JP4841930B2 - 3D moving image playback apparatus and 3D moving image playback method - Google Patents

3D moving image playback apparatus and 3D moving image playback method Download PDF

Info

Publication number
JP4841930B2
JP4841930B2 JP2005306830A JP2005306830A JP4841930B2 JP 4841930 B2 JP4841930 B2 JP 4841930B2 JP 2005306830 A JP2005306830 A JP 2005306830A JP 2005306830 A JP2005306830 A JP 2005306830A JP 4841930 B2 JP4841930 B2 JP 4841930B2
Authority
JP
Japan
Prior art keywords
hologram
light
reproduction
image
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005306830A
Other languages
Japanese (ja)
Other versions
JP2007114552A (en
Inventor
隆 久原
邦弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005306830A priority Critical patent/JP4841930B2/en
Publication of JP2007114552A publication Critical patent/JP2007114552A/en
Application granted granted Critical
Publication of JP4841930B2 publication Critical patent/JP4841930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0447In-line recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0458Temporal or spatial phase shifting, e.g. parallel phase shifting method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/62Moving object

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device reproducing a three-dimensional dynamic image by holography, the device having a simple system configuration that directly reproduces a high-quality three-dimensional moving image, with a wide-viewing angle by using an in-line hologram recorded by phase shift digital holography and that separates and reproduces a real image from the reference light and the conjugate image. <P>SOLUTION: The device includes a step of converting the interference fringe component of an in-line hologram into an interference fringe component of an off-axis hologram, by using captured image data, wherein the step is carried out, by compositing or combining hologram data in two sheets captured by phase shift digital holography of two sheets which are different by 90&deg; in phase in the reference light. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、映像技術分野、アミューズメント分野、エンターテインメント分野、インターネット分野、情報分野、マルチメディア分野、コミュニケーション分野、広告・宣伝分野、医療分野、芸術分野、教育分野、設計支援分野、シミュレーション分野、バーチャルリアリティ、などで使われる三次元表示を可能にするインラインホログラムを用いた3次元動画像再生装置及び方法に関する。特に、画素ピッチの大きい既存のイメージセンサを用いて記録可能なインラインホログラムから3次元動画像を再生できるという利点を有し、少ないデータ量で広い視野角をもつ3次元動画像を再生する3次元動画像再生装置及び3次元動画像再生方法に関するものである。   The present invention includes video technology field, amusement field, entertainment field, internet field, information field, multimedia field, communication field, advertising field, advertising field, medical field, art field, education field, design support field, simulation field, virtual reality. The present invention relates to an apparatus and method for reproducing a three-dimensional moving image using an inline hologram that enables three-dimensional display used in, for example. In particular, it has the advantage of being able to reproduce a three-dimensional moving image from an in-line hologram that can be recorded using an existing image sensor with a large pixel pitch, and is capable of reproducing a three-dimensional moving image having a wide viewing angle with a small amount of data. The present invention relates to a moving image reproducing apparatus and a three-dimensional moving image reproducing method.

ホログラフィによる3次元画像の記録では、参照光と物体光が作る干渉縞の他に物体光同士が作る干渉縞が記録される。記録した干渉縞から物体光同士による干渉縞を取り除いて参照光と物体光による干渉縞のみを取り出すことができれば、記録画像の視野角を受光素子の画素ピッチから決まる光の回折角まで大きくすることができる。記録干渉縞から参照光と物体光による干渉縞のみを取り出す技術として、位相シフトホログラフィがある。   In recording of a three-dimensional image by holography, interference fringes created by object lights are recorded in addition to interference fringes created by reference light and object light. If the interference fringes due to object light can be removed from the recorded interference fringes and only the interference fringes due to the reference light and object light can be extracted, the viewing angle of the recorded image should be increased to the light diffraction angle determined by the pixel pitch of the light receiving element. Can do. Phase shift holography is a technique for extracting only interference fringes due to reference light and object light from recording interference fringes.

ところで、位相ホログラフィによる3次元画像の記録方法として、参照光を物体光と同じ方向から入射するインライン方式と参照光を物体光と異なる方向から入射するオフアクシス方式がある。両者を比べると、オフアクシス方式では空間搬送波型のホログラムが記録され画像記録の視野角が狭くなるのに対し、インライン方式では少ないホログラムデータで視野角の広い画像を記録できる。しかし、インラインホログラムから画像を再生すると、直接物体光の方向が共役物体光および直接透過光の方向と重なってしまい良質な画像が再生できない。この点はインライン方式の大きな欠点がある。このために、3次元画像の記録と再生には直接物体光を共役物体光および直接透過光から分離して再生できるオフアクシス方式が採用されている。   By the way, as a method for recording a three-dimensional image by phase holography, there are an inline method in which the reference light is incident from the same direction as the object light and an off-axis method in which the reference light is incident from a different direction from the object light. Comparing the two, the off-axis method records a spatial carrier-type hologram and narrows the viewing angle of image recording, whereas the in-line method can record an image with a wide viewing angle with less hologram data. However, when an image is reproduced from an inline hologram, the direction of the direct object light overlaps with the directions of the conjugate object light and the direct transmitted light, and a high-quality image cannot be reproduced. This is a major drawback of the in-line method. For this reason, an off-axis method that can separate and reproduce direct object light from conjugate object light and direct transmitted light is employed for recording and reproducing three-dimensional images.

インラインホログラムは、オフアクシスホログラムと比べて視野角の広い3次元画像を記録できるという大きな利点を持つ。しかし、インラインホログラムから3次元画像を再生すると実画像が参照光および共役画像と重なるために、はっきりと観察できる3次元画像を再生することはできない。この参照光および共役画像との重なりを避けるために、ホログラフィによる画像再生はオフアクシスホログラムを用いて行われている。オフアクシスホログラムでは実画像を参照光および共役画像と重ならないように離すために、参照光と物体光の交叉する角度を大きくする必要がある。参照光と物体光の交叉する角度を大きくすると参照光と物体光による干渉縞の間隔が狭くなり、イメージセンサや空間変調素子の画素ピッチはこの干渉縞の間隔より狭い必要が有るため、高密度のイメージセンサや空間変調素子を必要とする。通常、実画像を参照光および共役画像と重ならないようにして形成されるオフアクシスホログラムでは干渉縞の間隔はサブミクロンとなりこの様な小さな干渉縞を画像として取り込むことは技術的に困難であった。   The in-line hologram has a great advantage that a three-dimensional image having a wide viewing angle can be recorded as compared with the off-axis hologram. However, when a three-dimensional image is reproduced from an in-line hologram, the real image overlaps the reference light and the conjugate image, so that a three-dimensional image that can be clearly observed cannot be reproduced. In order to avoid the overlap between the reference light and the conjugate image, image reproduction by holography is performed using an off-axis hologram. In the off-axis hologram, it is necessary to increase the crossing angle of the reference light and the object light so that the actual image is separated from the reference light and the conjugate image. If the crossing angle between the reference light and the object light is increased, the interval between the interference fringes due to the reference light and the object light becomes narrower, and the pixel pitch of the image sensor and the spatial modulation element needs to be smaller than the distance between the interference fringes. Image sensor and spatial modulation element are required. Normally, in an off-axis hologram formed so that the actual image does not overlap with the reference light and the conjugate image, the distance between the interference fringes is submicron, and it is technically difficult to capture such a small interference fringe as an image. .

また、イメージセンサと空間光変調素子の空間周波数の制約から、ホログラム面から遠く離れた小さな画像の記録や再生しかできないという問題があった。この問題の解決のための技術として位相シフトホログラフィが発明されている(例えば、特許文献1参照。)。   In addition, there is a problem that only a small image far from the hologram surface can be recorded or reproduced due to the spatial frequency limitation of the image sensor and the spatial light modulator. Phase shift holography has been invented as a technique for solving this problem (for example, see Patent Document 1).

位相シフトディジタルホログラフィでは、参照波の位相をシフトして、位相が異なる複数の参照波の各々の参照波と物体波とによって生成される複数のホログラム画像データから物体波の位相データと物体波の振幅データとを演算する必要が有る。   In phase-shift digital holography, the phase of a reference wave is shifted and the phase data of the object wave and the wave of the object wave are converted from the plurality of hologram image data generated by the reference wave and the object wave of each of the reference waves having different phases. It is necessary to calculate the amplitude data.

例えば、参照光の位相をπ/2ずつ位相シフトし、位相の異なる複数の参照光、例えば3個の参照光を生成し、位相値の異なる各々の参照光と物体光の3個のホログラム画像データを生成する。複数のホログラム画像データの間で連立方程式を解き、物体光の位相に関する位相データと物体光の振幅に関する振幅データとを演算する。演算して得た物体光の位相データと物体光の振幅データとから、再生像を作成する上で必要な全ての情報を含む物体光波面のデータを生成する。この生成した物体光波面のデータに対しフレネル変換等の所定変換を施し、再生像を演算して求める。
特許第3471556号公報
For example, the phase of the reference light is phase-shifted by π / 2 to generate a plurality of reference lights having different phases, for example, three reference lights, and three hologram images of each reference light and object light having different phase values Generate data. A simultaneous equation is solved among a plurality of hologram image data, and phase data related to the phase of the object light and amplitude data related to the amplitude of the object light are calculated. Object light wavefront data including all information necessary for creating a reproduced image is generated from the phase data of the object light and the amplitude data of the object light obtained by the calculation. The generated object light wavefront data is subjected to predetermined conversion such as Fresnel conversion, and a reproduced image is calculated and obtained.
Japanese Patent No. 3471556

この様に、従来のインラインホログラムの課題を解決するために、位相シフトデジタルホログラフィにより記録された、参照光の位相の異なる複数のホログラム画像データから演算処理により、物体波の位相に関する位相データと物体波の振幅に関する振幅データとを求める方法は、ホログラムのデータ数が大きいので長時間の数値計算が必要になる。また、演算して得た物体光の位相データと物体光の振幅データとから再生像を求めるためには、物体光波面のデータに対しフレネル変換等の長時間の数値計算を行う必要がある。   In this way, in order to solve the problems of the conventional in-line hologram, the phase data and the object relating to the phase of the object wave are obtained by calculation processing from a plurality of hologram image data having different reference light phases recorded by phase shift digital holography. The method for obtaining the amplitude data relating to the amplitude of the wave requires a long time numerical calculation because the number of hologram data is large. In addition, in order to obtain a reproduced image from the phase data of the object light and the amplitude data of the object light obtained by calculation, it is necessary to perform a long-time numerical calculation such as Fresnel transformation on the data of the object light wavefront.

本発明は、ホログラフィによって3次元動画像を再生する装置に関し、位相シフトデジタルホログラフィによって記録されたインラインホログラムを用いて視野角の広い高画質の3次元動画像を直接的に再生し、しかも参照光および共役画像から分離して実画像を再生する簡単なシステム構成の装置を提供することを目的とする。   The present invention relates to an apparatus for reproducing a three-dimensional moving image by holography, and directly reproduces a high-quality three-dimensional moving image having a wide viewing angle using an in-line hologram recorded by phase shift digital holography, and further, a reference beam. It is another object of the present invention to provide an apparatus having a simple system configuration that reproduces an actual image separated from a conjugate image.

課題を解決するために、物体光と参照光を同軸もしくは交叉角度を小さくして交叉させたインラインホログラフィにより画像を記録する工程と、前記参照光を空間変調素子により位相シフトを行い、前記位相シフトを行なった前記参照光と前記物体光を組合せて干渉縞画像を取り込む工程を備えたインライン方式の位相シフトデジタルホログラフィで、前記取り込んだ画像データを用い、インラインホログラムの干渉縞成分をオフアクシスホログラムの干渉縞成分に変換する工程を備え、この工程を前記参照光の位相が90度だけ異なる2枚の位相シフトデジタルホログラフィで取り込んだ2枚のホログラムデータの合成または組合せを行うことにより、画像再生用のホログラムデータを形成し、画素ピッチが干渉縞間隔の半分以下の空間光変調素子を用いて画像再生することを行った。   In order to solve the problem, a step of recording an image by in-line holography in which object light and reference light are crossed coaxially or with a small crossing angle, and the reference light is phase-shifted by a spatial modulation element, and the phase shift is performed. Inline phase shift digital holography comprising a step of capturing an interference fringe image by combining the reference light and the object light, and using the captured image data, the interference fringe component of the inline hologram is converted to an off-axis hologram. A step of converting to an interference fringe component, and this step is performed for image reproduction by combining or combining two hologram data captured by two phase-shift digital holography in which the phase of the reference light is different by 90 degrees Spatial light with a pixel pitch less than half of the interference fringe spacing It was an image reproduced using the tone elements.

以下に本発明のデータの合成または組合せの概念工程を具体的に説明すると、画素ピッチが干渉縞間隔の半分以下の空間光変調素子を用いて画像再生装置を製作し、インラインホログラムとして参照光の位相が90度だけ異なる2枚の位相シフトインラインホログラムのチルダICとISを用意する。画像の再生は、2枚のホログラムのチルダICとISのデータの合成または組合せを行った画像再生用のホログラムを素子上に表示し、これに参照光を照射して行う。チルダICとISのデータの合成または組合せを変えると、再生画像の位置を光変調素子の画素ピッチから決まる視野の範囲内で任意な方向に移動することができ、参照光および共役画像と重ならない位置に実画像を再生することが可能になる。 The conceptual process of combining or combining data according to the present invention will be described in detail below. An image reproducing apparatus is manufactured using a spatial light modulator having a pixel pitch that is half or less of the interference fringe interval, and the reference light is used as an inline hologram. Two tildes I C and I S of phase-shifted in-line holograms having phases different by 90 degrees are prepared. Image reproduction is performed by displaying, on the element, an image reproduction hologram obtained by combining or combining tilde I C and I S data of two holograms, and irradiating it with reference light. By changing the synthesis or combination of the tilde I C and I S data, the position of the reproduced image can be moved in any direction within the field of view determined by the pixel pitch of the light modulation element. It is possible to reproduce the actual image at a position where it does not overlap.

ホログラムのデータ量一定の下で空間光変調素子の画素ピッチのみを干渉縞間隔より十分に小さく取ると、再生可能な視野を広げることができる。したがって、画素ピッチの小さい空間変調素子を用いると、実画像を参照光および共役画像と大きく離せるので参照光と共役画像を遮ることが容易になり、実画像のみを再生することが可能になる。この装置では2枚のインラインホログラムのデータの合成または組合せを行って空間光変調素子に表示すればよいので、特別な素子や部品は必要でなく、装置のシステム構成は簡単になる。   If only the pixel pitch of the spatial light modulator is sufficiently smaller than the interference fringe interval under a constant hologram data amount, the reproducible field of view can be expanded. Therefore, when a spatial modulation element having a small pixel pitch is used, the actual image can be separated from the reference light and the conjugate image, so that it is easy to block the reference light and the conjugate image, and only the actual image can be reproduced. . In this apparatus, since data of two in-line holograms may be combined or combined and displayed on the spatial light modulation element, no special elements or parts are required, and the system configuration of the apparatus is simplified.

本発明の方法と装置によれば、2枚の位相シフトインラインデジタルホログラムの組合せだけで再生用ホログラムを容易に作成でき、組合せを適宜変更することによって参照光と共役画像の影響をとり除けるのでインラインホログラムから視野角の広い高画質の画像を再生できる。また、インラインホログラムの記録と画像再生に平面波参照光を用いた場合には、数値計算を行わずにホログラムデータを組合すだけで再生用ホログラムを作成できる。さらに、画素ピッチの小さい空間光変調素子を用いると、参照光と共役画像を遮って実画像のみを再生することが容易になる。また、記録時にはインラインホログラフィによって、画素ピッチが大きい既存の受光素子を用いて高画質の3次元画像を位相シフトインラインホログラムとして記録できるので、現状のイメージセンサと空間光変調素子を使ったデジタルホログラフィにより3次元画像の記録と再生が容易に実現できる。   According to the method and apparatus of the present invention, a reproduction hologram can be easily created only by combining two phase-shifted inline digital holograms, and the influence of the reference beam and the conjugate image can be eliminated by changing the combination as appropriate. A high-quality image with a wide viewing angle can be reproduced from the hologram. In addition, when plane wave reference light is used for inline hologram recording and image reproduction, a reproduction hologram can be created simply by combining hologram data without performing numerical calculations. Furthermore, when a spatial light modulation element with a small pixel pitch is used, it is easy to reproduce only the actual image while blocking the reference light and the conjugate image. In addition, when recording, it is possible to record high-quality three-dimensional images as phase-shifted inline holograms using in-line holography using existing light-receiving elements with a large pixel pitch, so digital holography using current image sensors and spatial light modulators Recording and reproduction of 3D images can be easily realized.

本発明は、画素ピッチが干渉縞間隔の半分以下の空間光変調素子を用いて画像再生装置を製作し、インラインホログラムとして参照光の位相が90度だけ異なる2枚の位相シフトインラインホログラムのチルダICとISを用意する。画像の再生は、2枚のホログラムのチルダICとISのデータの合成または組合せを行った画像再生用のホログラムを素子上に表示し、これに参照光を照射して行う。チルダICとISのデータの合成または組合せを変えると、再生画像の位置を光変調素子の画素ピッチから決まる視野の範囲内で任意な方向に移動することができ、参照光および共役画像と重ならない位置に実画像を再生することが可能になる。例えば、ホログラム記録と画像再生に平面波参照光を用いた場合には、空間光変調素子上のX軸方向にチルダIC、IS、チルダ−IC、−ISの順番でインラインホログラムを表示すると再生画像をX軸方向に移動でき、X軸方向に明、暗、明、暗と表示したときの回折格子による負の一次回折光の方向に実画像を再生でき、正の一次回折光方向の共役画像およびゼロ次回折光方向の参照光と分離できる。 The present invention manufactures an image reproducing device using a spatial light modulation element having a pixel pitch that is half or less of the interference fringe interval, and tilde I of two phase-shifted inline holograms that differ in phase of reference light by 90 degrees as inline holograms. to prepare the C and I S. Image reproduction is performed by displaying, on the element, an image reproduction hologram obtained by combining or combining tilde I C and I S data of two holograms, and irradiating it with reference light. By changing the synthesis or combination of the tilde I C and I S data, the position of the reproduced image can be moved in any direction within the field of view determined by the pixel pitch of the light modulation element. It is possible to reproduce the actual image at a position where it does not overlap. For example, when plane wave reference light is used for hologram recording and image reproduction, inline holograms are displayed in the order of tilde I C , I S , tilde -I C , and -I S in the X-axis direction on the spatial light modulator. Then, the reproduced image can be moved in the X-axis direction, and the real image can be reproduced in the direction of the negative first-order diffracted light by the diffraction grating when bright, dark, bright, and dark are displayed in the X-axis direction. And the reference light in the direction of the zero-order diffracted light can be separated.

ホログラムのデータ量一定の下で空間光変調素子の画素ピッチのみを干渉縞間隔より十分に小さく取ると、実画像を参照光および共役画像と大きく離せるので参照光と共役画像を遮ることが容易になり、実画像のみを再生することが可能になる。この装置では2枚のインラインホログラムのデータの合成または組合せを行って空間光変調素子に表示すればよいので、特別な素子や部品は必要でなく、装置のシステム構成は簡単になる。   If only the pixel pitch of the spatial light modulator is sufficiently smaller than the interference fringe spacing under a fixed hologram data amount, the actual image can be separated from the reference beam and the conjugate image, making it easy to block the reference beam and the conjugate image. It becomes possible to reproduce only the actual image. In this apparatus, since data of two in-line holograms may be combined or combined and displayed on the spatial light modulation element, no special elements or parts are required, and the system configuration of the apparatus is simplified.

以下に位相シフトホログラフィの原理について説明する。   The principle of phase shift holography will be described below.

ホログラム記録面を物体から放射される散乱光(物体光)と参照光とで照射すると、物体光と参照光が作る干渉縞をホログラムとして記録できる。角周波数ωの記録面上の物体光O(x,y,t)と参照光R(x,y,t)を一般的な形で(数1)、(数2)と表す。   When the hologram recording surface is irradiated with scattered light (object light) emitted from an object and reference light, interference fringes formed by the object light and the reference light can be recorded as a hologram. The object light O (x, y, t) and the reference light R (x, y, t) on the recording surface with the angular frequency ω are expressed as (Expression 1) and (Expression 2) in a general form.

Figure 0004841930
Figure 0004841930

Figure 0004841930
Figure 0004841930

ホログラム面上で記録される光強度I(x,y)は(数3)となる。   The light intensity I (x, y) recorded on the hologram surface is (Equation 3).

Figure 0004841930
Figure 0004841930

(数3)右辺の第1項と第2項は、それぞれホログラム面上での物体光と参照光の光強度に対応し、物体光および参照光の位相を含まない。第3項は物体光と参照光とがつくる干渉縞成分を表し、この項には物体光の振幅O0と位相φOが含まれる。物体光の持つ波面情報は右辺第3項によって記録され、この項から物体光波面を再生できる。 (Equation 3) The first term and the second term on the right side correspond to the light intensities of the object light and the reference light on the hologram surface, respectively, and do not include the phases of the object light and the reference light. The third term represents an interference fringe component generated by the object light and the reference light, and this term includes the amplitude O 0 and the phase φ O of the object light. The wavefront information of the object light is recorded by the third term on the right side, and the object light wavefront can be reproduced from this term.

記録ホログラムから参照光と物体光が作る干渉縞成分のみを取り出す方法として、参照光の位相をシフトさせながら同じ画像に対して複数枚のホログラムを記録する方法がある。今、参照光の位相φRをπだけシフトさせてφR+πとすると、(数3)右辺第3項の極性が反転する。したがって、参照光の位相をシフトさせる前と後の光強度I0とIπを記録すれば、物体光の振幅と位相を含む余弦干渉縞成分のチルダをIC=(I0−Iπ)/2より取り出すことができ、 As a method of extracting only the interference fringe component formed by the reference light and the object light from the recording hologram, there is a method of recording a plurality of holograms on the same image while shifting the phase of the reference light. Now, if the phase φ R of the reference light is shifted by π to be φ R + π, the polarity of the third term on the right side of (Equation 3) is inverted. Therefore, if the light intensities I 0 and Iπ before and after shifting the phase of the reference light are recorded, the tilde of the cosine interference fringe component including the amplitude and phase of the object light is expressed as I C = (I 0 −Iπ) / 2. More can be taken out,

Figure 0004841930
Figure 0004841930

となる。次に、参照光の位相がφR+π/2とφR+3π/2のときの光強度Iπ/2とI3π/2を記録すると、同様にして正弦干渉縞成分(数5)を得る。 It becomes. Next, when the phase of the reference light to record light intensity i [pi] / 2 and I 3 π / 2 when the φ R + π / 2 and φ R + 3π / 2, to obtain a sinusoidal interference fringe component (5) In the same manner .

Figure 0004841930
Figure 0004841930

参照光の位相をシフトさせて記録ホログラムから物体光の波面情報を取り出す技術を位相シフトホログラフィと呼び、得られたホログラムを位相シフトホログラムと呼んでいる。   A technique for extracting the wavefront information of the object light from the recording hologram by shifting the phase of the reference light is called phase shift holography, and the obtained hologram is called a phase shift hologram.

インライン方式で記録した場合、(数4)または(数5)の干渉縞成分から画像再生を行うと直接物体光の方向は共役物体光の方向と重なってしまう。この共役物体光と直接物体光が重なる問題は、インラインホログラムの干渉縞成分をオフアクシスホログラムの干渉縞成分に変換することで解決できる。位相をφR(x,y)−φR′(x,y)だけ変化させて干渉縞成分の位相をφO(x,y)−φR′(x,y)とし、(数4)で表される余弦干渉縞成分のチルダIC(x,y)を(数6)と変換する。 In the case of recording by the in-line method, when the image is reproduced from the interference fringe component of (Equation 4) or (Equation 5), the direction of the object light directly overlaps the direction of the conjugate object light. The problem that the conjugate object light and the direct object light overlap can be solved by converting the interference fringe component of the in-line hologram into the interference fringe component of the off-axis hologram. The phase is changed by φ R (x, y) −φ R ′ (x, y), and the phase of the interference fringe component is φ O (x, y) −φ R ′ (x, y). The tilde I C (x, y) of the cosine interference fringe component expressed by

Figure 0004841930
Figure 0004841930

記録ホログラムから取り出した(数4)の余弦干渉縞成分と(数5)の正弦干渉縞成分を代入すると、(数6)を(数7)に書き改められる。   By substituting the cosine interference fringe component of (Equation 4) and the sine interference fringe component of (Equation 5) taken out from the recording hologram, (Equation 6) can be rewritten into (Equation 7).

Figure 0004841930
Figure 0004841930

結局、取り出した余弦干渉縞成分と正弦干渉縞成分を用いると参照光(数8)、と物体光(数1)が作る干渉縞成分にインラインホログラムの干渉縞成分を変換することができる。   Eventually, when the extracted cosine interference fringe component and sine interference fringe component are used, the interference fringe component of the in-line hologram can be converted into the interference fringe component generated by the reference beam (Equation 8) and the object beam (Equation 1).

Figure 0004841930
Figure 0004841930

インラインホログラムからオフアクシスホログラムに変換するためには、インラインホログラムの余弦干渉縞成分と正弦干渉縞成分の両者が必要になる。   In order to convert an inline hologram to an off-axis hologram, both the cosine interference fringe component and the sine interference fringe component of the inline hologram are required.

(数7)の干渉縞成分に直流成分IDCをバイアスしてホログラムI′(x,y)=IDC+チルダIC′(x,y)を作成し、このホログラムに再生用参照光、(数9)を照射して画像再生を行う。 The hologram I ′ (x, y) = I DC + tilde I C ′ (x, y) is created by biasing the DC component I DC to the interference fringe component of (Equation 7), and the reproduction reference beam, (Equation 9) is irradiated to reproduce an image.

Figure 0004841930
Figure 0004841930

定数Kを用いてホログラムの透過率をT(x,y)=KI′(x,y)と表すと、ホログラムを透過した直後の光は(数10)となる。   When the transmittance of the hologram is expressed as T (x, y) = KI ′ (x, y) using the constant K, the light immediately after passing through the hologram becomes (Equation 10).

Figure 0004841930
Figure 0004841930

右辺第1項は直接透過光を、第2項は直接物体光を、第3項は共役物体光をそれぞれ表す。したがって、インラインホログラムを変換して作成したホログラムI′(x,y)を用いると透過光と直接物体光および共役物体光それぞれの方向を分離することができ、透過光は再生用参照光の方向に、直接物体光は記録物体光の方向に、共役物体光は再生用参照光に対して直接物体光と共役になる方向にそれぞれ再生されることになる。   The first term on the right side represents directly transmitted light, the second term represents direct object light, and the third term represents conjugate object light. Therefore, when the hologram I ′ (x, y) created by converting the in-line hologram is used, the directions of the transmitted light, the direct object light, and the conjugate object light can be separated, and the transmitted light is the direction of the reproduction reference light. In addition, the direct object light is reproduced in the direction of the recording object light, and the conjugate object light is reproduced in the direction conjugate with the direct object light with respect to the reproduction reference light.

次に再生用ホログラムの作成について具体的に説明する。   Next, the creation of a reproduction hologram will be specifically described.

余弦干渉縞成分のチルダIC(x,y)と正弦干渉縞成分のチルダIS(x,y)、および記録用参照光と再生用参照光との位相差の余弦cos(φR−φR′)と正弦sin(φR−φR′)が与えられれば、(数7)の乗算と加算だけの簡単な計算でインラインホログラムから画像再生用ホログラムを作成できる。ホログラム作成のための計算は余弦干渉縞成分と正弦干渉縞成分とを合成するだけの簡単な計算であるが、ホログラムのデータ数が大きいので3次元動画像再生を実時間で行うためには短時間で計算を実行することが求められる。ホログラム作成のための計算を短時間で行う方法としては、計算機による並列計算や光学的演算処理を行うことが考えられる。ところで、ホログラムの記録と画像の再生に平面波参照光を用いた場合には、ホログラム合成のための数値計算を行わないでホログラムデータを組合せだけを行って再生用ホログラムを作成できる。 The tilde I C (x, y) of the cosine interference fringe component, the tilde I S (x, y) of the sine interference fringe component, and the cosine cos (φ R −φ of the phase difference between the recording reference light and the reproduction reference light) If R ′) and sine sin (φ R −φ R ′) are given, an image reproducing hologram can be created from the in-line hologram by simple calculation of only multiplication and addition of (Equation 7). The calculation for creating a hologram is a simple calculation by simply combining a cosine interference fringe component and a sine interference fringe component. However, since the number of hologram data is large, it is short to perform three-dimensional video reproduction in real time. It is required to perform calculations in time. As a method for performing a calculation for creating a hologram in a short time, it is conceivable to perform parallel calculation or optical calculation processing by a computer. By the way, when plane wave reference light is used for hologram recording and image reproduction, a hologram for reproduction can be created by combining only hologram data without performing numerical calculation for hologram synthesis.

以下、本発明のインラインホログラムを用いた3次元動画像再生装置及び方法について、図1乃至図6を参照しながら説明する。   Hereinafter, a three-dimensional moving image reproducing apparatus and method using an inline hologram of the present invention will be described with reference to FIGS.

図1(a)z−x平面内を示す図、(b)z−y平面内での斜め入射参照光の等位相面を示す説明図である。記録用参照光として波長λの平面波をホログラム平面1と垂直に入射する。このとき、ホログラム面1上での光の位相φR(x,y)は一定の値になり、原点を基準としたホログラム面1上での光の位相は0になる。一方、再生用参照光2をx軸方向に角度θx、y軸方向に角度θy回転させて斜め入射すると、図1よりホログラム面1上の原点を基準とした光の位相φR′(x,y)は、(数11)となる。 FIG. 1A is a diagram illustrating the z-x plane, and FIG. 1B is an explanatory diagram illustrating an equiphase surface of the obliquely incident reference light in the zy plane. A plane wave having a wavelength λ is incident perpendicularly to the hologram plane 1 as recording reference light. At this time, the phase φ R (x, y) of the light on the hologram surface 1 becomes a constant value, and the phase of the light on the hologram surface 1 with respect to the origin becomes zero. On the other hand, when the reproduction reference beam 2 is obliquely incident with the angle θ x rotated in the x- axis direction and the angle θ y rotated in the y-axis direction, the light phase φ R ′ ( x, y) is given by (Equation 11).

Figure 0004841930
Figure 0004841930

ところで、x−y平面上での干渉縞データのサンプリング間隔dは受光素子の画素ピッチに等しい。このサンプリング間隔dに対して、関係式、(数12)を満たすように再生用参照光2の入射角θxおよびθyの値を決める。 Incidentally, the sampling interval d of the interference fringe data on the xy plane is equal to the pixel pitch of the light receiving element. The values of the incident angles θ x and θ y of the reproduction reference beam 2 are determined so as to satisfy the relational expression (Equation 12) with respect to the sampling interval d.

Figure 0004841930
Figure 0004841930

ここに、整数mとnは0または1または2である。このように入射角を決めると、記録用参照光と再生用参照光2との位相差はx−y平面上のサンプリング点(id,jd)において、(数13)となる。   Here, the integers m and n are 0, 1 or 2. When the incident angle is determined in this way, the phase difference between the recording reference light and the reproduction reference light 2 becomes (Equation 13) at the sampling point (id, jd) on the xy plane.

Figure 0004841930
Figure 0004841930

したがって、mi+njを4で割った余りが0になる点ではcos(φR−φR′)=1およびsin(φR−φR′)=0になり、(数7)で表される再生用ホログラム1の余弦干渉縞成分のチルダIC′はインラインホログラムの余弦干渉縞成分のチルダICと等しくなる。同様にして、mi+njを4で割った余りが1になる点ではチルダIC′はチルダISと、余りが2になる点ではチルダIC′はチルダ−ICと、余りが3になる点ではチルダIC′はチルダ−ISとそれぞれ等しくなる。結局、サンプリング点(id,jd)における再生用ホログラム1の余弦干渉縞成分のチルダIC′としてインラインホログラムの干渉縞成分のチルダIC、IS、−IC、−ISをそれぞれ選択すれば、再生用ホログラム1を作成できる。つまり、記録用参照光および再生用参照光2として光平面波を用いた場合には、インラインホログラムのデータそのものを用いて画像再生することができる。 Accordingly, cos (φ R −φ R ′) = 1 and sin (φ R −φ R ′) = 0 at the point where the remainder obtained by dividing mi + nj by 4 becomes 0, and the reproduction represented by (Expression 7) The tilde I C ′ of the cosine interference fringe component of the hologram 1 is equal to the tilde I C of the cosine interference fringe component of the in-line hologram. Similarly, in that the remainder obtained by dividing the mi + nj 4 is 1 tilde I C 'and the tilde I S, tilde I C is in that the remainder is at the 2' and tilde -I C is too becomes 3 In point, the tilde I C 'is equal to the tilde I S , respectively. Eventually, the tilde I C , I S , −I C , and −I S of the interference fringe components of the inline hologram are selected as the tilde I C ′ of the cosine interference fringe component of the reproduction hologram 1 at the sampling point (id, jd). Thus, the reproducing hologram 1 can be created. That is, when an optical plane wave is used as the recording reference light and the reproduction reference light 2, the image can be reproduced using the inline hologram data itself.

図2、図3に、再生用ホログラム1作成のためにインラインホログラムのデータを組合した例を示す。図2はm=0、n=0のときのホログラムデータの組合せを示し、この組合せによって直接透過光を直接物体光からy軸方向に角度θy=arcsin(λ/4d)だけ回転することができ、共役物体光を直接物体光から角度2θyだけ回転することができる。図3はm=2、n=1のときのホログラムデータの組合せであり、直接透過光を直接物体光からx軸方向に角度θx=arcsin(λ/2d)、y軸方向に角度θy=arcsin(λ/4d)回転することができる。共役物体光は直接物体光から2θyだけ回転した方向に再生されることになる。 FIG. 2 and FIG. 3 show examples in which data of in-line holograms are combined for producing the reproduction hologram 1. FIG. 2 shows a combination of hologram data when m = 0 and n = 0. By this combination, the directly transmitted light can be directly rotated from the object light in the y-axis direction by the angle θ y = arcsin (λ / 4d). The conjugate object light can be rotated by an angle 2θ y directly from the object light. FIG. 3 shows a combination of hologram data when m = 2 and n = 1. Direct transmission light is directly reflected from the object light by an angle θ x = arcsin (λ / 2d) in the x-axis direction and an angle θ y in the y-axis direction. = Arcsin (λ / 4d). The conjugate object light is reproduced in the direction rotated by 2θ y directly from the object light.

画像再生実験の結果を以下に示す。   The results of the image reproduction experiment are shown below.

インラインホログラムを用いた画像再生を実証するために、計算機合成ホログラムを画素ピッチが8.1μmの高精細反射型LCD表示パネルに表示して画像の再生実験を行った。   In order to demonstrate image reproduction using an in-line hologram, an image reproduction experiment was performed by displaying a computer-generated hologram on a high-definition reflective LCD display panel having a pixel pitch of 8.1 μm.

物体モデルとしてホログラム面から50cmの位置に置かれた横幅2cmの文字列を考え、物体光と平面参照光が垂直方向からホログラム面に入射するとして計算機合成インラインホログラムを作成した。このホログラムに波長532nmの緑色レーザを照射して再生した実画像を図4の計算機合成インラインホログラムから再生した画像を示す図に示す。実画像はホログラム面の後方50cmの位置に再生され、共役画像はホログラム面の手前50cmの位置に再生される。画素ピッチと光波長から決まる回折角3.8度に対して再生文字列の視野角は2.3度であり、広い視野を持つ画像がインラインホログラムから再生されている。実画像の周りの光は再生された共役物体光である。インラインホログラムからの再生では、直接物体光と共役物体光および直接反射光はホログラムの法線方向に再生されるので3つの光が重なってしまい、再生される画像の画質は低くなっている。   Considering a character string having a width of 2 cm placed at a position 50 cm from the hologram surface as an object model, a computer-generated inline hologram was created assuming that object light and planar reference light are incident on the hologram surface from the vertical direction. An actual image reproduced by irradiating the hologram with a green laser having a wavelength of 532 nm is shown in an image reproduced from the computer-generated in-line hologram of FIG. The real image is reproduced at a position 50 cm behind the hologram surface, and the conjugate image is reproduced at a position 50 cm before the hologram surface. The viewing angle of the reproduction character string is 2.3 degrees with respect to the diffraction angle of 3.8 degrees determined from the pixel pitch and the light wavelength, and an image having a wide field of view is reproduced from the in-line hologram. The light around the real image is the reproduced conjugate object light. In the reproduction from the in-line hologram, the direct object light, the conjugate object light, and the direct reflected light are reproduced in the normal direction of the hologram, so that the three lights overlap, and the quality of the reproduced image is low.

インラインホログラムを用いて作成した再生用ホログラムから再生した画像を図5、図6に示す。図5はm=0、n=1としたときのホログラムから再生した画像を示す。再生用参照光を直接物体光からy軸方向に角度θy=arcsin(λ/4d)回転した方向から照射するので、直接反射光は再生された文字列の上方向に移動している。共役物体光は図5の写真には写っていないが、直接物体光から角度2θy回転した方向に再生されることになる。図6はm=2、n=1としたときのホログラムから再生した画像を示す。再生用参照光を直接物体光からx軸方向に角度θx=arcsin(λ/2d)、y軸方向に角度θy=arcsin(λ/4d)回転した方向から照射するので、直接反射光は再生された文字列の右上方向に移動している。共役物体光は図6の写真に写っていないが、直接物体光から角度2θy回転した方向に再生される。再生物体光を直接反射光および共役物体光から分離した結果、図5、図6に示すように画質の高い直接画像が再生されている。 FIGS. 5 and 6 show images reproduced from a reproduction hologram created using an inline hologram. FIG. 5 shows an image reproduced from the hologram when m = 0 and n = 1. Since the reference light for reproduction is directly irradiated from the object light from the direction rotated by the angle θ y = arcsin (λ / 4d) in the y -axis direction, the directly reflected light moves upward in the reproduced character string. Although the conjugate object light is not shown in the photograph of FIG. 5, it is reproduced directly in a direction rotated by an angle 2θ y from the object light. FIG. 6 shows an image reproduced from the hologram when m = 2 and n = 1. Since the reference light for reproduction is directly irradiated from the object light from the direction rotated by the angle θ x = arcsin (λ / 2d) in the x-axis direction and the angle θ y = arcsin (λ / 4d) in the y -axis direction, the directly reflected light is It moves to the upper right of the replayed character string. Although the conjugate object light is not shown in the photograph of FIG. 6, it is reproduced directly in the direction rotated by an angle 2θ y from the object light. As a result of separating the reproduction object light from the direct reflection light and the conjugate object light, a direct image with high image quality is reproduced as shown in FIGS.

本発明に関わる3次元カラー画像記録再生装置は、映像技術分野、アミューズメント分野、エンターテイメント分野、インターネット分野、情報分野、マルチメディア分野、コミュニケーション分野、広告・宣伝分野、医療分野、芸術分野、教育分野、設計支援分野、シミュレーション分野、バーチャルリアリティ分野、などで使われる三次元表示を可能にするインラインホログラムを用いた3次元動画像再生装置として利用することができる。   The three-dimensional color image recording / reproducing apparatus according to the present invention includes a video technology field, an amusement field, an entertainment field, an Internet field, an information field, a multimedia field, a communication field, an advertising field, a medical field, an art field, an education field, The present invention can be used as a three-dimensional moving image reproducing apparatus using an in-line hologram that enables three-dimensional display used in the design support field, simulation field, virtual reality field, and the like.

(a)z−x平面内を示す図、(b)z−y平面内での斜め入射参照光の等位相面を示す説明図(A) The figure which shows the inside of a zx plane, (b) The explanatory view which shows the equiphase surface of the obliquely incident reference light in a zy plane m=0、n=1とした時の再生用ホログラム作成のためのホログラムデータの組合せを示す図The figure which shows the combination of the hologram data for producing the hologram for reproduction | regeneration when it is set as m = 0 and n = 1. m=2、n=1とした時の再生用ホログラム作成のためのホログラムデータの組合せを示す図The figure which shows the combination of the hologram data for producing the hologram for reproduction | regeneration when it is set as m = 2 and n = 1. 計算機合成インラインホログラムから再生した画像を示す図Diagram showing an image reproduced from a computer-generated inline hologram m=0、n=1とした時の本発明の再生用ホログラムから再生した画像を示す図The figure which shows the image reproduced | regenerated from the hologram for reproduction | regeneration of this invention when it is set as m = 0 and n = 1. m=2、n=1とした時の本発明の再生用ホログラムから再生した画像を示す図The figure which shows the image reproduced | regenerated from the hologram for reproduction | regeneration of this invention when it is set as m = 2 and n = 1.

符号の説明Explanation of symbols

1 ホログラム平面
2 再生用参照光
1 Hologram plane 2 Reproduction reference beam

Claims (2)

物体光と参照光を同軸もしくは交叉角度を小さくして交叉させたインラインホログラフィにより記録した画像を再生する3次元画像再生装置であって、
空間変調素子により、記録参照光の位相を90度異ならせた、2枚の位相シフトインラインホログラムを生成する位相シフトインラインホログラム生成手段と、
前記位相シフトインラインホログラムの物体光の振幅と位相を含む、余弦干渉縞成分と、正弦干渉縞成分との合成、または、組み合わせにより、再生ホログラムデータを生成する再生ホログラムデータ生成手段とを備え、
前記再生ホログラムデータ生成手段は、前記再生ホログラムデータ生成時の再生参照光の入射角度を、画素ピッチの2倍、または、4倍の間隔をもつ回折格子による回折角に一致するように設定することを特徴とする3次元画像再生装置。
A three-dimensional image reproduction device for reproducing an image recorded by in-line holography in which object light and reference light are crossed coaxially or with a small crossing angle,
A phase shift inline hologram generating means for generating two phase shift inline holograms, wherein the phase of the recording reference light is different by 90 degrees by the spatial modulation element;
Reproduction hologram data generation means for generating reproduction hologram data by combining or combining a cosine interference fringe component and a sine interference fringe component, including the amplitude and phase of the object light of the phase shift inline hologram,
The reproduction hologram data generation means sets an incident angle of the reproduction reference light when generating the reproduction hologram data so as to coincide with a diffraction angle by a diffraction grating having an interval twice or four times the pixel pitch. A three-dimensional image reproduction device characterized by the above.
物体光と参照光を同軸もしくは交叉角度を小さくして交叉させたインラインホログラフィにより記録した画像を再生する3次元画像再生方法であって、
空間変調素子により、記録参照光の位相を90度異ならせた、2枚の位相シフトインラインホログラムを生成する位相シフトインラインホログラム生成ステップと、
前記位相シフトインラインホログラムの物体光の振幅と位相を含む、余弦干渉縞成分と、正弦干渉縞成分との合成、または、組み合わせにより、再生ホログラムデータを生成する再生ホログラムデータ生成ステップとを備え、
前記再生ホログラムデータ生成ステップは、前記再生ホログラムデータ生成時の再生参照光の入射角度を、画素ピッチの2倍、または、4倍の間隔をもつ回折格子による回折角に一致するように設定することを特徴とする3次元画像再生方法。
A three-dimensional image reproduction method for reproducing an image recorded by in-line holography in which object light and reference light are crossed coaxially or with a small crossing angle,
A phase-shift inline hologram generation step for generating two phase-shift inline holograms, wherein the phase of the recording reference light is different by 90 degrees by the spatial modulation element;
A reproduction hologram data generation step for generating reproduction hologram data by combining or combining a cosine interference fringe component and a sine interference fringe component, including the amplitude and phase of the object light of the phase shift inline hologram,
In the reproduction hologram data generation step , the incident angle of the reproduction reference light when the reproduction hologram data is generated is set so as to coincide with a diffraction angle by a diffraction grating having an interval twice or four times the pixel pitch. A three-dimensional image reproduction method characterized by the above.
JP2005306830A 2005-10-21 2005-10-21 3D moving image playback apparatus and 3D moving image playback method Expired - Fee Related JP4841930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306830A JP4841930B2 (en) 2005-10-21 2005-10-21 3D moving image playback apparatus and 3D moving image playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306830A JP4841930B2 (en) 2005-10-21 2005-10-21 3D moving image playback apparatus and 3D moving image playback method

Publications (2)

Publication Number Publication Date
JP2007114552A JP2007114552A (en) 2007-05-10
JP4841930B2 true JP4841930B2 (en) 2011-12-21

Family

ID=38096786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306830A Expired - Fee Related JP4841930B2 (en) 2005-10-21 2005-10-21 3D moving image playback apparatus and 3D moving image playback method

Country Status (1)

Country Link
JP (1) JP4841930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209673B2 (en) 2010-07-07 2019-02-19 University Of Hyogo Holographic microscope, microscopic subject hologram image recording method, method of creation of hologram for reproduction of high-resolution image, and method for reproduction of image
CN107688284B (en) * 2017-08-29 2024-03-12 西北核技术研究所 Particle field holographic on-axis and off-axis reproduction light path system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471556B2 (en) * 1997-03-27 2003-12-02 理化学研究所 Phase shift digital holography device
JP4153242B2 (en) * 2002-05-27 2008-09-24 浜松ホトニクス株式会社 Image display device, image display system, and image display method

Also Published As

Publication number Publication date
JP2007114552A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Tsang et al. Review on the state-of-the-art technologies for acquisition and display of digital holograms
Kim et al. Seamless full color holographic printing method based on spatial partitioning of SLM
US20070103757A1 (en) Three-dimensional color image recording apparatus
JP4133832B2 (en) Color video holography playback device
EP0589558B1 (en) Stereoscopic display method and display apparatus
JP6308594B2 (en) Digital holography apparatus and digital holography method
JP4294526B2 (en) Digital holography apparatus and image reproduction method using digital holography
WO2011089820A1 (en) Generation method for complex amplitude in-line hologram and image recording device using said method
CN102073264B (en) Time-sharing multiplexing computational holographic three-dimensional display system and display method thereof
KR101894017B1 (en) Apparatus for manufacturing Holographic Optical Element, and apparatus for reconstruction of holograms
KR20130074936A (en) System for producing digital holographic content
CN102183883A (en) Multibeam time division multiplexing (TDM) holographic three-dimensional display system and method
CN102081339B (en) Method and system for displaying holographic three-dimensional image based on first-order spectrum time division multiplexing technology
JP2015036799A (en) Complex amplitude image reproduction device and complex amplitude image reproduction method, and scattered phase image creation device and scattered phase image creation method
JP2013506880A (en) Overlay of visible image and synthetic hologram
CN109270816B (en) Hologram generating method and color holographic display system
KR100910642B1 (en) Method for reproducing hologram 3D image by integral imaging scheme and Apparatus thereof
JP2008145467A (en) Hologram making method and hologram made by the method
JP4841930B2 (en) 3D moving image playback apparatus and 3D moving image playback method
JP2013054068A (en) Hologram generating device and hologram generating method
CN203012354U (en) Phase-shifting digital holography high-speed imaging system
KR20040037446A (en) Apparatus and method for manufacturing holographic diffraction field element, 3D holographic display apparatus and method using it
CN208903081U (en) A kind of color holographic display system
KR102110866B1 (en) Digital hologram image display device and method for displaying holorgram 3d image
JP2007256343A (en) Holographic three dimensional hard copy producing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R151 Written notification of patent or utility model registration

Ref document number: 4841930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees