JP4843946B2 - Anti-air sign - Google Patents

Anti-air sign Download PDF

Info

Publication number
JP4843946B2
JP4843946B2 JP2005010929A JP2005010929A JP4843946B2 JP 4843946 B2 JP4843946 B2 JP 4843946B2 JP 2005010929 A JP2005010929 A JP 2005010929A JP 2005010929 A JP2005010929 A JP 2005010929A JP 4843946 B2 JP4843946 B2 JP 4843946B2
Authority
JP
Japan
Prior art keywords
gps
base plate
braid
air sign
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005010929A
Other languages
Japanese (ja)
Other versions
JP2006200951A (en
JP2006200951A5 (en
Inventor
幸秀 秋山
Original Assignee
朝日航洋株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日航洋株式会社 filed Critical 朝日航洋株式会社
Priority to JP2005010929A priority Critical patent/JP4843946B2/en
Publication of JP2006200951A publication Critical patent/JP2006200951A/en
Publication of JP2006200951A5 publication Critical patent/JP2006200951A5/ja
Application granted granted Critical
Publication of JP4843946B2 publication Critical patent/JP4843946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、対空標識に関し、より具体的には、レーザ測距に適した対空標識に関する。   The present invention relates to an anti-air sign, and more specifically, to an anti-air sign suitable for laser ranging.

地形を3次元測定する手段として、LiDAR(Light Detection And Ranging)システムと呼ばれるレーザ測距技術が注目されている。LiDARシステムは、航空機又は衛人工星に搭載したレーザ測距装置からレーザ光を地上に照射して地上までの距離を計測すると共に、航空機等の3次元位置とレーザ照射角度を計測し、これらの計測結果からレーザ照射対象の3次元位置を計測する技術である。   As a means for measuring the terrain three-dimensionally, a laser ranging technique called a LiDAR (Light Detection And Ranging) system has attracted attention. The LiDAR system measures the distance to the ground by irradiating laser light on the ground from a laser range finder mounted on an aircraft or satellite, and measures the three-dimensional position of the aircraft and the laser irradiation angle. This is a technique for measuring a three-dimensional position of a laser irradiation target from a measurement result.

レーザ測距技術は、人の立ち入ることが困難な山岳地等で威力を発揮する。特に地形の計測では、反射器を設置する方法と、反射器を使用しない方法が知られている。反射式では、より強い反射レーザ光が得られるものの、反射器を予め測定対象地域に設置する作業が必要であり、更には、反射器を清浄に保つ必要がある。これに対し、非反射式では、予め反射器を計測対象地域に設置する必要無しに、対象物を三次元計測できる。従って、広範囲の地域を計測するには、非反射式が優れている。
特許文献1には、写真測量に使用される対空標識が記載されている。非特許文献1の図−3には、レーザ測量に使用される対空標識が記載されている。
特開2004−012395号公報 村上昌幸、勝田啓介、木村幸吉、秋山幸秀、藤原輝芳、宮崎充弘、「電子基準点を利用したエアボーン・レーザー・プロファイリングによる高密度三次元測位」、第20回技術発表会論文集、財)日本測量調査技術協会、全国測量技術大会98’、平成10年6月19日、pp.52−59
Laser ranging technology is effective in mountainous areas where it is difficult for people to enter. In particular, in terrain measurement, a method of installing a reflector and a method of not using a reflector are known. In the reflection type, although a stronger reflected laser beam can be obtained, it is necessary to install the reflector in the measurement target area in advance, and it is necessary to keep the reflector clean. On the other hand, in the non-reflective method, the object can be measured three-dimensionally without the need to previously install a reflector in the measurement target area. Therefore, the non-reflective method is excellent for measuring a wide area.
Patent Document 1 describes an anti-air sign used for photogrammetry. FIG. 3 of Non-Patent Document 1 describes an anti-air mark used for laser surveying.
JP 2004-012395 A Murakami Masayuki, Katsuta Keisuke, Kimura Kokichi, Akiyama Yukihide, Fujiwara Teruyoshi, Miyazaki Mitsuhiro, “High-Density Three-Dimensional Positioning by Airborne Laser Profiling Using Electronic Reference Points”, Proc. 20th Technical Conference Proceedings, Japan) Survey Survey Technology Association, National Survey Technology Convention 98 ', June 19, 1998, pp. 52-59

非反射式であっても、何等かの標識があると、位置の特定に便利である。降雪地では、標識が雪に埋もれることもあり、この場合にも、標識として利用できる必要がある。また、火山灰地では、火山灰に埋もれることもある。   Even if it is non-reflective, it is convenient to specify the position if there is any sign. In snowy areas, signs may be buried in the snow, and in this case as well, it must be used as signs. In volcanic ash terrain, it may be buried in volcanic ash.

非反射式では、先に反射する反射光(ファーストパルス)と後で反射する反射光(ラストパルス)を同時に計測できるレーザ測距装置を利用可能である。例えば、樹木の枝葉による反射(ファーストパルス)と、地上からの反射(ラストパルス)を同時に計測できる。これを利用することで、樹木の高さ等を計測できる。   In the non-reflective type, a laser distance measuring device that can simultaneously measure reflected light (first pulse) reflected first and reflected light (last pulse) reflected later can be used. For example, the reflection (first pulse) from the branches and leaves of the tree and the reflection from the ground (last pulse) can be measured simultaneously. By using this, the height of trees can be measured.

また、積雪深、火山灰厚、及び土石流等による土石厚を正確に測定したいとする需要がある。   In addition, there is a demand for accurate measurement of debris thickness due to snow depth, volcanic ash thickness, and debris flow.

本発明は、雪等に部分的に埋もれても利用可能な対空標識を提示することを目的とする。   An object of the present invention is to present an anti-air sign that can be used even if it is partially buried in snow or the like.

本発明はまた、積雪深、火山灰厚及び土石厚等の測定を可能にする対空標識を提示することを目的とする。   Another object of the present invention is to provide an anti-air sign that allows measurement of snow depth, volcanic ash thickness, and debris thickness.

本発明に係る対空標識は、ベース板と、レーザビームを透過する複数の開口を具備する編笠と、ベース板上に立てられ、ベース板から所定高さに当該編笠を保持するポールとを具備することを特徴とする。   An anti-air marker according to the present invention includes a base plate, a braid having a plurality of openings that transmit a laser beam, and a pole that stands on the base plate and holds the braid at a predetermined height from the base plate. It is characterized by that.

本発明によれば、ベース板が雪等で埋まったとしても、LiDARシステム等のレーザ装置により、編笠でその存在と位置を識別できる。ベース板上に雪、火山灰又は土石等が堆積したとしても、編笠には、雪や火山灰がごく少ししか堆積できず、編笠の高さ位置はほとんど変化しない。編笠と、雪等の表面との距離を計測することで、雪等の厚みを算出できる。即ち、積雪深、火山灰厚及び土石厚を遠隔測定できる。   According to the present invention, even if the base plate is buried with snow or the like, the presence and position of the base plate can be identified with a knitting shade by a laser device such as a LiDAR system. Even if snow, volcanic ash, debris, or the like accumulates on the base plate, only a small amount of snow or volcanic ash can accumulate on the knitting shade, and the height position of the knitting shade hardly changes. The thickness of snow or the like can be calculated by measuring the distance between the knitting shade and the surface of snow or the like. That is, snow depth, volcanic ash thickness, and debris thickness can be measured remotely.

更に、当該編笠と当該ポールとの間に架け渡され、当該編笠を補強する補強材を具備することで、雪や火山灰が降った場合に、編笠を補強できる。   Furthermore, the knitted shade can be reinforced in the event of snow or volcanic ash by providing a reinforcing material that spans between the knitted shade and the pole and reinforces the knitted shade.

更に、当該編笠の外形寸法が当該ベース板の外形寸法の半分以下であることにより、レーザ測距装置のレーザが本実施例に入射する広い角度で、編笠とベース板の三次元座標を計測できる。   Further, since the outer dimension of the knitting shade is less than half of the outer dimension of the base plate, the three-dimensional coordinates of the knitting shade and the base plate can be measured at a wide angle at which the laser of the laser distance measuring device enters the present embodiment. .

当該編笠が、同心円を構成する複数のワイヤと、当該同心円の中心から外方向に放射状に延びる複数のワイヤからなる。これにより、軽量で、雪や火山灰が堆積しにくく、レーザ光のファーストパルスで三次元位置を計測しやすいものとなる。   The knitted shade is composed of a plurality of wires constituting a concentric circle and a plurality of wires extending radially outward from the center of the concentric circle. As a result, it is lightweight, snow and volcanic ash are unlikely to accumulate, and the three-dimensional position can be easily measured with the first pulse of laser light.

更に、GPSアンテナと、当該GPSアンテナで受信したGPS電波から当該GPSアンテナの位置を示す情報を算出するGPS受信装置と、当該GPS受信装置の受信結果を無線送信する無線装置とを具備することにより、本発明に係る対空標識の三次元位置を正確に決定できる。無線装置が、無線電波による指令を受信して、当該GPS受信装置を起動することにより、省電力で作動するGPS受信システムを実現できる。   Furthermore, by including a GPS antenna, a GPS receiver that calculates information indicating the position of the GPS antenna from GPS radio waves received by the GPS antenna, and a wireless device that wirelessly transmits the reception result of the GPS receiver The three-dimensional position of the anti-air sign according to the present invention can be accurately determined. When the wireless device receives a command by a radio wave and activates the GPS receiving device, a GPS receiving system that operates with power saving can be realized.

更に、GPSアンテナと、当該GPSアンテナで受信したGPS電波から当該GPSアンテナの位置を示す情報を算出するGPS受信装置と、無線電波による指令を受信して、当該GPS受信装置を起動する無線装置とを具備することにより、本実施例の対空標識の三次元位置を正確に決定できる省電力動作のGPS受信システムを実現できる。当該無線装置が、当該GPS受信装置の受信結果を無線送信する機能を具備することで、必要時には何時でも、本発明に係る対空標識の位置を参照できる。   Furthermore, a GPS antenna, a GPS receiver that calculates information indicating the position of the GPS antenna from GPS radio waves received by the GPS antenna, and a radio device that receives a command from the radio wave and activates the GPS receiver By implementing the above, it is possible to realize a power-saving GPS receiving system capable of accurately determining the three-dimensional position of the anti-air sign of the present embodiment. Since the wireless device has a function of wirelessly transmitting the reception result of the GPS receiving device, the position of the anti-air sign according to the present invention can be referred to whenever necessary.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の斜視図を示す。本実施例の対空標識10は、平坦な円盤状のベース板12と、ベース板12に垂直に立てたポール14と、ポール14の上部に被せた編笠16とからなる。ポール14は編笠16を突き抜けていても良い。ポール14と編笠16の側面との間に複数の補強棒18を渡して、雪や火山灰等によっても編笠16が垂れにくいように、編笠16を補強してある。   FIG. 1 shows a perspective view of one embodiment of the present invention. The anti-aircraft mark 10 of this embodiment includes a flat disk-shaped base plate 12, a pole 14 that stands upright on the base plate 12, and a braided cap 16 that covers the top of the pole 14. The pole 14 may penetrate the knitted shade 16. A plurality of reinforcing rods 18 are passed between the pole 14 and the side surface of the braided cap 16, and the braided cap 16 is reinforced so that the braided cap 16 is not easily dropped by snow or volcanic ash.

ベース板12の直径は、編笠16の直径の2倍以上である。好ましくは、ポール14の長さは、編笠16の直径の2倍以上である。これにより、標識10に対して斜めに測距レーザパルスが入射しても、ベース板12及び編笠16の位置を計測できる。   The diameter of the base plate 12 is at least twice the diameter of the braided cap 16. Preferably, the length of the pole 14 is at least twice the diameter of the braided cap 16. Thereby, even if the ranging laser pulse is incident on the marker 10 obliquely, the positions of the base plate 12 and the braid 16 can be measured.

ベース板12及び編笠16を共に円形とすることで、どの方向からレーザビームを走査しても、ベース板12及び編笠16の中心、即ちポール14の三次元位置を決定できる。ある程度以上、角数が多ければ、編笠16は、多角形であってもよい。   Since both the base plate 12 and the braided cap 16 are circular, the center of the base plate 12 and the braided cap 16, that is, the three-dimensional position of the pole 14 can be determined regardless of the direction of the laser beam. If the number of corners is large to some extent, the braid 16 may be polygonal.

ポール14の長さ、即ち、ベース板12から見た編笠16の高さは、予め測定しておく。   The length of the pole 14, that is, the height of the braid 16 viewed from the base plate 12, is measured in advance.

編笠16は、レーザ測距装置からのレーザビームが通過できる程の多数の孔と、レーザビームを反射する部分とを具備する部材であればよい。前者は、ラストパルスのよるベース板12を含む地上の位置の計測に使用され、後者は、ファーストパルスにより編笠16自身の位置を計測するのに使用される。編笠16は、風の影響をうけにくくするために、スチールワイヤ等の線材を編んだ形状が好ましい。本実施例では、同心円を構成する複数のワイヤと、その同心円の中心から外方向に放射状に延びる複数のワイヤで編笠16を形成してある。   The braid 16 may be a member having a large number of holes through which the laser beam from the laser distance measuring device can pass and a portion that reflects the laser beam. The former is used to measure the position on the ground including the base plate 12 by the last pulse, and the latter is used to measure the position of the braid 16 itself by the first pulse. The knitted shade 16 preferably has a shape in which a wire such as a steel wire is knitted in order to make it less susceptible to the influence of wind. In the present embodiment, the braid 16 is formed by a plurality of wires constituting a concentric circle and a plurality of wires extending radially outward from the center of the concentric circle.

本実施例の対空標識10は、空中から投下されることがある。安定に起立するように、ベース板12は、重く丈夫な素材、例えば、鉄板からなる。   The anti-air sign 10 of the present embodiment may be dropped from the air. In order to stand up stably, the base plate 12 is made of a heavy and strong material, for example, an iron plate.

図2は、垂直上方向から本実施例の標識10に入射する測距レーザパルスの反射の様子を示す。ヘリコプタ等の航空機に搭載されるレーザ測距装置20は、位置20a,20b,20cと移動する。   FIG. 2 shows a state of reflection of the distance measuring laser pulse incident on the marker 10 of this embodiment from the vertically upward direction. The laser ranging device 20 mounted on an aircraft such as a helicopter moves to positions 20a, 20b, and 20c.

レーザ測距装置20aから出射されたレーザパルスは、ベース板12に入射し、ベース板12で反射される。これにより、ベース板12の三次元位置が計測される。   The laser pulse emitted from the laser distance measuring device 20 a enters the base plate 12 and is reflected by the base plate 12. Thereby, the three-dimensional position of the base plate 12 is measured.

レーザ測距装置20bから出射されたレーザパルスは、先ず編笠16に入射し、部分的に編笠16で反射され、残りがベース板12で反射される。それぞれの反射パルスは、ファーストパルス及びラストパルスとしてレーザ測距装置20bに入射し、編笠16及びベース板12の三次元位置の計測に使用される。   The laser pulse emitted from the laser distance measuring device 20 b first enters the braid 16 and is partially reflected by the braid 16 and the rest is reflected by the base plate 12. Each reflected pulse enters the laser distance measuring device 20b as a first pulse and a last pulse, and is used to measure the three-dimensional positions of the braided cap 16 and the base plate 12.

レーザ測距装置20cから出射されたレーザパルスは、ベース板12に入射し、ベース板12で反射される。これにより、ベース板12の三次元位置が計測される。   The laser pulse emitted from the laser distance measuring device 20 c enters the base plate 12 and is reflected by the base plate 12. Thereby, the three-dimensional position of the base plate 12 is measured.

LiDARによるレーザ測距の原理は、周知であるので、説明を省略する。   Since the principle of laser ranging by LiDAR is well known, a description thereof will be omitted.

図3は、本実施例の標識10に入射する測距用レーザパルスのビームスポット例を示す。編笠16上に図示した斜線を付加したビームスポットが、編笠16で反射される。また、ベース板12上に図示した斜線を付加したビームスポットが、ベース板12で反射される。ベース板12の周囲に図示される白抜きのビームスポットは、本標識10が設置される地上で反射される。   FIG. 3 shows an example of a beam spot of a distance measuring laser pulse incident on the marker 10 of this embodiment. The beam spot with the oblique lines shown on the braid 16 is reflected by the braid 16. Further, the beam spot with the oblique lines shown on the base plate 12 is reflected by the base plate 12. A white beam spot illustrated around the base plate 12 is reflected on the ground where the sign 10 is installed.

対空標識10のベース板12が雪に埋もれたときに、同様の測定を行なうと、図4に示すように、ファーストパルスで網笠16を計測でき、ラストパルスでは、ベース板12ではなく雪22の表面の3次元座標を計測できる。雪が降っても、その雪は、編笠16に少し付着する程度であり、レーザビームを透過し、反射する。この測定から、編笠16と雪22の表面との間の距離Hsを算出できる。ベース板12と編笠16との間の距離Hは、既知である。従って、この場合の降雪深は、H−Hsとして算出できる。降雪以外に、火山灰や土石でも同様に、その厚み、即ち火山灰厚及び土石厚を計測できる。   When the same measurement is performed when the base plate 12 of the anti-aircraft sign 10 is buried in snow, the net shade 16 can be measured with the first pulse as shown in FIG. 4, and the snow 22 instead of the base plate 12 can be measured with the last pulse. The three-dimensional coordinates of the surface can be measured. Even if snow falls, the snow is only slightly attached to the braid 16 and transmits and reflects the laser beam. From this measurement, the distance Hs between the braid 16 and the surface of the snow 22 can be calculated. The distance H between the base plate 12 and the braid 16 is known. Therefore, the snowfall depth in this case can be calculated as H-Hs. In addition to snowfall, the thickness of volcanic ash and debris, that is, the thickness of volcanic ash and the thickness of debris can be measured.

図5は、本発明の第2実施例の側面図を示す。図1に示す実施例に更に、GPS受信機能と無線通信機能が、付加されている。即ち、ポール14の頂上には、GPS(Global Positioning System)システムのGPS衛星からのGPS電波を受信するGPSアンテナ30を設置し、ベース板12上に、GPSアンテナ30で受信したGPS電波からGPSアンテナ30の位置を算出するGPS受信装置32と、無線装置34を配置してある。無線装置34は、GPS受信装置32で受信した位置情報をアンテナ36を介して遠隔の基地局、又は上空を飛行するヘリコプターに送信する。   FIG. 5 shows a side view of a second embodiment of the present invention. In addition to the embodiment shown in FIG. 1, a GPS reception function and a wireless communication function are added. That is, a GPS antenna 30 that receives GPS radio waves from GPS satellites of a GPS (Global Positioning System) system is installed on the top of the pole 14, and the GPS antennas are received from the GPS radio waves received by the GPS antenna 30 on the base plate 12. A GPS receiver 32 that calculates the position of 30 and a wireless device 34 are arranged. The wireless device 34 transmits the position information received by the GPS receiver 32 to a remote base station or a helicopter flying over the antenna 36 via the antenna 36.

GPS受信装置32は、必要時にのみ稼働していれば良い。その場合、無線装置34は、遠隔の基地局、又は上空を飛行するヘリコプターからの指令に応じて、GPS受信装置32を起動して、GPS電波から位置を算出させる。   The GPS receiver 32 only needs to be operated when necessary. In that case, the wireless device 34 activates the GPS receiver 32 in accordance with a command from a remote base station or a helicopter flying over the sky, and calculates a position from the GPS radio wave.

無線装置34及びGPS受信装置32は、上述の動作のために必要な電源(二次電池及び、必要により二次電池を充電する太陽電池)を具備する。   The wireless device 34 and the GPS receiving device 32 include a power source (secondary battery and a solar cell that charges the secondary battery if necessary) necessary for the above-described operation.

特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。   Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.

本発明の一実施例の斜視図を示す。1 shows a perspective view of one embodiment of the present invention. LiDARシステムによる座標測定時のレーザパルスの伝搬例を示す断面図である。It is sectional drawing which shows the propagation example of the laser pulse at the time of the coordinate measurement by a LiDAR system. レーザパルスの反射スポット例を示す斜視図である。It is a perspective view which shows the example of the reflective spot of a laser pulse. 降雪後の測定例の説明図である。It is explanatory drawing of the example of a measurement after snowfall. 本発明の第2実施例の側面図である。It is a side view of 2nd Example of this invention.

符号の説明Explanation of symbols

10:対空標識(本実施例)
12:ベース板
14:ポール
16:編笠
18:補強棒
20a,20b,20c:レーザ測距装置
22:雪
30:GPSアンテナ
32:GPS受信装置
34:無線装置
36:アンテナ
10: Air-to-air sign (this example)
12: Base plate 14: Pole 16: Knitting shade 18: Reinforcing bars 20a, 20b, 20c: Laser distance measuring device 22: Snow 30: GPS antenna 32: GPS receiver 34: Radio device 36: Antenna

Claims (8)

ベース板(12)と、
レーザビームを透過する複数の開口を具備する編笠(16)と、
ベース板(12)上に立てられ、ベース板(12)から所定高さに当該編笠(16)を保持するポール(14)
とを具備することを特徴とする対空標識。
A base plate (12);
A braid (16) having a plurality of openings for transmitting the laser beam;
A pole (14) which stands on the base plate (12) and holds the braided cap (16) at a predetermined height from the base plate (12)
An anti-air sign characterized by comprising:
更に、当該編笠(16)と当該ポール(14)との間に架け渡され、当該編笠(16)を補強する補強材(18)を具備することを特徴とする請求項1に記載の対空標識。   The anti-aircraft sign according to claim 1, further comprising a reinforcing member (18) that spans between the braid (16) and the pole (14) and reinforces the braid (16). . 当該編笠(16)の外形寸法が当該ベース板(12)の外形寸法の半分以下であることを特徴とする請求項1又は2に記載の対空標識。   The anti-aircraft sign according to claim 1 or 2, wherein the outer dimension of the braided cap (16) is not more than half of the outer dimension of the base plate (12). 当該編笠(16)が、同心円を構成する複数のワイヤと、当該同心円の中心から外方向に放射状に延びる複数のワイヤからなることを特徴とする請求項1乃至3の何れか1項に記載の対空標識。   The said braid (16) consists of a plurality of wires which constitute a concentric circle, and a plurality of wires which extend radially outward from the center of the concentric circle. Anti-air sign. 更に、GPSアンテナ(30)と、当該GPSアンテナ(30)で受信したGPS電波から当該GPSアンテナ(30)の位置を示す情報を算出するGPS受信装置(32)と、当該GPS受信装置(32)の受信結果を無線送信する無線装置(34)とを具備することを特徴とする請求項1乃至4の何れか1項に記載の対空標識。   Furthermore, a GPS antenna (30), a GPS receiver (32) that calculates information indicating the position of the GPS antenna (30) from GPS radio waves received by the GPS antenna (30), and the GPS receiver (32) The anti-air sign according to any one of claims 1 to 4, further comprising: a wireless device (34) for wirelessly transmitting the reception result. 当該無線装置(34)が、無線電波による指令を受信して、当該GPS受信装置(32)を起動することを特徴とする請求項に記載の対空標識。 The anti-air sign according to claim 5 , wherein the wireless device (34) receives a command by a radio wave and activates the GPS receiving device (32). 更に、GPSアンテナ(30)と、当該GPSアンテナ(30)で受信したGPS電波から当該GPSアンテナ(30)の位置を示す情報を算出するGPS受信装置(32)と、無線電波による指令を受信して、当該GPS受信装置(32)を起動する無線装置(34)とを具備することを特徴とする請求項1乃至4の何れか1項に記載の対空標識。   Furthermore, a GPS antenna (30), a GPS receiver (32) that calculates information indicating the position of the GPS antenna (30) from GPS radio waves received by the GPS antenna (30), and a command by radio waves are received. The anti-air sign according to any one of claims 1 to 4, further comprising: a wireless device (34) that activates the GPS receiving device (32). 当該無線装置(34)が、当該GPS受信装置(32)の受信結果を無線送信することを特徴とする請求項7に記載の対空標識。   The anti-air sign according to claim 7, wherein the wireless device (34) wirelessly transmits a reception result of the GPS receiving device (32).
JP2005010929A 2005-01-18 2005-01-18 Anti-air sign Active JP4843946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010929A JP4843946B2 (en) 2005-01-18 2005-01-18 Anti-air sign

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010929A JP4843946B2 (en) 2005-01-18 2005-01-18 Anti-air sign

Publications (3)

Publication Number Publication Date
JP2006200951A JP2006200951A (en) 2006-08-03
JP2006200951A5 JP2006200951A5 (en) 2010-09-02
JP4843946B2 true JP4843946B2 (en) 2011-12-21

Family

ID=36959099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010929A Active JP4843946B2 (en) 2005-01-18 2005-01-18 Anti-air sign

Country Status (1)

Country Link
JP (1) JP4843946B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184066B2 (en) * 2012-08-31 2017-08-23 株式会社パスコ Anti-air sign
JP2018146546A (en) * 2017-03-09 2018-09-20 エアロセンス株式会社 Information processing system, information processing device, and information processing method
JP2019035728A (en) * 2017-08-16 2019-03-07 宏介 津留 Antiaircraft marker with screw
JP7142918B2 (en) * 2019-03-22 2022-09-28 国立研究開発法人農業・食品産業技術総合研究機構 An anti-aircraft beacon with a global positioning satellite system receiver

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384700A (en) * 1986-09-26 1988-04-15 Agency Of Ind Science & Technol Thickening method for slurry
JPH02128114A (en) * 1988-11-07 1990-05-16 Jinichi Matsuda Three-dimensional measurement and target thereof
JPH03114079A (en) * 1989-09-28 1991-05-15 Konica Corp Color image processing device
JPH09145373A (en) * 1995-11-20 1997-06-06 Seiwa Consultant Kk Surveying indicator
JPH11248443A (en) * 1997-12-12 1999-09-17 Nec Corp Tree height measuring system
JP3586378B2 (en) * 1998-07-16 2004-11-10 ペンタックス株式会社 Road marking members
JP2006220952A (en) * 2005-02-10 2006-08-24 Kyocera Chemical Corp Toner and method for manufacturing toner

Also Published As

Publication number Publication date
JP2006200951A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
CN100338473C (en) System and method for determining location of transmitter using passive reflectors or refractors as proxy receivers and using database querying
CN100338474C (en) System and method for determining location of transmitter using passive reflectors or refractors as proxy receivers
CN106291574B (en) A kind of Minitype infrared range unit
KR20190091533A (en) Methods and systems for mitigating rainfall radome attenuation in phased array antenna applications, and networked use of such applications
US20220107197A1 (en) Roadway information detection sensor device/system for autonomous vehicles
CN110794260B (en) Overhead transmission line positioning method based on double RTK unmanned aerial vehicles
JP4843946B2 (en) Anti-air sign
RU2446411C2 (en) Method of monitoring displacements of earth's surface and deformation of structures on territory of mineral deposits
JP6698813B2 (en) Method and apparatus for determining the detection range of a traffic route
JP5712521B2 (en) Positioning device, positioning signal transmitting device, positioning method, and positioning signal transmitting method
US20230222908A1 (en) Roadway information detection system consists of sensors on the autonomous vehicles and devices for the road
JP6722002B2 (en) Ground displacement observation system, and measurement target used for it
JP2011214975A (en) Object displacement monitoring device and object displacement monitoring method
CN104614722A (en) Method for identifying radar shielding based on signal-to-noise ratio
JP6232032B2 (en) Robot heliostat calibration system and method
JP2006284385A (en) Reference station system for gps satellite
CN101458322B (en) Local positioning system and positioning method thereof
CA2636235C (en) Active device for the reception and the emission of electromagnetic waves
CN111102962A (en) Ground surface settlement monitoring system and method based on high-resolution remote sensing satellite
US9083084B2 (en) Passive electromagnetic wave reflector for measuring local strain in a structure on the Earth's surface
JP6470658B2 (en) Laser measurement system and laser measurement method
CN211147643U (en) Earth surface settlement monitoring system based on high-resolution remote sensing satellite
JP7107764B2 (en) Reference point reflector
ES2887727T3 (en) Procedure, system and program to estimate the displacement of a geological and/or civil engineering structure susceptible to displacement
KR101606833B1 (en) The system automatically analyze the schema comparison of similar operational database

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4843946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250