JP4033039B2 - Ultra-low carbon steel continuous casting slab and its manufacturing method - Google Patents

Ultra-low carbon steel continuous casting slab and its manufacturing method Download PDF

Info

Publication number
JP4033039B2
JP4033039B2 JP2003137742A JP2003137742A JP4033039B2 JP 4033039 B2 JP4033039 B2 JP 4033039B2 JP 2003137742 A JP2003137742 A JP 2003137742A JP 2003137742 A JP2003137742 A JP 2003137742A JP 4033039 B2 JP4033039 B2 JP 4033039B2
Authority
JP
Japan
Prior art keywords
slab
mold
low carbon
casting
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003137742A
Other languages
Japanese (ja)
Other versions
JP2004337922A (en
Inventor
欽吾 笹目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003137742A priority Critical patent/JP4033039B2/en
Publication of JP2004337922A publication Critical patent/JP2004337922A/en
Application granted granted Critical
Publication of JP4033039B2 publication Critical patent/JP4033039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極低炭素鋼のスラブと、それを溶鋼から連続鋳造により製造する方法と、得られたスラブを熱間圧延並びに冷間圧延を施して鋼板を製造する方法に関する。
【0002】
さらに詳述すれば、本発明は、連続鋳造、熱間圧延、そして冷間圧延の一連のプロセスによって製造される鋼板の表面欠陥発生を減少させ、かつそれらが材料特性に悪影響を及ぼさないようにする、極低炭素鋼スラブ、それを製造するための連続鋳造方法、そしてそれを利用した鋼板の製造方法に関する。
【0003】
【従来の技術】
極低炭素鋼は、溶鋼の精錬工程において炭素を数10ppm まで減少させた鋼であり、深絞り性等の加工性に極めて優れていることから、自動車用をはじめとして、現在広く使用されている。具体的には自動車外装用途等がある。しかし、極低炭素鋼は連続鋳造工程、熱間圧延工程、さらには冷間圧延工程等の製造工程における表面欠陥感受性が高く、スラブ品質の安定化が大きな課題であった。
【0004】
極低炭素鋼の表面欠陥感受性が高い理由としては、真空脱ガス時、炭素−酸素平衡上、酸素が高くなることから脱酸生成物の量が多いという精錬上の違いの他に、▲1▼凝固温度が低炭素鋼などに比較して高く、モールド( 以下、鋳型ということもある) 内メニスカスでの凝固シェル倒れこみ(爪)が大きいために、モールドパウダーの液滴や脱酸生成物などの介在物や気泡が捕捉されやすい、▲2▼凝固の進行が低炭素鋼に比較して不均一であり凝固シュルの凹凸面と溶鋼の界面に介在物や気泡が捕捉されやすい、など凝固時の挙動の違いがあげられる。
【0005】
極低炭素鋼スラブの表面品質を改善するためには、連続鋳造条件の選定が特に重要であることは周知であり、連続鋳造時に使用する浸漬ノズルやモールドパウダーの適正化、鋳型内吹込みアルゴンガスの低流量化などが精力的に検討・実施されてきた。これらは、確かに品質向上に対して効果はあるが、低炭素鋼に比較して極低炭素鋼の場合、製品の表面欠陥発生率は依然として高位であり、抜本解決にはいたっていないのが実情である。
【0006】
最近では、特許文献1に開示されるように、鋳型内の流動を最適化することによって極低炭素鋼の品質問題を解決しようという試みもみられる。すなわち、特許文献1には、極低炭素鋼を鋳造する際に、鋳型幅4分の1の鋳型短辺寄りの位置における流速を一定範囲内に制御することで表面欠陥発生率を低減する方法が開示されている。この方法によれば製品の表面欠陥発生率を顕著に減少させ得るが、溶鋼の流速を制御するにあたってはリニア移動磁場型電磁攪拌装置を導入する必要があり、導入コストや使用時のエネルギー、設備メンテナンスなどに要するランニングコストを考慮すると容易に実現できるものではない。
【0007】
更には、特許文献2には、連続鋳造スラブの表層のCを0.01〜0.08%とした極低炭素冷延鋼板に関する記載があるが、段落0032に記載のようにこれは表面より深さ3mmの位置での分析値であり、これより浸炭層はスラブ表面より3mm以上深く形成されていることが分かり、なお、実施例ではこの値は0.02〜0.024 %となっており、C≧0.01%の浸炭層がスラブ表面より3mm以上の深さのところまで形成されていることが分かる。段落0034参照。この方法によれば極低炭素鋼特有の表面欠陥は低減できるものの、成品鋼板にC濃度の高い層がより深い領域まで残存するため、成形性や表面処理性などの機械特性への影響を考慮すると、適用はごく一部の対象のみに限定されよう。
【0008】
【特許文献1】
特開平9−192802号公報
【特許文献2】
特開平8−120409号公報
【0009】
【発明が解決しようとする課題】
本発明は、前述した状況を鑑みて、これら従来技術の問題点を解消するばかりでなく、低コストで、且つより確実な方法によって極低炭素鋼の品質問題を抜本的に解決する技術を開発するものである。
【0010】
【課題を解決するための手段】
本発明者は、低炭素鋼と極低炭素鋼の表面品質に対する感受性の差異について鋭意検討し、初期凝固挙動の違いが表面欠陥発生率に大きな影響を与えることを知見した。すなわち、鋳型内の初期凝固の過程において、極低炭素鋼を実質的に低炭素鋼として鋳造することができれば、表面品質に対する感受性を低炭素鋼なみにすることができ、その結果、熱間圧延あるいは冷間圧延後の鋼板の機械特性に悪影響を及ぼすことのないスラブおよびその製造方法が実現できることを知った。
【0011】
ここに、本発明は、C≦0.003質量%の溶鋼をモールド内に鋳込みつつ該モールドの下方からスラブを引き抜くに際して、モールド内溶鋼の上に供給されるモールドパウダーに含まれる炭素 (C) 含有量とスループット量とが下記の関係を満足する条件下で鋳込を行うことにより、平均C含有量が0.01〜0.02質量%の浸炭層をスラブ表面から3mm未満の深さまで有する連続鋳造スラブに調整して鋳造し、その後、該連続鋳造スラブを熱間圧延するに際し、該連続鋳造スラブの浸炭層を圧延前に除去すること
を特徴とする連続鋳造スラブの熱間圧延方法。
【0012】
鋳造時のスループット量≦4.0t/minのとき、モールドパウダー中の炭素(C)含有量:1.5質量%以上2.5質量%以下
鋳造時のスループット量>4.0t/minのとき、モールドパウダー中の炭素(C)含有量:1.0質量%以上2.0質量%以下
ここで、前記浸炭層の除去を、スカーフ溶削、グラインダー研削、およびスケールオフからなる群から選ばれる1種以上の除去方法によって行ってもよい。
【0015】
ここに、本発明において「極低炭素鋼」は、C含有量が0.003 %以下の鋼種を言い、その限りで特に制限はなく、その他の成分についても制限はないが、実用的観点からは、次の範囲が例示される。
【0016】
C≦0.003 %、Si≦0.1 %、Mn≦0.5 %、P≦0.10%、S≦0.03%
【0017】
【発明の実施の形態】
本発明の実施の形態の詳細を以下に説明する。なお、本明細書において鋼組成を示す「%」はとくにことわりがない限り、「質量%」である。
【0018】
本発明にあっても、極低炭素鋼の溶製は従来技術と同様に行えばよく、本発明においてはそれらについては特に制限されない。
このようにして調製されたC≦0.003 %の極低炭素鋼の溶鋼は、次いで、モールド内に鋳込みつつ該モールドの下方からスラブを引き抜く連続鋳造方法によりスラブに鋳造される。
【0019】
本発明においては、この連続鋳造に際して、その表面欠陥感受性を緩和するために、モールドパウダー中のC量と鋳造時のスループット量とに一定の関係を持たせるのである。
【0020】
すなわち、モールドパウダー( 以下、単に「パウダー」と言うこともある) は、燃焼によるパウダーの保温効果の強化およびパウダーの溶融速度の制御を目的として、通常、適量のCを含有しているが、添加されたCは溶融層上に濃化層として残留することが知られている。
【0021】
本発明においては、この濃化層に溶鋼を効果的に接触させることで、溶鋼の表層に浸炭層を形成させるのである。すなわち、質量%でC≦0.003 %の極低炭素溶鋼を下記パウダーを用いて連続鋳造することで、スラブ表層に効果的な浸炭層を形成し、極低炭素鋼の初期凝固挙動を改善することができるのである。
【0022】
鋳造時のスループット量≦4.0t/minのとき、モールドパウダー中の炭素 (C) 含有量:1.5質量%以上2.5質量%以下
鋳造時のスループット量>4.0t/minのとき、モールドパウダー中の炭素 (C) 含有量:1.0質量%以上2.0質量%以下
ここで、連続鋳造時のモールド内におけるカーボンピックアップ挙動について、図を用いて説明する。
【0023】
図1は、モールド内のカーボンピックアップの様子を説明する模式図である。図中、モールド1内に浸漬ノズル2から供給される溶鋼6は、矢印方向7に流れる。このとき、溶鋼6の表面にはモールドパウダー3が載せられており、パウダー3は、C濃化層5および溶融層4を経て溶鋼表面に接している。
【0024】
このようにパウダー中のCは粒子状態から焼結過程を経て溶融するが、この過程において全量溶融するのではなく、その半分以上は溶融層上に濃化・残留している。このC濃化層に湯面変動などにより溶鋼が接触するとカーボンピックアップが生じ、凝固後のスラブ表層には浸炭層が形成されることになる。
【0025】
カーボンピックアップ量は鋳造条件によって異なり、モールドパウダーの溶融層厚みが薄いほど溶鋼とC濃化層との接触頻度が増し、カーボンピックアップ量は大きくなる。また、湯面変動量が大きくなればカーボンピックアップ量は大きくなる。
【0026】
なお、使用するパウダーの初期含有C量が高いほどピックアップ量が高くなることは言うまでもない。
ここに、本発明によれば、モールドパウダ3内の炭素含有量を制限するとともに、連続鋳造時に上述の湯面変動を調整することで、浸炭層のC含有量を従来の低炭素鋼の領域に規定しようとするのである。
【0027】
次に、鋳造時のスループットに応じてパウダー中のC量の適量値が異なる理由について説明する。ここでスループットとは単位時間当りの鋳型内への溶鋼供給量であり、次式により定義される。
【0028】
鋳型厚さ(m) ×鋳型幅(m) ×鋳込速度 (m/min)×比重(7.8)
連続鋳造においては数ヒートを連続して鋳込むことが一般的で、1モールド当りにして500 〜1000tの溶鋼を連続して鋳片化する場合が多い。この間、鋳片幅は製品受注量に合わせて1600〜700mm などの範囲で、断続的に変更される。また、鋳造速度は鋳造能率面からは速いほど好ましいが、製品条件は関連設備の操業条件などに応じた適正な範囲が存在する。
【0029】
実操業においては、受注量を中心にこれらの要因を総合的に勘案して鋳込スケジュールを決めているため、スループットは7〜3t/min などの範囲で計画的に変更される。但し、鋳造ノズルの詰まりや関連設備の稼働状況変化に応じて鋳造速度が変更されることによって、スループットが変化する場合もある。
【0030】
本発明によれば、湯面の乱れ程度に合わせてパウダー中のC濃度を変えるので、特開平8−120409号公報に記載されるような浸炭層を形成させるために電磁ブレーキを使う必要は必ずしもない。
【0031】
一般に、鋳造時のスループットが大きくなると鋳型内メニスカスの安定性が損なわれ、溶鋼の流速増加に伴って湯面変動量が増加していく。反対に、鋳造時のスループット量が小さいと鋳型内メニスカスの安定性が確保されることになるため、溶鋼とC濃化層との接触頻度が減少し、カーボンピックアップ量は減少する。
【0032】
本発明は、これらの挙動に基づいて、鋳造時のスループット量が4.0t/minを境として、同一パウダー使用時の浸炭量が変化するという現象を利用するのである。それによると、スループット量が4.0t/min以下で鋳造したスラブの表層での浸炭量を、4.0t/minを越えるスループットで鋳造したスラブと同等に制御するためには、パウダー中のC含有量を増加させれば良いことが判明した。
【0033】
すなわち、C含有量を増加させることによって、C濃化量が増加し、加えてパウダーの溶融速度が減少することで結果的にパウダーの溶融層厚みが小さくなるために鋳造中に効果的にカーボンピックアップ現象をおこすことができるのである。
【0034】
極低炭素鋼板 (C≦0.003 %) の表面欠陥発生率を小さくするためにはスラブ表層部に効果的な浸炭層を形成させることが有効であるが、そのために必要な浸炭量は、連続鋳造機の出側におけるスラブ表層部の浸炭層中において、Cが0.01%以上の部分がスラブ表面から2mm以上3mm未満程度あるか、あるいはスラブ表層より3mm未満の深さまでの平均C濃度が0.01〜0.02%あれば十分である。かかる領域のCが0.01%未満では、初期凝固挙動を低炭素鋼並とするには十分でなく、従って表面欠陥の改善効果は乏しい。一方、余りCが高くなると表面欠陥改善効果は安定するが、浸炭層厚みが増加する傾向となるため、極低炭素鋼板を製造するという本来の目的に不都合が生じることになる。このため、C量を増加させることには限界があり、その上限は浸炭層厚みを3mm未満とすることで管理することができる。3mm未満であれば、浸炭層はスカーファやグラインダー等により容易に除去することが可能であるし、鋼板製品において要求される材料特性のレベルによっては、加熱炉でのスケールオフによるだけでも、浸炭による悪影響が残ることを回避することができる。
【0035】
このような浸炭層を形成させるためには、鋳造中のスループット量が4.0t/minを越える場合には、パウダー中のC含有量は1.0質量%以上2.0質量%以下とした。低すぎるとパウダーの溶融層厚みが増大し必要な浸炭効果が得られにくく、逆に高すぎると浸炭効果が大きすぎて、スカーファやグラインダー等で容易に浸炭層を除去できずに、製品の特性に悪影響を及ぼす場合があるからである。
【0036】
スループット量が4.0t/min以下の場合は、前述したように、4.0t/minを越える場合に比べて浸炭量が少なくなるため、パウダー中のC含有量を増加させる必要があるが、この場合、パウダー中のC含有量を1.5質量%以上とすることで十分な効果を挙げることができる。この時、製品の特性に悪影響を及ぼさないC含有量の上限は2.5質量%である。
【0037】
続いて、得られたスラブに熱間圧延を施して極低炭素鋼板を得るわけであるが、浸炭層を有するスラブをそのまま圧延し成品鋼板とすると、残存した浸炭層が鋼板の成形性や表面処理性などの機械特性に影響を与えることがある。このため、条件によっては、熱間圧延前にスラブの浸炭層を除去する必要がある。除去する方法は特に規定しないが、スカーファによるスラブ表面の溶削、スラブグラインダーによる表面研削が一般的である。この他、人手による表面溶削手入れでも良いし、加熱炉の在炉温度や時間を調節して浸炭層をスケールオフさせる方法でも構わない。この際に、除去する浸炭層厚は薄いほどコスト的に有利と言えるが、C含有量0.01%以上の浸炭層を有しながら、その層厚が2mm未満という条件のスラブは、実際上製造困難であった。3mm未満であれば、必要に応じて浸炭層を除去することは容易であるため、実際上のコスト的影響を小さくすることができる。
【0038】
【実施例】
本例では、鋼組成: Si:0.015 〜0.020 %、Mn:0.10〜0.15%、P:0.015 〜0.018 %、S:0.005 〜0.008 %の極低炭素鋼板の製造方法に本発明を適用した例を示す。
【0039】
C≦0.003 %を含有する上記組成の極低炭素溶鋼を、通常の手段でもって、転炉−RH脱ガス装置にて溶製し、続いて連続鋳造機にて鋳造し、スラブを得た。
表1にこのときの連続鋳造条件を示す。
【0040】
連続鋳造では、厚み270mm の鋳型を用い、使用するパウダーのC含有量と鋳造速度、鋳造幅を適宜変化させ、極低炭素鋼連続鋳造スラブを得た。
パウダーの組成は次の通りであった。
【0041】
SiO: 30〜40質量%、Al:5〜10質量%、CaO: 35 〜45質量%、NaO: 2〜7質量%、
F : 5〜10質量%、C: 0.5 〜 2.0質量
得られたスラブは、デスケール後、深さ方向1〜5mm位置までと1/4 厚み位置よりサンプルを採取し、化学分析によりC濃度を調べた。
【0042】
得られた鋳造スラブは、表面より深さ2mmまでスカーフ溶削をして浸炭層を除去した後、加熱炉に挿入した。続いて、加熱炉にて1100〜1150℃に加熱し、スケールを除去した後、熱間圧延を行い、板厚4.Omm の熱延鋼板を得、さらに、酸洗を経て冷間圧延を施し、厚さ0.8mm の冷延鋼板を得た。
【0043】
冷間圧延後、検査ラインを通過させ、材料疵の発生個数をカウントした。
また、スラブ表層より3mm未満の深さまでの切粉 (ドリル) サンプルを採取し、燃焼法によりC濃度を測定した。これは「スラブ表面3mm未満での平均C濃度」として、これと材料欠陥個数との関係を求めた。
【0044】
結果を表2および図2に示す。
なお、表2中の評価は、同じ操作を行った場合の低炭素鋼 (C:0.05 %) の材料欠陥発生レベルとの比較である。
【0045】
【表1】

Figure 0004033039
【0046】
【表2】
Figure 0004033039
【0047】
表2および図2に示すように、本発明によるものは低炭素鋼の材料疵発生レベルと遜色なく、本発明によりスラブの表面から2mm以上3mm未満の深さまでC≧0.01%の浸炭層を形成させることにより、好ましくはスラブ表面から3mm未満の深さまで平均C含有量が0.01〜0.02%の浸炭層を形成させることにより、極低炭素鋼の表面欠陥に対する感受性を改善できることがわかる。
【0048】
なお、比較例12および13は、材料欠陥個数は低炭素鋼レベルであったが、表層の浸炭層厚が必要以上に大きく、スカーフ溶削またはグラインダー研削のような通常の手入れ方法では容易に浸炭層は除去できなかった。
【0049】
【発明の効果】
本発明により、低コストで、且つより確実な方法によって極低炭素鋼の品質問題を抜本的に解決することができることから、例えば、自動車外装用途等に最適の材料が提供される。
【図面の簡単な説明】
【図1】鋳型内のカーボンピックアップを示す模式図である。
【図2】実施例の結果を表すグラフである。
【符号の説明】
1 :モールド
2 :浸漬ノズル
3 :モールドパウダー(粉末層)
4 :モールドパウダー(溶融層)
5 :C濃化層
6 :溶鋼
7 :溶鋼流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slab of ultra-low carbon steel, a method for producing the slab from molten steel by continuous casting, and a method for producing a steel plate by subjecting the obtained slab to hot rolling and cold rolling.
[0002]
More specifically, the present invention reduces the occurrence of surface defects in steel sheets produced by a series of continuous casting, hot rolling, and cold rolling processes, and prevents them from adversely affecting material properties. The present invention relates to an ultra-low carbon steel slab, a continuous casting method for producing the same, and a method for producing a steel plate using the same.
[0003]
[Prior art]
Extremely low carbon steel is a steel whose carbon content has been reduced to several tens of ppm in the refining process of molten steel, and is extremely excellent in workability such as deep drawability. . Specifically, there are automotive exterior uses. However, extremely low carbon steel has high surface defect sensitivity in manufacturing processes such as a continuous casting process, a hot rolling process, and a cold rolling process, and stabilization of slab quality has been a major issue.
[0004]
The reason why the surface defect sensitivity of the ultra-low carbon steel is high is that, in addition to the refining difference that the amount of deoxidation products is large due to high oxygen in the carbon-oxygen equilibrium during vacuum degassing, ▲ 1 ▼ The solidification temperature is higher than that of low carbon steel, etc., and the collapse of the solidified shell (nail) at the inner meniscus of the mold (hereinafter referred to as the mold) is large. It is easy to trap inclusions and bubbles such as (2) Solidification progress is uneven compared to low carbon steel and inclusions and bubbles are easily trapped at the interface between the uneven surface of the solidification shell and the molten steel. Differences in behavior at times.
[0005]
In order to improve the surface quality of ultra-low carbon steel slabs, it is well known that the selection of continuous casting conditions is particularly important. Optimization of the immersion nozzle and mold powder used during continuous casting, argon injection in the mold Gas flow reduction has been studied and implemented energetically. These are certainly effective in improving quality, but in the case of extremely low carbon steel compared to low carbon steel, the surface defect rate of the product is still high, and the fact is that it has not reached a fundamental solution. It is.
[0006]
Recently, as disclosed in Patent Document 1, attempts have been made to solve the quality problem of ultra-low carbon steel by optimizing the flow in the mold. That is, Patent Document 1 discloses a method of reducing the surface defect occurrence rate by controlling the flow rate at a position near the short side of the mold having a quarter width of the mold within a certain range when casting an extremely low carbon steel. Is disclosed. Although this method can significantly reduce the surface defect rate of products, it is necessary to introduce a linear moving magnetic field type electromagnetic stirrer in order to control the flow rate of molten steel. Considering the running cost required for maintenance and the like, it cannot be easily realized.
[0007]
Furthermore, Patent Document 2 describes a very low carbon cold-rolled steel sheet in which C of the surface layer of the continuously cast slab is 0.01 to 0.08%. As described in paragraph 0032, this is 3 mm deep from the surface. It is an analytical value at the position, and it can be seen from this that the carburized layer is formed 3 mm or more deeper than the slab surface. In the example, this value is 0.02 to 0.024%, and C ≧ 0.01% carburizing. It can be seen that the layer is formed to a depth of 3 mm or more from the slab surface. See paragraph 0034. Although this method can reduce surface defects peculiar to ultra-low carbon steel, a layer with a high C concentration remains in the product steel sheet to a deeper region, so the influence on mechanical properties such as formability and surface treatment properties is taken into consideration. Then, the application will be limited to only a few subjects.
[0008]
[Patent Document 1]
JP-A-9-192802 [Patent Document 2]
JP-A-8-120409 [0009]
[Problems to be solved by the invention]
In view of the above-mentioned situation, the present invention not only solves the problems of these conventional techniques, but also develops a technology that drastically solves the quality problems of ultra-low carbon steel by a low-cost and more reliable method. To do.
[0010]
[Means for Solving the Problems]
The present inventors diligently studied the difference in sensitivity to the surface quality between low carbon steel and extremely low carbon steel, and found that the difference in initial solidification behavior greatly affects the surface defect occurrence rate. That is, if the ultra-low carbon steel can be cast as a substantially low carbon steel in the process of initial solidification in the mold, the sensitivity to the surface quality can be made similar to that of the low carbon steel. Alternatively, the present inventors have learned that a slab that does not adversely affect the mechanical properties of a steel sheet after cold rolling and a method for producing the slab can be realized.
[0011]
Here, the present invention relates to carbon (C) contained in the mold powder supplied on the molten steel in the mold when the molten steel of C ≦ 0.003% by mass is cast into the mold and the slab is pulled out from below the mold. By casting under the condition that the content and the throughput amount satisfy the following relationship , the carburized layer having an average C content of 0.01 to 0.02% by mass has a depth of less than 3 mm from the slab surface. When the continuous cast slab is cast after being adjusted to a continuous cast slab, the carburized layer of the continuous cast slab is removed before rolling.
A method of hot rolling a continuously cast slab characterized by
[0012]
When the throughput quantity ≦ 4.0t / min during the casting, the carbon in the mold powder (C) content: 1.5 wt% to 2.5 wt% or less throughput amount in casting> when 4.0t / min , Carbon (C) content in mold powder: 1.0% by mass or more and 2.0% by mass or less
Here, the carburized layer may be removed by one or more removal methods selected from the group consisting of scarf cutting, grinder grinding, and scale-off.
[0015]
Here, in the present invention, “extremely low carbon steel” refers to a steel type having a C content of 0.003% or less, and is not particularly limited as long as it is not limited. The following ranges are exemplified.
[0016]
C ≦ 0.003%, Si ≦ 0.1%, Mn ≦ 0.5%, P ≦ 0.10%, S ≦ 0.03%
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Details of the embodiment of the present invention will be described below. In this specification, “%” indicating the steel composition is “% by mass” unless otherwise specified.
[0018]
Even in the present invention, melting of ultra-low carbon steel may be performed in the same manner as in the prior art, and in the present invention, there is no particular limitation on them.
The molten steel of C ≦ 0.003% prepared as described above is then cast into a slab by a continuous casting method in which the slab is drawn from below the mold while being cast into the mold.
[0019]
In the present invention, during this continuous casting, in order to reduce the surface defect sensitivity, a certain relationship is established between the amount of C in the mold powder and the amount of throughput during casting.
[0020]
That is, mold powder (hereinafter sometimes simply referred to as “powder”) usually contains an appropriate amount of C for the purpose of enhancing the heat retention effect of the powder by combustion and controlling the melting rate of the powder. It is known that the added C remains as a concentrated layer on the molten layer.
[0021]
In the present invention, the carburized layer is formed on the surface layer of the molten steel by effectively bringing the molten steel into contact with the concentrated layer. That is, by continuously casting ultra-low carbon molten steel with C ≦ 0.003% by mass using the following powder, an effective carburized layer is formed on the surface layer of the slab and the initial solidification behavior of the ultra-low carbon steel is improved. Can do it.
[0022]
When the throughput quantity ≦ 4.0t / min during the casting, the carbon in the mold powder (C) content: 1.5 wt% to 2.5 wt% or less throughput amount in casting> when 4.0t / min Carbon (C) content in mold powder: 1.0 mass % or more and 2.0 mass % or less Here, the carbon pickup behavior in the mold during continuous casting will be described with reference to the drawings.
[0023]
FIG. 1 is a schematic diagram for explaining a state of a carbon pickup in a mold. In the figure, the molten steel 6 supplied from the immersion nozzle 2 into the mold 1 flows in the arrow direction 7. At this time, the mold powder 3 is placed on the surface of the molten steel 6, and the powder 3 is in contact with the molten steel surface through the C concentrated layer 5 and the molten layer 4.
[0024]
As described above, C in the powder melts from the particle state through the sintering process, but the entire amount is not melted in this process, but more than half of it is concentrated and remains on the molten layer. When molten steel comes into contact with the C-enriched layer due to fluctuations in the molten metal surface, a carbon pickup is generated, and a carburized layer is formed on the surface layer of the slab after solidification.
[0025]
The amount of carbon pickup varies depending on casting conditions. The thinner the molten layer thickness of the mold powder, the higher the frequency of contact between the molten steel and the C-enriched layer and the larger the amount of carbon pickup. In addition, the amount of carbon pick-up increases as the amount of molten metal fluctuation increases.
[0026]
Needless to say, the higher the initial C content of the powder used, the higher the pickup amount.
Here, according to the present invention, the carbon content in the mold powder 3 is limited, and the above-mentioned fluctuation of the molten metal surface is adjusted during continuous casting, so that the C content of the carburized layer can be reduced to the conventional low carbon steel region. It is going to prescribe to.
[0027]
Next, the reason why the appropriate amount of C in the powder varies depending on the throughput during casting will be described. Here, the throughput is the amount of molten steel supplied into the mold per unit time and is defined by the following equation.
[0028]
Mold thickness (m) x Mold width (m) x Casting speed (m / min) x Specific gravity (7.8)
In continuous casting, it is common to continuously cast several heats, and in many cases, 500 to 1000 t of molten steel is continuously cast into one piece per mold. During this time, the slab width is changed intermittently in the range of 1600-700mm according to the order quantity of the product. In addition, the casting speed is preferably as fast as possible in terms of casting efficiency, but the product conditions have an appropriate range according to the operating conditions of the related equipment.
[0029]
In actual operation, since the casting schedule is determined by comprehensively considering these factors, mainly the order volume, the throughput is systematically changed in the range of 7 to 3 t / min. However, the throughput may be changed by changing the casting speed in accordance with clogging of the casting nozzle or a change in the operating status of the related equipment.
[0030]
According to the present invention, since the C concentration in the powder is changed in accordance with the degree of disturbance of the molten metal surface, it is not always necessary to use an electromagnetic brake to form a carburized layer as described in JP-A-8-120409. Absent.
[0031]
In general, when the throughput at the time of casting increases, the stability of the meniscus in the mold is impaired, and the amount of fluctuation of the molten metal surface increases as the flow rate of molten steel increases. On the contrary, if the throughput amount at the time of casting is small, the stability of the meniscus in the mold is ensured, so that the contact frequency between the molten steel and the C-enriched layer decreases, and the amount of carbon pickup decreases.
[0032]
The present invention utilizes the phenomenon that, based on these behaviors, the amount of carburization when using the same powder changes with the throughput amount at the time of casting being 4.0 t / min. According to it, in order to control the carburizing amount on the surface layer of the slab cast with a throughput of 4.0 t / min or less equivalent to the slab cast with a throughput exceeding 4.0 t / min, the C content in the powder It turned out that it would be good to increase.
[0033]
That is, by increasing the C content, the amount of C enrichment increases, and in addition, the powder melting rate decreases, resulting in a reduction in the thickness of the molten layer of the powder. The pickup phenomenon can be caused.
[0034]
It is effective to form an effective carburized layer on the surface of the slab in order to reduce the surface defect occurrence rate of extremely low carbon steel sheets (C ≦ 0.003%). In the carburized layer of the slab surface layer on the exit side of the machine, the portion where C is 0.01% or more is about 2 mm to less than 3 mm from the slab surface, or the average C concentration from the slab surface to a depth of less than 3 mm is 0.01 to 0.02 % Is enough. If the C in such a region is less than 0.01%, the initial solidification behavior is not sufficient to be comparable to that of a low carbon steel, and therefore the effect of improving surface defects is poor. On the other hand, if the C is too high, the surface defect improvement effect is stabilized, but the thickness of the carburized layer tends to increase, which causes inconvenience in the original purpose of manufacturing an ultra-low carbon steel sheet. For this reason, there is a limit to increasing the amount of C, and the upper limit can be managed by setting the carburized layer thickness to less than 3 mm. If it is less than 3 mm, the carburized layer can be easily removed with a scarf, grinder, etc., and depending on the level of material properties required for the steel plate product, it can be caused by carburizing just by scaling off in the heating furnace. It can be avoided that adverse effects remain.
[0035]
In order to form such a carburized layer, when the throughput amount during casting exceeds 4.0 t / min, the C content in the powder is 1.0 mass % or more and 2.0 mass % or less. . If it is too low, the melted layer thickness of the powder will increase, making it difficult to obtain the necessary carburizing effect. Conversely, if it is too high, the carburizing effect will be too great, and the carburized layer cannot be easily removed with a scarf or grinder, etc. This is because it may adversely affect the situation.
[0036]
When the throughput amount is 4.0 t / min or less, as described above, the carburization amount is smaller than that when it exceeds 4.0 t / min, so it is necessary to increase the C content in the powder. In this case, a sufficient effect can be obtained by setting the C content in the powder to 1.5% by mass or more. At this time, the upper limit of the C content that does not adversely affect the properties of the product is 2.5% by mass .
[0037]
Subsequently, the obtained slab is hot-rolled to obtain an ultra-low carbon steel plate, but when the slab having a carburized layer is rolled as it is to obtain a product steel plate, the remaining carburized layer is formed into the formability and surface of the steel plate. May affect mechanical properties such as processability. For this reason, depending on conditions, it is necessary to remove the carburized layer of the slab before hot rolling. The removal method is not particularly defined, but the slab surface is cut by a scarf and the surface is ground by a slab grinder. In addition, it is possible to carry out surface surface cutting by manpower, or a method of scaling off the carburized layer by adjusting the in-furnace temperature and time of the heating furnace. At this time, it can be said that the thinner the carburized layer thickness to be removed is, the more advantageous in terms of cost. Met. If it is less than 3 mm, it is easy to remove the carburized layer as necessary, and therefore the actual cost effect can be reduced.
[0038]
【Example】
In this example, the present invention is applied to a method for producing an ultra-low carbon steel sheet having a steel composition: Si: 0.015-0.020%, Mn: 0.10-0.15%, P: 0.015-0.018%, S: 0.005-0.008%. Show.
[0039]
A very low carbon molten steel having the above composition containing C ≦ 0.003% was melted by a converter-RH degassing apparatus by a usual means, and then cast by a continuous casting machine to obtain a slab.
Table 1 shows the continuous casting conditions at this time.
[0040]
In continuous casting, a 270 mm thick mold was used, and the C content, casting speed, and casting width of the powder used were appropriately changed to obtain an ultra-low carbon steel continuous casting slab.
The composition of the powder was as follows.
[0041]
SiO 2: 30 to 40 wt%, Al 2 O 3: 5~10 wt%, CaO: 35 to 45 wt%, Na 2 O: 2 to 7 wt%,
F: 5 to 10% by mass , C: 0.5 to 2.0% by mass
The obtained slab was descaled, samples were taken from the depth direction of 1 to 5 mm and from the 1/4 thickness position, and the C concentration was examined by chemical analysis.
[0042]
The obtained cast slab was subjected to scarf cutting to a depth of 2 mm from the surface to remove the carburized layer, and then inserted into a heating furnace. Subsequently, after heating to 1100-1150 ° C in a heating furnace and removing the scale, hot rolling is performed to obtain a hot rolled steel sheet with a thickness of 4.Omm, and further, cold rolling is performed after pickling. A cold-rolled steel sheet having a thickness of 0.8 mm was obtained.
[0043]
After cold rolling, the product was passed through an inspection line and the number of material defects was counted.
Further, a sample of a chip (drill) having a depth of less than 3 mm from the surface layer of the slab was taken, and the C concentration was measured by a combustion method. This was determined as “average C concentration at a slab surface of less than 3 mm” and the relationship between this and the number of material defects was obtained.
[0044]
The results are shown in Table 2 and FIG.
The evaluation in Table 2 is a comparison with the material defect occurrence level of low carbon steel (C: 0.05%) when the same operation is performed.
[0045]
[Table 1]
Figure 0004033039
[0046]
[Table 2]
Figure 0004033039
[0047]
As shown in Table 2 and FIG. 2, according to the present invention, a carburized layer of C ≧ 0.01% is formed from the surface of the slab to a depth of 2 mm or more and less than 3 mm, inferior to the level of material defects of low carbon steel. It can be seen that, by forming a carburized layer having an average C content of 0.01 to 0.02%, preferably from the slab surface to a depth of less than 3 mm, the sensitivity of the ultra-low carbon steel to surface defects can be improved.
[0048]
In Comparative Examples 12 and 13, the number of material defects was at the low carbon steel level, but the carburized layer thickness of the surface layer was larger than necessary, and carburizing was easily performed by a normal maintenance method such as scarf welding or grinder grinding. The layer could not be removed.
[0049]
【The invention's effect】
According to the present invention, the quality problem of ultra-low carbon steel can be drastically solved by a low-cost and more reliable method, and thus, for example, an optimal material for automobile exterior use is provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a carbon pickup in a mold.
FIG. 2 is a graph showing the results of Examples.
[Explanation of symbols]
1: Mold
2: Immersion nozzle
3: Mold powder (powder layer)
4: Mold powder (molten layer)
5: C thickened layer
6: Molten steel
7: Molten steel flow

Claims (2)

C≦0.003質量%の溶鋼をモールド内に鋳込みつつ該モールドの下方からスラブを引き抜く際に、モールド内溶鋼の上に供給されるモールドパウダーに含まれる炭素 (C) 含有量とスループット量とが下記の関係を満足する条件下で鋳込を行うことにより、平均C含有量が0.01〜0.02質量%の浸炭層をスラブ表面から3mm未満の深さまで有する連続鋳造スラブに調整して鋳造し、
その後、該連続鋳造スラブを熱間圧延するに際し、該浸炭層を圧延前に除去すること
を特徴とする連続鋳造スラブの製造方法。
鋳造時のスループット量≦4.0t/minのとき、モールドパウダー中の炭素(C)含有量:1.5質量%以上2.5質量%以下
鋳造時のスループット量>4.0t/minのとき、モールドパウダー中の炭素(C)含有量:1.0質量%以上2.0質量%以下
When the molten steel of C ≦ 0.003 mass % is cast into the mold and the slab is pulled out from below the mold, the carbon (C) content and the throughput amount contained in the mold powder supplied onto the molten steel in the mold However, by performing casting under conditions satisfying the following relationship , a continuous cast slab having an average C content of 0.01 to 0.02% by mass from the slab surface to a depth of less than 3 mm is adjusted. Casting
Then, when the continuous cast slab is hot-rolled, the carburized layer is removed before rolling.
A method for producing a continuously cast slab characterized by
When the throughput quantity ≦ 4.0t / min during the casting, the carbon in the mold powder (C) content: 1.5 wt% to 2.5 wt% or less throughput amount in casting> when 4.0t / min , Carbon (C) content in mold powder: 1.0% by mass or more and 2.0% by mass or less
前記浸炭層の除去を、スカーフ溶削、グラインダー研削、およびスケールオフからなる群から選ばれる1種以上の除去方法によって行う請求項1記載の連続鋳造スラブの製造方法。  The method for producing a continuous cast slab according to claim 1, wherein the carburized layer is removed by one or more removal methods selected from the group consisting of scarf cutting, grinder grinding, and scale-off.
JP2003137742A 2003-05-15 2003-05-15 Ultra-low carbon steel continuous casting slab and its manufacturing method Expired - Fee Related JP4033039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137742A JP4033039B2 (en) 2003-05-15 2003-05-15 Ultra-low carbon steel continuous casting slab and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137742A JP4033039B2 (en) 2003-05-15 2003-05-15 Ultra-low carbon steel continuous casting slab and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004337922A JP2004337922A (en) 2004-12-02
JP4033039B2 true JP4033039B2 (en) 2008-01-16

Family

ID=33527342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137742A Expired - Fee Related JP4033039B2 (en) 2003-05-15 2003-05-15 Ultra-low carbon steel continuous casting slab and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4033039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586648B2 (en) * 2005-06-28 2010-11-24 住友金属工業株式会社 Steel plate excellent in workability and method for producing the same
JP6455287B2 (en) * 2015-04-06 2019-01-23 新日鐵住金株式会社 Manufacturing method of continuous cast slab

Also Published As

Publication number Publication date
JP2004337922A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
RU2718442C1 (en) Continuous casting method
JP3624804B2 (en) Method for producing ridging resistant ferritic stainless steel
JP4033039B2 (en) Ultra-low carbon steel continuous casting slab and its manufacturing method
JP6645214B2 (en) Method for producing low carbon steel thin cast slab, low carbon steel thin cast slab, and method for producing low carbon steel thin steel plate
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP5884182B2 (en) Method for controlling inclusion composition of Ca-containing aluminum killed steel
JPH0833964A (en) Continuous casting method of high ni steel
JP2010189712A (en) Continuously cast slab of steel for b-containing high strength thick steel plate, and method for producing the same
JP3709840B2 (en) Method of melting high cleanliness steel
JP4516923B2 (en) Continuously cast slab of aluminum killed steel and method for producing the same
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JP6515291B2 (en) Continuous steel casting method
JPH0790504A (en) Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab
JP4409167B2 (en) Continuous casting method
JP2010099704A (en) Continuous casting method for steel cast slab
JP3864698B2 (en) Continuous casting method
JP2004307931A (en) Continuously cast piece, and casting method therefor
JPH067907A (en) Production of continuously cast slab excellent in surface characteristic
JP4612271B2 (en) Continuous casting method of ultra-low carbon steel
JP2007186729A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel
JP3870743B2 (en) Steel continuous casting method
JP3660811B2 (en) Steel wire rod and manufacturing method thereof
JP2001192723A (en) Method of manufacturing for stainless steel containing rare earth element
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees