples during degassing required in the nitrogen concentration of the molten steel at the start of degassing, on the basis of the nitrogen concentration obtained were determined in advance under The nitrogen blowing time Tn at which the nitrogen concentration at the end of the degassing process becomes the target nitrogen concentration Ntarget is calculated using the equation, and when the calculated nitrogen blowing time Tn is reached, the inert gas blown into the argon gas from the nitrogen gas is calculated. A method for adjusting the nitrogen concentration in molten steel, characterized by switching.
Tn = (Ntarget−K × N0 + Vr × T) / (Vn−Vr)
here,
K: Influence coefficient of nitrogen concentration before degassing treatment on nitrogen concentration after degassing treatment
N0: Nitrogen concentration before degassing
Vn: Nitrogen blowing speed by nitrogen blowing
Vr: Denitrification rate by blowing argon
T: Degassing processing time
It is.
真空脱ガス処理を行った溶鋼をタンディッシュに供給して連続鋳造を行って、溶接熱影響部靭性の優れた高張力鋼である大入熱用鋼のスラブを製造する大入熱用鋼の製造方法において、
上記タンディッシュに供給する溶鋼中の窒素濃度を40〜60ppm、Ti濃度を0.010〜0.014質量%、且つTi/N質量比を2.00〜3.17となるように、上記請求項1に記載した窒素濃度調整方法で上記真空脱ガス処理を行うことを特徴とする大入熱用鋼の製造方法。
Supplying molten steel that has been vacuum degassed to a tundish and performing continuous casting to produce a high heat input steel slab that is a high strength steel with excellent weld heat affected zone toughness. In the manufacturing method,
The above claim so that the nitrogen concentration in the molten steel supplied to the tundish is 40 to 60 ppm , the Ti concentration is 0.010 to 0.014 mass%, and the Ti / N mass ratio is 2.00 to 3.17. A method for producing steel for high heat input, wherein the vacuum degassing treatment is performed by the method for adjusting a nitrogen concentration according to Item 1.
JP2005317029A 2005-10-31 2005-10-31 Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input Active JP4844087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317029A JP4844087B2 (en) 2005-10-31 2005-10-31 Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317029A JP4844087B2 (en) 2005-10-31 2005-10-31 Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input

Publications (2)

Publication Number Publication Date
JP2007119894A JP2007119894A (en) 2007-05-17
JP4844087B2 true JP4844087B2 (en) 2011-12-21

Family

ID=38144036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317029A Active JP4844087B2 (en) 2005-10-31 2005-10-31 Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input

Country Status (1)

Country Link
JP (1) JP4844087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757816B2 (en) 2010-10-04 2014-06-24 Hitachi Consumer Electronics Co., Ltd. Laser projector and method of scanning laser beam
KR101485915B1 (en) * 2012-12-27 2015-01-26 주식회사 포스코 Treatment method for molten metal and metal sheet by manufacturing using the same
KR20170007368A (en) 2014-07-09 2017-01-18 제이에프이 스틸 가부시키가이샤 Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429120B2 (en) * 2010-09-17 2014-02-26 新日鐵住金株式会社 Continuous casting method
KR101456448B1 (en) 2013-02-05 2014-10-31 주식회사 포스코 Refining method of steel
KR101796089B1 (en) * 2016-09-06 2017-11-10 주식회사 포스코 Method for manufacturing steel
JP6838419B2 (en) * 2017-02-15 2021-03-03 日本製鉄株式会社 Melting method of high nitrogen and low oxygen steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122088B2 (en) * 1991-09-06 1995-12-25 川崎製鉄株式会社 Method for manufacturing slabs for grain-oriented silicon steel
JPH08100211A (en) * 1994-09-30 1996-04-16 Nkk Corp Nitrogen control method for rh vacuum degassing equipment
JP4074536B2 (en) * 2002-03-19 2008-04-09 新日本製鐵株式会社 Steel with excellent toughness of base metal and weld heat affected zone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757816B2 (en) 2010-10-04 2014-06-24 Hitachi Consumer Electronics Co., Ltd. Laser projector and method of scanning laser beam
KR101485915B1 (en) * 2012-12-27 2015-01-26 주식회사 포스코 Treatment method for molten metal and metal sheet by manufacturing using the same
KR20170007368A (en) 2014-07-09 2017-01-18 제이에프이 스틸 가부시키가이샤 Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method
US10641711B2 (en) 2014-07-09 2020-05-05 Jfe Steel Corporation Method for analyzing nitrogen in metal sample, apparatus for analyzing nitrogen in metal sample, method for adjusting nitrogen concentration in molten steel, and method for manufacturing steel

Also Published As

Publication number Publication date
JP2007119894A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4844087B2 (en) Method for adjusting nitrogen concentration in molten steel and method for producing steel for large heat input
JP5974962B2 (en) Method for producing aluminum-killed steel with Ca added with excellent HIC resistance and Ca addition treatment method for molten steel
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP5836187B2 (en) Vacuum degassing method
JP2009144244A (en) Refining method of high-chromium ferritic stainless steel for reducing carbon
KR101104799B1 (en) Refining method of enamel molten steel containing high concentration titanium and nitrogen
JP2010189712A (en) Continuously cast slab of steel for b-containing high strength thick steel plate, and method for producing the same
JP5884182B2 (en) Method for controlling inclusion composition of Ca-containing aluminum killed steel
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JP4811018B2 (en) Deoxidation method for molten steel
KR20050005067A (en) A method for reducing extra low carbon steel inclusion using a recarburizer
JP3807297B2 (en) Method for producing ultra-low carbon steel with high nitrogen concentration
JP6107737B2 (en) Manufacturing method of steel material with excellent HIC resistance
TW202407108A (en) Control device of vacuum degassing equipment, control method and operation method of vacuum degassing equipment and manufacturing method of molten steel
JP3231555B2 (en) Vacuum degassing refining method
KR20070023168A (en) Method for refining isotropic steel
JP2896302B2 (en) How to adjust nitrogen concentration in molten steel
JP3613016B2 (en) Adjustment method of nitrogen concentration in molten steel
KR101828719B1 (en) Predicting method of nitrogen concentration in the molten steel after denitridification treatment
JP5347729B2 (en) Method for producing Ca-treated steel
JP4033039B2 (en) Ultra-low carbon steel continuous casting slab and its manufacturing method
JP2017080787A (en) Continuous casting method of steel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JP3827852B2 (en) Denitrification method for chromium-containing molten steel
JP2023166207A (en) Control device for vacuum degassing facility, control method for vacuum degassing facility, operation method, and production method for molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250