JP4839682B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4839682B2
JP4839682B2 JP2005167989A JP2005167989A JP4839682B2 JP 4839682 B2 JP4839682 B2 JP 4839682B2 JP 2005167989 A JP2005167989 A JP 2005167989A JP 2005167989 A JP2005167989 A JP 2005167989A JP 4839682 B2 JP4839682 B2 JP 4839682B2
Authority
JP
Japan
Prior art keywords
temperature
pan
infrared sensor
pot
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005167989A
Other languages
Japanese (ja)
Other versions
JP2006344456A (en
Inventor
博 富永
知香 前
直昭 石丸
賢治 渡辺
雅代 土師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005167989A priority Critical patent/JP4839682B2/en
Publication of JP2006344456A publication Critical patent/JP2006344456A/en
Application granted granted Critical
Publication of JP4839682B2 publication Critical patent/JP4839682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は、赤外線センサを用いた誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker using an infrared sensor.

従来、温度検知の応答性を向上させるために、トッププレート上の負荷鍋から出力される赤外線強度を赤外線センサで検知することにより、負荷鍋の温度を検知している誘導加熱調理器が知られている(例えば、特許文献1参照)。
特開平3−184295号公報
Conventionally, in order to improve the responsiveness of temperature detection, an induction heating cooker that detects the temperature of the load pan by detecting the infrared intensity output from the load pan on the top plate with an infrared sensor is known. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 3-184295

しかしながら、前記従来の構成では、赤外線センサを用いることで温度検知の応答性は向上するが、アルミニウムや銅など透磁率が低くかつ低抵抗の負荷鍋を加熱可能とする誘導加熱調理器にあっては、正確な温度検知ができなくなる。すなわち、この種の誘導加熱調理器は、誘導加熱時に加熱コイルと負荷鍋間に生じる浮力低減のための対応が必要となる。その対応として、加熱コイルの上方に非磁性金属からなる浮力低減板を設ける場合には、この浮力低減板が加熱コイルからの磁束を受けて自己発熱により300〜400℃程度まで上昇する。そのため、浮力低減板から放射される赤外線は、100〜200℃の負荷鍋の鍋底から放射される赤外線に対して数十倍のエネルギーとなり、浮力低減板から放射される赤外線の一部が直接あるいはトッププレートを反射して赤外線センサに入射され、赤外線センサにて正確な温度検知ができなくなる。これにより、所望の調理に対して十分な火力が得られず、調理性能が劣化するものであった。   However, in the conventional configuration, although the responsiveness of temperature detection is improved by using an infrared sensor, there is an induction heating cooker that can heat a low-resistance load pan such as aluminum or copper with low permeability. Will not be able to accurately detect the temperature. That is, this type of induction heating cooker needs to reduce the buoyancy generated between the heating coil and the load pan during induction heating. As a countermeasure, when a buoyancy reduction plate made of a nonmagnetic metal is provided above the heating coil, the buoyancy reduction plate receives magnetic flux from the heating coil and rises to about 300 to 400 ° C. by self-heating. Therefore, the infrared rays radiated from the buoyancy reduction plate are several tens of times higher than the infrared rays radiated from the bottom of the load pan at 100 to 200 ° C., and a part of the infrared rays emitted from the buoyancy reduction plate is directly or Reflecting the top plate and entering the infrared sensor, the infrared sensor cannot accurately detect the temperature. Thereby, sufficient thermal power was not obtained for desired cooking, and cooking performance deteriorated.

本発明は、前記従来の課題を解決するもので、アルミニウムなどの負荷鍋を加熱可能とする誘導加熱調理器においても、赤外線センサにより応答性のよい制御を実現し、調理性能を向上させた誘導加熱調理器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even in an induction heating cooker that can heat a load pan such as aluminum, induction that realizes control with good response by an infrared sensor and improves cooking performance. An object is to provide a cooking device.

前記従来の課題を解決するために、本発明の誘導加熱調理器は、加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋温度を算出する温度算出手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記浮力低減板の自己発熱による前記赤外線センサの検知温度の上昇値を前記温度算出手段による検知温度から差し引くように前記検知温度を補正するようにしたものである。 In order to solve the above conventional problems, the induction heating cooker of the present invention includes an inverter circuit for heating a load pan on the top plate by supplying a high-frequency current to the heating coil, the load pot to heat by the inverter circuit a pot type determination means for determining whether a magnetic pot nonmagnetic pan or an iron-based aluminum-based, the load pan buoyancy generated during heating of the nonmagnetic pot placed aluminum-based between the top plate and the heating coil non magnetic metal buoyancy reduction plate for reducing an infrared sensor for detecting infrared radiation from the load pan, and temperature calculation means for calculating the temperature of the load pan from the output of the infrared sensor at said temperature calculating means and control means in response to the calculated temperature to control the output of said inverter circuit, wherein if it is determined that the non-magnetic pan aluminum species in the pot type determination means Is obtained by the increased value of the detected temperature of the infrared sensor due to self-heating of the buoyancy reduction plate to correct the detected temperature to subtract from the temperature detected by said temperature calculation means.

これにより、アルミニウムなどの負荷鍋を加熱可能とする誘導加熱調理器においても、浮力低減のための浮力低減板から赤外線センサに入射される赤外線の影響を補正し、赤外線センサにより応答性のよい制御を実現して、調理性能を向上させることができる。   As a result, even in an induction heating cooker that can heat a load pan such as aluminum, the influence of infrared rays incident on the infrared sensor from the buoyancy reduction plate for buoyancy reduction is corrected, and control with good responsiveness by the infrared sensor To improve cooking performance.

本発明の誘導加熱調理器は、アルミニウムなどの負荷鍋を加熱可能とする誘導加熱調理器においても、赤外線センサにより応答性のよい制御を実現し、調理性能を向上させることができる。   The induction heating cooker of the present invention can also realize control with good responsiveness by an infrared sensor and improve cooking performance even in an induction heating cooker that can heat a load pan such as aluminum.

第1の発明は、加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋温度を算出する温度算出手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記浮力低減板の自己発熱による前記赤外線センサの検知温度の上昇値を前記温度算出手段による検知温度を補正するようにした誘導加熱調理器とすることにより、アルミニウムなどの負荷鍋を加熱可能とする誘導加熱調理器においても、浮力低減のための浮力低減板から赤外線センサに入射される赤外線の影響を補正し、赤外線センサにより応答性のよい制御を実現して、調理性能を向上させることができる。 A first aspect of the present invention is an inverter circuit for heating a load pan on the top plate by supplying a high-frequency current to the heating coil, the load pan is heated by the inverter circuit or a non-magnetic pan or an iron-based magnetic pot aluminum-based a pot type determination means for determining a non-magnetic metal buoyancy reduction plate for reducing the load pan buoyancy generated during heating of the nonmagnetic pot placed aluminum-based between the top plate and the heating coil, wherein control and infrared sensor for detecting infrared radiation from the load pan, and temperature calculation means for calculating the temperature of the load pan from the output of the infrared sensor, the output of the inverter circuit in accordance with the calculated temperature at the temperature calculating means and control means for, wherein when it is determined that the non-magnetic pan aluminum species in the pot-type judging means, the infrared due to self-heating of the buoyancy reduction plate With the induction heating cooker of the rising value of the detected temperature of capacitors and to correct the detected temperature by said temperature calculation means, even in the induction heating cooker which allows heating load pan, such as aluminum, buoyancy reduction Therefore, it is possible to correct the influence of infrared rays incident on the infrared sensor from the buoyancy reduction plate for realizing high-responsive control by the infrared sensor and improve cooking performance.

第2の発明は、加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋の温度を算出する温度算出手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記インバータ回路の出力に応じて温度算出手段による検知温度を補正することにより、インバータ回路の出力に応じて異なる浮力低減板の温度上昇に対応するように赤外線での検知温度を補正することが可能となる。 The second invention is an inverter circuit for heating a load pan on a top plate by supplying a high-frequency current to a heating coil, and whether the load pan heated by the inverter circuit is an aluminum-based non-magnetic pan or an iron-based magnetic pan. A non-metallic metal buoyancy reduction plate that reduces the buoyancy of the load pan that is disposed between the top plate and the heating coil and that is generated when the aluminum-based nonmagnetic pan is heated; An infrared sensor for detecting infrared radiation from the load pan, a temperature calculating means for calculating the temperature of the load pot from the output of the infrared sensor, and controlling the output of the inverter circuit according to the temperature calculated by the temperature calculating means and control means for, wherein when it is determined that the non-magnetic pan aluminum species in the pot-type judging means, the temperature calculated in accordance with the output of the inverter circuit By correcting the detected temperature by stages, it is possible to correct the detected temperature of the infrared so as to correspond to the temperature rise of the different buoyancy reduction plate in accordance with the output of the inverter circuit.

第3の発明は、加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋の温度を算出する温度算出手段と、前記浮力低減板の温度を検知する第2の温度検知手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記第2の温度検知手段の検知温度に応じて、前記温度算出手段による検知温度を補正するようにしたことにより、浮力低減板の温度に応じて赤外線センサによる温度検知の最適な補正を行うことが可能となり、赤外線センサによる温度制御の精度を向上させることができる。 The third invention is an inverter circuit for heating a load pan on a top plate by supplying a high-frequency current to a heating coil, and whether the load pan heated by the inverter circuit is an aluminum-based non-magnetic pan or an iron-based magnetic pan. A non-metallic metal buoyancy reduction plate that reduces the buoyancy of the load pan that is disposed between the top plate and the heating coil and that is generated when the aluminum-based nonmagnetic pan is heated; An infrared sensor for detecting infrared radiation from the load pan, a temperature calculating means for calculating the temperature of the load pan from the output of the infrared sensor, a second temperature detecting means for detecting the temperature of the buoyancy reduction plate, and according to the calculated temperature at the temperature calculating means and control means for controlling the output of said inverter circuit, said control means determines that the non-magnetic pan aluminum species in the pot type determination means If the, according to the temperature detected by the second temperature sensing means, by which is adapted to correct the detected temperature by said temperature calculation means, the temperature sensing optimal for by the infrared sensor according to the temperature of the buoyancy reduction plate Correction can be performed, and the accuracy of temperature control by the infrared sensor can be improved.

第4の発明は、特に、第3の発明において、第2の温度検知手段は、第2の赤外線センサにて構成したことにより、浮力低減板の温度を感度よく検知して、赤外線センサによる鍋温度の検知の精度を向上することができる。   According to a fourth aspect of the invention, in particular, in the third aspect of the invention, the second temperature detecting means is configured by the second infrared sensor, so that the temperature of the buoyancy reduction plate is detected with high sensitivity, and the pan using the infrared sensor. The accuracy of temperature detection can be improved.

第5の発明は、特に、第3または第4の発明において、第2の温度検知手段は、加熱コイルの外周部の温度を検知するように構成したことにより、簡単な構成で第2の温度検知手段の検知精度を向上させ、赤外線センサによる鍋温度の検知の精度を向上することができる。   According to a fifth aspect of the invention, in particular, in the third or fourth aspect of the invention, the second temperature detecting means is configured to detect the temperature of the outer peripheral portion of the heating coil, so that the second temperature can be achieved with a simple configuration. The detection accuracy of the detection means can be improved, and the accuracy of detection of the pan temperature by the infrared sensor can be improved.

第6の発明は、特に、第3〜第5のいずれか1つの発明において、温度算出手段は、第2の温度検知手段の検知温度に応じて、赤外線センサからの信号出力の増幅レンジを切り替えることにより、浮力低減板からの赤外線放射の影響を受けて赤外線センサの出力がレンジオーバーとなることなく、最適な増幅率で赤外線センサによる鍋温度の検知を行うことができる。   In a sixth aspect of the invention, in particular, in any one of the third to fifth aspects of the invention, the temperature calculation means switches the amplification range of the signal output from the infrared sensor according to the detected temperature of the second temperature detection means. Thus, the pan temperature can be detected by the infrared sensor with the optimum amplification factor without the output of the infrared sensor being over the range due to the influence of the infrared radiation from the buoyancy reduction plate.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜図3は、本発明の実施の形態1における誘導加熱調理器を示すものである。
(Embodiment 1)
1 to 3 show an induction heating cooker according to Embodiment 1 of the present invention.

図1に示すように、本実施の形態における誘導加熱調理器は、負荷鍋11と、負荷鍋11を載置するトッププレート12と、負荷鍋11を加熱する加熱コイル13と、加熱コイル13に高周波電流を供給するインバータ回路14と、トッププレート12と加熱コイル13の間に配置されアルミニウム系の非磁性鍋の加熱時に生じる負荷鍋11の浮力を低減する非磁性金属製の浮力低減板15と、インバータ回路14で加熱する負荷鍋11がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段16とを備えている。さらに、インバータ回路14により加熱される負荷鍋11からの赤外線放射を検知する赤外線センサ17と、赤外線センサ17の出力より負荷鍋温度を算出する温度算出手段18と、サーミスタにて構成され、負荷鍋11の鍋底温度を、トッププレート12を介して検出する温度検知手段19と、温度算出手段18での算出温度に応じてインバータ回路14の出力を制御する制御手段20をも備えている。なお、制御手段20には鍋種判定手段16、温度検知手段19からの出力も入力されている。   As shown in FIG. 1, the induction heating cooker in the present embodiment includes a load pan 11, a top plate 12 on which the load pan 11 is placed, a heating coil 13 that heats the load pan 11, and a heating coil 13. An inverter circuit 14 for supplying a high-frequency current, and a buoyancy reduction plate 15 made of nonmagnetic metal that is disposed between the top plate 12 and the heating coil 13 and reduces the buoyancy of the load pan 11 generated when the aluminum-based nonmagnetic pan is heated. The load pan 11 heated by the inverter circuit 14 includes a pan type determination means 16 for determining whether the load pan 11 is an aluminum-based non-magnetic pan or an iron-based magnetic pan. Further, the load sensor is composed of an infrared sensor 17 for detecting infrared radiation from the load pan 11 heated by the inverter circuit 14, temperature calculating means 18 for calculating the load pan temperature from the output of the infrared sensor 17, and a thermistor. 11 is also provided with a temperature detecting means 19 for detecting the pan bottom temperature of 11 through the top plate 12 and a control means 20 for controlling the output of the inverter circuit 14 in accordance with the temperature calculated by the temperature calculating means 18. Note that outputs from the pan type determination unit 16 and the temperature detection unit 19 are also input to the control unit 20.

そして、制御手段20は、鍋種判定手段16でアルミニウム系の非磁性鍋と判定した場合に、温度算出手段18による検知温度を補正するようにしている。   And the control means 20 correct | amends the detection temperature by the temperature calculation means 18, when it determines with the pan seed | species determination means 16 that it is an aluminum-type nonmagnetic pot.

以上のように構成された誘導加熱調理器についてその動作を説明する。   The operation | movement is demonstrated about the induction heating cooking appliance comprised as mentioned above.

加熱コイル13に高周波電流が供給されると、加熱コイル13上方に載置された負荷鍋11が加熱される。負荷鍋11の鍋底からは鍋の温度に応じた赤外線が放射されており、図2に示すように、負荷鍋11から発した赤外線放射21はトッププレート12を透過して赤外線センサ17に入力される。赤外線センサ17にはトッププレート12と加熱コイル13の間に配置された浮力低減板15からの赤外線放射22も入力される。浮力低減板15からの赤外線放射22は、浮力低減板15から直接赤外線センサ17に入力されるものもあれば、トッププレート12を反射して赤外線センサ17に入力されるものもある。赤外線センサ17からの入力信号により温度算出手段18は負荷鍋11の温度を算出し、設定された加熱状態となるように制御手段20は加熱コイル13に流れる電流を制御する。   When the high frequency current is supplied to the heating coil 13, the load pan 11 placed above the heating coil 13 is heated. Infrared rays corresponding to the temperature of the pan are radiated from the bottom of the load pan 11, and as shown in FIG. 2, the infrared radiation 21 emitted from the load pan 11 passes through the top plate 12 and is input to the infrared sensor 17. The Infrared radiation 22 from the buoyancy reduction plate 15 disposed between the top plate 12 and the heating coil 13 is also input to the infrared sensor 17. The infrared radiation 22 from the buoyancy reduction plate 15 may be input directly to the infrared sensor 17 from the buoyancy reduction plate 15, or may be input to the infrared sensor 17 by reflecting the top plate 12. The temperature calculation means 18 calculates the temperature of the load pan 11 based on the input signal from the infrared sensor 17, and the control means 20 controls the current flowing through the heating coil 13 so as to be in the set heating state.

鍋種判定手段16は、加熱コイル13に高周波電流を供給しているときのインバータ回路14の出力に応じて鍋種を判定しており、鍋種判定手段16で鉄系の磁性鍋と判定された場合には、制御手段20は約20kHzの高周波電流を加熱コイル13に供給する。磁性鍋を加熱する場合は加熱コイル13に流れる電流は少ないため、加熱コイル13からの磁束により浮力低減板15はほとんど自己発熱しない。   The pot type determination means 16 determines the pot type according to the output of the inverter circuit 14 when supplying high-frequency current to the heating coil 13, and the pot type determination means 16 determines that the pot is an iron-based magnetic pot. In this case, the control means 20 supplies a high frequency current of about 20 kHz to the heating coil 13. When heating the magnetic pan, since the current flowing through the heating coil 13 is small, the buoyancy reduction plate 15 hardly generates heat by the magnetic flux from the heating coil 13.

図3に負荷鍋温度と赤外線センサによる検知温度の一例を示しているように、赤外線センサ17での温度検知において、浮力低減板15からの赤外線放射22は負荷鍋11からの赤外線放射21の検知に影響を及ぼさないので、制御手段20は、温度算出手段18の検知結果および温度検知手段19の検知結果から、負荷鍋11の温度が所定の温度以下となるようにインバータ回路14の出力を制御する。   As shown in FIG. 3 as an example of the load pan temperature and the temperature detected by the infrared sensor, in the temperature detection by the infrared sensor 17, the infrared radiation 22 from the buoyancy reduction plate 15 is detected by the infrared radiation 21 from the load pan 11. Therefore, the control unit 20 controls the output of the inverter circuit 14 based on the detection result of the temperature calculation unit 18 and the detection result of the temperature detection unit 19 so that the temperature of the load pan 11 becomes a predetermined temperature or less. To do.

一方、鍋種判定手段16でアルミニウム系の非磁性鍋と判定された場合には、制御手段20は約60kHzの高周波電流を加熱コイル13に供給する。アルミニウムや銅のように透磁率が低く低抵抗な非磁性鍋を加熱する場合は、加熱コイル13に多大な電流を流して磁束量を増やすため、浮力低減板15の自己発熱も大きくなる。浮力低減板15は加熱コイル13からの磁束による発熱を抑えるために非磁性金属材料で構成されているが、負荷鍋11が非磁性鍋の場合は浮力低減板15の温度は300〜400℃まで上昇する場合がある。これにより、図3に示すように、浮力低減板15からの赤外線放射22の影響を受けて、赤外線センサ17による温度検知では実際の負荷鍋11の温度より△T高い温度と出力されるため、制御手段20は温度算出手段18での検知結果から△T低く補正して、負荷鍋11の温度が所定の温度以下となるようにインバータ回路14の出力を制御する。   On the other hand, when the pot type determination means 16 determines that the pot is an aluminum-based nonmagnetic pot, the control means 20 supplies a high-frequency current of about 60 kHz to the heating coil 13. When heating a non-magnetic pan having a low magnetic permeability such as aluminum or copper, a large amount of current is passed through the heating coil 13 to increase the amount of magnetic flux, so that the self-heating of the buoyancy reduction plate 15 also increases. The buoyancy reduction plate 15 is made of a nonmagnetic metal material in order to suppress heat generation due to the magnetic flux from the heating coil 13, but when the load pan 11 is a nonmagnetic pan, the temperature of the buoyancy reduction plate 15 is 300 to 400 ° C. May rise. As a result, as shown in FIG. 3, under the influence of the infrared radiation 22 from the buoyancy reduction plate 15, the temperature detection by the infrared sensor 17 outputs a temperature ΔT higher than the actual temperature of the load pan 11, The control means 20 corrects ΔT lower from the detection result of the temperature calculation means 18 and controls the output of the inverter circuit 14 so that the temperature of the load pan 11 becomes a predetermined temperature or less.

また、鍋種判定手段16で非磁性鍋と判定された場合でもインバータ回路14の出力に応じて浮力低減板15の温度は変化するので、制御手段20は温度算出手段18による温度検知結果からの補正量を高火力時は大きく、低火力時は小さくなるように変更する。   Further, even when the pot type determination means 16 determines that the pot is a non-magnetic pot, the temperature of the buoyancy reduction plate 15 changes according to the output of the inverter circuit 14, so that the control means 20 determines from the temperature detection result by the temperature calculation means 18. Change the correction amount so that it is large at high firepower and small at low firepower.

以上のように、本実施の形態においては、鍋種判定手段16にて負荷鍋11が非磁性鍋と判定すると赤外センサ17による温度検知結果を補正するので、非磁性系の鍋においても浮力低減板15の自己発熱の影響を受けることなく赤外線センサ17による応答性のよい温度制御が可能となる。   As described above, in the present embodiment, when the pot type determining means 16 determines that the load pan 11 is a nonmagnetic pan, the temperature detection result by the infrared sensor 17 is corrected. Temperature control with good responsiveness by the infrared sensor 17 is possible without being affected by the self-heating of the reduction plate 15.

また、インバータ回路14の出力に応じて赤外線センサ17での温度検知結果の補正量を変更するので、各火力に適応した補正量で赤外線センサ17による温度制御が可能となる。   Moreover, since the correction amount of the temperature detection result in the infrared sensor 17 is changed according to the output of the inverter circuit 14, the temperature control by the infrared sensor 17 becomes possible with the correction amount adapted to each heating power.

(実施の形態2)
図4は、本発明の実施の形態2における誘導加熱調理器を示すものである。実施の形態1と同一要素については同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 4 shows an induction heating cooker according to Embodiment 2 of the present invention. The same elements as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態においては、第2の赤外線センサにて構成した第2の温度検知手段23を備え、加熱コイル13の外周より外側まで張り出している浮力低減板15の温度を検知している。これにより、鍋種判定手段16でアルミニウム系の非磁性鍋と判定した場合に、温度算出手段18による検知温度を補正するようにした実施の形態1に代えて、制御手段20は、第2の温度検知手段23の検知温度に応じて、温度算出手段18による検知温度を補正するようにしている。なお、浮力低減板15からの赤外線放射を第2の温度検知手段23に導くために、反射率のよい金属材にて構成されている導光管24を設けている。   In the present embodiment, the temperature of the buoyancy reduction plate 15 extending from the outer periphery of the heating coil 13 to the outside is detected by including the second temperature detection means 23 configured by the second infrared sensor. Thereby, instead of the first embodiment in which the temperature detected by the temperature calculating means 18 is corrected when the pot type determining means 16 determines that it is an aluminum-based nonmagnetic pot, the control means 20 The temperature detected by the temperature calculating means 18 is corrected according to the temperature detected by the temperature detecting means 23. In addition, in order to guide the infrared radiation from the buoyancy reduction plate 15 to the second temperature detection means 23, a light guide tube 24 made of a metal material with good reflectivity is provided.

以上のように構成された誘導加熱調理器についてその動作を説明する。   The operation | movement is demonstrated about the induction heating cooking appliance comprised as mentioned above.

加熱を開始して加熱コイル13に高周波電流を供給すると、負荷鍋11の材質がアルミニウムや銅などの非磁性鍋の場合、浮力低減板15の温度は300〜400℃まで上昇する場合があり、浮力低減板15からの赤外線放射22の影響を受けて、赤外線センサ17による温度検知では実際の負荷鍋11の温度より△T高い温度が出力される(実施の形態1において説明したとおり)。一方、浮力低減板15の温度は、浮力低減板15から放射される赤外線を、導光管24を通して第2の温度検知手段23にて検知しており、制御手段20は第2の温度検知手段23での検知温度に応じて温度算出手段18の増幅レンジを切り替えるとともに、温度算出手段18の検知結果から△T低く補正して、負荷鍋11の温度が所定の温度以下となるようにインバータ回路14の出力を制御する。   When heating is started and a high-frequency current is supplied to the heating coil 13, when the material of the load pan 11 is a non-magnetic pan such as aluminum or copper, the temperature of the buoyancy reduction plate 15 may rise to 300 to 400 ° C. Under the influence of the infrared radiation 22 from the buoyancy reduction plate 15, the temperature detection by the infrared sensor 17 outputs a temperature ΔT higher than the actual temperature of the load pan 11 (as described in the first embodiment). On the other hand, the temperature of the buoyancy reduction plate 15 detects the infrared rays emitted from the buoyancy reduction plate 15 by the second temperature detection means 23 through the light guide tube 24, and the control means 20 detects the second temperature detection means. 23, the amplification range of the temperature calculation means 18 is switched according to the detected temperature at 23, and corrected by ΔT lower than the detection result of the temperature calculation means 18, so that the temperature of the load pan 11 becomes a predetermined temperature or less. 14 outputs are controlled.

温度補正値は第2の温度検知手段23の検知温度に応じて変化し、第2の温度検知手段23の検知温度が高い場合は補正量を大きく、第2の温度検知手段23の検知温度が低い場合は補正量が小さくなるように設定している。   The temperature correction value changes according to the detected temperature of the second temperature detecting means 23. When the detected temperature of the second temperature detecting means 23 is high, the correction amount is increased, and the detected temperature of the second temperature detecting means 23 is increased. When the value is low, the correction amount is set to be small.

また、増幅レンジについても第2の温度検知手段23の検知温度に応じて変化し、第2の温度検知手段23の検知温度が高い場合は増幅レンジを低く、第2の温度検知手段23の検知温度が高い場合は増幅レンジを高く設定している。   Further, the amplification range also changes in accordance with the detection temperature of the second temperature detection means 23. When the detection temperature of the second temperature detection means 23 is high, the amplification range is lowered and the detection of the second temperature detection means 23 is performed. When the temperature is high, the amplification range is set high.

なお、本実施の形態では、第2の温度検知手段23を赤外線センサにて構成したが、サーミスタにて直接浮力低減板15を検知しても同様の効果が得られる。   In the present embodiment, the second temperature detection means 23 is constituted by an infrared sensor. However, the same effect can be obtained even if the buoyancy reduction plate 15 is directly detected by a thermistor.

また、浮力低減板15は熱伝導のよい非磁性金属材にて構成されているので、第2の温度検知手段23は加熱コイル13の外周部分に配置したが、加熱コイル13の直上部分の温度を検知してもよいし、加熱コイル13の内周部分の温度を検知しても同様の効果が得られる。   In addition, since the buoyancy reduction plate 15 is made of a non-magnetic metal material having good heat conduction, the second temperature detection means 23 is disposed on the outer peripheral portion of the heating coil 13. The same effect can be obtained by detecting the temperature of the inner peripheral portion of the heating coil 13.

また、第2の温度検知手段23に導光管24を配置する構成としたが、第2の温度検知手段23である赤外線センサの視野角が十分狭く、浮力低減板15の温度を検知することが可能であれば、導光管24なしでも同様の効果が得られる。   Further, although the light guide tube 24 is arranged in the second temperature detecting means 23, the viewing angle of the infrared sensor which is the second temperature detecting means 23 is sufficiently narrow, and the temperature of the buoyancy reducing plate 15 is detected. If possible, the same effect can be obtained without the light guide tube 24.

以上のように、本実施の形態においては、浮力低減板15の温度に応じて赤外線センサ17による温度検知の最適な補正を行うことが可能となり、赤外線センサ17による温度制御の精度を向上させることができ、浮力低減板15の自己発熱による赤外線放射の影響のみならず、揚げ物や焼き物調理後の負荷鍋11からの熱伝達による浮力低減板15の温度上昇に伴う赤外線放射の影響も低減することができる。   As described above, in the present embodiment, it is possible to perform optimum correction of temperature detection by the infrared sensor 17 in accordance with the temperature of the buoyancy reduction plate 15 and to improve the accuracy of temperature control by the infrared sensor 17. In addition to the influence of infrared radiation due to self-heating of the buoyancy reduction plate 15, the influence of infrared radiation accompanying the temperature rise of the buoyancy reduction plate 15 due to heat transfer from the load pan 11 after cooking fried food or grilled food is also reduced. Can do.

また、第2の温度検知手段23を赤外線センサにて構成しているので、浮力低減板15の温度を感度よく検知して、赤外線センサ17による負荷鍋11の温度の検知精度を向上することができる。   Moreover, since the 2nd temperature detection means 23 is comprised by the infrared sensor, the temperature of the buoyancy reduction board 15 is detected with sufficient sensitivity, and the detection accuracy of the temperature of the load pan 11 by the infrared sensor 17 can be improved. it can.

また、第2の温度検知手段23は、加熱コイル13の外周部の温度を検知するようにしているので、簡単な構成で第2の温度検知手段23の検知精度を向上させ、赤外線センサ17による負荷鍋11の温度検知の精度を向上することができる。   Moreover, since the 2nd temperature detection means 23 detects the temperature of the outer peripheral part of the heating coil 13, it improves the detection accuracy of the 2nd temperature detection means 23 by simple structure, and the infrared sensor 17 The accuracy of temperature detection of the load pan 11 can be improved.

また、第2の温度検知手段23の検知温度に応じて、赤外線センサ17からの信号出力の増幅レンジを切り替えるので、浮力低減板15からの赤外線放射の影響を受けて赤外線センサ17の出力がレンジオーバーとなることなく、最適な増幅率で赤外線センサ17による負荷鍋11の温度検知を行うことができる。   Further, since the amplification range of the signal output from the infrared sensor 17 is switched in accordance with the temperature detected by the second temperature detection means 23, the output of the infrared sensor 17 is affected by the influence of infrared radiation from the buoyancy reduction plate 15. Without being over, the temperature of the load pan 11 can be detected by the infrared sensor 17 with an optimum amplification factor.

以上のように、本発明にかかる誘導加熱調理器は、アルミニウムなどの負荷鍋を加熱可能とする誘導加熱調理器においても、赤外線センサにより応答性のよい制御を実現し、調理性能を向上させることができるので、使用形態にかかわらずすべての誘導加熱調理器に適用できる。   As described above, the induction heating cooker according to the present invention realizes control with good responsiveness by the infrared sensor and improves cooking performance even in the induction heating cooker that can heat a load pan such as aluminum. Therefore, it can be applied to all induction heating cookers regardless of the form of use.

本発明の実施の形態1における誘導加熱調理器の断面図Sectional drawing of the induction heating cooking appliance in Embodiment 1 of this invention 同誘導加熱調理器の負荷鍋および浮力低減板からの赤外線放射を示す図The figure which shows the infrared radiation from the load pan and the buoyancy reduction plate of the same induction heating cooker 同誘導加熱調理器の負荷鍋と赤外線センサの検知温度を示す図The figure which shows the detection temperature of the load pan and the infrared sensor of the induction heating cooker 本発明の実施の形態2における誘導加熱調理器の断面図Sectional drawing of the induction heating cooking appliance in Embodiment 2 of this invention

符号の説明Explanation of symbols

11 負荷鍋
12 トッププレート
13 加熱コイル
14 インバータ回路
15 浮力低減板
16 鍋種判定手段
17 赤外線センサ
18 温度算出手段
20 制御手段
23 第2の温度検知手段
DESCRIPTION OF SYMBOLS 11 Load pan 12 Top plate 13 Heating coil 14 Inverter circuit 15 Buoyancy reduction board 16 Pan kind determination means 17 Infrared sensor 18 Temperature calculation means 20 Control means 23 2nd temperature detection means

Claims (6)

加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋温度を算出する温度算出手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記浮力低減板の自己発熱による前記赤外線センサの検知温度の上昇値を前記温度算出手段による検知温度から差し引くように前記検知温度を補正するようにした誘導加熱調理器。 An inverter circuit for heating a load pan on the top plate by supplying a high-frequency current to the heating coil, pan type determination determines whether magnetic pot nonmagnetic pan or an iron-based load pot aluminum-based heating in the inverter circuit means a non-magnetic metal buoyancy reduction plate for reducing buoyancy of the load pan occurring during heating of the nonmagnetic pot placed aluminum-based between the top plate and the heating coil, infrared radiation from the load pan comprising an infrared sensor for sensing the temperature calculation means for calculating the temperature of the load pan from the output of the infrared sensor, and control means for controlling the output of said inverter circuit in accordance with the calculated temperature at the temperature calculating means , wherein when it is determined that the non-magnetic pan aluminum species in the pot type determination means, of the infrared sensor due to self-heating of the buoyancy reduction plate detected temperature The induction heating cooker so as to correct the detected temperature rise value to subtract from the temperature detected by said temperature calculation means. 加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋温度を算出する温度算出手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非磁性鍋と判定した場合に、前記インバータ回路の出力に応じて前記温度算出手段による検知温度を補正するようにした誘導加熱調理器。 An inverter circuit for heating a load pan on the top plate by supplying a high-frequency current to the heating coil, pan type determination determines whether magnetic pot nonmagnetic pan or an iron-based load pot aluminum-based heating in the inverter circuit means a non-magnetic metal buoyancy reduction plate for reducing buoyancy of the load pan occurring during heating of the nonmagnetic pot placed aluminum-based between the top plate and the heating coil, infrared radiation from the load pan comprising an infrared sensor for sensing the temperature calculation means for calculating the temperature of the load pan from the output of the infrared sensor, and control means for controlling the output of said inverter circuit in accordance with the calculated temperature at the temperature calculating means , wherein when it is determined that the non-magnetic pan aluminum species in the pot-type determination means, by the temperature calculation means according to the output of the inverter circuit Induction heating cooker so as to correct the knowledge temperature. 加熱コイルに高周波電流を供給してトッププレート上の負荷鍋を加熱するインバータ回路と、前記インバータ回路で加熱する負荷鍋がアルミニウム系の非磁性鍋か鉄系の磁性鍋かを判定する鍋種判定手段と、前記トッププレートと前記加熱コイルの間に配置されアルミニウム系の非磁性鍋の加熱時に生じる前記負荷鍋の浮力を低減する非磁性金属製の浮力低減板と、前記負荷鍋からの赤外線放射を検知する赤外線センサと、前記赤外線センサの出力より前記負荷鍋温度を算出する温度算出手段と、前記浮力低減板の温度を検知する第2の温度検知手段と、前記温度算出手段での算出温度に応じて前記インバータ回路の出力を制御する制御手段とを備え、前記制御手段は、前記鍋種判定手段でアルミニウム系の非
磁性鍋と判定した場合に、前記第2の温度検知手段の検知温度に応じて、前記温度算出手段による検知温度を補正するようにした誘導加熱調理器。
An inverter circuit for heating a load pan on the top plate by supplying a high-frequency current to the heating coil, pan type determination determines whether magnetic pot nonmagnetic pan or an iron-based load pot aluminum-based heating in the inverter circuit means a non-magnetic metal buoyancy reduction plate for reducing buoyancy of the load pan occurring during heating of the nonmagnetic pot placed aluminum-based between the top plate and the heating coil, infrared radiation from the load pan an infrared sensor for detecting a temperature calculating means for calculating the temperature of the load pan from the output of the infrared sensor, a second temperature detecting means for detecting a temperature of the buoyancy reduction plate, calculated at the temperature calculating means and control means for controlling the output of said inverter circuit in response to temperature, wherein when it is determined that the non-magnetic pan aluminum species in the pot-type judging means, before Depending on the detected temperature of the second temperature sensing means, induction heating cooker so as to correct the detected temperature by said temperature calculation means.
第2の温度検知手段は、第2の赤外線センサにて構成した請求項3に記載の誘導加熱調理器。 The induction heating cooker according to claim 3, wherein the second temperature detection means is constituted by a second infrared sensor. 第2の温度検知手段は、加熱コイルの外周部の温度を検知するように構成した請求項3または4に記載の誘導加熱調理器。 The induction heating cooker according to claim 3 or 4, wherein the second temperature detection means is configured to detect the temperature of the outer peripheral portion of the heating coil. 温度算出手段は、第2の温度検知手段の検知温度に応じて、赤外線センサからの信号出力の増幅レンジを切り替える請求項3〜5のいずれか1項に記載の誘導加熱調理器。 The induction heating cooker according to any one of claims 3 to 5, wherein the temperature calculation means switches the amplification range of the signal output from the infrared sensor according to the temperature detected by the second temperature detection means.
JP2005167989A 2005-06-08 2005-06-08 Induction heating cooker Expired - Fee Related JP4839682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167989A JP4839682B2 (en) 2005-06-08 2005-06-08 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167989A JP4839682B2 (en) 2005-06-08 2005-06-08 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2006344456A JP2006344456A (en) 2006-12-21
JP4839682B2 true JP4839682B2 (en) 2011-12-21

Family

ID=37641265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167989A Expired - Fee Related JP4839682B2 (en) 2005-06-08 2005-06-08 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4839682B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120448A1 (en) * 2007-03-12 2008-10-09 Panasonic Corporation Induction cooking device
EP2173139B1 (en) 2007-06-21 2012-08-15 Panasonic Corporation Induction heating cooker
WO2009022475A1 (en) * 2007-08-13 2009-02-19 Panasonic Corporation Induction heating cooker
WO2009104404A1 (en) 2008-02-19 2009-08-27 パナソニック株式会社 Induction heat cooking device
CN102450096A (en) * 2009-06-01 2012-05-09 松下电器产业株式会社 Induction cooking device
DE102013102119A1 (en) * 2013-03-04 2014-09-18 Miele & Cie. Kg cooking facility
JP2015076327A (en) * 2013-10-10 2015-04-20 三菱電機株式会社 Heating cooker
WO2024005761A1 (en) * 2022-06-29 2024-01-04 Arcelik Anonim Sirketi Induction cooking device and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264055A (en) * 2002-03-08 2003-09-19 Hitachi Hometec Ltd Heating cooker
JP3888290B2 (en) * 2002-11-20 2007-02-28 松下電器産業株式会社 Induction heating device

Also Published As

Publication number Publication date
JP2006344456A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4839682B2 (en) Induction heating cooker
JP4892872B2 (en) Induction heating cooker
JP5077268B2 (en) Induction heating device
JP2005038660A (en) Induction heating cooker
JP4910667B2 (en) Cooker
JP4345580B2 (en) Induction heating cooker
JP5286144B2 (en) Induction heating cooker
JP2010108796A (en) Induction heating cooker
JP4120696B2 (en) Induction heating cooker
JP4381918B2 (en) Induction heating cooker
JP4496998B2 (en) Induction heating cooker
JP4120536B2 (en) Induction heating cooker
JP5062013B2 (en) Induction heating cooker
JP2011071004A (en) Induction heating cooker
JP4952214B2 (en) Induction heating cooker
JP2008262933A (en) Induction heating cooker
JP2010170784A (en) Heating cooker
JP2008135201A5 (en)
JP5182172B2 (en) Induction heating cooker
JP4207786B2 (en) Induction heating cooker
JP2010282861A (en) Induction heating cooker
JP4375185B2 (en) Multi-neck heating cooker
JP5214048B2 (en) Induction heating cooker
JP2010272452A (en) Induction heating cooker
JP4899658B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees