JP4842910B2 - Method for producing titanium oxide airgel thin film or thick film used as electrode holder for transparent solar cell - Google Patents
Method for producing titanium oxide airgel thin film or thick film used as electrode holder for transparent solar cell Download PDFInfo
- Publication number
- JP4842910B2 JP4842910B2 JP2007283657A JP2007283657A JP4842910B2 JP 4842910 B2 JP4842910 B2 JP 4842910B2 JP 2007283657 A JP2007283657 A JP 2007283657A JP 2007283657 A JP2007283657 A JP 2007283657A JP 4842910 B2 JP4842910 B2 JP 4842910B2
- Authority
- JP
- Japan
- Prior art keywords
- tio
- sio
- film
- solar cell
- dye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010408 film Substances 0.000 title claims description 63
- 239000010409 thin film Substances 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 147
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 54
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 51
- 238000000576 coating method Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 31
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 22
- 239000011240 wet gel Substances 0.000 claims description 22
- 238000000352 supercritical drying Methods 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- 235000019441 ethanol Nutrition 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 14
- 238000004528 spin coating Methods 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 12
- -1 Titanium alkoxide Chemical class 0.000 claims description 10
- 230000032683 aging Effects 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical group CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 8
- 108010025899 gelatin film Proteins 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000499 gel Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 1
- 239000011521 glass Substances 0.000 description 17
- 239000000975 dye Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 230000002165 photosensitisation Effects 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WRTMQOHKMFDUKX-UHFFFAOYSA-N triiodide Chemical compound I[I-]I WRTMQOHKMFDUKX-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2036—Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Hybrid Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Surface Treatment Of Glass (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、透明太陽電池の電極保持体として用いられるチタン酸化物エアロゲル膜の製造方法に関し、気孔率及び比表面積の調節を介して最適の効率を有するTiO2またはTiO2−SiO2薄膜/厚膜を製造する方法に関する。 The present invention relates to a method for producing a titanium oxide airgel film used as an electrode holder of a transparent solar cell, and has a TiO 2 or TiO 2 —SiO 2 thin film / thickness having optimum efficiency through adjustment of porosity and specific surface area. The invention relates to a method of manufacturing a membrane.
産業発達による経済成長で国内の電力需要は急激に増加し、これに必要なエネルギー源は大体に外国から輸入されており、電力生産に必要な石油と石炭などの化石燃料使用によって公害問題と気象異変などの環境問題が徐々に深刻になっている。二酸化炭素発生による地球温暖化現象など様々な環境汚染問題解決のために化石燃料の代わりとして清浄エネルギー源の一つである太陽エネルギーに対する関心が集中されている。 Domestic power demand has increased rapidly due to economic growth due to industrial development, and the energy sources necessary for this have been largely imported from foreign countries. The use of fossil fuels such as oil and coal necessary for power production has caused pollution problems and weather. Environmental problems such as incidents are becoming increasingly serious. In order to solve various environmental pollution problems such as global warming due to the generation of carbon dioxide, attention is focused on solar energy, which is one of the clean energy sources instead of fossil fuels.
太陽電池は、構成する物質によってシリコン、化合物半導体を利用した無機素材からなる太陽電池、ナノ結晶酸化物粒子表面に色素が吸着された色素増感型太陽電池(dye−sensitized solar cell)、また有機分子(donor−acceptor)からなる太陽電池に分けられる。 The solar cell is composed of an inorganic material using silicon or a compound semiconductor depending on a constituent material, a dye-sensitized solar cell in which a dye is adsorbed on the surface of nanocrystalline oxide particles (dye-sensitized solar cell), or an organic material. It is divided into solar cells composed of molecules (donor-acceptors).
現在、太陽電池製造に広く用いられる半導体材料は、単結晶と多結晶を含む結晶質シリコンが主になっている。単結晶シリコンで製作した太陽電池は、エネルギー変換効率が高い一方で価格が高いということが短所で効率が高い点を勘案して主に大規模の発電用として使用を進んでいる。一方、多結晶シリコン太陽電池は、単結晶シリコンに比べて価格は安いが、効率が少し低いため主に家庭用システムなどに利用されている。しかし、単結晶及び多結晶シリコンは、バルク状態の原材料から太陽電池を製作するため、原材料費が高いということから価格の節減面では限界がある。このような問題点を解決するための方案は、ガラスのような値段が安い基板上に薄膜状の太陽電池を蒸着させることであり、商業化のために値段が安い太陽電池で最近では研究が多く進行されていることがナノスケールの半導体金属酸化物粒子製造とこれを活用した色素増感型太陽電池である。 At present, semiconductor materials widely used for solar cell production are mainly crystalline silicon including single crystals and polycrystals. Solar cells made of single-crystal silicon are being used mainly for large-scale power generation, taking into account the disadvantages of high energy conversion efficiency and high price, which is a disadvantage. On the other hand, polycrystalline silicon solar cells are cheaper than single crystal silicon, but have a little lower efficiency, so they are mainly used for household systems. However, monocrystalline and polycrystalline silicon are limited in terms of cost saving because of the high cost of raw materials because solar cells are manufactured from raw materials in bulk. The solution to this problem is to deposit thin-film solar cells on a low-priced substrate such as glass. Recently, research has been conducted on low-priced solar cells for commercialization. A lot of progress is in the production of nanoscale semiconductor metal oxide particles and dye-sensitized solar cells utilizing this.
色素増感型太陽電池は、伝導性ガラス基板と太陽光を吸収して光電子を発生させる高分子光増感色素、光電子伝達体としてナノ粒子で構成された多孔性TiO2、及び、酸化還元用電解質溶液で構成され、その原理は次の通りである。太陽光が電池に入射される場合、光陽子は先に色素高分子によって吸収される。色素は、太陽光吸収によって励起状態になって電子をTiO2の伝導帯に送る。電子は、電極に移動して外部回路に流れて電気エネルギーを伝達し、エネルギーを伝達しただけ低いエネルギー状態になって相対電極に移動する。色素は、TiO2に伝達した電子数だけ電解質溶液から供給されて元の状態に戻るが、このときに用いられる電解質は、ヨーダイド/トリヨーダイド対(iodide/tri−iodide couple)として酸化還元によって相対電極から電子を受けて色素に伝達する役割を担当する。これによって電池の開回路電圧(open circuit voltage)は、TiO2半導体のフェルミエネルギー準位と電解質の酸化還元準位の差によって決定される。 The dye-sensitized solar cell is composed of a conductive glass substrate and a polymer photosensitizing dye that absorbs sunlight to generate photoelectrons, porous TiO 2 composed of nanoparticles as a photoelectron carrier, and redox It is composed of an electrolyte solution, and its principle is as follows. When sunlight is incident on the battery, the photoproton is first absorbed by the dye polymer. Dyes, send electrons to the conduction band of the TiO 2 is in the excited state by sunlight absorption. The electrons move to the electrodes and flow to the external circuit to transmit electric energy, and move to the relative electrodes in a low energy state as the energy is transferred. The dye is supplied from the electrolyte solution by the number of electrons transferred to TiO 2 and returns to the original state. The electrolyte used at this time is a relative electrode by oxidation / reduction as an iodide / tri-iodide pair. Responsible for the role of receiving the electrons from the light and transmitting them to the pigment. As a result, the open circuit voltage of the battery is determined by the difference between the Fermi energy level of the TiO 2 semiconductor and the redox level of the electrolyte.
色素が太陽光を吸収して発生させる光電子の伝達体として用いられるTiO2は、スピンコーティング、浸漬−引き上げコーティング、スクリーンプリンティング法などの低価のコーティング方法でも容易に製造することができ、価格も安くて光エネルギーに安定し且つ有毒ではないという長所を有する。TiO2電極は、TiO2コロイド溶液を伝導性ガラス基板表面にコーティングした後、450℃程度で加熱して得られる。熱処理過程を介して10〜30nm大きさのTiO2粒子が形成されてナノ気孔性構造が得られる。このようなナノ気孔構造は、比表面積を増加させることができるので、単結晶のように表面積が小さな電極に比べて多量の光増感色素を吸着させることができる。 TiO 2 used as a photoelectron carrier generated by the absorption of sunlight by the dye can be easily manufactured by a low-cost coating method such as spin coating, dip-pull coating, and screen printing. It has the advantages of being cheap, stable to light energy and not toxic. The TiO 2 electrode is obtained by coating the surface of a conductive glass substrate with a TiO 2 colloid solution and then heating at about 450 ° C. Through the heat treatment process, TiO 2 particles having a size of 10 to 30 nm are formed to obtain a nanoporous structure. Since such a nanopore structure can increase the specific surface area, a larger amount of photosensitizing dye can be adsorbed than an electrode having a small surface area such as a single crystal.
最近まで色素増感太陽電池の効率を高めるための研究は進行しており、ここに関する既存の技術としては下記のようなものがある。電池材料として好適ではないルチル(rutile)構造を有するTiO2ナノ粒子を既存のアナターゼ(anatase)構造のTiO2の代りに用いた研究が進行されたが、エネルギー変換効率は5.6%程度で高くなかった。このように従来技術では、色素増感太陽電池の効率を高めることが解決課題だった。 Until recently, research for increasing the efficiency of dye-sensitized solar cells has progressed, and the existing technologies related to this are as follows. Research has been conducted on using TiO 2 nanoparticles having a rutile structure, which is not suitable as a battery material, instead of TiO 2 having an anatase structure, and the energy conversion efficiency is about 5.6%. It was not high. Thus, in the prior art, increasing the efficiency of the dye-sensitized solar cell has been a problem to be solved.
本発明は、従来の問題点を解決するためになされたものであって、その目的は、超臨界乾燥法を介するTiO2エアロゲル製造薄膜/厚膜を得る方法を提示して色素増感型太陽電池の効率増加方案を提供することにある。 The present invention has been made to solve the conventional problems, and its object is to provide a method for obtaining a TiO 2 airgel production thin film / thick film via a supercritical drying method to provide a dye-sensitized solar. It is to provide a method for increasing battery efficiency.
また、本発明の他の目的は、TiO2膜の比表面積が大きいほど色素の吸着量を増加させることができ、気孔の分布が均一であるほど電気的抵抗の減少によって光転換効率を向上させることができるので、TiO2エアロゲルの気孔率及び比表面積の調節を介して最適の効率を有するTiO2エアロゲル薄膜/厚膜製造方法を提供することにある。 Another object of the present invention is to increase the amount of dye adsorbed as the specific surface area of the TiO 2 film increases, and to improve the light conversion efficiency by reducing the electrical resistance as the pore distribution is more uniform. it is possible to provide a TiO 2 airgel thin film / thick film manufacturing method having optimal efficiency through the regulation of porosity and specific surface area of TiO 2 airgel.
また、本発明の他の目的は、既存薄膜より高い透明性と低い電気伝導度を維持することで、高い光電効果(photoelectric effect)を得て、発生された光電子を効率的に伝達させることができるTiO2エアロゲル薄膜/厚膜製造方法を提供することにある。 Another object of the present invention is to maintain high transparency and low electrical conductivity than existing thin films, thereby obtaining a high photoelectric effect and efficiently transmitting generated photoelectrons. An object of the present invention is to provide a method for producing a TiO 2 airgel thin film / thick film.
上述の目的を達成するために本発明は、(1)チタンアルコキシド、または炭素数1ないし10のアルキルシリケートとチタンアルコキシドをアルコールまたは蒸溜水と反応させてポリマーTiO2またはTiO2−SiO2ゾル、またはコロイド性TiO2ゾルまたはTiO2−SiO2ゾルを製造する段階と、(2)上記TiO2ゾルまたはTiO2−SiO2ゾルを熟成させてコーティング方法によってコーティングに好適に粘度を調節する段階と、(3)上記粘度が調節されたTiO2またはTiO2−SiO2ゾルを基板にコーティングさせてTiO2またはTiO2−SiO2湿潤ゲル膜を製造する段階と、(4)上記TiO2またはTiO2−SiO2湿潤ゲル膜をアルコール溶媒で熟成させる段階と、(5)上記熟成されたTiO2またはTiO2−SiO2膜を超臨界乾燥させる段階とを含むことを特徴とする色素増感太陽電池用TiO2またはTiO2−SiO2エアロゲル膜の製造方法を提供することにある。 To achieve the above object, the present invention provides (1) a polymer TiO 2 or TiO 2 —SiO 2 sol by reacting titanium alkoxide, or an alkyl silicate having 1 to 10 carbon atoms with titanium alkoxide with alcohol or distilled water, Or a step of producing a colloidal TiO 2 sol or TiO 2 —SiO 2 sol, and (2) aging the TiO 2 sol or TiO 2 —SiO 2 sol to adjust the viscosity suitably for coating by a coating method. (3) coating the substrate with the TiO 2 or TiO 2 —SiO 2 sol having a controlled viscosity to produce a TiO 2 or TiO 2 —SiO 2 wet gel film, and (4) the TiO 2 or TiO 2. the 2 -SiO 2 wet gel film comprising the steps of maturing an alcohol solvent, (5) the To provide a method for producing a made the TiO 2 or TiO 2 -SiO 2 film supercritical dried step by step and a dye-sensitized solar cell TiO 2 or TiO 2 -SiO 2 airgel film, which comprises a is there.
本発明の一実施形態によれば、上記アルキルシリケートがテトラエトキシシランである。 According to one embodiment of the invention, the alkyl silicate is tetraethoxysilane.
本発明の一実施形態によれば、上記TiO2−SiO2ゾルがTiO2:SiO2=9:1〜5:5のモル比であることが好ましい。 According to an embodiment of the present invention, the TiO 2 —SiO 2 sol is preferably in a molar ratio of TiO 2 : SiO 2 = 9: 1 to 5: 5.
本発明の一実施形態によれば、上記コロイド性TiO2またはTiO2−SiO2ゾルは、蒸溜水:Tiまたは蒸溜水:(Ti+Si)が2〜5:1のモル比で反応させて得られる。ここで、蒸溜水が2より小さい場合、反応が完全に起きなくて湿潤ゼルの構造が弱く、5以上を添加する場合は反応速度が非常に速くて粘度が非常に早く増加してコーティング用ゾルとして好適ではない問題点がある。 According to one embodiment of the present invention, the colloidal TiO 2 or TiO 2 —SiO 2 sol is obtained by reacting distilled water: Ti or distilled water: (Ti + Si) in a molar ratio of 2 to 5: 1. . Here, when the distilled water is smaller than 2, the reaction does not take place completely and the structure of the wet zel is weak, and when 5 or more are added, the reaction rate is very fast and the viscosity increases very quickly, so that the coating sol There is a problem that is not suitable.
本発明の一実施形態によれば、上記アルコールがイソプロパノール、エチルアルコールまたはメタノールからなる群から選択されたアルコールであることが好ましい。 According to one embodiment of the present invention, the alcohol is preferably an alcohol selected from the group consisting of isopropanol, ethyl alcohol or methanol.
本発明の一実施形態によれば、上記ポリマーTiO2ゾルがチタンイソプロポキシドをイソプロパノールに1:20〜60のモル比で溶解させた後、TIP:H2O=1:2〜5のモル比、TIP:HNO3=1:0.08〜0.25のモル比になるようにH2O及び酸性触媒HNO3を添加した後に18〜27℃の恒温槽で30分〜2時間撹拌して製造されることができる。ここで、反応時間は、濃度、触媒量などによって調節することができ、ここでチタンイソプロポキシドのイソプロパノール及びH2Oに対する濃度が非常に薄い場合にはゲルの構造が弱くて超臨界乾燥後の形態を維持しにくく、濃度が非常に高い場合には粘度が非常に早く増加してコーティング用として用いることができない。また、ここで、0.08以下の窒酸を添加すれば、粒子が均等に分散されず、0.25以上ではゾルのゲル化反応が起きなくて湿潤ゼルを製造することができない。 According to an embodiment of the present invention, after the polymer TiO 2 sol dissolves titanium isopropoxide in isopropanol at a molar ratio of 1: 20-60, TIP: H 2 O = 1: 2-5 moles. Ratio, TIP: HNO 3 = 1: 0.08 to 0.25 After adding H 2 O and acidic catalyst HNO 3 to a molar ratio, the mixture was stirred in a thermostatic bath at 18 to 27 ° C. for 30 minutes to 2 hours. Can be manufactured. Here, the reaction time can be adjusted according to the concentration, the amount of catalyst, etc. Here, when the concentration of titanium isopropoxide with respect to isopropanol and H 2 O is very thin, the structure of the gel is weak and after supercritical drying. When the concentration is very high, the viscosity increases very quickly and cannot be used for coating. Here, if 0.08 or less of nitric acid is added, the particles are not evenly dispersed, and if it is 0.25 or more, the gelation reaction of the sol does not occur and a wet gel cannot be produced.
本発明の一実施形態によれば、上記スピンコーティング及び浸漬−引き上げコーティング段階前にコーティング性を向上させるために基板表面を表面修飾するか、基板表面に酸化物緩衝膜をコーティングする段階をさらに含むことができる。 According to an embodiment of the present invention, the method further includes surface-modifying the substrate surface or coating the substrate surface with an oxide buffer layer to improve the coating property before the spin coating and dip-pull coating steps. be able to.
本発明の一実施形態によれば、上記酸化物緩衝膜が基板上にTi薄膜を蒸着させた後、200〜500℃で急速熱処理させて形成される。500℃以上であれば、ガラス基板の場合に伝導性ガラスの特性が変化することができる。 According to an embodiment of the present invention, the oxide buffer film is formed by performing a rapid heat treatment at 200 to 500 ° C. after depositing a Ti thin film on a substrate. If it is 500 degreeC or more, the characteristic of conductive glass can change in the case of a glass substrate.
本発明の一実施形態によれば、上記酸化物緩衝膜がTiO2またはSiO2ゼロゲルを含む酸化物薄膜であることが好ましい。 According to one embodiment of the present invention, the oxide buffer film is preferably an oxide thin film containing TiO 2 or SiO 2 zero gel.
上記粘度調節段階において、コーティング方法がスピンコーティング方法の場合には10〜20cPの粘度、または浸漬−引き上げコーティング方法の場合には3〜5cP粘度に調節することが好ましい。 In the viscosity adjusting step, the viscosity is preferably adjusted to 10 to 20 cP when the coating method is a spin coating method, or 3 to 5 cP when the coating method is a dip-pull coating method.
本発明の一実施形態によれば、上記スピンコーティング方法が上記TiO2ゾルを500〜3000rpm速度で10〜60秒間遂行されることが好ましい。 According to an embodiment of the present invention, the spin coating method is preferably performed for 10 to 60 seconds with the TiO 2 sol at a speed of 500 to 3000 rpm.
本発明の一実施形態によれば、上記浸漬−引き上げコーティング法が上記TiO2ゾルをアルコール雰囲気下で基板上に0.5〜40cm/minの速度に遂行できる。 According to an embodiment of the present invention, the dip-pull coating method can perform the TiO 2 sol on a substrate at a speed of 0.5 to 40 cm / min in an alcohol atmosphere.
上記基板は、シリコンウェハー、スライドガラス伝導性ガラス(ITO、FTO)などが使用可能であり、特に限定されない。 As the substrate, a silicon wafer, a slide glass conductive glass (ITO, FTO) or the like can be used, and is not particularly limited.
上記TiO2またはTiO2−SiO2湿潤ゲル膜の熟成段階が常温または60℃程度の高温で行われることが好ましい。 It is preferable that the aging stage of the TiO 2 or TiO 2 —SiO 2 wet gel film is performed at room temperature or a high temperature of about 60 ° C.
本発明の一実施形態によれば、上記超臨界乾燥段階が上記熟成されたTiO2またはTiO2−SiO2膜をアルコール溶媒で満たした容器に入れた後に溶媒の臨界温度及び臨界圧力以上に高温及び高圧で維持して超臨界流体に転移させる段階及び上記超臨界流体を徐々に除去して常温で冷凍させて乾燥されたエオロゲルを得る段階を含むことができる。 According to an embodiment of the present invention, the supercritical drying step is performed at a temperature higher than the critical temperature and the critical pressure of the solvent after placing the aged TiO 2 or TiO 2 —SiO 2 film in a container filled with an alcohol solvent. And maintaining the high pressure to transfer to a supercritical fluid, and gradually removing the supercritical fluid and freezing at room temperature to obtain a dried airgel.
上記溶媒は、イソプロパノールであり、上記高温及び高圧が窒素ガスを利用して初期圧力350〜400psiで240〜250℃まで加熱して最終圧力1100〜1350psiに維持することが好ましい。 Preferably, the solvent is isopropanol, and the high temperature and high pressure are heated to 240-250 ° C. at an initial pressure of 350-400 psi using nitrogen gas and maintained at a final pressure of 1100-1350 psi.
イソプロパノールの臨界点が235℃と690psiであるが、それ以上に維持することで超臨界乾燥が行われ、例えば、図2に示すように、気相領域を経ず超臨界領域に入るために初期圧力を加えることが好ましい。一般的に確実な超臨界乾燥のために1100psi以上に維持されば可能である。 The critical point of isopropanol is 235 ° C. and 690 psi, but supercritical drying is performed by maintaining it at a temperature higher than 235 ° C., for example, as shown in FIG. It is preferable to apply pressure. Generally it is possible to maintain above 1100 psi for reliable supercritical drying.
以下、本発明をより詳しく説明するが、本発明はこれによって制限されない。 Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto.
本発明の一実施形態によれば、本発明は、金属アルコキシドであるチタンイソプロポキシドとイソプロパノールを出発物質として利用してTiO2ゾルを製造してスピンコーティングに好適な粘度(10−20cP)を有するように調節する技術を開発した。TiO2ゾルは、チタンイソプロポキシド(TIP、Aldrich、USA)とイソプロパノール(IPA、Yakuri、Japan)を出発物質にして製造された。例えば、一定量のチタンイソプロポキシドをイソプロパノールに溶解させた後、溶液中のTIP:IPA:H2O:HNO3のモル比が1:50:4:0.08になるように酸性触媒であるHNO3水溶液を徐々に添加し、25℃の恒温槽で1時間撹拌して加水分解及び重合反応が完結されるようにした。このように製造されたゾルは、熟成段階を経ってコーティングに好適な粘度を有するように調節される。 According to one embodiment of the present invention, the present invention provides a TiO 2 sol using a metal alkoxide titanium isopropoxide and isopropanol as starting materials to obtain a viscosity (10-20 cP) suitable for spin coating. Developed technology to adjust to have. The TiO 2 sol was prepared starting from titanium isopropoxide (TIP, Aldrich, USA) and isopropanol (IPA, Yakuri, Japan). For example, after dissolving a certain amount of titanium isopropoxide in isopropanol, an acidic catalyst is used so that the molar ratio of TIP: IPA: H 2 O: HNO 3 in the solution is 1: 50: 4: 0.08. A certain aqueous HNO 3 solution was gradually added and stirred for 1 hour in a thermostatic bath at 25 ° C. to complete the hydrolysis and polymerization reaction. The sol thus produced is adjusted to have a viscosity suitable for coating through an aging stage.
熟成段階を経て粘度が調節されたポリマーTiO2ゾルは、透明伝導性ガラス基板やスライドガラス及びシリコンウェハーなどの基板にスピンコーティング及び浸漬−引き上げコーティングの方法でコーティングされる。ゾルの粘度とコーティング時の回転速度及び浸漬−引き上げ速度を調節することで、様々な厚さのTiO2湿潤ゲル薄膜を製造することができ、TiO2湿潤ゲル薄膜上にゾルを複数回マルチコーティング(multi−coating)することで、TiO2湿潤ゲル厚膜を得ることができる。このように得られたTiO2湿潤ゲル薄膜/厚膜は、イソプロパノール雰囲気下で乾燥された後、一定時間の間に該当溶媒内で熟成される。(図1参照)一例として、浸漬−引き上げコーティング及びスピンコーティングによって製造された湿潤ゲル薄膜を60℃の乾燥器でIPA溶液の中で熟成させることで、未反応プロピル基と触媒として用いられたHNO3及びH2Oを除去した。薄膜の超臨界乾燥は、熟成過程を経った湿潤ゲル薄膜をイソプロパノールを入れた圧力容器に入れて加熱して235℃、690psi以上の領域で溶媒を超臨界流体に相転移させて除去することで、エアロゲル薄膜/厚膜を製造した。このとき、窒素ガスを用いて初期に400psiの圧力を250℃で1350psiに維持させて溶媒が気体状に相転移することを防止した。 The polymer TiO 2 sol having a viscosity adjusted through an aging step is coated on a substrate such as a transparent conductive glass substrate, a slide glass, and a silicon wafer by spin coating and dip-pull coating methods. By adjusting the viscosity of the sol, the rotation speed during coating, and the dipping-pulling speed, TiO 2 wet gel thin films of various thicknesses can be manufactured, and the sol is coated multiple times on the TiO 2 wet gel thin film. TiO 2 wet gel thick film can be obtained by (multi-coating). The TiO 2 wet gel thin film / thick film thus obtained is dried in an isopropanol atmosphere and then aged in a corresponding solvent for a predetermined time. (See FIG. 1) As an example, a wet gel thin film produced by dip-pull coating and spin coating is aged in an IPA solution in a dryer at 60 ° C., so that unreacted propyl groups and HNO used as a catalyst are used. 3 and H 2 O were removed. Supercritical drying of the thin film is accomplished by placing the wet gel thin film that has undergone the aging process in a pressure vessel containing isopropanol and heating it to remove the phase by transitioning the solvent to a supercritical fluid in the region of 235 ° C. and 690 psi or higher. Airgel thin film / thick film was manufactured. At this time, the pressure of 400 psi was initially maintained at 1350 psi at 250 ° C. using nitrogen gas to prevent the solvent from undergoing a gaseous phase transition.
このような本発明によるTiO2エアロゲルの製造方法は、チタンイソプロポキシドとイソプロパノールを利用してTiO2ゾルを製造する段階、TiO2ゾルをスピンコーティング及び浸漬−引き上げコーティングしてそれをゲル化して湿潤ゲルを製造する段階、湿潤ゲルをイソプロパノール内で熟成する段階及び上記湿潤ゲル薄膜/厚膜を超臨界乾燥する段階を含むことを特徴とする。 The method of manufacturing a TiO 2 airgel according to the present invention includes a step of manufacturing a TiO 2 sol using titanium isopropoxide and isopropanol, spin-coating and dip-pulling the TiO 2 sol, and gelling it. The method comprises the steps of producing a wet gel, aging the wet gel in isopropanol, and supercritically drying the wet gel film / thick film.
また、湿潤ゲル薄膜/厚膜の構造を強化するためにゾル製造時にテトラエトキシシランを添加してTiO2−SiO2ゾルを製造する段階をさらに含むこともできる。 Further, in order to reinforce the structure of the wet gel thin film / thick film, it may further include a step of producing a TiO 2 —SiO 2 sol by adding tetraethoxysilane during the production of the sol.
また、ゾルと基板の粘性を向上させるために基板の表面を修飾するか、膜の接着性を向上させるためにTiO2及びSiO2などの酸化物緩衝膜(buffer layer)を形成させる段階を含むこともできる。 In addition, the method includes modifying the surface of the substrate to improve the viscosity of the sol and the substrate, or forming a buffer layer such as TiO 2 and SiO 2 to improve the adhesion of the film. You can also.
TiO2エアロゲル薄膜/厚膜は、スピンコーティング法または浸漬−引き上げコーティング法によって製造されたTiO2湿潤ゲル膜を超臨界乾燥法を介して製造される。ゾル−ゲル工程に製造された湿潤ゲルは、数vol%の固相と90%以上の気孔内にアルコールが満たされている構造状態として、大気中で乾燥する場合、液体が蒸発しながら気−液界面にメニスカス(meniscus)が発生して毛細管応力がかかるようになる。したがって、ゲルは収縮するようになり、気孔も消滅する。収縮現象を防止して微細なゲル網目構造を維持させるために湿潤ゲルを溶媒で満たした密閉された圧力容器(autoclave)に入れた後、溶媒の臨界温度と圧力以上の高温高圧に維持すれば、溶媒は超臨界流体に転移される。超臨界流体は、すべての分子が自由に移動することができる状態として、ゲル内部には気−液界面による表面張力がもう存在しなくなる。このような超臨界流体を徐々に除去して常温で冷凍させると、蒸発乾燥から発生する収縮や亀裂が発生しない乾燥されたゲルを得ることができ、これをエアロゲルという。超臨界乾燥法によって得られたTiO2エアロゲル薄膜/厚膜は、網目構造をなすTiO2粒子の間に別途の結晶粒が成長しないため、既存の方法によって製造された多結晶(polycrystaline)膜のような膜に比べて結晶粒系(grain boundary)の抵抗が非常に小さいことで、電気伝導性が非常に優れる。また、厚さが厚くなっても既存の膜に比べて透明度が優れて高い光触媒効果(photocatalytic effect)及び光電効果(photoelectric effect)を期待することができる。 The TiO 2 airgel thin film / thick film is manufactured through a supercritical drying method of a TiO 2 wet gel film manufactured by a spin coating method or a dip-pull coating method. The wet gel produced in the sol-gel process has a structure in which alcohol is filled in a solid volume of several vol% and 90% or more of pores. Meniscus is generated at the liquid interface and capillary stress is applied. Therefore, the gel shrinks and the pores disappear. In order to prevent the shrinkage phenomenon and maintain a fine gel network structure, the wet gel is put in a closed autoclave filled with a solvent, and then maintained at a high temperature and high pressure above the critical temperature and pressure of the solvent. , The solvent is transferred to the supercritical fluid. In the supercritical fluid, all the molecules can move freely, and the surface tension due to the gas-liquid interface no longer exists inside the gel. When such a supercritical fluid is gradually removed and frozen at room temperature, a dried gel free from shrinkage and cracks generated by evaporation drying can be obtained, which is called an aerogel. In the TiO 2 airgel thin film / thick film obtained by the supercritical drying method, since separate crystal grains do not grow between the TiO 2 particles having a network structure, a polycrystalline film produced by an existing method is used. Compared to such a film, the electrical conductivity is very excellent because the resistance of the grain boundary is very small. In addition, even if the thickness is increased, the photocatalytic effect and the photoelectric effect can be expected, which are superior in transparency compared to existing films and have a high photocatalytic effect.
したがって、本発明では、70%以上の高い気孔性と比表面積を有するTiO2エアロゲル薄膜/厚膜を製造して太陽光と直接に反応する光増感色素の量を大きく増加させて色素増感型太陽電池の効率を増加させる方法を提供する。 Therefore, in the present invention, a TiO 2 airgel thin film / thick film having a high porosity of 70% or more and a specific surface area is manufactured, and the amount of the photosensitizing dye that reacts directly with sunlight is greatly increased to thereby increase the dye sensitization. A method for increasing the efficiency of a solar cell is provided.
本発明によれば、色素増感型太陽電池の光電子伝達体として超臨界乾燥法を介して比表面積と気孔率の大きいTiO2薄膜/厚膜を製造することができるので、一般的なスクリーンプリンティング法によって製造されたTiO2薄膜/厚膜に比較したとき、吸着される光増感色素の量を増加させることができる。 According to the present invention, a TiO 2 thin film / thick film having a large specific surface area and high porosity can be produced through a supercritical drying method as a photoelectron carrier of a dye-sensitized solar cell. The amount of photosensitizing dye adsorbed can be increased when compared to TiO 2 thin film / thick film produced by the method.
また、高分子バインダーなどの添加なしにゾル−ゲル工程と超臨界乾燥法のみを利用して直接TiO2薄膜/厚膜を製造することができることので、工程時間を短縮し、生産費用を節減することができる。 In addition, TiO 2 thin film / thick film can be manufactured directly using only sol-gel process and supercritical drying method without adding polymer binder, etc., thus shortening process time and reducing production cost. be able to.
以下、本発明の好ましい実施形態について図面に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(実施例1)
チタンイソプロポキシド(TIP、Aldrich、USA)とイソプロパノール(IPA、Yakuri、Japan)を出発物質にして製造した。一定量のチタンイソプロポキシドをイソプロパノールに溶解させた後、溶液中のTIP:IPA:H2O:HNO3のモル比がチタンイソプロポキシド(TIP、Aldrich、USA)とイソプロパノール(IPA、Yakuri、Japan)を出発物質にして製造された。一定量のチタンイソプロポキシドをイソプロパノールに溶解させた後、溶液中のTIP:IPA:H2O:HNO3のモル比が1:30:3.5:0.08になるように酸性触媒であるHNO3水溶液を徐々に添加して25℃の恒温槽で1時間撹拌して加水分解及び重合反応が完結されるようにした。このように製造されたゾルは、スピンコーティングに好適な10〜20cPの粘度を有するまで常温で熟成し、スピンコーティングは製造されたゾルをITOガラス(ITO glass)/スライドガラス(slide glass)/シリコンウエハ(Si wafer)の上に500〜3000rpmの速度で10〜60秒間にコーティングされた(マルチコーティング時には、10回コーティング)。コーティングが完了された湿潤ゲル薄膜/厚膜は、構造強化のためにイソプロパノール雰囲気下で一定時間維持させた後、イソプロパノール内で2週〜4週間熟成され、以後に超臨界乾燥工程を遂行した。超臨界乾燥は、イソプロパノール50mlを圧力容器に入れた後、窒素ガスを利用して初期に400psiの圧力を加え、250℃まで加熱して最終圧力が1350psiになるようにした。超臨界流体の排気は、エアロゲルの亀裂発生可否と密接な関連があり、亀裂が発生しない範囲内でなるべく速い排気速度が好ましい。また、排気速度のみならず、排気の均一性が重要な変数なので、一定排気速度を維持して最終的にTiO2エアロゲル薄膜/厚膜を得ることができた。
Example 1
Prepared using titanium isopropoxide (TIP, Aldrich, USA) and isopropanol (IPA, Yakuri, Japan) as starting materials. After a certain amount of titanium isopropoxide is dissolved in isopropanol, the molar ratio of TIP: IPA: H 2 O: HNO 3 in the solution is titanium isopropoxide (TIP, Aldrich, USA) and isopropanol (IPA, Yakuri, Japan). After dissolving a certain amount of titanium isopropoxide in isopropanol, an acidic catalyst was used so that the molar ratio of TIP: IPA: H 2 O: HNO 3 in the solution was 1: 30: 3.5: 0.08. A certain aqueous HNO 3 solution was gradually added and stirred in a constant temperature bath at 25 ° C. for 1 hour to complete the hydrolysis and polymerization reaction. The sol thus produced is aged at room temperature until it has a viscosity of 10 to 20 cP suitable for spin coating, and the spin coating is obtained by using ITO glass / slide glass / silicone. It was coated on a wafer (Si wafer) at a speed of 500 to 3000 rpm for 10 to 60 seconds (10 coatings for multi-coating). The coated wet gel thin film / thick film was maintained in an isopropanol atmosphere for a certain period of time for structural strengthening, and then aged in isopropanol for 2 to 4 weeks. Thereafter, a supercritical drying process was performed. In supercritical drying, 50 ml of isopropanol was placed in a pressure vessel, and then a pressure of 400 psi was initially applied using nitrogen gas and heated to 250 ° C. so that the final pressure was 1350 psi. Exhaust of supercritical fluid is closely related to whether or not cracking occurs in the airgel, and a pumping speed as high as possible is preferable as long as cracks do not occur. Further, since not only the exhaust speed but also the uniformity of exhaust is an important variable, it was possible to finally obtain a TiO 2 airgel thin film / thick film while maintaining a constant exhaust speed.
(実施例2)
チタンイソプロポキシドをイソプロパノールに溶解させた後、溶液中のTIP:IPA:H2O:HNO3のモル比が1:50:4:0.08になるように酸性触媒であるHNO3水溶液を徐々に添加して25℃の恒温槽で1時間撹拌して加水分解及び重合反応が完結されるようにした。ゾルの粘度は、3〜5cPの範囲に調節され、浸漬コーティングはイソプロパノール雰囲気下でITOガラス(ITO glass)/スライドガラス(slide glass)/シリコンウエハ(Si wafer)の上に0.5〜40cm/minの引き上げ速度で遂行された。コーティングが完了された湿潤ゲル薄膜/厚膜は、実施例1と同一な方法で熟成及び超臨界乾燥過程を経た後、TiO2エアロゲル薄膜/厚膜を得ることができた。
(Example 2)
After dissolving titanium isopropoxide in isopropanol, an aqueous HNO 3 solution as an acidic catalyst was added so that the molar ratio of TIP: IPA: H 2 O: HNO 3 in the solution was 1: 50: 4: 0.08. Gradually added and stirred in a constant temperature bath at 25 ° C. for 1 hour to complete the hydrolysis and polymerization reaction. The viscosity of the sol is adjusted in the range of 3-5 cP, and the dip coating is 0.5-40 cm / cm on ITO glass / slide glass / Si wafer under isopropanol atmosphere. It was carried out at a pulling rate of min. The wet gel thin film / thick film after coating was subjected to aging and supercritical drying in the same manner as in Example 1, and then a TiO 2 airgel thin film / thick film was obtained.
(実施例3)
透明伝導性ガラス基板のコーティング性を改善するために基板上に酸化物緩衝膜(bufferlayer)をコーティングしてTiO2ゾルの接着性及びコーティング性を向上させた。伝導性ガラスであるITOガラス基板上にTi薄膜を蒸着させた後、500℃で急速熱処理をさせてチタン酸化物薄膜を製造した。TiO2ゾルは、実施例1と同一条件に製造された。また、実施例1とほぼ同一条件でTiO2エアロゲル薄膜/厚膜のコーティング及び超臨界乾燥が実施された。
(Example 3)
In order to improve the coating property of the transparent conductive glass substrate, an oxide buffer layer was coated on the substrate to improve the adhesion and coating property of the TiO 2 sol. A Ti thin film was deposited on an ITO glass substrate, which is a conductive glass, and then subjected to rapid heat treatment at 500 ° C. to produce a titanium oxide thin film. The TiO 2 sol was produced under the same conditions as in Example 1. Further, TiO 2 airgel thin film / thick film coating and supercritical drying were performed under substantially the same conditions as in Example 1.
(実施例4)
TiO2エアロゲルの構造を強化するためにテトラエトキシシラン(TEOS、Fluka、Switzerland)をチタンイソプロポキシド(TIP、Aldrich、USA)とともに出発物質として用いてイソプロパノール(IPA、Yakuri、Japan)を利用してTiO2−SiO2ゾルを製造した。一定量のチタンイソプロポキシドとテトラエトキシシランをイソプロパノールに溶解させた後、溶液中のTIP:TEOS:IPA:H2O:HClのモル比が0.9:0.1:30:3.5:0.08になるように酸性触媒であるHNO3水溶液を徐々に添加して25℃恒温槽で1時間を撹拌して加水分解及び重合反応が完結されるようにした。TiO2−SiO2薄膜/厚膜は、実施例1とほぼ同一条件にコーティングされ、超臨界乾燥も同一条件で実施された。
Example 4
Utilizing isopropanol (IPA, Yakuri, Japan) using tetraethoxysilane (TEOS, Fluka, Switzerland) as a starting material with titanium isopropoxide (TIP, Aldrich, USA) to enhance the structure of TiO 2 airgel A TiO 2 —SiO 2 sol was prepared. After a certain amount of titanium isopropoxide and tetraethoxysilane were dissolved in isopropanol, the molar ratio of TIP: TEOS: IPA: H 2 O: HCl in the solution was 0.9: 0.1: 30: 30. : HNO 3 aqueous solution as an acidic catalyst was gradually added so as to be 0.08, and stirred for 1 hour in a thermostatic bath at 25 ° C. to complete the hydrolysis and polymerization reaction. The TiO 2 —SiO 2 thin film / thick film was coated under almost the same conditions as in Example 1, and supercritical drying was also performed under the same conditions.
(実施例5及び6)
TIP:TEOSの比が5:5、7:3で用いられることのみを除いて実施例3と同一方法で製造した。
(Examples 5 and 6)
Manufactured in the same manner as in Example 3 except that the TIP: TEOS ratio was only 5: 5 and 7: 3.
(比較例1)
750mlの0.1M窒酸溶液に125mlのチタンイソプロポキシド(Titanium isopropoxide:TIP、Aldrich、USA)を一粒ずつ落として激しく反応させると、加水分解によって白色の沈殿物が発生する。このスラリーを80℃で8時間反応させて粒子を分散させてコロイド化させた後、TiO2の量が5wt%になるように蒸溜水を添加する。このスラリーをチタニウムオートクレーブ容器に入れた後、200℃〜250℃で水熱合成をさせた後にロータリーエバポレーター(rotary evaporator)を利用して最終的に固体TiO2の量が11wt%になるように濃縮させる。このように製造されたTiO2スラリーに乾燥時に膜の亀裂を防止するためにポリエチレングリコール(Polyethylene glyco:PEG、molecular weight20000、Merck、Germany)をTiO2量の0〜50%まで添加してペースト(paste)を製造した。製造されたペースト(paste)は、FTOガラス(FTO glass)の上にドクターブレード法を利用して塗布し、製造された膜は分当たり20〜50度に昇温して450℃で30分間熱処理した。
(Comparative Example 1)
When 125 ml of titanium isopropoxide (TIP, Aldrich, USA) is dropped into 750 ml of 0.1 M nitric acid solution one by one and reacted vigorously, a white precipitate is generated by hydrolysis. The slurry is reacted at 80 ° C. for 8 hours to disperse the particles and colloid, and then distilled water is added so that the amount of TiO 2 is 5 wt%. This slurry was put in a titanium autoclave vessel, hydrothermally synthesized at 200 ° C. to 250 ° C., and then concentrated using a rotary evaporator so that the amount of solid TiO 2 was finally 11 wt%. Let In order to prevent cracking of the film during drying, the resulting TiO 2 slurry is added with polyethylene glycol (Polyethylene glyco: PEG, molecular weight 20000, Merck, Germany) to 0 to 50% of the amount of TiO 2 and paste ( paste). The manufactured paste is applied onto FTO glass using a doctor blade method, and the manufactured film is heated to 20-50 degrees per minute and heat treated at 450 ° C. for 30 minutes. did.
(実験例1)
実施例4及び実施例5によって製造されたTiO2−SiO2エアロゲル膜の場合、BET窒素吸着法で測定した結果は、比表面積がそれぞれ300m2/g、400m2/gで一般的に用いられる常用TiO2粉末であるDegussa P−25粉末と比べて、Degussa P−25は比表面積が50m2/gと知られていて、本発明によって製造された膜の比表面積が非常に大きくて色素増感効率が高いことが分かる。
(Experimental example 1)
For TiO 2 -SiO 2 airgel films prepared according to Examples 4 and 5, the result measured by the BET nitrogen adsorption method, a specific surface area of each of 300 meters 2 / g, are generally employed in 400 meters 2 / g Compared to Degussa P-25 powder, which is a regular TiO 2 powder, Degussa P-25 is known to have a specific surface area of 50 m 2 / g. It can be seen that the sensitivity is high.
(実験例2)
比較例の方法によって260℃、250℃でそれぞれ水熱合成して形成された膜と、実施例1によって形成された膜を走査顕微鏡写真を介して観察した(それぞれ図4及び図5)。上記の写真で確認できるように本発明によって製造された膜の気孔性がさらに高いことが分かる。よって、膜の厚さが同じ場合、さらに多量の光増感色素を吸着することができるということが分かる。
(Experimental example 2)
A film formed by hydrothermal synthesis at 260 ° C. and 250 ° C. by the method of the comparative example and a film formed by Example 1 were observed through scanning micrographs (FIGS. 4 and 5 respectively). As can be seen from the above photograph, it can be seen that the porosity of the film produced according to the present invention is higher. Therefore, it can be seen that a larger amount of photosensitizing dye can be adsorbed when the thickness of the film is the same.
(実験例3)
本発明の実施例1、4ないし6によって製造された膜のエアロゲルの結晶状をX線回折法によって測定してその結果を図6に示した。TiO2の様々な結晶状のうちでもアナターゼ(anatase)状は、色素増感太陽電池の電子伝達体としてもっとも効果的な状態と知られており、本発明による上記膜は、超臨界乾燥後、比較例1と異なって別途の熱処理過程なしもアナターゼ(anatase)状を得ることができるという長所があり、またTiO2−SiO2エアロゲル結晶状も造成比にかかわらずアナターゼ(anatase)状であることが分かった。
(Experimental example 3)
FIG. 6 shows the results of measuring the airgel crystal form of the films produced according to Examples 1, 4 to 6 of the present invention by the X-ray diffraction method. Among the various crystal forms of TiO 2, the anatase form is known to be the most effective state as an electron carrier of a dye-sensitized solar cell, and the film according to the present invention is obtained after supercritical drying. Unlike Comparative Example 1, there is an advantage that an anatase shape can be obtained even without a separate heat treatment process, and the TiO 2 —SiO 2 airgel crystal shape is also an anatase shape regardless of the formation ratio. I understood.
(実験例4)
実施例1、4ないし6によって製造された膜のエアロゲル膜の走査顕微鏡写真と比較例1によって製造された膜の走査燎微鏡写真を介して観察した(図3参照)。
(Experimental example 4)
It was observed through a scanning photomicrograph of the airgel membrane of the membrane produced in Examples 1, 4 to 6 and a scanning micrograph of the membrane produced in Comparative Example 1 (see FIG. 3).
これによれば、本発明によるエアロゲル膜の気孔が比較例による従来の膜に比べて均一であり、多孔性であることが肉眼で識別可能に観察されることが分かる。即ち、電気的抵抗の減少によって光転換効率を向上させることができるということが分かる。 According to this, it can be seen that the pores of the airgel membrane according to the present invention are more uniform than the conventional membrane according to the comparative example, and that the porosity is observed to be discernible with the naked eye. That is, it can be seen that the light conversion efficiency can be improved by reducing the electrical resistance.
このように本発明は、TiO2エアロゲルの気孔率及び比表面積の調節を介して最適の効率を有するTiO2エアロゲル薄膜/厚膜製造方法を提供することができるということが分かる。 Thus the present invention, it can be seen that it is possible to provide a TiO 2 airgel thin film / thick film manufacturing method having optimal efficiency through the regulation of porosity and specific surface area of TiO 2 airgel.
以上、本発明は、上述した特定の好適な実施例に限定されるものではなく、特許請求の範囲で請求する本発明の基本概念に基づき、当該技術分野における通常の知識を有する者であれば、様々な実施変形が可能であり、そのような変形は本発明の特許請求の範囲に属するものである。 As described above, the present invention is not limited to the above-described specific preferred embodiment, and any person having ordinary knowledge in the technical field based on the basic concept of the present invention claimed in the claims. Various implementation modifications are possible, and such modifications are within the scope of the claims of the present invention.
Claims (15)
(2)前記TiO2ゾルまたはTiO2−SiO2ゾルを熟成させてコーティング方法によってコーティングに好適に粘度を調節する段階と、
(3)前記粘度が調節されたTiO2またはTiO2−SiO2ゾルを基板にコーティングさせてTiO2またはTiO2−SiO2湿潤ゲル膜を製造する段階と、
(4)前記TiO2またはTiO2−SiO2湿潤ゲル膜をアルコール溶媒で熟成させる段階と、
(5)前記熟成されたTiO2またはTiO2−SiO2膜を超臨界乾燥させる段階と、を含むことを特徴とする色素増感太陽電池用TiO2またはTiO2−SiO2エアロゲル膜の製造方法。 (1) Titanium alkoxide, or alkyl silicate having 1 to 10 carbon atoms and titanium alkoxide are reacted with alcohol or distilled water to produce a polymer TiO 2 or TiO 2 —SiO 2 sol, or a colloidal TiO 2 sol or TiO 2 —SiO 2. Producing a sol;
(2) aging the TiO 2 sol or TiO 2 —SiO 2 sol and adjusting the viscosity suitably for coating by a coating method;
(3) A step of coating a substrate with the TiO 2 or TiO 2 —SiO 2 sol having a controlled viscosity to produce a TiO 2 or TiO 2 —SiO 2 wet gel film;
(4) aging the TiO 2 or TiO 2 —SiO 2 wet gel film with an alcohol solvent;
(5) Supercritical drying of the aged TiO 2 or TiO 2 —SiO 2 film, and a method for producing a TiO 2 or TiO 2 —SiO 2 airgel film for a dye-sensitized solar cell .
前記超臨界流体を徐々に取り除いて常温で冷凍させて乾燥したエアロゲルを得る段階であることを特徴とする請求項1に記載の色素増感太陽電池用TiO2またはTiO2−SiO2エアロゲル膜の製造方法。 In the supercritical drying step, after the aged TiO 2 or TiO 2 —SiO 2 film is placed in a sealed container filled with an alcohol solvent, the supercritical drying step is performed at a temperature higher than the critical temperature and the critical pressure of the solvent. Transition with a critical fluid; and
The TiO 2 or TiO 2 —SiO 2 airgel film for a dye-sensitized solar cell according to claim 1, wherein the supercritical fluid is gradually removed and frozen at room temperature to obtain a dried airgel. Production method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070097921A KR100952570B1 (en) | 2007-09-28 | 2007-09-28 | Fabrication Method of Titanium oxide or Titanium oxide-Silicon oxide aerogel thin film/thick film for electrode support of transparent solar cell |
KR10-2007-0097921 | 2007-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009087911A JP2009087911A (en) | 2009-04-23 |
JP4842910B2 true JP4842910B2 (en) | 2011-12-21 |
Family
ID=40661039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007283657A Expired - Fee Related JP4842910B2 (en) | 2007-09-28 | 2007-10-31 | Method for producing titanium oxide airgel thin film or thick film used as electrode holder for transparent solar cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4842910B2 (en) |
KR (1) | KR100952570B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496634A (en) * | 2011-12-27 | 2012-06-13 | 华东理工大学 | Three-layer antireflective film for crystalline silicon solar cell and preparation process for three-layer antireflective film |
KR101468164B1 (en) * | 2013-12-27 | 2014-12-08 | 전자부품연구원 | Method for preparing photo electrode using capillary force driven |
KR101666309B1 (en) * | 2015-05-19 | 2016-10-13 | 서울대학교산학협력단 | Method for manufacturing SiO2-based perovskite solar cell |
US10807070B2 (en) * | 2017-09-12 | 2020-10-20 | Fuji Xerox Co., Ltd. | Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst |
CN108609621B (en) * | 2018-07-28 | 2020-03-17 | 西安建筑科技大学 | Preparation method of silicon dioxide aerogel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4507306B2 (en) | 1999-08-31 | 2010-07-21 | 株式会社豊田中央研究所 | Oxide semiconductor electrode and dye-sensitized solar cell using the same |
JP4279971B2 (en) * | 1999-11-10 | 2009-06-17 | パナソニック電工株式会社 | Light emitting element |
KR100439854B1 (en) * | 2002-03-13 | 2004-07-12 | 한국과학기술연구원 | Aerogel type Platinum-Ruthenium-Carbon Catalyst, Method to Manufacture the said Catalyst and Direct Methanol Fuel Cell comprising the said Catalyst |
JP4203554B2 (en) | 2002-08-30 | 2009-01-07 | 住友大阪セメント株式会社 | Photoelectric conversion element and manufacturing method thereof |
JP2005298324A (en) * | 2003-06-20 | 2005-10-27 | Matsushita Electric Ind Co Ltd | Porous body and its production method |
JP2005100792A (en) * | 2003-09-25 | 2005-04-14 | Chubu Electric Power Co Inc | Photoelectric conversion element |
-
2007
- 2007-09-28 KR KR1020070097921A patent/KR100952570B1/en active IP Right Grant
- 2007-10-31 JP JP2007283657A patent/JP4842910B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009087911A (en) | 2009-04-23 |
KR100952570B1 (en) | 2010-04-12 |
KR20090032565A (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bacsa et al. | Rutile formation in hydrothermally crystallized nanosized titania | |
CN101794670B (en) | Preparation method of photo anode of dye-sensitized solar cell with optical gradient | |
Park et al. | Preparation of TiO 2 spheres with hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells | |
Park et al. | Facile fabrication of vertically aligned TiO 2 nanorods with high density and rutile/anatase phases on transparent conducting glasses: high efficiency dye-sensitized solar cells | |
CN100534910C (en) | Method of preparing TiO2 nano-tube array | |
JP4842910B2 (en) | Method for producing titanium oxide airgel thin film or thick film used as electrode holder for transparent solar cell | |
CN101702377A (en) | Zinc oxide/titanium dioxide hybrid electrode and preparation method thereof | |
TW201039482A (en) | Preparation of a nanocomposite photoanode for dye-sensitized solar cells | |
CN106848494A (en) | A kind of simple preparation method of carbon auto-dope nano carbon nitride film electrode | |
WO2016026339A1 (en) | Synthesis method for tio2 nanocrystal | |
CN104810480A (en) | Preparation method for thin titanium dioxide layer of perovskite cell | |
Mali et al. | Efficient dye-sensitized solar cells based on hierarchical rutile TiO 2 microspheres | |
Wang et al. | Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells | |
KR100913308B1 (en) | Dye-sensitized solar cell using the nanoporous spherical structure for photo-electrode | |
KR20090080205A (en) | Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells | |
JP5288429B2 (en) | Method for producing titania porous layer | |
Xu et al. | Composite electrode of TiO 2 particles with different crystal phases and morphology to significantly improve the performance of dye-sensitized solar cells | |
JP2007179766A (en) | Dye-sensitized solar cell | |
CN101439873B (en) | Method for titania film growth in fluorine-based aqueous solution | |
Mo et al. | Facile synthesis of TiO2 microspheres via solvothermal alcoholysis method for high performance dye-sensitized solar cells | |
Hao et al. | Size-tunable TiO2 nanocrystals from titanium (IV) bis (ammonium lactato) dihydroxide and towards enhance the performance of dye-sensitized solar cells | |
Pari et al. | Recent advances in SnO2 based photo anode materials for third generation photovoltaics | |
JP2005174695A (en) | Method of manufacturing dye-sensitized solar cell | |
KR101326659B1 (en) | A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube | |
Zhang et al. | TiO 2@ CdSe/CdS core–shell hollow nanospheres solar paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4842910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |