JP4840974B2 - Reverse osmosis concentration method - Google Patents

Reverse osmosis concentration method Download PDF

Info

Publication number
JP4840974B2
JP4840974B2 JP2006081845A JP2006081845A JP4840974B2 JP 4840974 B2 JP4840974 B2 JP 4840974B2 JP 2006081845 A JP2006081845 A JP 2006081845A JP 2006081845 A JP2006081845 A JP 2006081845A JP 4840974 B2 JP4840974 B2 JP 4840974B2
Authority
JP
Japan
Prior art keywords
pressure
concentrate
control valve
reverse osmosis
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006081845A
Other languages
Japanese (ja)
Other versions
JP2007253084A (en
Inventor
豊 阿久津
典昭 羽石
昇 渋谷
昭雄 小貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Original Assignee
Kagome Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd filed Critical Kagome Co Ltd
Priority to JP2006081845A priority Critical patent/JP4840974B2/en
Publication of JP2007253084A publication Critical patent/JP2007253084A/en
Application granted granted Critical
Publication of JP4840974B2 publication Critical patent/JP4840974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は逆浸透濃縮方法に関する。野菜汁や果実汁等の被濃縮物を複数の管状膜型モジュールを直列に接続した濃縮ユニットへ供給して高圧下に一過式で流過させることにより逆浸透濃縮する方法が知られている。本発明はかかる逆浸透濃縮方法の改良に関する。   The present invention relates to a reverse osmosis concentration method. A method is known in which reverse osmosis concentration is performed by supplying a concentrated product such as vegetable juice or fruit juice to a concentration unit in which a plurality of tubular membrane modules are connected in series, and allowing the concentrated product to flow through under high pressure. . The present invention relates to an improvement of such a reverse osmosis concentration method.

従来、前記のような逆浸透濃縮方法として、濃縮ユニットの入口側における被濃縮物の流路に供給ポンプを取付け、また該濃縮ユニットの出口側における濃縮物の流路に圧力制御弁を取付けて、通常はかかる圧力制御弁の開度を調節することにより濃縮ユニットにかかる圧力を制御しつつ、被濃縮物を供給ポンプで濃縮ユニットの管状膜型モジュール内へ供給して高圧下に流下させることにより逆浸透濃縮する方法が知られている(例えば特許文献1参照)、しかし、かかる従来の逆浸透濃縮方法には、利用可能な膜圧力の幅が狭いという問題がある。濃縮ユニットの管状膜型モジュールにかかる膜圧力は通常6.5MPa程度以下となるように制御されているが、圧力制御弁よりも下流側における濃縮物の流路による圧損を見込む必要があるため、例えばこの圧損が2.0MPa程度であるとすると、利用可能な膜圧力の幅は4.5MPa程度になってしまうのである。濃縮ユニットの管状膜型モジュールにかかる膜圧力は、逆浸透濃縮の進行に伴う被濃縮物の濃縮度の上昇や膜面の汚れ等の影響で経時的に上昇するので、利用可能な膜圧力の幅が狭いと、それだけ逆浸透濃縮を長時間安定して行なうことが難しくなる。   Conventionally, as a reverse osmosis concentration method as described above, a supply pump is attached to the flow path of the concentrate on the inlet side of the concentration unit, and a pressure control valve is attached to the flow path of the concentrate on the outlet side of the concentration unit. Usually, the pressure applied to the concentrating unit is controlled by adjusting the opening degree of the pressure control valve, and the condensate is supplied into the tubular membrane module of the concentrating unit with a supply pump and allowed to flow down under high pressure. However, the conventional reverse osmosis concentration method has a problem that the available membrane pressure is narrow. Although the membrane pressure applied to the tubular membrane module of the concentration unit is normally controlled to be about 6.5 MPa or less, it is necessary to allow for pressure loss due to the flow path of the concentrate downstream from the pressure control valve. For example, if the pressure loss is about 2.0 MPa, the available membrane pressure width is about 4.5 MPa. The membrane pressure applied to the tubular membrane module of the concentration unit increases over time due to the increase in the concentration of the concentrate and the contamination of the membrane surface as reverse osmosis concentration progresses. When the width is narrow, it is difficult to perform reverse osmosis concentration stably for a long time.

前記のような問題を改善するため、濃縮ユニットの入口側における被濃縮物の流路に供給ポンプ(昇圧ポンプ)を取付けると共に、該濃縮ユニットの出口側における濃縮物の流路に排出ポンプ(昇圧ポンプ)を取付け、被濃縮物を供給ポンプで濃縮ユニットの管状膜型モジュール内へ供給して逆浸透濃縮しつつ、その濃縮物を排出ポンプで排出する方法も知られている(例えば特許文献2参照)。しかし、かかる従来の逆浸透濃縮方法には、濃縮ユニットの管状膜型モジュールにかかる膜圧力が変動し易く、実際のところこれを制御するのが難しいという問題がある。膜圧力が変動し易いと、それだけ逆浸透濃縮が不安定となり、例えば野菜汁や果実汁を逆浸透濃縮して所定濃度の濃縮物を得ることが難しくなる。
特開2001−78732号公報 特開2001−347141号公報
In order to improve the above problems, a supply pump (pressure booster pump) is attached to the flow path of the concentrate on the inlet side of the concentration unit, and a discharge pump (pressure increase) is connected to the flow path of the concentrate on the outlet side of the concentration unit. A method is also known in which a concentrate is discharged into a tubular membrane module of a concentration unit with a supply pump, and the concentrate is discharged with a discharge pump while being concentrated by reverse osmosis (for example, Patent Document 2). reference). However, the conventional reverse osmosis concentration method has a problem that the membrane pressure applied to the tubular membrane type module of the concentration unit is likely to fluctuate and is difficult to control in practice. If the membrane pressure is likely to fluctuate, reverse osmosis concentration becomes unstable accordingly, and for example, it becomes difficult to obtain a concentrate having a predetermined concentration by reverse osmosis concentration of vegetable juice or fruit juice.
JP 2001-78732 A JP 2001-347141 A

本発明が解決しようとする課題は、濃縮ユニットの直列に接続した複数の管状膜型モジュールにかかる膜圧力を制御しつつその利用可能な範囲を広くし、よって逆浸透濃縮を長時間安定して行ない、所望通りに濃縮した濃縮物を得ることができる逆浸透濃縮方法を提供する処にある。   The problem to be solved by the present invention is to widen the usable range while controlling the membrane pressure applied to a plurality of tubular membrane type modules connected in series in a concentration unit, and thus to stably perform reverse osmosis concentration for a long time. It is in place to provide a reverse osmosis concentration method that can be performed to obtain a concentrated concentrate as desired.

前記の課題を解決する本発明は、被濃縮物を複数の管状膜型モジュールを直列に接続した濃縮ユニットへ供給して高圧下に一過式で流下させることにより逆浸透濃縮する方法において、濃縮ユニットの出口側における濃縮物の流路に圧力制御弁を取付けると共に該圧力制御弁の下流側における濃縮物の流路にブーストポンプを取付け、また該圧力制御弁と該ブーストポンプとの間における濃縮物の流路に圧力計を接続すると共に該圧力計と該ブーストポンプとをインバーターを介して接続し、該圧力計による圧力の測定値が1.1MPa以下の揚圧状態に保持されるように該インバーターを介して該ブーストポンプの作動を制御することを特徴とする逆浸透濃縮方法に係る。   The present invention that solves the above-mentioned problems is a method of concentrating in a reverse osmosis concentration method by supplying an object to be concentrated to a concentration unit in which a plurality of tubular membrane modules are connected in series and flowing down temporarily under high pressure. A pressure control valve is installed in the concentrate flow path on the outlet side of the unit, and a boost pump is attached to the concentrate flow path downstream of the pressure control valve, and the concentration is performed between the pressure control valve and the boost pump. A pressure gauge is connected to the flow path of the object, and the pressure gauge and the boost pump are connected via an inverter so that the pressure measured by the pressure gauge is maintained in a lifted state of 1.1 MPa or less. According to the reverse osmosis concentration method, the operation of the boost pump is controlled via the inverter.

本発明に係る逆浸透濃縮方法でも、濃縮ユニットの入口側における被濃縮物の流路に供給ポンプを取付け、また該濃縮ユニットの出口側における濃縮物の流路に圧力制御弁を取付けて、かかる濃縮ユニットの管状膜型モジュールにかかる圧力を制御しつつ、被濃縮物を供給ポンプで濃縮ユニットの直列に接続した複数の管状膜型モジュール内へ供給して高圧下に一過式で流下させることにより逆浸透濃縮する。   In the reverse osmosis concentration method according to the present invention, a supply pump is attached to the flow path of the concentrate on the inlet side of the concentration unit, and a pressure control valve is attached to the flow path of the concentrate on the outlet side of the concentration unit. While controlling the pressure applied to the tubular membrane type module of the concentration unit, the concentrate is supplied into a plurality of tubular membrane type modules connected in series with the concentration unit by a supply pump, and allowed to flow down temporarily under high pressure. Concentrate by reverse osmosis.

濃縮ユニットの出口側における濃縮物の流路に取付ける圧力制御弁は、その種類乃至形式を特に制限されないが、無制御下では開放状態となる圧力制御弁を用いるのが好ましい。ここで無制御下というのは結果として制御していない状態を意味し、圧力制御弁がかかる無制御下となる代表的な事態は故障時や停電時等である。またここで開放状態となるというのは結果として圧力制御弁の一次側すなわち供給側(入側)と二次側すなわち排出側(出側)とが連通状態になることを意味し、これには無制御下でも開放状態を維持する場合と無制御下では開放状態にする場合とが含まれる。無制御下でも開放状態を維持する圧力制御弁の代表例としては、ねじスピンドルを有するリフト弁等が挙げられる。また無制御下では開放状態にする圧力制御弁はノーマルオープンタイプの圧力制御弁であり、無制御下では閉鎖状態にするノーマルクローズタイプの圧力制御弁と区別される。前者のタイプの圧力制御弁としては、例えば米国スウェージロック社製のニードルバルブで商品名SS−18RM8やSS−16DKF4、同じく米国スウェージロック社製のダイヤフラムバルブで商品名SS−DLS8MM等、後者のタイプの圧力制御弁としては、例えばフジキン社製の商品名SR100の市販品を使用できるが、圧力制御用のニードル弁が好ましく、なかでも圧力変化によるダイヤフラムの伸縮を受けて弁体としてのニードルが進退する方式のものが特に好ましい。   The type or form of the pressure control valve attached to the concentrate flow path on the outlet side of the concentration unit is not particularly limited, but it is preferable to use a pressure control valve that is open under no control. Here, under no control means a state in which control is not performed as a result, and typical situations in which the pressure control valve is under no control are at the time of failure or power failure. In addition, the open state here means that the primary side of the pressure control valve, that is, the supply side (inlet side) and the secondary side, that is, the discharge side (exit side) are in communication with each other. The case where the open state is maintained even under no control and the case where the open state is maintained under no control are included. A typical example of a pressure control valve that maintains an open state even under non-control is a lift valve having a screw spindle. Further, the pressure control valve that is opened under no control is a normally open type pressure control valve, and is distinguished from the normally closed type pressure control valve that is closed under no control. As the pressure control valve of the former type, for example, a needle valve manufactured by Swagelok Corporation in the United States and trade names SS-18RM8 and SS-16DKF4, and a diaphragm valve made by Swagelok Corporation in the United States and trade name SS-DLS8MM are used. As the control valve, for example, a commercially available product under the trade name SR100 manufactured by Fujikin Co., Ltd. can be used. A needle valve for pressure control is preferable, and in particular, the needle as a valve element is advanced and retracted due to expansion and contraction of the diaphragm due to pressure change. Are particularly preferred.

本発明に係る逆浸透濃縮方法では、前記のような圧力制御弁よりも下流側における濃縮物の流路にブーストポンプを取付ける。ブーストポンプは、上流側に対しては供給ポンプにかかる負荷を低減すると同時に、下流側に対しては搬送ポンプ又は新たな供給ポンプとして機能する。濃縮ユニットの入口側における供給ポンプについても同様であるが、かかるブーストポンプとしては、往復式ポンプ、回転式ポンプ、スネークポンプ等、それ自体は公知の各種の形式のものを使用できるが、回転式ポンプ又はスネークポンプが好ましい。   In the reverse osmosis concentration method according to the present invention, a boost pump is attached to the concentrate flow path downstream of the pressure control valve as described above. The boost pump reduces the load on the supply pump for the upstream side, and at the same time functions as a transport pump or a new supply pump for the downstream side. The same applies to the supply pump on the inlet side of the concentrating unit. As such a boost pump, a reciprocating pump, a rotary pump, a snake pump, etc., which can be of various types known per se, can be used. A pump or snake pump is preferred.

そして本発明に係る逆浸透濃縮方法では、前記のような圧力制御弁とブーストポンプとの間における濃縮物の流路に圧力計を接続すると共に該圧力計とブーストポンプとをインバーターを介して接続し、該圧力計による測定値が設定値すなわち1.1MPa以下の揚圧、好ましくは0.2〜0.5MPaの揚圧となるように該インバーターを介して該ブーストポンプの作動を制御する。ブーストポンプの作動制御はインバーターを介して該ブーストポンプの駆動用モータの回転数を制御することにより行なうが、本発明に係る逆浸透濃縮方法では、インバーターを介したかかるブーストポンプの作動制御により、その上流側に位置する圧力制御弁と該ブーストポンプとの間の濃縮物の流路を1.1MPa以下の揚圧状態、好ましくは0.2〜0.5MPaの揚圧状態に保持するのである。圧力制御弁とブーストポンプとの間の濃縮物の流路を1.1MPa以下の揚圧状態に保持する場合、1.1MPa以下の揚圧状態は圧力制御弁よりも下流側における圧損に相当するので、前記のように濃縮ユニットの管状膜型モジュールにかかる膜圧力を6.5MPa程度以下とすると、利用可能な膜圧力の幅は最大で6.4MPa程度、また最小でも5.4MPa程度となって広くなり、それだけ逆浸透濃縮を長時間安定して行なうことができる。本発明において、圧力を表示するMPaは、ゲージ圧ではなく、絶対圧を意味し、また揚圧状態というのは大気圧以上の状態を意味する。   In the reverse osmosis concentration method according to the present invention, a pressure gauge is connected to the flow path of the concentrate between the pressure control valve and the boost pump as described above, and the pressure gauge and the boost pump are connected via an inverter. Then, the operation of the boost pump is controlled via the inverter so that the measured value by the pressure gauge becomes a set value, that is, a lifting pressure of 1.1 MPa or less, preferably a lifting pressure of 0.2 to 0.5 MPa. The operation control of the boost pump is performed by controlling the rotation speed of the motor for driving the boost pump via the inverter. In the reverse osmosis concentration method according to the present invention, the operation control of the boost pump via the inverter The flow path of the concentrate between the pressure control valve located on the upstream side and the boost pump is maintained in a lifted state of 1.1 MPa or less, preferably in a lifted state of 0.2 to 0.5 MPa. . When the flow path of the concentrate between the pressure control valve and the boost pump is maintained in a lifted state of 1.1 MPa or less, the lifted state of 1.1 MPa or less corresponds to a pressure loss downstream of the pressure control valve. Therefore, when the membrane pressure applied to the tubular membrane module of the concentration unit is about 6.5 MPa or less as described above, the available membrane pressure range is about 6.4 MPa at the maximum and about 5.4 MPa at the minimum. Therefore, reverse osmosis concentration can be performed stably for a long time. In the present invention, the MPa indicating the pressure means not the gauge pressure but the absolute pressure, and the lifted state means a state equal to or higher than the atmospheric pressure.

本発明に係る逆浸透濃縮方法においては、前記のような圧力制御弁とブーストポンプとの間における濃縮物の流路に第1分岐路を設け、該第1分岐路に吸気弁を取付けて、かかる圧力制御弁と第1分岐路との間における濃縮物の流路を、前記と同様にして1.1MPa以下の揚圧状態に保持するのが好ましい。吸気弁は一次側すなわち第1分岐路の圧力が一定値以下の負圧になったときに弁が開いて大気を吸い込むようになっている。かかる吸気弁は、何らかの原因で濃縮ユニットの管状膜型モジュール内が異常な負圧になろうとするとき、弁が開いて大気を吸い込むことによりかかる負圧になるのを防止し、よって逆浸透膜の性能低下をきたすような変形、ひびや割れの発生を防止する。吸気弁は、圧力制御弁よりも上流側における濃縮物の流路に第1分岐路を設け、かかる第1分岐路に取付けることもできるが、この場合には相応に耐圧性を有する高価なものが必要となるので、圧力制御弁よりも下流側であってブーストポンプよりも上流側における濃縮物の流路に第1分岐路を設け、かかる第1分岐路に取付けるのが好ましいのである。   In the reverse osmosis concentration method according to the present invention, a first branch path is provided in the flow path of the concentrate between the pressure control valve and the boost pump as described above, and an intake valve is attached to the first branch path, It is preferable to maintain the flow path of the concentrate between the pressure control valve and the first branch path in a lifted state of 1.1 MPa or less in the same manner as described above. The intake valve opens the valve when the pressure on the primary side, that is, the first branch passage becomes a negative pressure lower than a certain value, and sucks air. Such an intake valve prevents the negative pressure from being sucked into the atmosphere by opening the valve when the inside of the tubular membrane module of the concentration unit is going to become an abnormal negative pressure for some reason, and thus the reverse osmosis membrane Prevents deformation, cracks and cracks that cause performance degradation. The intake valve can be provided with a first branch path in the concentrate flow path upstream of the pressure control valve, and can be attached to the first branch path. Therefore, it is preferable to provide a first branch path in the concentrate flow path downstream from the pressure control valve and upstream from the boost pump, and to be attached to the first branch path.

また本発明に係る逆浸透濃縮方法においては、前記のような圧力制御弁と第1分岐路との間における濃縮物の流路に圧力緩衝部材、更には安全弁を接続し、かかる圧力緩衝部材と第1分岐路との間における濃縮物の流路を、前記と同様にして1.1MPa以下の揚圧状態に保持するのが好ましい。圧力緩衝部材は濃縮物の流路の圧力変動を低減するもので、かかる圧力緩衝部材としてはマニュホールドやベローズ等を使用できる。供給ポンプや圧力制御弁としてどのような形式のものを用いるかによっても程度の差はあるが、いずれにしても脈動は避けられず、これにより濃縮物の流路に圧力変動が生じるので、かかる圧力変動を圧力緩衝部材により低減すると、圧力制御弁よりも下流側における濃縮物の流路を所望通りの揚圧状態に安定して保持できる。更に安全弁を接続するときは、前記のような圧力制御弁と圧力緩衝部材との間における濃縮物の流路に第2分岐路を設け、該第2分岐路に安全弁を取付けるのが好ましい。かかる安全弁は、一次側すなわち第2分岐路の圧力が一定値以上になったときに弁が開いて濃縮物を逃がすようになっており、何らかの原因で濃縮ユニットの管状膜型モジュール内等が異常な高圧になるのを防止する。   In the reverse osmosis concentration method according to the present invention, a pressure buffer member, and further a safety valve is connected to the flow path of the concentrate between the pressure control valve and the first branch path as described above, and the pressure buffer member It is preferable that the flow path of the concentrate between the first branch path is maintained in a lifted state of 1.1 MPa or less in the same manner as described above. The pressure buffering member reduces pressure fluctuations in the flow path of the concentrate, and a manifold, bellows, or the like can be used as the pressure buffering member. Depending on what type of supply pump or pressure control valve is used, there is a difference in degree, but in any case, pulsation is unavoidable, and this causes pressure fluctuations in the flow path of the concentrate. When the pressure fluctuation is reduced by the pressure buffering member, the flow path of the concentrate on the downstream side of the pressure control valve can be stably held in the desired lifted state. Further, when connecting a safety valve, it is preferable to provide a second branch path in the flow path of the concentrate between the pressure control valve and the pressure buffer member as described above, and attach the safety valve to the second branch path. Such a safety valve opens the valve when the pressure on the primary side, that is, the second branch passage exceeds a certain value, and allows the concentrate to escape. For some reason, the inside of the tubular membrane module of the concentration unit is abnormal. To prevent high pressure.

以上、本発明に係る逆浸透濃縮方法について説明したが、濃縮物の流路、具体的には圧力制御弁とブーストポンプとの間における濃縮物の流路、またこの流路に第1分岐路を設けて吸気弁を取付けた場合にはかかる圧力制御弁と第1分岐路との間における濃縮物の流路、更にこの流路に圧力緩衝部材を接続した場合にはかかる圧力緩衝部材と第1分岐路との間における濃縮物の流路をより安定して確実に1.1MPa以下の揚圧状態に保持するためには、以上のような濃縮物の流路に圧力計を接続すると共に該圧力計とブーストポンプとをインバーターを介して接続し、該圧力計による測定値が設定値すなわち1.1MPa以下の揚圧、好ましくは0.2〜0.5MPaの揚圧となるように該インバーターを介して該ブーストポンプの作動を制御するのである。   Although the reverse osmosis concentration method according to the present invention has been described above, the flow path of the concentrate, specifically, the flow path of the concentrate between the pressure control valve and the boost pump, and the first branch path in this flow path When the intake valve is attached and the flow path of the concentrate between the pressure control valve and the first branch path, and when the pressure buffer member is connected to the flow path, the pressure buffer member and the first flow path are connected. In order to hold the flow path of the concentrate between one branch path more stably and surely at a pressure of 1.1 MPa or less, a pressure gauge is connected to the flow path of the concentrate as described above. The pressure gauge and boost pump are connected via an inverter, and the measured value by the pressure gauge is a set value, that is, a lifting pressure of 1.1 MPa or less, preferably a lifting pressure of 0.2 to 0.5 MPa. Operation of the boost pump via an inverter It is Gosuru of.

以上説明した本発明に係る逆浸透濃縮方法によると、濃縮ユニットの直列に接続した複数の管状膜型モジュールにかかる膜圧力を制御しつつその利用可能な範囲を広くし、よって逆浸透濃縮を長時間安定して行ない、所望通りに濃縮した濃縮物を得ることができるという効果がある。   According to the reverse osmosis concentration method according to the present invention described above, the usable range is widened while controlling the membrane pressure applied to a plurality of tubular membrane type modules connected in series in the concentration unit. There is an effect that it is possible to obtain a concentrate which is carried out stably over time and concentrated as desired.

図1は本発明に係る逆浸透濃縮方法の一実施状態を略示する系統図である。逆浸透膜モジュールとして複数の管状膜型モジュール(図示しない、以下同じ)を直列に接続した濃縮ユニット11が1段で設置されており、濃縮ユニット11の入口側(上流側)における被濃縮物の流路21に供給ポンプ31が取付けられている。濃縮ユニット11の出口側(下流側)における濃縮物の流路22にはノーマルオープンタイプの圧力制御弁41が取付けられており、ノーマルオープンタイプの圧力制御弁41の下流側における濃縮物の流路22にブーストポンプ32が取付けられている。またノーマルオープンタイプの圧力制御弁41とブーストポンプ32との間における濃縮物の流路22には、下流側に第1分岐路51が設けられており、また上流側に第2分岐路52が設けられていて、第1分岐路51に吸気弁61が取付けられ、また第2分岐路52に安全弁62が取付けられている。更に第1分岐路51と第2分岐路52との間における濃縮物の流路22にはマニュホールド63が接続されている。吸気弁61、安全弁62及びマニュホールド63の機能については前記した通りである。そして第1分岐路51とマニュホールド63との間における濃縮物の流路22に圧力計71が接続されており、圧力計71はインバーター72に接続されていて、インバーター72はブーストポンプ32の駆動用モータ(図示しない、以下同じ)に接続されている。   FIG. 1 is a system diagram schematically showing one embodiment of the reverse osmosis concentration method according to the present invention. As a reverse osmosis membrane module, a concentration unit 11 in which a plurality of tubular membrane type modules (not shown, the same applies hereinafter) are connected in series is installed in one stage, and the concentration of an object to be concentrated on the inlet side (upstream side) of the concentration unit 11 is installed. A supply pump 31 is attached to the flow path 21. A normally open type pressure control valve 41 is attached to the concentrate flow path 22 on the outlet side (downstream side) of the concentration unit 11, and the concentrate flow path on the downstream side of the normal open type pressure control valve 41. A boost pump 32 is attached to 22. The concentrate flow path 22 between the normally open type pressure control valve 41 and the boost pump 32 is provided with a first branch path 51 on the downstream side and a second branch path 52 on the upstream side. The intake valve 61 is attached to the first branch passage 51, and the safety valve 62 is attached to the second branch passage 52. Further, a manifold 63 is connected to the concentrate flow path 22 between the first branch path 51 and the second branch path 52. The functions of the intake valve 61, the safety valve 62, and the manifold 63 are as described above. A pressure gauge 71 is connected to the concentrate flow path 22 between the first branch 51 and the manifold 63. The pressure gauge 71 is connected to the inverter 72. The inverter 72 drives the boost pump 32. Connected to a motor (not shown, the same applies hereinafter).

図1の場合には、被濃縮物の逆浸透濃縮に際して、ノーマルオープンタイプの圧力制御弁41の開度を調節することにより濃縮ユニット11の管状膜型モジュールにかかる膜圧力を制御しつつ、同時に圧力計71の測定値が設定値、すなわち1.1MPa以下の揚圧状態、具体的には例えば0.35MPaとなるようインバーター72を介してブーストポンプ32の駆動用モータの回転数を制御している。   In the case of FIG. 1, during the reverse osmosis concentration of the concentrate, while controlling the membrane pressure applied to the tubular membrane module of the concentration unit 11 by adjusting the opening of the normally open type pressure control valve 41, The rotational speed of the drive motor of the boost pump 32 is controlled via the inverter 72 so that the measured value of the pressure gauge 71 is a set value, that is, a boosted state of 1.1 MPa or less, specifically 0.35 MPa, for example. Yes.

実施例
図1について前記した実施状態にしたがい、次のように20℃でのBrix5%のトマトジュースを18時間連続して逆浸透濃縮した。食塩阻止率99%の逆浸透膜を装着した管状膜型モジュール(1本当たりの膜面積2.6m)を3本直列に接続し、これを濃縮ユニット11とした。トマトジュースを、供給ポンプ31により、入口流量250L/時、入口圧力5〜6MPaで濃縮ユニット11へ供給し、一過式で流下させた。同時に、圧力計71の設定値を0.35MPaとし、圧力計71の測定値が設定値となるようインバーター72を介してブーストポンプ32の駆動用モータの回転数を制御した。運転時間(時)の経過に対する濃縮ユニット11の入口側における被濃縮物(トマトジュース)の流路21の圧力(MPa)、圧力計71の測定圧力(MPa)及び得られた濃縮物の濃度(20℃でのBrix.%)を図2〜4に白抜き丸印とこれを結ぶ実線で示した。
Example According to the state of implementation described above with reference to FIG. 1, reverse osmosis concentration of Brix 5% tomato juice at 20 ° C. was continued for 18 hours as follows. Three tubular membrane modules (membrane area 2.6 m 2 ) each equipped with a reverse osmosis membrane having a salt rejection rate of 99% were connected in series. Tomato juice was supplied to the concentrating unit 11 with an inlet flow rate of 250 L / hour and an inlet pressure of 5 to 6 MPa by a supply pump 31, and allowed to flow down in a transient manner. At the same time, the set value of the pressure gauge 71 was set to 0.35 MPa, and the rotation speed of the drive motor of the boost pump 32 was controlled via the inverter 72 so that the measured value of the pressure gauge 71 became the set value. The pressure (MPa) of the flow channel 21 of the concentrate (tomato juice) on the inlet side of the concentration unit 11 with respect to the passage of the operation time (hours), the measurement pressure (MPa) of the pressure gauge 71, and the concentration of the obtained concentrate ( (Brix.% At 20 ° C.) is shown by white circles and solid lines connecting them in FIGS.

比較例
ブーストポンプ32を省略し、したがってその回転数制御も行なわなかったこと以外は実施例と同様にトマトジュースを逆浸透濃縮した。実施例と同様に、運転時間(時)の経過に対する濃縮ユニット11の入口側における被濃縮物(トマトジュース)の流路21の圧力(MPa)及び得られた濃縮物の濃度(20℃でのBrix.%)を図2及び図4に黒塗り丸印とこれを結ぶ破線で示した。
Comparative Example Tomato juice was concentrated by reverse osmosis in the same manner as in the Example except that the boost pump 32 was omitted and therefore the rotation speed was not controlled. As in the example, the pressure (MPa) of the flow channel 21 of the concentrate (tomato juice) on the inlet side of the concentration unit 11 over the operation time (hours) and the concentration of the concentrate (at 20 ° C.) Brix.%) Is shown in FIG. 2 and FIG. 4 by a black circle and a broken line connecting it.

図2〜4の結果からも明らかなように、本発明に係る逆浸透濃縮方法によると、濃縮ユニットの逆浸透膜モジュールすなわち直列に接続した複数の管状膜型モジュールにかかる膜圧力を制御しつつその利用可能な範囲を広くし、よって逆浸透濃縮を長時間安定して行ない、所望通りに濃縮した濃縮物を得ることができるという効果がある。   As apparent from the results of FIGS. 2 to 4, according to the reverse osmosis concentration method according to the present invention, while controlling the membrane pressure applied to the reverse osmosis membrane module of the concentration unit, that is, a plurality of tubular membrane type modules connected in series. There is an effect that the usable range is widened, and therefore, reverse osmosis concentration can be stably performed for a long time, and a concentrate concentrated as desired can be obtained.

本発明に係る逆浸透濃縮方法の一実施状態を略示する系統図。1 is a system diagram schematically showing one implementation state of a reverse osmosis concentration method according to the present invention. 図1の一実施状態等において運転時間(時)に対する濃縮ユニットの入口側の圧力(MPa)の変化を示すグラフ。The graph which shows the change of the pressure (MPa) of the inlet side of a concentration unit with respect to operation time (hour) in the one implementation state etc. of FIG. 図1の一実施状態において運転時間(時)に対する圧力計の測定圧力(MPa)の変化を示すグラフ。The graph which shows the change of the measured pressure (MPa) of a pressure gauge with respect to operation time (hour) in the one implementation state of FIG. 図1の一実施状態等において運転時間(時)に対する得られた濃縮物の濃度(20℃でのBrix.%)の変化を示すグラフ。The graph which shows the change of the density | concentration of the obtained concentrate (Brix.% At 20 degreeC) with respect to operation time (hour) in the one implementation state etc. of FIG.

11 濃縮ユニット
21 被濃縮物の流路
22 濃縮物の流路
31 供給ポンプ
32 ブーストポンプ
41 ノーマルオープンタイプの圧力制御弁
51 第1分岐路
52 第2分岐路
61 吸気弁
62 安全弁
63 マニュホールド
71 圧力計
72 インバーター
81〜83 実施例の結果を示す折れ線
91,92 比較例の結果を示す折れ線
DESCRIPTION OF SYMBOLS 11 Concentration unit 21 Condensate flow path 22 Concentrate flow path 31 Supply pump 32 Boost pump 41 Normally open type pressure control valve 51 First branch path 52 Second branch path 61 Intake valve 62 Safety valve 63 Manifold 71 Pressure Total 72 Inverters 81-83 Polygonal lines showing the results of the examples 91, 92 Polygonal lines showing the results of the comparative examples

Claims (6)

被濃縮物を複数の管状膜型モジュールを直列に接続した濃縮ユニットへ供給して高圧下に一過式で流下させることにより逆浸透濃縮する方法において、濃縮ユニットの出口側における濃縮物の流路に圧力制御弁を取付けると共に該圧力制御弁の下流側における濃縮物の流路にブーストポンプを取付け、また該圧力制御弁と該ブーストポンプとの間における濃縮物の流路に圧力計を接続すると共に該圧力計と該ブーストポンプとをインバーターを介して接続し、該圧力計による圧力の測定値が1.1MPa以下の揚圧状態に保持されるように該インバーターを介して該ブーストポンプの作動を制御することを特徴とする逆浸透濃縮方法。 A method of reverse osmosis concentrated by Do flow in once-through under high pressure is supplied to the concentration unit where the object to be concentrate by connecting a plurality of tubular membrane modules in series, of the concentrate at the outlet side of the concentration unit A pressure control valve is installed in the flow path, a boost pump is attached to the flow path of the concentrate downstream of the pressure control valve, and a pressure gauge is installed in the flow path of the concentrate between the pressure control valve and the boost pump. And connecting the pressure gauge and the boost pump via an inverter, and the boost pump via the inverter so that the pressure measured by the pressure gauge is maintained in a lifted state of 1.1 MPa or less. The reverse osmosis concentration method characterized by controlling the action | operation of . 更に圧力制御弁とブーストポンプとの間における濃縮物の流路に第1分岐路を設け、該第1分岐路に吸気弁を取付けて、該圧力制御弁と該第1分岐路との間における濃縮物の流路を、該ブーストポンプの作動を制御することにより、1.1MPa以下の揚圧状態に保持する請求項1記載の逆浸透濃縮方法。   Further, a first branch path is provided in the flow path of the concentrate between the pressure control valve and the boost pump, an intake valve is attached to the first branch path, and the pressure control valve and the first branch path are disposed between the pressure control valve and the boost pump. The reverse osmosis concentration method according to claim 1, wherein the flow path of the concentrate is maintained in a lifted state of 1.1 MPa or less by controlling the operation of the boost pump. 更に圧力制御弁と第1分岐路との間における濃縮物の流路に圧力緩衝部材を接続し、該圧力緩衝部材と該第1分岐路との間における濃縮物の流路を、ブーストポンプの作動を制御することにより、1.1MPa以下の揚圧状態に保持する請求項2記載の逆浸透濃縮方法。   Further, a pressure buffer member is connected to the flow path of the concentrate between the pressure control valve and the first branch path, and the flow path of the concentrate between the pressure buffer member and the first branch path is connected to the boost pump. The reverse osmosis concentration method according to claim 2, wherein the operation is controlled so as to maintain a lifted state of 1.1 MPa or less. 圧力制御弁が無制御下では開放状態となる圧力制御弁である請求項1〜3のいずれか一つの項記載の逆浸透濃縮方法。   The reverse osmosis concentration method according to any one of claims 1 to 3, wherein the pressure control valve is a pressure control valve that is open under no control. 無制御下では開放状態となる圧力制御弁がノーマルオープンタイプの圧力制御弁である請求項4記載の逆浸透濃縮方法。   5. The reverse osmosis concentration method according to claim 4, wherein the pressure control valve that is open under no control is a normally open type pressure control valve. 濃縮物の流路の圧力を0.2〜0.5MPaの範囲内に保持する請求項1〜のいずれか一つの項記載の逆浸透濃縮方法。 The reverse osmosis concentration method according to any one of claims 1 to 5 , wherein the pressure of the flow path of the concentrate is maintained within a range of 0.2 to 0.5 MPa.
JP2006081845A 2006-03-24 2006-03-24 Reverse osmosis concentration method Active JP4840974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081845A JP4840974B2 (en) 2006-03-24 2006-03-24 Reverse osmosis concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081845A JP4840974B2 (en) 2006-03-24 2006-03-24 Reverse osmosis concentration method

Publications (2)

Publication Number Publication Date
JP2007253084A JP2007253084A (en) 2007-10-04
JP4840974B2 true JP4840974B2 (en) 2011-12-21

Family

ID=38627849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081845A Active JP4840974B2 (en) 2006-03-24 2006-03-24 Reverse osmosis concentration method

Country Status (1)

Country Link
JP (1) JP4840974B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432180A (en) * 1977-08-17 1979-03-09 Nitto Electric Ind Co Ltd Tubular membrane separator
JPS57144003A (en) * 1981-03-03 1982-09-06 Toyota Motor Corp Operating method for membrane separator
JPH07117338B2 (en) * 1987-12-18 1995-12-18 株式会社佐竹製作所 Sample grain dryer
JPH0483519A (en) * 1990-07-26 1992-03-17 Kurita Water Ind Ltd Method for operating membrane separator
JPH1043552A (en) * 1996-08-08 1998-02-17 Nitto Denko Corp Membrane separation device and control method of operation pressure
EP1144093A3 (en) * 1999-08-26 2002-09-11 Bucher-Guyer AG Cross-flow filtration method and installation for carrying out said method
JP4582838B2 (en) * 1999-09-13 2010-11-17 カゴメ株式会社 Reverse osmosis concentration method of tomato juice
JP4201304B2 (en) * 2001-01-16 2008-12-24 カゴメ株式会社 Reverse osmosis concentration method for processed vegetables and / or fruits

Also Published As

Publication number Publication date
JP2007253084A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US10052589B2 (en) Reverse osmosis system with control based on flow rates in the permeate and brine streams
US6468431B1 (en) Method and apparatus for boosting interstage pressure in a reverse osmosis system
EP2121169B1 (en) Central pumping and energy recovery in a reverse osmosis system
US20080105617A1 (en) Two pass reverse osmosis system
US7767077B2 (en) Membrane filtration system
US8834712B2 (en) Seawater desalination system
US10336630B2 (en) Method and system for operating a high recovery separation process
JP3311139B2 (en) Membrane module system
JP4840974B2 (en) Reverse osmosis concentration method
US10882765B2 (en) Method and system for operating a high recovery separation process
AU2017202157B2 (en) Method and system for minimizing energy consumption during reverse osmosis unit operation
US7406910B2 (en) Device and method for controlling the position of a pneumatic actuator
US20200240405A1 (en) System And Method For Evacuating A Process Space
JP4840973B2 (en) Reverse osmosis concentrator
JP2000218135A (en) Membrane separation apparatus and method
CN113499690A (en) High-pressure membrane filtration system and recovery rate control and protection method
US10766002B2 (en) Method and system for performing reverse osmosis with brine recirculation and energy recovery
DK202000803A1 (en) Control for filtration process
EP1315552B1 (en) Method and apparatus for improving efficiency of a reverse osmosis system
US11046594B2 (en) Method and system for operating a high recovery separation process
WO2024203159A1 (en) Batch concentrator
JP2005013797A (en) Operation method of fluid process
JP2011115797A (en) Reverse osmosis concentration apparatus
JPH10156147A (en) Liquid treating device
US20200298180A1 (en) Membrane separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4840974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250