JP4841148B2 - Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer - Google Patents

Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer Download PDF

Info

Publication number
JP4841148B2
JP4841148B2 JP2005064549A JP2005064549A JP4841148B2 JP 4841148 B2 JP4841148 B2 JP 4841148B2 JP 2005064549 A JP2005064549 A JP 2005064549A JP 2005064549 A JP2005064549 A JP 2005064549A JP 4841148 B2 JP4841148 B2 JP 4841148B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
seawater
electrodes
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005064549A
Other languages
Japanese (ja)
Other versions
JP2006249463A (en
Inventor
勇荘 紺屋
浩 時安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005064549A priority Critical patent/JP4841148B2/en
Publication of JP2006249463A publication Critical patent/JP2006249463A/en
Application granted granted Critical
Publication of JP4841148B2 publication Critical patent/JP4841148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、海水を電解して次亜塩素酸ソーダを生成させる海水電解装置の電極の劣化度測定方法及び海水電解装置の電極の使用限度算出方法に関する。 The present invention relates to the use limit calculating how the electrodes of the deterioration degree measurement method及beauty sea water electrolysis device electrodes of seawater by electrolysis seawater electrolysis apparatus to produce sodium hypochlorite.

発電所では蒸気を冷却する復水器に海水が使用されている。取水した海水をそのまま使用すると、配管内に微生物などが付着するので、これらを防止する目的で海水に次亜塩素酸ソーダを注入し使用される。海水に注入する次亜塩素酸ソーダは、海水を電気分解することでも得ることができる。海水を電気分解すると、陽極に塩素、陰極に水酸化ナトリウムが生成しこれらが反応することで次亜塩素酸ソーダが生成する。当発電所においても海水を電気分解することで次亜塩素酸ソーダを得ている。   At power plants, seawater is used in condensers that cool steam. If the taken seawater is used as it is, microorganisms and the like adhere to the pipe, so sodium hypochlorite is injected into the seawater for the purpose of preventing them. Sodium hypochlorite injected into seawater can also be obtained by electrolyzing seawater. When seawater is electrolyzed, chlorine is produced at the anode and sodium hydroxide is produced at the cathode, which react to produce sodium hypochlorite. This power plant also obtains sodium hypochlorite by electrolyzing seawater.

海水を電気分解する海水電解装置を長期間稼動させると、陰極にスケールが付着する。スケールは海水に含まれるカルシウムやマグネシウムが、海水分解時に陰極側に発生する水酸化イオンと反応して生成する水酸化物である。スケールの付着は電解装置の性能低下につながるため、一年に一回程度の割合で酸を用いた洗浄を行い、スケールの除去が行われる。   When a seawater electrolyzer that electrolyzes seawater is operated for a long period of time, scale adheres to the cathode. The scale is a hydroxide produced by reaction of calcium and magnesium contained in seawater with hydroxide ions generated on the cathode side during seawater decomposition. Since adhesion of the scale leads to degradation of the performance of the electrolyzer, the scale is removed by washing with an acid once a year.

図7は当発電所で使用されている海水電解システムの概略的なフローを示す図である。海水電解ポンプ1で海水を汲み上げ、フィルタ2で固形分を除去した後、電解液受液槽3に海水を送水する。電解液受液槽3にはリサイクルポンプ4が設けられ、リサイクルポンプ4で定量的に電解液受液槽3の液を海水電解装置5へ送水する。海水電解装置5は、内部に電極を備える海水電解槽本体6と、電極に電源を供給する電源供給装置7とを含み構成され、ここで海水が電気分解され、次亜塩素酸ソーダが生成する。   FIG. 7 is a diagram showing a schematic flow of the seawater electrolysis system used in this power plant. Seawater is pumped up by the seawater electrolysis pump 1, solids are removed by the filter 2, and then the seawater is fed to the electrolyte solution receiving tank 3. The electrolyte solution receiving tank 3 is provided with a recycle pump 4, and the recycle pump 4 quantitatively feeds the solution in the electrolyte solution receiving tank 3 to the seawater electrolyzer 5. The seawater electrolyzer 5 includes a seawater electrolyzer main body 6 having an electrode therein and a power supply device 7 for supplying power to the electrode, where the seawater is electrolyzed and sodium hypochlorite is generated. .

海水電解装置5で電気分解され次亜塩素酸ソーダを含んだ海水は、再度電解液受液槽3に返送される。以上のように本海水電解システムは、電解液受液槽3と海水電解装置5との間を、次亜塩素酸ソーダを含む海水を循環させながら海水の電気分解を行っている。次亜塩素酸ソーダを含んだ海水の一部は、取出され水路へ送水される。また、海水電解槽本体6の下部管路には、洗浄液供給管路及び工業用水供給管路が配設され、これらを通じて洗浄液、工業用水が供給される。   Seawater electrolyzed by the seawater electrolyzer 5 and containing sodium hypochlorite is returned to the electrolyte receiver 3 again. As described above, the seawater electrolysis system electrolyzes seawater while circulating seawater containing sodium hypochlorite between the electrolyte solution receiving tank 3 and the seawater electrolysis apparatus 5. Part of the seawater containing sodium hypochlorite is taken out and sent to the waterway. In addition, a cleaning liquid supply pipe and an industrial water supply pipe are disposed in the lower pipe of the seawater electrolysis tank body 6, and the cleaning liquid and the industrial water are supplied through these.

海水電解装置の陽極の電極には、チタンのような耐食性を有する基材に、白金などを被覆したものを使用することで、耐久性を確保している。しかしながら酸による洗浄を繰り返しながら長期間海水電解装置を使用すると、塩素の発生量が低下したり、基材表面に被覆した被膜が剥離、消耗する場合がある。これは酸による洗浄時に陽極材が陰極材と電池を形成し、陽極材が卑な電位環境下にさらされることが主原因との指摘もある(例えば特許文献1参照)。   As the anode electrode of the seawater electrolysis apparatus, durability is ensured by using a base material having corrosion resistance such as titanium coated with platinum or the like. However, when a seawater electrolysis apparatus is used for a long time while repeating washing with an acid, the amount of chlorine generated may decrease, or the coating coated on the surface of the substrate may be peeled off or consumed. It is also pointed out that this is mainly due to the anode material forming a cathode and a battery during cleaning with an acid, and the anode material being exposed to a base potential environment (see, for example, Patent Document 1).

基材表面に被覆した被膜が剥離又は消耗すると、基材自身が損傷するので、海水電解槽本体を定期的に分解し、被膜の剥離など電極の点検が行われている。所定量以上の被膜の剥離が認められた場合には、基材表面に再度被膜を被覆して使用される。
特開平8−170187号公報
When the coating coated on the surface of the base material is peeled off or consumed, the base material itself is damaged. Therefore, the seawater electrolyzer body is periodically disassembled, and inspection of the electrode such as peeling of the coating is performed. When peeling of a film of a predetermined amount or more is recognized, the film is used again by coating the surface of the substrate.
JP-A-8-170187

以上のように、海水電解装置の電極の管理、特に陽極の管理は、定期的に海水電解装置を分解し、電極を目視観察し、基材表面に被覆された被膜の剥離状況を確認することで行われているので、劣化度を明確に把握することができない。また目視観察では、電極の劣化度(皮膜の剥離)を定量的に把握することができないので、基材表面に再度被膜を被覆する時期、つまり現在の電極の使用限度を予測することができない。また海水電解装置の電極の被膜の剥離等を定量的に計測して電極の管理を行う手法は、先行技術文献などにも開示されていない。   As described above, the management of the electrodes of the seawater electrolysis apparatus, especially the management of the anode, is to periodically disassemble the seawater electrolysis apparatus, visually observe the electrodes, and confirm the peeling state of the coating coated on the substrate surface It is not possible to clearly grasp the degree of deterioration. Further, since visual observation cannot quantitatively grasp the degree of electrode deterioration (film peeling), it is impossible to predict the time when the film is again coated on the substrate surface, that is, the current use limit of the electrode. Further, a technique for quantitatively measuring the peeling of the electrode coating of the seawater electrolysis apparatus and managing the electrode is not disclosed in prior art documents.

本発明の目的は、簡単な方法で電極の劣化度を定量的に算出可能な海水電解装置の電極の劣化度測定方法及び電極の使用限度算出方法を提供することにある。 An object of the present invention is to provide a use limit calculating how the deterioration degree measurement method and electrodes of the electrode of the calculated quantitatively capable seawater electrolysis device deterioration of the electrode in a simple manner.

本発明は、海水を電気分解する電極を備える電解槽と、前記電解槽の電極に電圧を印加する、出力電圧を可変可能な電源供給手段とを備える海水電解装置の電極の劣化度を測定する方法であって、前記海水電解装置の運転中に前記電源供給手段を介して前記電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、該電極の電圧電流特性データと予め定める該電極の電圧電流特性データとから電極の劣化度を測定することを特徴とする海水電解装置の電極の劣化度測定方法である。 The present invention measures the degree of deterioration of an electrode of a seawater electrolysis apparatus comprising an electrolytic cell provided with an electrode for electrolyzing seawater and a power supply means for applying a voltage to the electrode of the electrolytic cell and capable of changing an output voltage. a method, during the operation of the seawater electrolysis device, through said power supply means to apply a plurality of different voltages to the electrodes, and measuring a current value flowing through the electrode at that time, the voltage-current characteristic data of the electrode An electrode deterioration degree measuring method for a seawater electrolysis apparatus characterized in that the deterioration degree of an electrode is measured from the obtained voltage / current characteristic data of the electrode and predetermined voltage / current characteristic data of the electrode.

また本発明は、海水を電気分解する電極を備える電解槽と、前記電解槽の電極に電圧を印加する、出力電圧を可変可能な電源供給手段とを備える海水電解装置の電極の使用限度を算出する方法であって、所定の間隔毎に、前記海水電解装置の運転中に、前記電源供給手段を介して前記電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、該電極の電圧電流特性データの経時変化から電極の使用限度を算出することを特徴とする海水電解装置の電極の使用限度算出方法である。 Further, the present invention calculates the limit of use of an electrode of a seawater electrolysis apparatus comprising an electrolytic cell comprising an electrode for electrolyzing seawater and a power supply means for applying a voltage to the electrode of the electrolytic cell and capable of changing an output voltage. A plurality of different voltages are applied to the electrodes via the power supply means during the operation of the seawater electrolysis apparatus at predetermined intervals, and the current values flowing through the electrodes at that time are measured, An electrode usage limit calculation method for a seawater electrolysis apparatus, characterized in that voltage / current characteristic data of an electrode is obtained and an electrode usage limit is calculated from a change with time of the voltage / current characteristic data of the electrode.

本発明の海水電解装置の電極の劣化度測定方法は、海水電解装置の運転中に、電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、電極の電圧電流特性データと予め定める電極の電圧電流特性データとから電極の劣化度を測定するので、海水電解装置の電極の劣化度を簡単に、また定量的に測定することができる。特に海水電解装置の運転を停止することなく電極の電圧電流特性データを取得することができるので、電圧電流特性データを適宜取得することができる。このため電極の劣化が懸念される場合は、短い間隔で電圧電流特性データを取得することで電極の劣化を的確に把握することができる。さらに電極の電圧電流特性データを取得するとき海水電解装置を停止する必要がないので、発電所等の運転に影響を与えず好ましい。また、電圧電流特性データの取得には、電極に電圧を印加する電源供給手段を使用するので、特別の装置も必要なく便利である。 The method for measuring the degree of deterioration of an electrode of a seawater electrolysis apparatus according to the present invention applies a plurality of different voltages to the electrode during operation of the seawater electrolysis apparatus, measures the current value flowing through the electrode at that time, and measures voltage-current characteristic data of the electrode And the degree of deterioration of the electrode is measured from the voltage-current characteristic data of the electrode and the predetermined voltage-current characteristic data of the electrode, so that the degree of deterioration of the electrode of the seawater electrolysis apparatus can be measured easily and quantitatively. . In particular, since the voltage / current characteristic data of the electrode can be acquired without stopping the operation of the seawater electrolysis apparatus, the voltage / current characteristic data can be appropriately acquired. For this reason, when there is a concern about the deterioration of the electrode, the deterioration of the electrode can be accurately grasped by acquiring the voltage-current characteristic data at short intervals. Furthermore, since it is not necessary to stop the seawater electrolysis apparatus when acquiring the voltage-current characteristic data of the electrodes, it is preferable without affecting the operation of the power plant or the like. Moreover, since the power supply means for applying a voltage to the electrodes is used for acquiring the voltage-current characteristic data, a special device is not necessary and it is convenient.

本発明の海水電解装置の電極の使用限度算出方法は、所定の間隔毎に海水電解装置の運転中に、電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、電極の電圧電流特性データの経時変化から電極の使用限度を算出するので、海水電解装置の電極の使用限度を定量的にまた簡単に算出することができる。特に海水電解装置の運転を停止することなく電極の電圧電流特性データを取得することができるので、電圧電流特性データを適宜取得することができる。このため電極の使用限度が近づいている場合は、短い間隔で電圧電流特性データを取得することで電極の使用限度を的確に把握することができる。さらに電極の電圧電流特性データを取得するとき海水電解装置を停止する必要がないので、発電所等の運転に影響を与えず好ましい。また、電圧電流特性データの取得には、電極に電圧を印加する電源供給手段を使用するので、特別の装置も必要なく便利である。 In the seawater electrolysis apparatus electrode usage limit calculation method of the present invention , a plurality of different voltages are applied to the electrode during the operation of the seawater electrolysis apparatus at predetermined intervals , and the current value flowing through the electrode at that time is measured. Since the electrode current limit data is obtained and the electrode use limit is calculated from the change over time of the electrode voltage current characteristic data, the electrode use limit of the seawater electrolyzer can be calculated quantitatively and easily. In particular, since the voltage / current characteristic data of the electrode can be acquired without stopping the operation of the seawater electrolysis apparatus, the voltage / current characteristic data can be appropriately acquired. For this reason, when the use limit of the electrode is approaching, the use limit of the electrode can be accurately grasped by acquiring the voltage-current characteristic data at short intervals. Furthermore, since it is not necessary to stop the seawater electrolysis apparatus when acquiring the voltage-current characteristic data of the electrodes, it is preferable without affecting the operation of the power plant or the like. Moreover, since the power supply means for applying a voltage to the electrodes is used for acquiring the voltage-current characteristic data, a special device is not necessary and it is convenient.

図1は本発明の実施の一形態としての海水電解装置10の概略的構成を示す図である。図1に示す海水電解装置10は、海水電解システムの一部であり、実際の海水電解システムでは、複数個の海水電解装置で構成される。海水電解装置10は、海水を電気分解する複数の電解槽20a、20b、20c、20d、20e、20fと電解槽20に電源を供給する電源供給装置60及びデータ処理装置70を含み構成される。ここで電解槽20a、20b、20c、20d、20e、20fは同一の形状、構造を有する。   FIG. 1 is a diagram showing a schematic configuration of a seawater electrolysis apparatus 10 as an embodiment of the present invention. A seawater electrolysis apparatus 10 shown in FIG. 1 is a part of a seawater electrolysis system, and an actual seawater electrolysis system includes a plurality of seawater electrolysis apparatuses. The seawater electrolysis apparatus 10 includes a plurality of electrolytic cells 20a, 20b, 20c, 20d, 20e, and 20f that electrolyze seawater, a power supply device 60 that supplies power to the electrolytic cell 20, and a data processing device 70. Here, the electrolytic cells 20a, 20b, 20c, 20d, 20e, and 20f have the same shape and structure.

図2は図1の海水電解装置10を構成する一の電解槽20aの分解図である。また図3は、図1の海水電解装置10を構成する一の電解槽20aの組立図である。電解槽20aは、上下に管接続部を有し、内部に電極を受入れ可能な空間部を有する電解槽本体21、電源供給装置60から電源の供給を受けて海水を電気分解する電極22、23、電解槽本体21に電極22、23を組み付ける際に海水の漏洩を防ぐ役目を果たすパッキン24、25、及び電極22、23に電気を供給する銅帯体26、27を含み構成される。またパッキン24、25は電極22と23の電気的絶縁を確保する。電極22、23にうち、電極22が陽極、電極23が陰極である。   FIG. 2 is an exploded view of one electrolytic cell 20a constituting the seawater electrolysis apparatus 10 of FIG. 3 is an assembly diagram of one electrolytic cell 20a constituting the seawater electrolysis apparatus 10 of FIG. The electrolytic cell 20a has pipe connection parts at the top and bottom, an electrolytic cell main body 21 having a space part capable of receiving electrodes therein, and electrodes 22 and 23 for electrolyzing seawater upon receiving power supply from a power supply device 60. In addition, it includes packings 24 and 25 that serve to prevent leakage of seawater when the electrodes 22 and 23 are assembled to the electrolytic cell main body 21, and copper strips 26 and 27 that supply electricity to the electrodes 22 and 23. Further, the packings 24 and 25 ensure electrical insulation between the electrodes 22 and 23. Of the electrodes 22 and 23, the electrode 22 is an anode and the electrode 23 is a cathode.

陽極22は、縦長の平板30及び6枚の縦長の平板31(31a、31b、31c、31d、31e、31f)で構成され、平面視において平板30に対して略直角に6枚の平板31が一定の間隔で固着されている。平板30及び平板31は、基材にチタンを使用し基材表面に貴金属がコーティングされている。陰極23は縦長の平板32、7枚の縦長の平板33(33a、33b、33c、33d、33e、33f、33g)及び中央に開口部を有する平板34で構成される。平面視において平板32に対して略直角に7枚の平板33(33a〜33g)の一辺が一定の間隔で固着され、平板33a及び平板33gの他辺が、平板34と固着されている。陰極はステンレス鋼である。   The anode 22 includes a vertically long flat plate 30 and six vertically long flat plates 31 (31a, 31b, 31c, 31d, 31e, and 31f), and the six flat plates 31 are substantially perpendicular to the flat plate 30 in plan view. It is fixed at regular intervals. The flat plate 30 and the flat plate 31 use titanium as a base material, and a base metal surface is coated with a noble metal. The cathode 23 includes a vertically long flat plate 32, seven vertically long flat plates 33 (33a, 33b, 33c, 33d, 33e, 33f, 33g) and a flat plate 34 having an opening at the center. In plan view, one side of the seven flat plates 33 (33a to 33g) is fixed at a regular interval substantially perpendicular to the flat plate 32, and the other sides of the flat plate 33a and the flat plate 33g are fixed to the flat plate 34. The cathode is stainless steel.

電解槽を組み立てると、陰極の7枚の平板33(33a〜33g)の各々の間に、陽極の6枚の平板31(31a〜31f)各々が入り込む構造となっている。電解槽本体21に陰極23をパッキン24を介して挿入し、さらにパッキン25を介して陽極22を電解槽本体21に挿入し、陽極22の平板30に電気を供給する陽極銅帯体26を当接し、電解槽21本体、パッキン24、陰極23、パッキン25、陽極22及び陽極銅帯体26を一体にボルトで固定することで電解槽20を組み立てることができる。陰極23に電気を供給する陰極銅帯体27は、陰極23の平板34にボルトで固着される。   When the electrolytic cell is assembled, each of the six flat plates 31 (31a to 31f) of the anode is inserted between each of the seven flat plates 33 (33a to 33g) of the cathode. A cathode 23 is inserted into the electrolytic cell body 21 via a packing 24, and an anode 22 is inserted into the electrolytic cell body 21 via a packing 25, and an anode copper strip 26 for supplying electricity to the flat plate 30 of the anode 22 is applied. The electrolytic cell 20 can be assembled by contacting the electrolytic cell 21 main body, the packing 24, the cathode 23, the packing 25, the anode 22 and the anode copper strip 26 together with a bolt. A cathode copper strip 27 for supplying electricity to the cathode 23 is fixed to the flat plate 34 of the cathode 23 with a bolt.

海水電解装置10の電解槽20は、電解槽20a、20b、20cが一つの系統を構成し、電解槽20d、20e、20fがもう一つの系統を構成する。電解槽20a、20b及び20cで構成される系統には、電解槽20aの底部に連結された管路40aから海水が供給される。供給された海水は、電解槽20aで一部が電気分解され、電解槽20aの上部と電解槽20bの下部とを連結する管路40bを通じて電解槽20bに送られる。電解槽20bにおいても電解槽20aと同様に海水の一部を電気分解する。電解槽20cも電解槽20bの上部と電解槽20cの下部とを連結する管路40cを通じて電解液を含む海水を受入れ、電解槽20cで海水の一部を電気分解する。電解槽20cで電気分解され生成した電解液は、未分解の海水とともに管路41を通じて、図示を省略した電解液受液槽へ送られる。   In the electrolyzer 20 of the seawater electrolyzer 10, the electrolyzers 20a, 20b, and 20c constitute one system, and the electrolyzers 20d, 20e, and 20f constitute another system. Seawater is supplied to a system constituted by the electrolytic cells 20a, 20b, and 20c from a pipeline 40a connected to the bottom of the electrolytic cell 20a. The supplied seawater is partly electrolyzed in the electrolytic cell 20a, and sent to the electrolytic cell 20b through a conduit 40b that connects the upper part of the electrolytic cell 20a and the lower part of the electrolytic cell 20b. Also in the electrolytic cell 20b, a part of seawater is electrolyzed similarly to the electrolytic cell 20a. The electrolytic bath 20c also receives seawater containing an electrolytic solution through a conduit 40c that connects the upper portion of the electrolytic bath 20b and the lower portion of the electrolytic bath 20c, and electrolyzes part of the seawater in the electrolytic bath 20c. The electrolytic solution generated by electrolysis in the electrolytic bath 20c is sent to the electrolytic solution receiving bath (not shown) through the pipe line 41 together with undecomposed seawater.

以上のように海水は、電解槽20a、20b及び20cの順に直列に送水され、各電解槽で電気分解される。電解槽20d、20e、20fが形成するもう一つの系統の電解槽の同様であり、電解槽20d、20e、20fは、管路40d、40e、40fを介して海水を受入れ電気分解し、管路42を通じて電解液及び未分解の海水を排出する。   As described above, seawater is fed in series in the order of the electrolytic cells 20a, 20b, and 20c, and is electrolyzed in each electrolytic cell. The electrolytic baths 20d, 20e, and 20f are similar to the electrolytic baths of another system, and the electrolytic baths 20d, 20e, and 20f receive seawater through the conduits 40d, 40e, and 40f, and electrolyze them. The electrolyte solution and undecomposed seawater are discharged through 42.

また各系列の電解槽の下部には、洗浄液を供給、排出するための管路43、44が配設されている。電解槽20a、20b、20cで構成される系統には、管路43が設けられている。管路43には入口出口部に各々弁45、46が設けられるともに、管路途中に分岐管を有し分岐管には弁47a、47b、47cが装着されている。弁47a、47b、47cは、各々一端を管路40a、40b、40cと連結する。これらを通じて電解槽20a、20b、20cに洗浄液として酸を送液することで電解槽20a、20b、20cを洗浄することができる。   Pipe lines 43 and 44 for supplying and discharging the cleaning liquid are disposed at the lower part of each series of electrolytic cells. A pipe line 43 is provided in the system constituted by the electrolytic cells 20a, 20b, and 20c. The pipe 43 is provided with valves 45 and 46 at the inlet and outlet, respectively, and a branch pipe is provided in the middle of the pipe, and valves 47a, 47b and 47c are mounted on the branch pipe. One end of each of the valves 47a, 47b, and 47c is connected to the conduits 40a, 40b, and 40c. Through these, the electrolytic cells 20a, 20b, and 20c can be cleaned by sending an acid as a cleaning solution to the electrolytic cells 20a, 20b, and 20c.

同様に電解槽20d、20e、20fで構成される系統には、管路44が設けられている。管路44には入口出口部に各々弁48、49が設けられるともに、管路途中に分岐管を有し分岐管には弁47d、47e、47fが装着されている。弁47d、47e、47fは、各々一端を管路40d、40e、40fと連結する。これらを通じて電解槽20d、20e、20fに洗浄液として酸を送液することで電解槽20d、20e、20fを洗浄することができる。   Similarly, a pipe 44 is provided in a system constituted by the electrolytic cells 20d, 20e, and 20f. The pipe 44 is provided with valves 48 and 49 at the inlet and outlet, respectively, and has a branch pipe in the middle of the pipe, and valves 47d, 47e and 47f are mounted on the branch pipe. One end of each of the valves 47d, 47e, and 47f is connected to the conduits 40d, 40e, and 40f. Through these, the electrolytic cells 20d, 20e, and 20f can be cleaned by sending an acid as a cleaning solution to the electrolytic cells 20d, 20e, and 20f.

電解槽20の電極22、23には、電源供給装置60を通じて所定量の電気が送られる。電源供給装置60は、図示を省略した出力電圧を可変可能な出力電圧可変装置、電圧測定器61及び電流測定器62を有する。本海水電解装置10では、電解槽20a〜20fの各電解槽の電源系統は直列に接続され、電源供給装置60から一体的に電気が送電される。   A predetermined amount of electricity is sent to the electrodes 22 and 23 of the electrolytic cell 20 through the power supply device 60. The power supply device 60 includes an output voltage variable device that can change an output voltage (not shown), a voltage measuring device 61, and a current measuring device 62. In the seawater electrolysis apparatus 10, the power supply systems of the electrolyzers 20 a to 20 f are connected in series, and electricity is transmitted integrally from the power supply device 60.

データ処理装置70は、データを記憶するデータ記憶部71とデータ処理部72とを含み構成される。データ記憶部71は、図示を省略したデータ入力部を通じて、電源供給装置60から電極22、23に加わる電圧データ及び電流データを受け取り記憶する。データ処理部72は、データ記憶部71のデータを用いて演算を行う。データ処理装置70としては、コンピュータを用いることができる。   The data processing device 70 includes a data storage unit 71 and a data processing unit 72 that store data. The data storage unit 71 receives and stores voltage data and current data applied to the electrodes 22 and 23 from the power supply device 60 through a data input unit (not shown). The data processing unit 72 performs calculations using the data in the data storage unit 71. A computer can be used as the data processing device 70.

以上のような構成を有する海水電解装置10は、定期的に酸による電極の洗浄操作を繰り返しながら、長期間連続的に稼動する。長期間の運転に伴い電極、特に陽極が劣化、消耗するので、従来は劣化度を目視観察で判断していたことはすでに記載した通りである。本発明では、電解槽の電極の劣化度を、電極の電圧電流特性データを測定することによって把握する。具体的には次の要領で行う。   The seawater electrolysis apparatus 10 having the above-described configuration operates continuously for a long period of time while periodically repeating the cleaning operation of the electrode with an acid. As described above, since the electrodes, particularly the anode, deteriorate and wear with long-term operation, the degree of deterioration was conventionally determined by visual observation. In the present invention, the deterioration degree of the electrode of the electrolytic cell is grasped by measuring the voltage-current characteristic data of the electrode. Specifically, the following procedure is performed.

電源供給装置60を通じて、電解槽20a〜電解槽20fに所定の電圧を加え、そのときの電圧、電流を電源供給装置60の電圧測定器61、電流測定器62で測定する。電解槽20a〜電解槽20fに加える電圧は、1点の値であってもよいが、精度向上の点から数点変化させ、その時の電流値を測定することが望ましい。これら電極の電圧及び電流値の測定は、海水電解装置10を保守点検する際に行うことができることは当然であるが、通常の運転時においても行うことができる。電極の電圧及び電流値の測定に要する時間は非常に短いので、通常の運転時に電極に加える電圧を変化させ電流値を測定しても、海水電解プロセスに影響を与えることはほとんどない。   A predetermined voltage is applied to the electrolytic cells 20a to 20f through the power supply device 60, and the voltage and current at that time are measured by the voltage measuring device 61 and the current measuring device 62 of the power supply device 60. The voltage applied to the electrolytic cell 20a to the electrolytic cell 20f may be a single value, but it is desirable to change several points from the point of accuracy improvement and measure the current value at that time. The measurement of the voltage and current value of these electrodes can be performed when the seawater electrolysis apparatus 10 is maintained and inspected, but can also be performed during normal operation. Since the time required for measuring the voltage and current value of the electrode is very short, even if the voltage applied to the electrode during normal operation is changed and the current value is measured, the seawater electrolysis process is hardly affected.

測定した電極22、23の電圧及び電流値を用いて、以下の要領で電極の劣化度を算出する。電極22、23の電圧及び電流の実測データは、電源供給装置60からデータ処理装置70へ送られ、データ記憶部71に記憶される。データ処理部72は、データ記憶部71に記憶した電圧、電流の実測データを用いて、電極の電圧電流特性データを算出する。この電極の電圧電流特性データと、予め定めた電極の電圧電流特性データと、を比較し電極の劣化度を測定する。このようにデータ処理部72は、電極の劣化度を算出する演算手段として機能する。   Using the measured voltage and current values of the electrodes 22 and 23, the degree of electrode degradation is calculated in the following manner. The actual measurement data of the voltages and currents of the electrodes 22 and 23 is sent from the power supply device 60 to the data processing device 70 and stored in the data storage unit 71. The data processing unit 72 calculates the voltage / current characteristic data of the electrodes using the measured voltage and current data stored in the data storage unit 71. The voltage / current characteristic data of the electrode is compared with predetermined voltage / current characteristic data of the electrode to measure the degree of deterioration of the electrode. In this manner, the data processing unit 72 functions as a calculation unit that calculates the degree of electrode degradation.

ここで電圧電流特性データを算出するには、必ずしも数点の電圧、電流データが必要ではなく、一点の電圧、電流データから電圧電流特性データを算出することも、もちろん可能である。一点の電圧、電流データからなる場合にあっては、電流値を測定することが電圧電流特性データを算出することになると言える。精度を高めるためには、数点の電圧、電流データを用いて、電圧と電流値の関係つまり電極の電圧電流特性データを算出ことが望ましい。   In order to calculate the voltage / current characteristic data, several voltage / current data are not necessarily required. Of course, the voltage / current characteristic data can be calculated from the voltage / current data at one point. In the case of consisting of voltage and current data at one point, it can be said that measuring the current value will calculate the voltage-current characteristic data. In order to increase the accuracy, it is desirable to calculate the relationship between the voltage and the current value, that is, the voltage-current characteristic data of the electrode, using several points of voltage and current data.

電極の使用限度の算出は次の手順で行う。所定の間隔、例えば1年毎に、電極の電圧及び電流データを測定し、この実測データをデータ処理装置70のデータ記憶部71に記憶させる。データ処理部72は、データ記憶部71に記憶した実測データを用いて、電極の電圧電流特性データを算出する。この電圧電流特性データの算出は、データ記憶部71に記憶させている数回分のデータについて行う。これら電圧電流特性データから、データ処理部72で電極の劣化度の経時変化を算出し、電極の使用限度を算出する。このようにデータ処理部72は、電極の使用限度を算出する演算手段として機能する。   Use the following procedure to calculate the electrode usage limit. The electrode voltage and current data are measured at a predetermined interval, for example, every year, and the actual measurement data is stored in the data storage unit 71 of the data processing device 70. The data processing unit 72 uses the actual measurement data stored in the data storage unit 71 to calculate the voltage / current characteristic data of the electrodes. The calculation of the voltage / current characteristic data is performed for several times of data stored in the data storage unit 71. From these voltage-current characteristics data, the data processor 72 calculates the change over time in the degree of deterioration of the electrode, and calculates the usage limit of the electrode. In this way, the data processing unit 72 functions as a calculation unit that calculates the use limit of the electrode.

電極の使用限度の算出においても、上記の電極の劣化度と同様、一点の電圧、電流値から電極の使用限度の算出を算出することも可能である。この場合にあっては、所定の間隔で測定する電極の電圧電流特性データを、毎回同一の電圧で行うことで可能となる。また
電極の電圧、電流データの測定間隔は、必ずしも一定である必要はなく、また電極の劣化度測定時の電圧及び電流データを利用してもよいことはもちろんである。
In the calculation of the electrode usage limit, it is also possible to calculate the electrode usage limit from the voltage and current values at one point in the same manner as the degree of deterioration of the electrode. In this case, the voltage / current characteristic data of the electrodes measured at a predetermined interval can be obtained at the same voltage every time. In addition, the measurement interval of the voltage and current data of the electrode is not necessarily constant, and it is needless to say that the voltage and current data at the time of measuring the deterioration degree of the electrode may be used.

本実施形態の海水電解システム10においては、6つの電解槽20a〜20fに直列に電気を供給しているので、6つの電解槽全体としての電極の電圧電流特性データを把握することとなる。この場合にあっては、6つの電解槽各々の電極の電圧電流特性データを把握することは困難であるが、個々電解槽に各々電気を供給することで各電解槽の電極の劣化度、使用限度を把握することが可能なことは言うまでもない。本発明の方法により電極の使用限度を算出し、電極が使用限度に達していることが判明すれば、電解槽を分解し電極を取り出し、陽極の表面を再度被覆すればよい。一方、電極が使用限度に達していない場合は、電極を点検するために電解槽を分解する必要がないので、従来の目視観察の方法に比べて手間がかからない。   In the seawater electrolysis system 10 of the present embodiment, electricity is supplied in series to the six electrolyzers 20a to 20f, so that the voltage / current characteristic data of the electrodes as a whole of the six electrolyzers is grasped. In this case, it is difficult to grasp the voltage-current characteristic data of the electrodes of each of the six electrolytic cells, but the degree of deterioration and use of the electrodes of each electrolytic cell by supplying electricity to each individual electrolytic cell It goes without saying that it is possible to grasp the limits. If the use limit of the electrode is calculated by the method of the present invention and it is found that the electrode has reached the use limit, the electrolytic cell is disassembled, the electrode is taken out, and the surface of the anode is covered again. On the other hand, when the electrode has not reached the limit of use, it is not necessary to disassemble the electrolytic cell in order to check the electrode, so that it is less time-consuming than the conventional visual observation method.

(実施例1)本発明の電解槽の電極の劣化度測定の結果を実施例に示す。
本実施例では、A〜Cまで3系列ある海水電解装置のうち、B系列及びC系列の海水電解装置の電極の劣化度を測定した。B系列、C系列とも各々12個の電解槽を備え、12個の電解槽の電気回路は直列に接続されていた。図4は、B系列の海水電解装置の電極の電圧電流特定データを測定した結果を示す図である。また図5はC系列の海水電解装置の電極の電圧電流特定データを測定した結果を示す図である。図4及び図5において、縦軸の各槽電圧は、各々12個の電解槽の電圧を一体として測定後、電解槽の個数で除算し求めた値である。
(Example 1) The results of measuring the degree of deterioration of the electrode of the electrolytic cell of the present invention are shown in the Examples.
In this example, among the three series of seawater electrolyzers A to C, the deterioration degree of the electrodes of the B series and C series seawater electrolyzers was measured. Each of the B series and the C series was provided with 12 electrolytic cells, and the electric circuits of the 12 electrolytic cells were connected in series. FIG. 4 is a diagram showing a result of measuring voltage / current specifying data of electrodes of a B-series seawater electrolysis apparatus. FIG. 5 is a diagram showing the results of measuring voltage / current identification data of electrodes of a C-series seawater electrolysis apparatus. 4 and 5, each cell voltage on the vertical axis is a value obtained by dividing the voltage of each of the 12 electrolytic cells as a unit and dividing by the number of electrolytic cells.

図4または図5から海水電気分解時の電極の電圧と電流には、直線関係が成立し、稼動日数が増加してもこの傾向は、同じであることが分かった。また各系列の電解槽の電極に流す最大電流を3000Aとし、そのときの電圧許容値を6Vと設定すると、B系列の電解槽は、平成15年12月3日の時点で電流3000Aを流すためには、各電解槽の電極に約6.3Vの電圧を加える必要があり、電極(陽極)を補修すべき時期であることが分かる。一方C系列の電解槽は平成16年3月3日時点では、電流3000Aを流すために必要な電圧は約5.2Vであり、補修までには余裕があることが分かる。   From FIG. 4 or FIG. 5, it was found that a linear relationship was established between the electrode voltage and current during seawater electrolysis, and this tendency was the same even when the number of working days increased. In addition, if the maximum current flowing through the electrodes of each series of electrolytic cells is set to 3000A and the allowable voltage at that time is set to 6V, the B series electrolytic cells pass current 3000A as of December 3, 2003. Therefore, it is necessary to apply a voltage of about 6.3 V to the electrode of each electrolytic cell, and it is understood that it is time to repair the electrode (anode). On the other hand, as for the C-series electrolytic cell, as of March 3, 2004, the voltage required to pass a current of 3000 A is about 5.2 V, and it can be seen that there is room for repair.

図6は図5のC系列の電解槽の電圧電流特性測定結果を基に、電極の使用限度を予測した図である。図6の縦軸の電圧は電極に電流3000A流すときに必要な電圧である。図6から今までと同様の使用方法であれば、電圧許容値を6Vとした場合、C系列の電極は平成55年程度まで使用可能なことが分かる。   FIG. 6 is a diagram in which the use limit of the electrode is predicted based on the measurement result of the voltage-current characteristic of the C-series electrolytic cell in FIG. The voltage on the vertical axis in FIG. 6 is a voltage required when a current of 3000 A flows through the electrode. It can be seen from FIG. 6 that, if the usage method is the same as before, the C-series electrodes can be used until about 55 when the allowable voltage value is 6V.

本発明の実施の一形態としての海水電解装置10の概略的構成を示す図である。It is a figure which shows schematic structure of the seawater electrolyzer 10 as one Embodiment of this invention. 本発明の実施の一形態としての海水電解装置10を構成する一の電解槽20aの分解図である。It is an exploded view of one electrolysis tank 20a which constitutes seawater electrolysis device 10 as one embodiment of the present invention. 本発明の実施の一形態としての海水電解装置10を構成する一の電解槽20aの組立図である。It is an assembly figure of one electrolytic vessel 20a which constitutes seawater electrolysis device 10 as one embodiment of the present invention. 本発明の電極の劣化度測定方法を用いて測定したB系列の海水電解装置の電極の電圧電流特定結果を示す図である。It is a figure which shows the voltage current specific result of the electrode of the B series seawater electrolysis apparatus measured using the degradation degree measuring method of the electrode of this invention. 本発明の電極の劣化度測定方法を用いて測定したC系列の海水電解装置の電極の電圧電流特定結果を示す図である。It is a figure which shows the voltage-current specific result of the electrode of the C series seawater electrolysis apparatus measured using the degradation degree measuring method of the electrode of this invention. 本発明の電極の劣化度測定方法を用いて測定したC系列の海水電解装置の電極の電圧電流特定結果を基に、電極の使用限度を予測した図である。It is the figure which estimated the use limit of the electrode based on the voltage-current specific result of the electrode of the C series seawater electrolysis apparatus measured using the degradation degree measuring method of the electrode of this invention. 従来の技術の海水電解システムの概略的なフローを示す図である。It is a figure which shows the schematic flow of the seawater electrolysis system of a prior art.

符号の説明Explanation of symbols

10 海水電解装置
20 電解槽
22、23 電極
60 電源供給装置
61 電圧測定器
62 電流測定器
70 データ処理装置
71 データ記憶部
72 データ処理部
DESCRIPTION OF SYMBOLS 10 Seawater electrolysis apparatus 20 Electrolysis tank 22, 23 Electrode 60 Power supply device 61 Voltage measuring device 62 Current measuring device 70 Data processing device 71 Data storage part 72 Data processing part

Claims (2)

海水を電気分解する電極を備える電解槽と、前記電解槽の電極に電圧を印加する、出力電圧を可変可能な電源供給手段とを備える海水電解装置の電極の劣化度を測定する方法であって、
前記海水電解装置の運転中に前記電源供給手段を介して前記電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、該電極の電圧電流特性データと予め定める該電極の電圧電流特性データとから電極の劣化度を測定することを特徴とする海水電解装置の電極の劣化度測定方法。
A method for measuring the degree of deterioration of an electrode of a seawater electrolysis apparatus comprising an electrolytic cell comprising an electrode for electrolyzing seawater, and a power supply means for applying a voltage to the electrode of the electrolytic cell and capable of changing an output voltage. ,
During operation of the seawater electrolysis device, via the power supply means to apply a plurality of different voltages to the electrodes, and measuring a current value flowing through the electrode at that time, calculated voltage-current characteristic data of the electrode, of the electrode An electrode deterioration degree measuring method for a seawater electrolysis apparatus, comprising measuring an electrode deterioration degree from voltage / current characteristic data and predetermined voltage / current characteristic data of the electrode.
海水を電気分解する電極を備える電解槽と、前記電解槽の電極に電圧を印加する、出力電圧を可変可能な電源供給手段とを備える海水電解装置の電極の使用限度を算出する方法であって、
所定の間隔毎に、前記海水電解装置の運転中に、前記電源供給手段を介して前記電極に複数の異なる電圧を印加し、その時の電極を流れる電流値を測定し、電極の電圧電流特性データを求め、該電極の電圧電流特性データの経時変化から電極の使用限度を算出することを特徴とする海水電解装置の電極の使用限度算出方法。
A method for calculating a use limit of an electrode of a seawater electrolysis apparatus comprising an electrolytic cell provided with an electrode for electrolyzing seawater, and a power supply means for applying a voltage to the electrode of the electrolytic cell and capable of changing an output voltage. ,
At predetermined intervals, during operation of the seawater electrolysis apparatus, a plurality of different voltages are applied to the electrodes via the power supply means, current values flowing through the electrodes at that time are measured, and voltage-current characteristic data of the electrodes And calculating a use limit of the electrode from the time-dependent change in the voltage-current characteristic data of the electrode.
JP2005064549A 2005-03-08 2005-03-08 Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer Expired - Fee Related JP4841148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064549A JP4841148B2 (en) 2005-03-08 2005-03-08 Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064549A JP4841148B2 (en) 2005-03-08 2005-03-08 Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer

Publications (2)

Publication Number Publication Date
JP2006249463A JP2006249463A (en) 2006-09-21
JP4841148B2 true JP4841148B2 (en) 2011-12-21

Family

ID=37090259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064549A Expired - Fee Related JP4841148B2 (en) 2005-03-08 2005-03-08 Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer

Country Status (1)

Country Link
JP (1) JP4841148B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931085B2 (en) * 2008-02-20 2012-05-16 パナソニック株式会社 Electrolyzed water generator
JP6821868B2 (en) * 2017-02-02 2021-01-27 中国電力株式会社 How to handle seawater electrolyzer
JP7202501B1 (en) 2022-09-29 2023-01-11 旭化成株式会社 Driving support device, driving support method, and driving support program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826012B2 (en) * 2001-10-31 2006-09-27 株式会社東芝 Sea life adhesion prevention device and operation method thereof
JP2004323924A (en) * 2003-04-25 2004-11-18 Kurita Water Ind Ltd Method and apparatus for monitoring characteristic of diamond electrode in electrolytic reaction vessel

Also Published As

Publication number Publication date
JP2006249463A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20110108438A1 (en) Electrochemical Liquid Treatment System Using Dose Control
KR101585304B1 (en) Seawater electrolysis system and seawater electrolysis method
US20090229992A1 (en) Reverse Polarity Cleaning and Electronic Flow Control Systems for Low Intervention Electrolytic Chemical Generators
JP5752399B2 (en) Seawater electrolysis apparatus, seawater electrolysis system and seawater electrolysis method
JP4841148B2 (en) Method of measuring deterioration of electrode of seawater electrolyzer and method of calculating limit of use of electrode of seawater electrolyzer
Henquín et al. Characterization of a bipolar parallel-plate electrochemical reactor for water disinfection using low conductivity drinking water
US20210276890A1 (en) Systems and devices for corrosion prevention and methods thereto
Shaik et al. Studies on galvanic corrosion of tri-metallic joint of steels in sodium chloride solution
CN105954613A (en) Titanium electrode acceleration life testing device
KR20090127713A (en) Electric antipolution system for ocean facilities at sea
JP2016017189A (en) Electric anticorrosion method, and electric anticorrosion system
CN102004072B (en) Method and device for chlorine ion penetration test of non-conductive coating
CN114894701A (en) Accelerated corrosion test system for reinforced concrete under forced current cathodic protection
JP2015172251A (en) Seawater electrolysis system and seawater electrolysis method
RU2791558C1 (en) Modular sacrificial protection system for marine structures
US20240210349A1 (en) Electrochemical biofilm sensor
CN106011873B (en) A kind of cathodic protection automatic monitoring system of petroleum storage tank
Iannucci et al. A microbial fuel cell measuring system for corrosion assessment
JP2020076117A (en) Electrolytic water production device
CN111954803B (en) Corrosion environment monitoring method and equipment with corrosion environment monitoring system
Budiana et al. Effect of Current, Voltage, Temperature, and Time Variations on Thickness of Steel using Electroplating Process
CN218917273U (en) Anode chlorine evolution potential testing device and system
JPH06100570B2 (en) Life prediction method for coated metal
JP2011053017A (en) Method of managing concentration of additive
El-Sherbiny et al. Mass transfer at the gas evolving inner electrode of a concentric cylindrical reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees