JP2005174695A - Method of manufacturing dye-sensitized solar cell - Google Patents

Method of manufacturing dye-sensitized solar cell Download PDF

Info

Publication number
JP2005174695A
JP2005174695A JP2003411938A JP2003411938A JP2005174695A JP 2005174695 A JP2005174695 A JP 2005174695A JP 2003411938 A JP2003411938 A JP 2003411938A JP 2003411938 A JP2003411938 A JP 2003411938A JP 2005174695 A JP2005174695 A JP 2005174695A
Authority
JP
Japan
Prior art keywords
dye
semiconductor electrode
electrode film
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003411938A
Other languages
Japanese (ja)
Inventor
Yukihiro Ogiya
幸宏 扇谷
Katsuhiko Ogaki
克彦 大柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003411938A priority Critical patent/JP2005174695A/en
Publication of JP2005174695A publication Critical patent/JP2005174695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve electron conduction characteristics of porous semiconductor electrode film consisting of minute particles used in the dye-sensitized solar cell in order to improve conversion efficiency of a dye-sensitized solar cell, and means suitable for industrialization. <P>SOLUTION: This method of manufacturing dye-sensitized solar cell includes a step for forming the semiconductor electrode film by applying coating liquid containing minute particles of titanium oxide, hydrolyzable titanium compound and/or its hydrolyzate on a transparent conductive film, the semiconductor electrode film or a precursor film of the semiconductor electrode film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、色素増感型太陽電池に使用される多孔質性の半導体電極膜の電子伝導特性を向上させることで、色素増感型太陽電池の変換効率を向上させることを可能とする色素増感型太陽電池の製法に関する。 The present invention relates to a dye sensitization capable of improving the conversion efficiency of a dye-sensitized solar cell by improving the electron conduction characteristics of a porous semiconductor electrode film used in the dye-sensitized solar cell. The present invention relates to a method for producing a sensitive solar cell.

現在に広く普及しているシリコン系太陽電池は、原料が高価で製造コストが掛かる等の問題があり、代替となる太陽電池が精力的に研究されている。中でも、Graetzelら(特許文献1、非特許文献1)によって提案されたルテニウム錯体等の色素が担持された酸化チタン等の多孔質性酸化物からなる半導体電極膜を用いる色素増感型太陽電池が、使用される原料の廉価さや、大面積化の容易さから様々な機関で活発に研究されている。   Currently, silicon solar cells that are widely used have problems such as high raw materials and high production costs, and alternative solar cells are being actively researched. Among them, a dye-sensitized solar cell using a semiconductor electrode film made of a porous oxide such as titanium oxide carrying a dye such as a ruthenium complex proposed by Graetzel et al. (Patent Document 1, Non-Patent Document 1) is disclosed. It has been actively researched by various institutions because of the low cost of raw materials used and the ease of increasing the area.

しかし、特許文献1及び非特許文献1で得られている色素増感型太陽電池は、量産には不向きであるが、変換効率が、10%と、様々な機関で研究されている色素増感型太陽電池と比べて、最高級のレベルである。この要因としては、次ぎの点があげられる。   However, the dye-sensitized solar cells obtained in Patent Document 1 and Non-Patent Document 1 are not suitable for mass production, but have a conversion efficiency of 10%, which is studied by various institutions. Compared to type solar cells, this is the highest level. The following points can be cited as this factor.

1)色素増感型太陽電池には、レドックス電解液(I/I 系)の液体電解液が使用されており、該電解液の一部が多孔質性の半導体電極膜を通過し、電極に達するので電気的にショートし、変換効率の低下をもたらす。これに対し、特許文献1及び非特許文献1で得られている多孔質性酸化物からなる半導体電極膜は、電極も兼ねた金属チタン基材上に形成されたものである。金属チタンには、通常、不動態の酸化物膜が形成されており、色素増感型太陽電池の作製過程で、これが結晶化し、前記半導体電極膜と一体化する。不動態由来の半導体電極膜は多孔質ではなく、緻密なものであるため、前記ショートを防ぐ。 1) The dye-sensitized solar cell uses a redox electrolyte (I / I 3 system) liquid electrolyte, and a part of the electrolyte passes through the porous semiconductor electrode film. Since it reaches the electrode, it is electrically shorted, resulting in a decrease in conversion efficiency. On the other hand, the semiconductor electrode film made of a porous oxide obtained in Patent Document 1 and Non-Patent Document 1 is formed on a metal titanium substrate that also serves as an electrode. A metallic oxide film is usually formed on the titanium metal, which crystallizes and is integrated with the semiconductor electrode film in the process of producing the dye-sensitized solar cell. Since the semiconductor electrode film derived from the passive state is not porous but dense, it prevents the short circuit.

2)特許文献1及び非特許文献1で得られている多孔質性酸化物からなる半導体電極膜は、酸化チタンの前駆体を有する溶液を加水分解乃至重縮合反応させて得られた塗布液を、基材に塗布乃至焼成して得られたもので、該方法による多孔質性酸化物からなる半導体電極膜は、電極との密着が良好で、半導体電極膜と電極間の抵抗が小さい。   2) A semiconductor electrode film made of a porous oxide obtained in Patent Document 1 and Non-Patent Document 1 is obtained by subjecting a coating solution obtained by hydrolysis or polycondensation reaction of a solution having a titanium oxide precursor. The semiconductor electrode film made of a porous oxide obtained by applying or baking to a base material has good adhesion to the electrode, and the resistance between the semiconductor electrode film and the electrode is small.

しかしながら、特許文献1及び非特許文献1で得られている色素増感型太陽電池は、前述したとおり、量産には不向きである。なぜなら、1回の塗布乃至焼成で得られる半導体電極膜の膜厚は、0.5μmが限度であり、発電に必要な5μm程度の膜厚を得るためには、何回もの塗布液の塗布乃至焼成が必要だからである。   However, the dye-sensitized solar cells obtained in Patent Document 1 and Non-Patent Document 1 are not suitable for mass production as described above. This is because the thickness of the semiconductor electrode film obtained by one application or firing is limited to 0.5 μm, and in order to obtain a film thickness of about 5 μm necessary for power generation, a coating solution can be applied many times. This is because firing is necessary.

前記問題を克服するため、酸化物半導体微粒子を有する塗布液を基材に塗布して得られる酸化物半導体微粒子が凝集してなる多孔質性の半導体電極膜が開示され(例えば、特許文献2)、該半導体電極膜は、少ない塗布回数で厚膜の多孔質性の半導体電極膜を得ることができる。又、入射光を効率良く色素増感型太陽電池に取り込むために該半導体電極膜を透明導電膜上に形成する方法が開示されている(例えば、特許文献3)。   In order to overcome the above problem, a porous semiconductor electrode film is disclosed in which oxide semiconductor fine particles obtained by applying a coating liquid containing oxide semiconductor fine particles to a substrate are aggregated (for example, Patent Document 2). The semiconductor electrode film can provide a thick porous semiconductor electrode film with a small number of coatings. In addition, a method of forming the semiconductor electrode film on a transparent conductive film in order to efficiently capture incident light into a dye-sensitized solar cell is disclosed (for example, Patent Document 3).

さらに、より多孔質性の高い半導体電極膜を得るために、酸化チタン微粒子の表面に硝酸などの酸を付着させた半導体電極膜が開示され、(例えば、特許文献4)、該半導体電極膜は、酸の水素イオンが有する電荷によって酸化チタン微粒子の一次粒子同士が互いに反発し、分散性に優れた多孔質性の半導体電極膜を得ることができる。   Furthermore, in order to obtain a more porous semiconductor electrode film, a semiconductor electrode film in which an acid such as nitric acid is attached to the surface of titanium oxide fine particles is disclosed (for example, Patent Document 4). The primary particles of the titanium oxide fine particles repel each other due to the charge of the acid hydrogen ions, and a porous semiconductor electrode film having excellent dispersibility can be obtained.

しかし、該主流の色素増感型太陽電池は、特許文献1及び非特許文献1での前記1)及び2)の利点が損なわれていることが問題となっている。すなわち半導体電極膜の耐ショート性、及び半導体電極膜の導電膜への密着が乏しいことである。加えて、微粒子による半導体電極膜なので、全ての微粒子同士の接触が完全ではないので、一部の微粒子は透明導電膜と導通せず、光電変換した際に発生した電子が電解質の酸化反応に費やされるという問題も生じている。結果、現在、開発の主流となっている色素増感型太陽電池は、変換効率が低いものとなっている。   However, the mainstream dye-sensitized solar cells have a problem that the advantages 1) and 2) in Patent Document 1 and Non-Patent Document 1 are impaired. That is, the short-circuit resistance of the semiconductor electrode film and the adhesion of the semiconductor electrode film to the conductive film are poor. In addition, since the semiconductor electrode film is made of fine particles, contact between all the fine particles is not perfect, so some of the fine particles do not conduct with the transparent conductive film, and electrons generated during photoelectric conversion are consumed in the oxidation reaction of the electrolyte. There is also a problem that As a result, dye-sensitized solar cells, which are currently the mainstream of development, have low conversion efficiency.

上記であげた欠点の一つである微粒子同士の結合性を改善しようと、特許文献5では、半導体電極膜を形成のための塗布液において、酸化チタン微粒子、及びチタンアルコキシドが共存した塗布液を用いており、特許文献6では、酸化チタン微粒子、及び有機チタネート類又はチタンハロゲン化物とが共存した塗布液を用いている。   In order to improve the bonding property between fine particles, which is one of the drawbacks mentioned above, Patent Document 5 discloses a coating solution in which titanium oxide fine particles and titanium alkoxide coexist in a coating solution for forming a semiconductor electrode film. In Patent Document 6, a coating solution in which titanium oxide fine particles and organic titanates or titanium halide coexist is used.

しかしながら、チタンアルコキシド、チタンハロゲン化物等の加水分解性チタン化合物は、水の存在によって、重縮合反応を伴う加水分解反応が進行するので、経時的に塗布液の性状が変化する。従って、工業化の際には、塗布液の管理には注意を要し、コスト高の原因となる。特に、チタンハロゲン化物は、加水分解されやすく、その蒸気は刺激臭があり、大気中では激しく発煙するので、該物質を用いる工業化には非常な困難が伴う。
特開平1−220380号公報 特開平10−92477号公報 特公平8−15097号公報 特開2002−343453号公報 特開平10−223924号公報 特開2002−75477号公報 Brian O’Regan、 Michael Graetzel、“Alow-cost, high-efficiency Solar cell based on dye-sensitized colloidal TiO2 films”、NATURE 、第353巻、737頁〜740頁、1991年
However, hydrolyzable titanium compounds such as titanium alkoxides and titanium halides undergo a hydrolysis reaction accompanied by a polycondensation reaction due to the presence of water, so that the properties of the coating solution change over time. Therefore, in industrialization, care is required for management of the coating solution, which causes high costs. In particular, titanium halide is easily hydrolyzed, its vapor has an irritating odor, and emits violently in the atmosphere. Therefore, it is very difficult to industrialize using the material.
Japanese Patent Laid-Open No. 1-220380 Japanese Patent Laid-Open No. 10-92477 Japanese Patent Publication No. 8-15097 JP 2002-343453 A Japanese Patent Laid-Open No. 10-223924 JP 2002-75477 A Brian O'Regan, Michael Graetzel, “Allow-cost, high-efficiency Solar cell based on sensitized colloidal TiO2 films”, page 353, page 537, page 737.

本発明は、色素増感型太陽電池の変換効率を向上させるために、色素増感型太陽電池に使用される微粒子からなる多孔質性の半導体電極膜の電子伝導特性を向上させ、且つ工業化に適した手段を提供することを課題とする。   In order to improve the conversion efficiency of the dye-sensitized solar cell, the present invention improves the electron conduction characteristics of the porous semiconductor electrode film made of fine particles used in the dye-sensitized solar cell and is industrialized. It is an object to provide a suitable means.

本発明は、上記課題を鑑みてなしたものである。すなわち、色素増感型太陽電池の製法は、色素増感型太陽電池の製法において、酸化チタン微粒子、及び一般式[1]で表される加水分解性チタン化合物及び/又はその加水分解物を有する塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布して半導体電極膜を形成する工程を有することを特徴とする。   The present invention has been made in view of the above problems. That is, the method for producing a dye-sensitized solar cell includes a titanium oxide fine particle and a hydrolyzable titanium compound represented by the general formula [1] and / or a hydrolyzate thereof in the method for producing a dye-sensitized solar cell. It has the process of apply | coating a coating liquid to a transparent conductive film, a semiconductor electrode film, or the precursor film | membrane of a semiconductor electrode film, and forming a semiconductor electrode film, It is characterized by the above-mentioned.

TiCl4−X(OR) [1]
ここで、Xは、0超4未満であり、Rは炭素数が1乃至10のアルキル基、又はアルコキシアルキル基を表す。又、溶液の安定性、得られる色素増感型太陽電池の光電変換効率を鑑み、Xの範囲を2.5以上3.5以下とすることが好ましい。2.5未満では、溶液の安定が劣る傾向にあり、3.5超では、得られる色素増感型太陽電池の光電変換効率が下がる傾向にあるからである。
TiCl 4-X (OR) X [1]
Here, X is more than 0 and less than 4, and R represents an alkyl group having 1 to 10 carbon atoms or an alkoxyalkyl group. In view of the stability of the solution and the photoelectric conversion efficiency of the resulting dye-sensitized solar cell, the X range is preferably 2.5 to 3.5. If it is less than 2.5, the stability of the solution tends to be inferior, and if it exceeds 3.5, the photoelectric conversion efficiency of the resulting dye-sensitized solar cell tends to decrease.

TiCl4−x(OR)の作製方法は、塩化チタンとアルコールを混合加熱する方法、アルカリ金属(アルカリ土類金属)アルコキシドと塩化チタンを混合する方法、チタンアルコキシドと塩化チタンを混合する方法などがある。 The production method of TiCl 4-x (OR) x is a method of mixing and heating titanium chloride and alcohol, a method of mixing alkali metal (alkaline earth metal) alkoxide and titanium chloride, a method of mixing titanium alkoxide and titanium chloride, and the like. There is.

例えば、TiCl4−x(OR)は、TiClとTi(OR)の混合で形成する場合、この混合比によってXの値が決まる。TiCl4−x(OR)は、化学的には、アルコキシド基と塩素との交換反応が分子間で平衡となっている状態である。つまり、TiCl4−x(OR)は、TiCl、TiCl(OR)、TiCl(OR)、TiCl(OR) 、Ti(OR)の5つの分子が平衡状態にあり、塩素及びアルコキシド基とが交換反応を繰り返しており、TiCl(OR)、TiCl(OR) 、及びTiCl(OR) が100%近くを占めている。 For example, when TiCl 4−x (OR) x is formed by mixing TiCl 4 and Ti (OR) 4 , the value of X is determined by the mixing ratio. TiCl 4-x (OR) x is chemically in a state where the exchange reaction between the alkoxide group and chlorine is in equilibrium between molecules. That is, TiCl 4−x (OR) x has five molecules of TiCl 4 , TiCl 3 (OR) 1 , TiCl 2 (OR) 2 , TiCl 1 (OR) 3 , and Ti (OR) 4 in an equilibrium state. , Chlorine and alkoxide groups are repeatedly exchanged, and TiCl 3 (OR) 1 , TiCl 2 (OR) 2 , and TiCl 1 (OR) 3 occupy nearly 100%.

TiClは、加水分解されやすく、その蒸気は刺激臭があり、大気中では激しく発煙するので、該物質を用いる工業化には非常な困難が伴う。他方、Ti(OR)は加水分解反応がTiClと比べて激しいわけではないが、その加水分解物は、経時的に脱水縮合し巨大分子化し、溶液は増粘する。結果、塗布液は使用に耐え難くなる。従って、Ti(OR)を用いる工業化には、水分量の管理等の厳密な溶液な管理を必要とする。 TiCl 4 is easily hydrolyzed, its vapor has an irritating odor, and emits violently in the atmosphere, so it is very difficult to industrialize it. On the other hand, although the hydrolysis reaction of Ti (OR) 4 is not as intense as that of TiCl 4 , the hydrolyzate dehydrates and condenses into macromolecules over time, and the solution thickens. As a result, the coating liquid becomes difficult to use. Accordingly, the industrialization using Ti (OR) 4 requires strict solution management such as control of water content.

TiCl4−x(OR)は、Clが存在するためにTiCl4−x(OR)x のアルコキシド基が、OH基に置換される加水分解が阻害される。すなわち、当該物質は、塗布液中で安定であり、工業的な使用には非常に適するものである。従って、当該物質を含んだ溶液で酸化チタン微粒子を改質する方法は、工業的に極めて優れた方法であり、この酸化チタン微粒子と加水分解性チタン化合物からなる半導体電極膜は、酸化チタン微粒子だけからなる半導体電極膜に比べて、微粒子同士の接触性(結合性)を改善することができる。 Since TiCl 4-x (OR) x is present in Cl, hydrolysis in which the alkoxide group of TiCl 4-x (OR) x is replaced with an OH group is inhibited. That is, the substance is stable in the coating solution and is very suitable for industrial use. Therefore, the method of modifying the titanium oxide fine particles with the solution containing the substance is an industrially excellent method, and the semiconductor electrode film composed of the titanium oxide fine particles and the hydrolyzable titanium compound is only the titanium oxide fine particles. Compared with a semiconductor electrode film made of a material, the contact property (bonding property) between fine particles can be improved.

上記加水分解性チタン化合物は、塗布液中の水分によっても、沈殿が起こらない。加水分解性チタン化合物がClを含有するので、塗布液は、pH値が3以下の強酸性を保つので、加水分解性チタン化合物の溶解度が大きくなり、沈殿が生じない。又、塗布液が強酸性を有することによって、酸化チタン微粒子が互いに反発し、酸化チタン微粒子の塗布液中での分散性が向上する。その結果、比表面積が大きい多孔質性の半導体電極膜を得ることができる。   The hydrolyzable titanium compound does not precipitate even with moisture in the coating solution. Since the hydrolyzable titanium compound contains Cl, the coating solution maintains a strong acidity with a pH value of 3 or less, so the solubility of the hydrolyzable titanium compound increases and precipitation does not occur. Further, since the coating solution has strong acidity, the titanium oxide fine particles repel each other, and the dispersibility of the titanium oxide fine particles in the coating solution is improved. As a result, a porous semiconductor electrode film having a large specific surface area can be obtained.

塗布液の調製時に、一般式[1]であらわされる加水分解性チタン化合物を、酸化チタン微粒子に対して、重量比で0.1倍量以上10倍量以下を溶液又は溶媒に導入し塗布液を調製することが好ましい。0.1倍未満では、酸化チタン微粒子の結合性改善に効果が小さく、10重量倍超では、最終的に得られる半導体電極膜の空孔サイズが小さくなり、半導体電極膜への色素の導入量が少なくなる傾向になる。   At the time of preparing the coating solution, the hydrolyzable titanium compound represented by the general formula [1] is introduced into the solution or solvent in an amount of 0.1 to 10 times by weight with respect to the titanium oxide fine particles. Is preferably prepared. If it is less than 0.1 times, the effect of improving the binding properties of the titanium oxide fine particles is small, and if it exceeds 10 weight times, the pore size of the finally obtained semiconductor electrode film becomes small, and the amount of dye introduced into the semiconductor electrode film Tends to decrease.

塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布した後に、塗布した物品を400℃乃至600℃で加熱することが好ましく、加熱時間は5分〜60分とすることが好ましい。400℃以上の温度で加熱することで、加水分解性チタン化合物由来の酸化チタンの結晶化が促進され、酸化チタン微粒子間の結合性が向上する。このとき、酸化チタン微粒子は、加水分解性チタン化合物に由来する酸化チタンの結晶化のための結晶核としての役割もするので、加熱時間を短くすることができる。前記焼成条件は、400℃以上で任意に選択できるが、経済性、色素増感型太陽電池の構成要素である透明導電膜の導電率の変動、基材の形状保持等を考慮すると、その温度は400℃乃至600℃とすることが好ましい。   After applying the coating liquid to the transparent conductive film, the semiconductor electrode film, or the precursor film of the semiconductor electrode film, the coated article is preferably heated at 400 ° C. to 600 ° C., and the heating time is 5 minutes to 60 minutes. It is preferable. By heating at a temperature of 400 ° C. or higher, crystallization of titanium oxide derived from the hydrolyzable titanium compound is promoted, and the bonding property between the titanium oxide fine particles is improved. At this time, since the titanium oxide fine particles also serve as crystal nuclei for crystallization of titanium oxide derived from the hydrolyzable titanium compound, the heating time can be shortened. The baking conditions can be arbitrarily selected at 400 ° C. or higher, but considering the economy, fluctuations in the conductivity of the transparent conductive film that is a component of the dye-sensitized solar cell, maintaining the shape of the substrate, etc. Is preferably 400 ° C. to 600 ° C.

本発明の色素増感型太陽電池の製法により、加水分解性チタン化合物により酸化チタン微粒子間の結合が改善されるので、半導体電極膜での電子伝導が改善され、色素増感型太陽電池の変換効率の向上に奏功する。又、加水分解性チタン化合物を塗布液中で安定なものとしたので、光電変換効率に優れる色素増感型太陽電池を安定的に製造することに奏功する。   By the method for producing the dye-sensitized solar cell of the present invention, the bond between the titanium oxide fine particles is improved by the hydrolyzable titanium compound, so that the electron conduction in the semiconductor electrode film is improved and the dye-sensitized solar cell is converted. Succeeds in improving efficiency. In addition, since the hydrolyzable titanium compound is stable in the coating solution, it is successful in stably producing a dye-sensitized solar cell excellent in photoelectric conversion efficiency.

本発明の色素増感型太陽電池の製法は、酸化チタン微粒子、及び一般式[1]で表される加水分解性チタン化合物及び/又はその加水分解物を有する塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布して半導体電極膜を形成する工程を有することを特徴とする。   The production method of the dye-sensitized solar cell of the present invention is obtained by applying a coating liquid containing titanium oxide fine particles and a hydrolyzable titanium compound represented by the general formula [1] and / or a hydrolyzate thereof to a transparent conductive film or a semiconductor. It has the process of apply | coating to an electrode film or the precursor film | membrane of a semiconductor electrode film, and forming a semiconductor electrode film, It is characterized by the above-mentioned.

前記酸化チタン微粒子には、アナタース型、ルチル型等を使用でき、特にアナタース型の酸化チタンがより好ましい。その平均粒径が5nm乃至500nmの範囲にあるものが好ましい。平均粒径を当該範囲内とすることで、半導体電極膜の色素を導入するための空孔(空隙)を確保しつつ、強度の高いものを得やすくなる。尚、ここでの平均粒径は走査型電子顕微鏡(SEM)観察によって得られるもので、30万倍の倍率で酸化チタン膜表面を見て、1画面からランダムに20個の微粒子を選択する。その操作を20回行って抽出された微粒子の粒径サイズの平均として計算されたものである。   As the titanium oxide fine particles, anatase type, rutile type and the like can be used, and anatase type titanium oxide is particularly preferable. Those having an average particle diameter in the range of 5 nm to 500 nm are preferred. By setting the average particle size within the above range, it becomes easy to obtain a high-strength material while ensuring holes (voids) for introducing the pigment of the semiconductor electrode film. Here, the average particle diameter is obtained by observation with a scanning electron microscope (SEM), and the surface of the titanium oxide film is viewed at a magnification of 300,000, and 20 fine particles are selected at random from one screen. This is calculated as the average particle size of the fine particles extracted by performing the operation 20 times.

塗布液の溶媒には、水、メタノール、エタノール、2−プロパノール、2−メトキシメタノール、2−エトキシエタノール等の低級アルコール、エチレングリコール等の多価アルコール、ヘキサン、ヘクタン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を使用できる。又、必要に応じて、β−ジケトン等のアルコキシド安定剤、界面活性剤等を添加することができる。一般式[1]であらわされる加水分解性チタン化合物は、水中でも安定なので、取扱の容易さを考慮し、溶媒には水を使用することが好ましい。   Solvents for the coating solution include water, lower alcohols such as methanol, ethanol, 2-propanol, 2-methoxymethanol and 2-ethoxyethanol, polyhydric alcohols such as ethylene glycol, hydrocarbons such as hexane and heptane, benzene, toluene Aromatic hydrocarbons such as xylene can be used. If necessary, an alkoxide stabilizer such as β-diketone, a surfactant and the like can be added. Since the hydrolyzable titanium compound represented by the general formula [1] is stable in water, it is preferable to use water as the solvent in consideration of ease of handling.

又、得られる半導体電極膜の膜厚を厚いものとするために、塗布液を増粘させることが好ましく、塗布液には、ポリエチレングリコール、セルロース、澱粉、グリセリン、ポリビニルアルコール、ポリビニルブチラール等の有機物が好ましい。中でも分子量1万〜50万のポリエチレングリコールは、塗布液の増粘性、塗布後に焼成等の手段で容易に除去することができる等の観点から特に好ましい。   Further, in order to increase the thickness of the obtained semiconductor electrode film, it is preferable to thicken the coating solution, and the coating solution includes organic substances such as polyethylene glycol, cellulose, starch, glycerin, polyvinyl alcohol, and polyvinyl butyral. Is preferred. Among these, polyethylene glycol having a molecular weight of 10,000 to 500,000 is particularly preferable from the viewpoints of increasing the viscosity of the coating solution and easily removing it by means such as baking after coating.

塗布液中の前記増粘剤は、酸化チタン微粒子、及び加水分解性チタン化合物から得られる酸化チタンの総量に対し、重量比で0.1倍〜20倍量とすることが好ましい。0.1倍未満では、多孔質性の半導体電極膜の比表面積が小さくなる傾向にあり、20倍超では、膜の強度が低くなる傾向にあるからである。   The thickener in the coating solution is preferably 0.1 to 20 times by weight with respect to the total amount of titanium oxide obtained from the titanium oxide fine particles and the hydrolyzable titanium compound. If it is less than 0.1 times, the specific surface area of the porous semiconductor electrode film tends to be small, and if it exceeds 20 times, the strength of the film tends to be low.

塗布液への酸化チタン微粒子、及び加水分解性チタン化合物の含有量、すなわち、塗布液中での酸化チタン類の濃度は1重量%乃至80重量%にすることが好ましい。1重量%未満では、酸化チタン類の量が少ないため、半導体電極膜が薄くなる傾向にある。一方、80重量%超では、酸化チタン類の割合が多く、得られる半導体電極膜の比表面積が小さくなる傾向にある。   The content of the titanium oxide fine particles and the hydrolyzable titanium compound in the coating solution, that is, the concentration of titanium oxides in the coating solution is preferably 1% by weight to 80% by weight. If it is less than 1% by weight, the amount of titanium oxides is small, so that the semiconductor electrode film tends to be thin. On the other hand, if it exceeds 80% by weight, the proportion of titanium oxides is large, and the specific surface area of the obtained semiconductor electrode film tends to be small.

酸化チタン微粒子と加水分解性チタン化合物の混合方法は、酸化チタン微粒子を有する溶液に加水分解性チタン化合物を添加する方法、加水分解性チタン化合物、又は加水分解性チタン化合物を有する溶液に酸化チタン微粒子、又は酸化チタン微粒子を有する溶液を添加する方法等適宜使用することができる。   The mixing method of the titanium oxide fine particles and the hydrolyzable titanium compound is a method of adding the hydrolyzable titanium compound to the solution having the titanium oxide fine particles, the hydrolyzable titanium compound, or the titanium oxide fine particles in the solution having the hydrolyzable titanium compound. Alternatively, a method of adding a solution containing titanium oxide fine particles can be used as appropriate.

上記塗布液を、透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜にする方法としては、スクリーン印刷法、バーコータ法等の公知の手段を用いることができる。塗布後に、焼成又は減圧等の手段、好ましくは焼成によって、溶媒及び増粘剤を塗布物から除去させ多孔質性の半導体電極膜を得ることができる。   As a method of using the coating solution as a transparent conductive film, a semiconductor electrode film, or a precursor film of the semiconductor electrode film, known means such as a screen printing method or a bar coater method can be used. After coating, the porous semiconductor electrode film can be obtained by removing the solvent and the thickener from the coated material by means such as firing or reduced pressure, preferably firing.

透明導電膜上に形成される半導体電極膜の膜厚は、1μm乃至50μm、好ましくは、2乃至25μmとすることが好ましい。半導体電極膜の厚さが1μm未満の場合は、色素が吸着する表面積が小さくなり、十分な色素量を半導体電極に導入することが難しく、色素増感型太陽電池の変換効率が低くなる傾向になる。一方、50μm超では、内部抵抗が高くなりすぎ、変換効率が低下する。   The thickness of the semiconductor electrode film formed on the transparent conductive film is 1 μm to 50 μm, preferably 2 to 25 μm. When the thickness of the semiconductor electrode film is less than 1 μm, the surface area on which the dye is adsorbed is small, it is difficult to introduce a sufficient amount of the dye into the semiconductor electrode, and the conversion efficiency of the dye-sensitized solar cell tends to be low. Become. On the other hand, if it exceeds 50 μm, the internal resistance becomes too high and the conversion efficiency decreases.

前記透明導電膜は、ITO、酸化錫、酸化亜鉛、弗素ドープされた酸化錫等を使用でき、該透明導電膜は、基材上に形成されたものである。そして、該透明導電膜は、可視光の透過性を有し、抵抗値が20Ω/□以下のものであれば、前記にあげたものに限定されるものではない。又、ここで言う基材は、可視光の透過性を有していれば、特に限定されるものではなく、フロート法で作製されたソーダ石灰ガラス、石英ガラス、硼珪酸塩ガラス等のガラス板を使用することができ、半導体電極膜の形成時に変形しないものであれば、プラスチック製の透明板も使用することができる。そして、太陽光の光エネルギーを効率良く利用するために、透明導電膜が形成された基材において、その可視光透過率が、"JIS R 3106"(板ガラスの透過率・反射率・日射熱取得率試験方法)に基づいて測定される可視光透過率が60%以上であることが好ましい。   As the transparent conductive film, ITO, tin oxide, zinc oxide, fluorine-doped tin oxide or the like can be used, and the transparent conductive film is formed on a substrate. The transparent conductive film is not limited to those described above as long as it has visible light permeability and a resistance value of 20Ω / □ or less. Further, the base material here is not particularly limited as long as it has visible light permeability, and glass plates such as soda lime glass, quartz glass, borosilicate glass and the like manufactured by the float process. As long as it does not deform when the semiconductor electrode film is formed, a plastic transparent plate can also be used. And in order to utilize the light energy of sunlight efficiently, in the base material in which the transparent conductive film was formed, the visible light transmittance | permeability is "JIS R3106" (the transmittance | permeability, reflectance, solar heat acquisition of plate glass) The visible light transmittance measured based on the rate test method) is preferably 60% or more.

塗布液が塗布される半導体電極膜は、結晶性の酸化物半導体を有する膜である。当該酸化物半導体には、酸化チタン、特にアナタース型の酸化チタンを使用することが好ましい。当該半導体電極には、一般式[1]で表される加水分解性チタン化合物、及び酸化チタン微粒子からなる膜を使用してもよい。   The semiconductor electrode film to which the coating liquid is applied is a film having a crystalline oxide semiconductor. As the oxide semiconductor, titanium oxide, particularly anatase-type titanium oxide is preferably used. For the semiconductor electrode, a film composed of a hydrolyzable titanium compound represented by the general formula [1] and titanium oxide fine particles may be used.

又、塗布液が塗布される半導体電極膜の前駆膜は、加熱等の処理をすることで、結晶性の酸化チタン、好ましくは、アナタース型の酸化チタン等の半導体電極膜となるものである。前駆膜は、酸化チタン等のゾルを透明導電膜等にスピンコート法、ディップ法、スクリーン印刷法、バーコータ法等の既知の手段で塗布し、80℃〜300℃の加熱することにより得られる。前駆膜由来の半導体電極膜は、多孔質性の半導体電極膜よりも緻密となるので、色素増感型太陽電池において、液体電解質が透明導電膜に到達しにくくなるので、電気的なショートが生じにくくなる等の効果を生じせしめる。前記ゾルは、アルコキシド化合物、ハロゲン化合物、オキシハロゲン化合物、アセチル化合物等を出発原料とし、該出発原料を、加水分解に必要な水に加えて、メタノール、エタノール、プロパノール等の低級アルコール類、アセトン、アセチルアセトネート等のケトン類等の溶媒に添加し、溶液中で加水分解乃至重縮合工程を経て得ることができる。   The precursor film of the semiconductor electrode film to which the coating solution is applied becomes a semiconductor electrode film such as crystalline titanium oxide, preferably anatase type titanium oxide, by treatment such as heating. The precursor film is obtained by applying a sol such as titanium oxide to a transparent conductive film or the like by a known means such as a spin coating method, a dip method, a screen printing method, or a bar coater method, and heating at 80 ° C. to 300 ° C. Since the semiconductor electrode film derived from the precursor film is denser than the porous semiconductor electrode film, the liquid electrolyte is less likely to reach the transparent conductive film in the dye-sensitized solar cell, resulting in an electrical short circuit. It produces effects such as difficulty. The sol uses an alkoxide compound, a halogen compound, an oxyhalogen compound, an acetyl compound, etc. as a starting material, and the starting material is added to water necessary for hydrolysis to lower alcohols such as methanol, ethanol, propanol, acetone, It can be obtained by adding it to a solvent such as ketones such as acetylacetonate and subjecting it to hydrolysis or polycondensation in a solution.

塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布後に半導体電極膜を得るために物品を400℃乃至600℃する前に、物品を20℃程度の室温〜80℃、10Pa程度の減圧〜大気圧で放置することで乾燥させることが好ましい。又、加熱以外の手段で、半導体電極膜を得る手段としては、マイクロ波を用いる手段等適宜使用することができる。   Before the article is heated to 400 ° C. to 600 ° C. to obtain the semiconductor electrode film after coating the coating liquid on the transparent conductive film, or the semiconductor electrode film, or the precursor film of the semiconductor electrode film, the article is heated to about 20 ° C. to 80 ° C. It is preferable to dry the film by leaving it at a reduced pressure of about 10 Pa to atmospheric pressure. Further, as means for obtaining the semiconductor electrode film by means other than heating, means using microwaves can be used as appropriate.

半導体電極膜中に導入される色素としては、ルテニウム錯体、金属フタロシアニン色素、金属ポルフィリン色素、9−フェニルキサテン系やメロシアニン系等の色素を使用することができる。色素が溶液で1mM〜0.1mM程度の濃度となるようにエタノール、メタノール、イソプロピルアルコール等の低級アルコール等の溶媒に溶解させ、該溶液に半導体電極膜を浸漬させる。浸漬時の状態は、室温でも60℃程度の加温状態で行うことができ、さらには色素溶液を還流させても良い。浸漬時間を、室温で12時間程行えば、ほぼ飽和状態で色素を半導体電極膜中に導入させることができる。   As the dye introduced into the semiconductor electrode film, a ruthenium complex, a metal phthalocyanine dye, a metal porphyrin dye, a 9-phenylxanthene dye, a merocyanine dye, or the like can be used. The dye is dissolved in a solvent such as ethanol, methanol, isopropyl alcohol or the like so that the dye has a concentration of about 1 mM to 0.1 mM, and the semiconductor electrode film is immersed in the solution. The immersion state can be performed at room temperature or in a heated state of about 60 ° C. Further, the dye solution may be refluxed. If the immersion time is about 12 hours at room temperature, the dye can be introduced into the semiconductor electrode film in a substantially saturated state.

色素増感型太陽電池は以下の方法で作製された。図1は、色素増感型太陽電池の断面、図2は、色素増感型太陽電池のアノード電極の断面、図3は、色素増感型太陽電池のカソード電極の断面を表している。   The dye-sensitized solar cell was produced by the following method. 1 shows a cross section of a dye-sensitized solar cell, FIG. 2 shows a cross section of an anode electrode of the dye-sensitized solar cell, and FIG. 3 shows a cross section of a cathode electrode of the dye-sensitized solar cell.

半導体電極膜を得るための塗布液は、酸化チタン微粒子が分散されている水溶液に、加水分解性チタン化合物及び/又はその加水分解物を有する溶液、及び増粘剤を添加することで調製とした。この工程の詳細は各実施例にて述べる。   A coating solution for obtaining a semiconductor electrode film was prepared by adding a hydrolyzable titanium compound and / or a solution containing the hydrolyzate and a thickener to an aqueous solution in which titanium oxide fine particles are dispersed. . Details of this process will be described in each example.

上記塗布液をフッ素がドープされた酸化錫からなる透明導電膜7が形成された100mm×100mm×1mm(厚)サイズのガラス基材10の透明導膜上にバーコータで塗布、450℃、30分焼成することで多孔質性の半導体電極膜が形成された物品を得た。該物品を、Ru錯体[cis-di(thiocyanato)-bis(2,2'-bipyridine-4,4'-dicarboxy) ruthenium (II)]5×10-4mol/lのエタノール溶液中に12時間浸漬することで、半導体電極膜中に色素を導入した。 The coating solution was applied with a bar coater on a transparent conductive film of a glass substrate 10 having a size of 100 mm × 100 mm × 1 mm (thickness) on which a transparent conductive film 7 made of fluorine-doped tin oxide was formed, 450 ° C., 30 minutes By firing, an article on which a porous semiconductor electrode film was formed was obtained. The article is placed in an ethanol solution of Ru complex [cis-di (thiocyanato) -bis (2,2′-bipyridine-4,4′-dicarboxy) ruthenium (II)] 5 × 10 −4 mol / l for 12 hours. By soaking, a dye was introduced into the semiconductor electrode film.

これを色素が導入された半導体電極膜8を有する色素増感型太陽電池1のアノード電極2とし、Pt電極9が形成された100mm×100mm×1mm(厚)サイズのガラス基材11からな色素増感型太陽電池1のカソード電極3、及びアノード電極2を、30μの間隔を有するように対向させる。電極間を電解質4として、ヨウ化リチウム(0.3M)とヨウ素(0.003M)を含むアセトニトリル溶液が充填、及び電極周辺を封着材5としてポリエチレンシートで封着することで色素増感型太陽電池1を作製した。尚、透明導電膜7及びPt電極9にはリード線6が設置されている。   This is used as the anode electrode 2 of the dye-sensitized solar cell 1 having the semiconductor electrode film 8 into which the dye is introduced, and the dye is formed from the glass substrate 11 having a size of 100 mm × 100 mm × 1 mm (thickness) on which the Pt electrode 9 is formed. The cathode electrode 3 and the anode electrode 2 of the sensitized solar cell 1 are opposed to each other so as to have an interval of 30 μm. Dye-sensitized type with electrolyte 4 between electrodes, filled with acetonitrile solution containing lithium iodide (0.3M) and iodine (0.003M), and sealed with polyethylene sheet as sealing material 5 around electrode A solar cell 1 was produced. A lead wire 6 is provided on the transparent conductive film 7 and the Pt electrode 9.

図示していないソーラーシミュレータ(山下電装製YSS−E40)を疑似太陽光(100mW/cm2 の強度の光)とし、アノード電極2側から照射し、擬似太陽光により励起された色素から電子が発生し、電子がアノード電極中の半導体電極膜内に移動し、半導体電極膜内に移動した電子を透明導電膜、リード線を介して外部回路に取り出すことによって発電される。本実施例ではリード線に図示していない電流電圧測定装置[ソースメータ(キースレー製デジタルソースメータ2400)に接続して、開放電圧(Voc)、光電流密度(Jsc)、形状因子(FF)、変換効率(η)の測定し、色素増感型太陽電池の光電変換効率を評価した。 An unillustrated solar simulator (YSS-E40 manufactured by Yamashita Denso) is used as simulated sunlight (light with an intensity of 100 mW / cm 2 ), emitted from the anode electrode 2 side, and electrons are generated from the dye excited by the simulated sunlight. Then, the electrons move into the semiconductor electrode film in the anode electrode, and the electrons moved into the semiconductor electrode film are generated by taking them out to the external circuit through the transparent conductive film and lead wires. In this embodiment, the lead wire is connected to a current / voltage measuring device [source meter (digital source meter 2400 manufactured by Keithley), open voltage (Voc), photocurrent density (Jsc), form factor (FF), The conversion efficiency (η) was measured, and the photoelectric conversion efficiency of the dye-sensitized solar cell was evaluated.

この場合、Vocとは、色素増感型太陽電池セル・モジュールの出力端子を開放したときの両端子間の電圧を表している。Jscとは、色素増感型太陽電池セル・モジュールの出力端子を短絡させたときの両端子間に流れる電流(1cm2当たり)を表している。又、FFとは、最大出力Pmaxを開放電圧(Voc)と光電流密度(Jsc)の積で除した値(FF=Pmax/Voc/Jsc)をいい、色素増感型太陽電池としての電流電圧特性曲線の良さを表す。ηは、最大出力Pmaxを光強度(1cm2当たりの値)で除した値に100を乗じてパーセント表示した値として求められる。 In this case, Voc represents the voltage between both terminals when the output terminal of the dye-sensitized solar cell module is opened. Jsc represents the current (per 1 cm 2 ) flowing between both terminals when the output terminals of the dye-sensitized solar cell module are short-circuited. FF is a value obtained by dividing the maximum output Pmax by the product of the open circuit voltage (Voc) and the photocurrent density (Jsc) (FF = Pmax / Voc / Jsc), and is a current voltage as a dye-sensitized solar cell. Represents the goodness of the characteristic curve. η is obtained as a value expressed as a percentage by multiplying 100 by the value obtained by dividing the maximum output Pmax by the light intensity (value per 1 cm 2 ).

実施例1
平均粒径20nmのアナタース型の酸化チタン微粒子(日本アエロジル社製)を硝酸(60%)水溶液とイオン交換水とが、重量比で2:98で混合された溶媒に混合した。酸化チタン微粒子と溶媒との混合比は重量比で10:90で、この混合物をボールミルで72時間分散させ、酸化チタン微粒子が分散している溶液Aを得た。
Example 1
Anatase-type titanium oxide fine particles (manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 20 nm were mixed in a solvent in which an aqueous nitric acid (60%) solution and ion-exchanged water were mixed at a weight ratio of 2:98. The mixing ratio of the titanium oxide fine particles and the solvent was 10:90 by weight, and this mixture was dispersed with a ball mill for 72 hours to obtain a solution A in which the titanium oxide fine particles were dispersed.

次に、エチレングリコールモノエチルエーテルを溶媒とし、TiO換算で1.2MのTi(OiPr)4.0溶液、及びエチレングリコールモノエチルエーテルを溶媒とし、TiO換算で0.4MのTiCl4.0溶液を調製し、各溶液を50mlずつ混合し、TiO換算で0.8Mの加水分解性チタン化合物のTi(OiPr)3.0Cl1.0を有する溶液Bを得た。 Next, ethylene glycol monoethyl ether as a solvent and 1.2 M Ti (OiPr) 4.0 solution in terms of TiO 2 and ethylene glycol monoethyl ether as a solvent and 0.4 M TiCl 4 in terms of TiO 2 . 0 solution was prepared, 50 ml of each solution was mixed, and a solution B having 0.8 M hydrolyzable titanium compound Ti (OiPr) 3.0 Cl 1.0 in terms of TiO 2 was obtained.

加水分解性チタン化合物の仕込み量が、酸化チタン微粒子に対して重量比で2倍量となるように溶液Aに溶液Bを添加、さらに、増粘剤として分子量20万のポリエチレングリコールを、酸化チタン微粒子に対して重量比で10倍量添加し、12時間攪拌して塗布液を得た。   Solution B is added to solution A so that the amount of the hydrolyzable titanium compound charged is twice the weight ratio of titanium oxide fine particles, and polyethylene glycol having a molecular weight of 200,000 is added as a thickener to titanium oxide. The coating solution was obtained by adding 10 times by weight to the fine particles and stirring for 12 hours.

該塗布液を、透明導電膜7上に塗布し、空気中、450℃で30分間加熱することにより、膜厚7μmの多孔質性の半導体電極膜を得た。かくして得られる色素増感型太陽電池1は、Vocが0.75V、Jscが14.0mA/cm2、FFが0.76、ηが8.0%と優れた光電変換効率を示した。 The coating solution was applied onto the transparent conductive film 7 and heated in air at 450 ° C. for 30 minutes to obtain a porous semiconductor electrode film having a thickness of 7 μm. The dye-sensitized solar cell 1 thus obtained showed excellent photoelectric conversion efficiency with Voc of 0.75 V, Jsc of 14.0 mA / cm 2 , FF of 0.76, and η of 8.0%.

実施例2
加水分解性チタン化合物の仕込み量が、酸化チタン微粒子に対して重量比で6倍量となるように溶液Aに溶液Bを添加した以外は、実施例1と同様の手順とした。得られた多孔質性の半導体電極膜の膜厚は、7μm、本実施例から得られる色素増感型太陽電池1は、Vocが0.74V、Jscが13.9mA/cm2、FFが0.75、ηが7.7%と優れた光電変換効率を示した。
Example 2
The procedure was the same as in Example 1 except that Solution B was added to Solution A so that the amount of the hydrolyzable titanium compound charged was 6 times the weight ratio of the titanium oxide fine particles. The film thickness of the obtained porous semiconductor electrode film was 7 μm, and the dye-sensitized solar cell 1 obtained from this example had Voc of 0.74 V, Jsc of 13.9 mA / cm 2 , and FF of 0. Excellent photoelectric conversion efficiency of .75 and η was 7.7%.

実施例3
加水分解性チタン化合物の仕込み量が、酸化チタン微粒子に対して重量比で0.5倍量となるように溶液Aに溶液Bを添加した以外は、実施例1と同様の手順とした。得られた多孔質性の半導体電極膜の膜厚は、7μm、本実施例から得られる色素増感型太陽電池1は、Vocが0.74V、Jscが13.7mA/cm2、FFが0.74、ηが7.5%と優れた光電変換効率を示した。
Example 3
The procedure was the same as in Example 1 except that Solution B was added to Solution A so that the amount of the hydrolyzable titanium compound charged was 0.5 times the weight ratio with respect to the titanium oxide fine particles. The film thickness of the obtained porous semiconductor electrode film was 7 μm, and the dye-sensitized solar cell 1 obtained from this example had Voc of 0.74 V, Jsc of 13.7 mA / cm 2 , and FF of 0. .74, η was 7.5%, indicating an excellent photoelectric conversion efficiency.

実施例4
Ti(OiPr)4.0濃度を、TiO換算で1.08Mとし、TiCl4.0の濃度を、TiO換算で0.52Mとして、TiO換算で0.8Mの加水分解性チタン化合物を有する溶液を調製し、加水分解性チタン化合物の仕込み量が、酸化チタン微粒子に対して重量比で3倍量となるように溶液Aに溶液Bを添加した以外は、実施例1と同様の手順とした。本実施例での加水分解性チタン化合物は、Ti(OiPr)2.7 Cl1.3であった。得られた多孔質性の半導体電極膜の膜厚は、7μm、本実施例から得られる色素増感型太陽電池1は、Vocが0.75V、Jscが14.4mA/cm2、FFが0.73、ηが7.9%と優れた光電変換効率を示した。
Example 4
The Ti (OiPr) 4.0 Concentration, and 1.08M in terms of TiO 2, a concentration of TiCl 4.0, as 0.52M in terms of TiO 2, of 0.8M in terms of TiO 2 hydrolyzable titanium compound The same procedure as in Example 1 except that the solution B was added to the solution A so that the amount of the hydrolyzable titanium compound charged was 3 times by weight with respect to the titanium oxide fine particles. It was. The hydrolyzable titanium compound in this example was Ti (OiPr) 2.7 Cl 1.3 . The film thickness of the obtained porous semiconductor electrode film was 7 μm, and the dye-sensitized solar cell 1 obtained from this example had Voc of 0.75 V, Jsc of 14.4 mA / cm 2 , and FF of 0. Excellent photoelectric conversion efficiency of .73 and η was 7.9%.

実施例5
Ti(OiPr)4.0濃度を、TiO換算で0.875Mとし、TiCl4.0の濃度を、TiO換算で0.125Mとして、TiO換算で0.5Mの加水分解性チタン化合物を有する溶液を調製し、加水分解性チタン化合物の仕込み量が、酸化チタン微粒子に対して重量比で1.5倍量となるように溶液Aに溶液Bを添加した以外は、実施例1と同様の手順とした。本実施例での加水分解性チタン化合物は、Ti(OiPr)3.5Cl0.5であった。得られた多孔質性の半導体電極膜の膜厚は、7μm、本実施例から得られる色素増感型太陽電池1は、Vocが0.73V、Jscが13.7mA/cm2、FFが0.72、ηが7.2%と優れた光電変換効率を示した。
Example 5
The Ti (OiPr) 4.0 Concentration, and 0.875M in terms of TiO 2, a concentration of TiCl 4.0, as 0.125M in terms of TiO 2, a 0.5M hydrolyzable titanium compound in terms of TiO 2 The solution is prepared, and the solution B is added to the solution A so that the charged amount of the hydrolyzable titanium compound is 1.5 times the weight ratio with respect to the titanium oxide fine particles. The procedure was as follows. The hydrolyzable titanium compound in this example was Ti (OiPr) 3.5 Cl 0.5 . The film thickness of the obtained porous semiconductor electrode film was 7 μm, and the dye-sensitized solar cell 1 obtained from this example had Voc of 0.73 V, Jsc of 13.7 mA / cm 2 , and FF of 0. .72, η was 7.2%, indicating excellent photoelectric conversion efficiency.

比較例1
塗布液に加水分解性チタン化合物を添加しなかった以外は、実施例1と同様の手順とした。得られた多孔質性の半導体電極膜の膜厚は、7μm、本比較例から得られる色素増感型太陽電池1は、Vocが0.68V、Jscが10.2mA/cm2、FFが0.70、ηが4.9%となった。
Comparative Example 1
The procedure was the same as in Example 1 except that the hydrolyzable titanium compound was not added to the coating solution. The film thickness of the obtained porous semiconductor electrode film is 7 μm. The dye-sensitized solar cell 1 obtained from this comparative example has a Voc of 0.68 V, a Jsc of 10.2 mA / cm 2 , and an FF of 0. .70 and η were 4.9%.

比較例2
Ti(OiPr)4.0を用いず、すなわち、加水分解性チタン化合物をTiClとした以外は、実施例1と同様の手順とした。本比較例から得られる色素増感型太陽電池1は、Vocが0.70V、Jscが11.8mA/cm2、FFが0.74、ηが6.1%と、良好な光電変換効率を示したが、本比較例の塗布液は、室温で24時間後に凝集、沈殿が生じ、再度使用することができなかった。
Comparative Example 2
The procedure was the same as Example 1 except that Ti (OiPr) 4.0 was not used, that is, the hydrolyzable titanium compound was TiCl 4 . The dye-sensitized solar cell 1 obtained from this comparative example has a favorable photoelectric conversion efficiency of Voc of 0.70 V, Jsc of 11.8 mA / cm 2 , FF of 0.74, and η of 6.1%. As shown, the coating solution of this comparative example was aggregated and precipitated after 24 hours at room temperature and could not be used again.

比較例3
TiClを用いず、すなわち、加水分解性チタン化合物をTi(OiPr)4.0とした以外は、実施例1と同様の手順とした。本比較例から得られる色素増感太陽電池1は、Vocが0.67V、Jscが11.2mA/cm2、FFが0.69、ηが5.5%となった。本比較例の塗布液は、経時的に脱水縮合が生じ、溶液が増粘していき、室温で12時間後にはゲル化が生じ、再度使用することができなかった。
Comparative Example 3
The procedure was the same as in Example 1, except that TiCl 4 was not used, that is, the hydrolyzable titanium compound was Ti (OiPr) 4.0 . In the dye-sensitized solar cell 1 obtained from this comparative example, Voc was 0.67 V, Jsc was 11.2 mA / cm 2 , FF was 0.69, and η was 5.5%. In the coating solution of this comparative example, dehydration condensation occurred over time, the solution thickened, gelled after 12 hours at room temperature, and could not be used again.

実施例での色素増感型太陽電池の断面である。It is a cross section of the dye-sensitized solar cell in an Example. 実施例での色素増感型太陽電池のアノード電極の断面である。It is a cross section of the anode electrode of the dye-sensitized solar cell in an Example. 実施例での色素増感型太陽電池のカソード電極の断面である。It is a cross section of the cathode electrode of the dye-sensitized solar cell in an Example.

符号の説明Explanation of symbols

1 色素増感型太陽電池
2 アノード電極
3 カソード電極
4 電解質
5 封着材
6 リード線
7 透明導電膜
8 色素が導入された半導体電極膜
9 Pt電極
10 ガラス基材
11 ガラス基材
1 Dye-sensitized solar cell 2 Anode electrode 3 Cathode electrode 4 Electrolyte
5 Sealant 6 Lead Wire 7 Transparent Conductive Film 8 Semiconductor Electrode Film 9 Introduced with Dye 9 Pt Electrode 10 Glass Base Material 11 Glass Base Material

Claims (4)

色素増感型太陽電池の製法において、酸化チタン微粒子、及び一般式[1]で表される加水分解性チタン化合物及び/又はその加水分解物を有する塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布して半導体電極膜を形成する工程を有することを特徴とする色素増感型太陽電池の製法。
TiCl4−X(OR) [1]
ここで、Xは、0超4未満であり、Rは炭素数が1乃至10のアルキル基、又はアルコキシアルキル基を表す。
In a method for producing a dye-sensitized solar cell, a coating liquid containing titanium oxide fine particles and a hydrolyzable titanium compound represented by the general formula [1] and / or a hydrolyzate thereof is used as a transparent conductive film, or a semiconductor electrode film, Or the manufacturing method of the dye-sensitized solar cell characterized by having the process of apply | coating to the precursor film | membrane of a semiconductor electrode film, and forming a semiconductor electrode film.
TiCl 4-X (OR) X [1]
Here, X is more than 0 and less than 4, and R represents an alkyl group having 1 to 10 carbon atoms or an alkoxyalkyl group.
一般式[1]で表される加水分解性チタン化合物のXの範囲が2.5以上3.5以下であることを特徴とする請求項1に記載の色素増感型太陽電池の製法。 The method for producing a dye-sensitized solar cell according to claim 1, wherein the range of X of the hydrolyzable titanium compound represented by the general formula [1] is 2.5 or more and 3.5 or less. 酸化チタン微粒子に対して、重量比で0.1倍量以上10倍量以下の一般式[1]で表される加水分解性チタン化合物を溶液又は溶媒に導入し塗布液を調製することを特徴とする請求項1又は請求項2に記載の色素増感型太陽電池の製法。 A coating solution is prepared by introducing a hydrolyzable titanium compound represented by the general formula [1] having a weight ratio of 0.1 to 10 times by weight into a solution or a solvent with respect to the titanium oxide fine particles. The manufacturing method of the dye-sensitized solar cell of Claim 1 or Claim 2. 塗布液を透明導電膜、又は半導体電極膜、若しくは半導体電極膜の前駆膜に塗布した後に、塗布した物品を400℃乃至600℃で加熱することを特徴とする請求項1乃至請求項3のいずれかに記載の色素増感型太陽電池の製法。 4. The coated article is heated at 400 ° C. to 600 ° C. after coating the coating liquid on the transparent conductive film, the semiconductor electrode film, or the precursor film of the semiconductor electrode film. A process for producing a dye-sensitized solar cell according to claim 1.
JP2003411938A 2003-12-10 2003-12-10 Method of manufacturing dye-sensitized solar cell Pending JP2005174695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411938A JP2005174695A (en) 2003-12-10 2003-12-10 Method of manufacturing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411938A JP2005174695A (en) 2003-12-10 2003-12-10 Method of manufacturing dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2005174695A true JP2005174695A (en) 2005-06-30

Family

ID=34732533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411938A Pending JP2005174695A (en) 2003-12-10 2003-12-10 Method of manufacturing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2005174695A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179766A (en) * 2005-12-27 2007-07-12 Nissan Chem Ind Ltd Dye-sensitized solar cell
JP2007242544A (en) * 2006-03-10 2007-09-20 Sony Corp Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
CN100563043C (en) * 2006-08-08 2009-11-25 中国科学院化学研究所 A kind of polymer solar battery and preparation method thereof
JP2010033902A (en) * 2008-07-29 2010-02-12 Kyushu Institute Of Technology Pigment sensitized solar cell and method of manufacturing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011204438A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Dye-sensitized solar cell and manufacturing method therefor
CN102364715A (en) * 2011-10-26 2012-02-29 华北电力大学 Polymer solar cell with reverse structure and preparation method thereof
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179766A (en) * 2005-12-27 2007-07-12 Nissan Chem Ind Ltd Dye-sensitized solar cell
JP2007242544A (en) * 2006-03-10 2007-09-20 Sony Corp Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
CN100563043C (en) * 2006-08-08 2009-11-25 中国科学院化学研究所 A kind of polymer solar battery and preparation method thereof
JP2010033902A (en) * 2008-07-29 2010-02-12 Kyushu Institute Of Technology Pigment sensitized solar cell and method of manufacturing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011204438A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Dye-sensitized solar cell and manufacturing method therefor
CN102364715A (en) * 2011-10-26 2012-02-29 华北电力大学 Polymer solar cell with reverse structure and preparation method thereof
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
US7431903B2 (en) Tubular titanium oxide particles and process for preparing same
JP4669352B2 (en) Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod
AU2008246780B2 (en) Photoelectrical cell, and coating agent for forming porous semiconductor film for the photoelectrical cell
US20120031483A1 (en) Dye-sensitized solar cell and process for production thereof
JP4916683B2 (en) Photoelectric cell
JP4343877B2 (en) Method of forming nanoparticle oxide electrode of dye-sensitized solar cell using binder-free and high viscosity nanoparticle oxide paste
JP3952103B2 (en) Photoelectric cell and method for producing metal oxide semiconductor film for photoelectric cell
TW201039482A (en) Preparation of a nanocomposite photoanode for dye-sensitized solar cells
JP2002075477A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
Park et al. Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye‐Sensitized Solar Cells
KR20090080205A (en) Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells
JP2005174695A (en) Method of manufacturing dye-sensitized solar cell
JP2007179766A (en) Dye-sensitized solar cell
JP4215964B2 (en) Photoelectric cell
KR100830786B1 (en) Titanium dioxide particle, photovoltaic device with the same and manufacturing method of the same
JP5199587B2 (en) Photoelectric cell and method for manufacturing the same
AU2006228076C1 (en) Composition for semiconductor electrode sintered at low temperature and dye-sensitized solar cell comprising the composition
Liu et al. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode
Apostolopoulou et al. Functional quasi-solid-state electrolytes for dye sensitized solar cells prepared by amine alkylation reactions
KR101680053B1 (en) Porous semiconductor film-forming coating material and photovoltaic cell
Park et al. Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells
JP2005142011A (en) Manufacturing method of dye-sensitized solar cell
JP2002075476A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JP2000294814A (en) Photochemically sensitized optical semiconductor and photochemically sensitized solar battery using the same
JP5140031B2 (en) Photoelectric cell