JP4834024B2 - Fluorescence detection device - Google Patents

Fluorescence detection device Download PDF

Info

Publication number
JP4834024B2
JP4834024B2 JP2008090628A JP2008090628A JP4834024B2 JP 4834024 B2 JP4834024 B2 JP 4834024B2 JP 2008090628 A JP2008090628 A JP 2008090628A JP 2008090628 A JP2008090628 A JP 2008090628A JP 4834024 B2 JP4834024 B2 JP 4834024B2
Authority
JP
Japan
Prior art keywords
light
value
fluorescence
fluorescence intensity
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090628A
Other languages
Japanese (ja)
Other versions
JP2009244080A (en
Inventor
弘能 林
成幸 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2008090628A priority Critical patent/JP4834024B2/en
Publication of JP2009244080A publication Critical patent/JP2009244080A/en
Application granted granted Critical
Publication of JP4834024B2 publication Critical patent/JP4834024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、流路中を流れる測定対象物にレーザ光を照射し、そのとき発する蛍光を測定する蛍光検出装置に関する。   The present invention relates to a fluorescence detection apparatus that irradiates a measurement object flowing in a flow path with laser light and measures fluorescence emitted at that time.

医療、生物分野で用いられるフローサイトメータには、レーザ光を照射することにより測定対象物の蛍光色素からの蛍光を受光して、測定対象物の種類を識別する蛍光検出装置が組み込まれている。
蛍光検出装置では、蛍光強度を出力するために、光センサとして光電子増倍管(PMT)が用いられ、この蛍光強度の算出には、アナログ計測方式あるいはフォトンカウンティング計測方式が用いられる。
A flow cytometer used in the medical and biological fields incorporates a fluorescence detection device that receives fluorescence from a fluorescent dye of a measurement object by irradiating laser light and identifies the type of the measurement object. .
In the fluorescence detection apparatus, a photomultiplier tube (PMT) is used as an optical sensor to output fluorescence intensity, and an analog measurement method or a photon counting measurement method is used for calculation of the fluorescence intensity.

アナログ計測方式では、光電子増倍管からのパルス状の電流信号を、負荷抵抗を用いて電圧信号に変換し、この電圧信号のピーク電圧や擬似的に積分して得られる面積を算出することにより、蛍光強度を求める。このアナログ計測方式は、強い蛍光強度に対しては精度の良い計測が可能となるが、微弱な蛍光を計測する場合、計測する電圧信号は、離散的なパルス信号となる。このパルス信号には、暗電流に起因して定常的に発生するノイズパルスが含まれ、これによって測定誤差が大きくなるといった問題がある。さらに、1つ1つの電圧信号のレベルが一定しないため、測定誤差が増大するといった問題がある。   In the analog measurement method, the pulsed current signal from the photomultiplier tube is converted into a voltage signal using a load resistor, and the peak voltage of this voltage signal and the area obtained by pseudo integration are calculated. Determine the fluorescence intensity. This analog measurement method enables accurate measurement for strong fluorescence intensity, but when measuring weak fluorescence, the voltage signal to be measured is a discrete pulse signal. This pulse signal includes a noise pulse that is steadily generated due to a dark current, which causes a problem that a measurement error increases. Further, since the level of each voltage signal is not constant, there is a problem that measurement error increases.

一方、フォトンカウンティング計測方式では、光電子増倍管からのパルス状の電圧信号のパルス数をカウントし、このときのカウント値を蛍光強度の出力値とする。この方式では、微弱な蛍光に対して精度の良い計測が可能であるが、蛍光強度が強くなると、複数のパルス状の電圧信号は互いに重なり合って、正確なカウント値が得られないといった問題がある。
このため、微弱の蛍光から、強度の強い蛍光まで、1つの計測装置で幅広いレンジで精度良く計測することができない。
On the other hand, in the photon counting measurement method, the number of pulses of a pulsed voltage signal from the photomultiplier tube is counted, and the count value at this time is used as an output value of fluorescence intensity. In this method, accurate measurement is possible for weak fluorescence, but when the fluorescence intensity increases, there is a problem that a plurality of pulsed voltage signals overlap each other and an accurate count value cannot be obtained. .
For this reason, it is impossible to accurately measure a wide range of light from weak fluorescence to strong fluorescence.

下記特許文献1では、蛍光光束をレンズで拡げ、マルチチャンネルの光電子増倍管(PMT)に受光させ、各チャンネル毎に、フォトンカウンティングを行い、各チャンネルのカウント値を合計する細胞解析装置が記載されている。当該公報によると、この装置構成により、微弱光から強い蛍光まで広範囲に、高感度で再現性良く測定することができるとされている。   The following Patent Document 1 describes a cell analysis device that spreads a fluorescent light beam with a lens, causes a multichannel photomultiplier tube (PMT) to receive light, performs photon counting for each channel, and totals the count value of each channel. Has been. According to the gazette, this apparatus configuration can measure a wide range from weak light to strong fluorescence with high sensitivity and good reproducibility.

特開平5−10946号公報JP-A-5-10946

しかし上記特許文献1に記載される装置を用いて強い蛍光を測定する場合、各チャンネル毎に蛍光を分割してフォトンカウンティング計測方式で計測する特許文献1に記載の装置では蛍光により得られる各チャンネル毎の受光信号は、パルス信号が連なった連続信号となるため、正確な計数ができず、安定した結果が得られない、といった問題を有する。   However, when measuring strong fluorescence using the apparatus described in Patent Document 1, each channel obtained by fluorescence is divided in the apparatus described in Patent Document 1 in which the fluorescence is divided for each channel and measured by the photon counting measurement method. Since each light reception signal is a continuous signal in which pulse signals are connected, there is a problem that accurate counting cannot be performed and a stable result cannot be obtained.

そこで、本発明は、上記問題点を解決するために、微弱光から強い蛍光まで広範囲に、精度良く測定できる、構造の簡単な蛍光検出装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a fluorescence detection apparatus having a simple structure capable of measuring a wide range from weak light to strong fluorescence with high accuracy in order to solve the above problems.

本発明は、流路中を流れる測定対象物にレーザ光を照射し、そのとき発する蛍光を測定する蛍光検出装置であって、流路中の測定点を通過する測定対象物に対してレーザ光を照射するレーザ光源部と、レーザ光の照射された測定対象物の蛍光を散乱させる光散乱体と、散乱した蛍光の一部を取り込んで受光することにより、受光信号を出力する光電子増倍管およびフォトダイオードが、並列して構成された受光部と、前記受光部の光電子増倍管から出力した受光信号に基づいて求められるパルス信号の計数値と、前記フォトダイオードから出力した受光信号に基づいて求められる受光信号積分値とのいずれか一方を選択することにより、測定対象物の発する蛍光強度を求める処理部と、を有することを特徴とする蛍光検出装置を提供する。   The present invention is a fluorescence detection device for irradiating a measurement object flowing in a flow path with a laser beam and measuring the fluorescence emitted at that time. The laser light is applied to the measurement object passing through a measurement point in the flow path. A light source that emits light, a light scatterer that scatters fluorescence of a measurement object irradiated with laser light, and a photomultiplier that outputs a light reception signal by capturing and receiving a portion of the scattered fluorescence And a photodiode configured in parallel, a count value of a pulse signal obtained based on a light reception signal output from the photomultiplier tube of the light reception unit, and a light reception signal output from the photodiode And a processing unit that obtains the fluorescence intensity emitted from the measurement object by selecting one of the received light signal integration values obtained in this manner.

ここで、前記処理部は、前記光電子増倍管からの受光信号に基づいて求められた前記計数値が所定値以下の場合、前記計数値から蛍光強度の値を求め、前記計数値が前記所定値を超える場合、前記処理部は前記受光信号積分値から蛍光強度の値を求めることが好ましい。
あるいは、前記処理部は、前記フォトダイオードからの受光信号に基づいて求められた前記受光信号積分値が設定された値以下の場合、前記計数値から蛍光強度の値を求め、前記受光信号積分値が設定された値を超える場合、前記処理部は前記受光信号積分値から蛍光強度の値を求めることも同様に好ましい。
Here, when the count value obtained based on the light reception signal from the photomultiplier tube is equal to or less than a predetermined value, the processing unit obtains a fluorescence intensity value from the count value, and the count value is the predetermined value. When the value is exceeded, it is preferable that the processing unit obtains a fluorescence intensity value from the integrated value of the received light signal.
Alternatively, the processing unit obtains a fluorescence intensity value from the count value when the received light signal integrated value obtained based on the received light signal from the photodiode is equal to or less than a set value, and the received light signal integrated value When the value exceeds the set value, it is also preferable that the processing unit obtains a fluorescence intensity value from the integrated value of the received light signal.

また、前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱板との間に、蛍光の光量を調整する絞り板が設けられていることが好ましい。   Further, it is preferable that a diaphragm plate for adjusting the amount of fluorescent light is provided between at least one of the photomultiplier tube and the photodiode and the light scattering plate.

この場合、前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱体との間に、蛍光の光量を調整する絞り板が設けられ、前記所定値において、前記計数値から求められる蛍光強度の値と、前記受光信号積分値から求められる蛍光強度の値とが一致するように、前記絞り板が調整されることが好ましい。
あるいは、前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱体との間に、蛍光の光量を調整する絞り板が設けられ、前記設定された値において、前記計数値から求められる蛍光強度の値と、前記受光信号積分値から求められる蛍光強度の値とが一致するように、前記絞り板が調整されることが好ましい。
In this case, a diaphragm plate for adjusting the amount of fluorescent light is provided between at least one of the photomultiplier tube and the photodiode and the light scatterer, and the predetermined value is obtained from the count value. It is preferable that the diaphragm plate is adjusted so that the value of the fluorescence intensity matches the value of the fluorescence intensity obtained from the integrated value of the received light signal.
Alternatively, a diaphragm plate for adjusting the amount of fluorescent light is provided between at least one of the photomultiplier tube and the photodiode and the light scatterer, and the calculated value is obtained from the count value. It is preferable that the diaphragm plate is adjusted so that the value of the fluorescence intensity obtained matches the value of the fluorescence intensity obtained from the integrated value of the received light signal.

本発明の蛍光検出装置は、レーザ光の照射された測定対象物の蛍光を散乱させる光散乱体が設けられ、この光散乱体により均一に散乱した蛍光の一部を取り込んで受光することにより、受光信号を出力する光電子増倍管およびフォトダイオードが、並列して配置されている。処理部は、受光部の光電子増倍管から出力した受光信号に基づいて求められるパルス信号の計数値と、フォトダイオードから出力した受光信号に基づいて求められる受光信号積分値とのいずれか一方を選択することにより、測定対象物の発する蛍光強度を求める。このため、本発明の蛍光検出装置は、微弱光から強い蛍光まで広範囲に、精度良く測定できる。   The fluorescence detection device of the present invention is provided with a light scatterer that scatters the fluorescence of the measurement object irradiated with the laser light, and by receiving and receiving a part of the fluorescence scattered uniformly by the light scatterer, A photomultiplier tube that outputs a light reception signal and a photodiode are arranged in parallel. The processing unit calculates one of a count value of the pulse signal obtained based on the light reception signal output from the photomultiplier tube of the light receiving unit and a light reception signal integrated value obtained based on the light reception signal output from the photodiode. By selecting, the fluorescence intensity emitted from the measurement object is obtained. For this reason, the fluorescence detection apparatus of the present invention can accurately measure a wide range from weak light to strong fluorescence.

以下、本発明の蛍光検出装置を詳細に説明する。
図1は、本発明の蛍光検出装置を用いたフローサイトメータ10の概略構成図である。
フローサイトメータ10は、レーザ光を測定対象とする細胞等の試料12に照射し、試料12中の一部分から発する蛍光を検出して信号処理をする信号処理装置(蛍光検出装置)20と、信号処理装置20で得られた処理結果から試料12中の測定対象物の分析を行なう分析装置80とを有する。
Hereinafter, the fluorescence detection apparatus of the present invention will be described in detail.
FIG. 1 is a schematic configuration diagram of a flow cytometer 10 using the fluorescence detection device of the present invention.
The flow cytometer 10 irradiates a sample 12 such as a cell to be measured with laser light, detects a fluorescence emitted from a part of the sample 12 and performs signal processing, and a signal processing device 20. And an analysis device 80 for analyzing the measurement object in the sample 12 from the processing result obtained by the processing device 20.

信号処理装置20は、レーザ光源部22と、受光部24、26と、試料12の蛍光強度の値を出力する処理部28と、所定の強度でレーザ光を照射させ、各処理の動作の制御管理を行う制御部29と、高速流を形成するシース液に含ませて試料12を流す管路30と、管路30の端に接続され、試料12のフローを形成し、このフローの経路にレーザ光の測定点をつくるフローセル体31と、を有する。フローセル体31の出口側には、回収容器32が設けられている。フローサイトメータ10には、レーザ光の照射により短時間内に試料12中の特定の細胞等を分離するためのセル・ソータを配置して別々の回収容器に分離するように構成することもできる。   The signal processing device 20 irradiates the laser light with a predetermined intensity by controlling the operation of each process by irradiating the laser light source unit 22, the light receiving units 24 and 26, the processing unit 28 that outputs the fluorescence intensity value of the sample 12, and the laser beam. A control unit 29 that performs management, a pipe line 30 that flows in the sheath liquid that forms a high-speed flow, and a flow path of the sample 12 that is connected to the end of the pipe line 30 are connected to the flow path. And a flow cell body 31 for creating a laser beam measurement point. A recovery container 32 is provided on the outlet side of the flow cell body 31. The flow cytometer 10 can also be configured to arrange a cell sorter for separating specific cells or the like in the sample 12 within a short period of time by laser light irradiation and separate them into separate collection containers. .

レーザ光源部22は、波長の異なる3つのレーザ光、例えばλ1=405nm、λ2=533nmおよびλ3=650nm等のレーザ光を出射する部分である。レーザ光は、フローセル体31中の所定の位置に集束するようにレンズ系が設けられ、この集束位置が試料12の測定点となっている。 The laser light source unit 22 is a portion that emits three laser beams having different wavelengths, for example, laser beams having λ 1 = 405 nm, λ 2 = 533 nm, and λ 3 = 650 nm. A lens system is provided so that the laser beam is focused at a predetermined position in the flow cell body 31, and this focusing position is a measurement point of the sample 12.

図2は、レーザ光源部22の構成の一例を示す図である。
レーザ光源部22は、350nm〜800nmの可視光の、レーザ光を出射する部分で、主に赤色のレーザ光Rを所定の強度で出射するR光源22r、緑色のレーザ光Gを所定の強度で出射するG光源22gおよび青色のレーザ光Bを所定の強度で出射するB光源22bと、特定の波長帯域のレーザ光を透過し、他の波長帯域のレーザ光を反射するダイクロイックミラー23a1、23a2と、レーザ光R,GおよびBからなるレーザ光をフローセル体31中の測定点に集束させるレンズ系23cと、R光源22r、G光源22gおよびB光源22bのそれぞれを駆動するレーザドライバ34r,34gおよび34bと、供給された信号をレーザドライバ34r,34gおよび34bに分配する各パワースプリッタ35と、を有して構成される。
これらのレーザ光を出射する光源として例えば半導体レーザが用いられる。
FIG. 2 is a diagram illustrating an example of the configuration of the laser light source unit 22.
The laser light source unit 22 emits laser light of visible light of 350 nm to 800 nm. The R light source 22r mainly emits red laser light R with a predetermined intensity, and the green laser light G with a predetermined intensity. A G light source 22g that emits light and a B light source 22b that emits blue laser light B with a predetermined intensity, and dichroic mirrors 23a 1 and 23a that transmit laser light in a specific wavelength band and reflect laser light in other wavelength bands. 2 and a lens system 23c that focuses the laser light composed of the laser light R, G, and B onto a measurement point in the flow cell body 31, and a laser driver 34r that drives each of the R light source 22r, the G light source 22g, and the B light source 22b, 34g and 34b, and power splitters 35 for distributing the supplied signals to the laser drivers 34r, 34g and 34b. .
For example, a semiconductor laser is used as a light source for emitting these laser beams.

ダイクロイックミラー23a1は、レーザ光Rを透過し、レーザ光Gを反射するミラーであり、ダイクロイックミラー23a2は、レーザ光RおよびGを透過し、レーザ光Bを反射するミラーである。
この構成によりレーザ光R,GおよびBが合成されて、測定点を通過する試料12を照射する照射光となる。
The dichroic mirror 23a 1 is a mirror that transmits the laser beam R and reflects the laser beam G, and the dichroic mirror 23a 2 is a mirror that transmits the laser beams R and G and reflects the laser beam B.
With this configuration, the laser beams R, G, and B are combined to become irradiation light that irradiates the sample 12 that passes through the measurement point.

レーザドライバ34r,34gおよび34bは、処理部28及び制御部29に接続されて、レーザ光R,G,Bの出射の強度が調整されるように構成される。   The laser drivers 34r, 34g, and 34b are connected to the processing unit 28 and the control unit 29, and are configured to adjust the intensity of emission of the laser beams R, G, and B.

R光源22r、G光源22gおよびB光源22bは、レーザ光R、GおよびBが蛍光色素を励起して特定の波長帯域の蛍光を発するように、予め定められた波長帯域で発振する。レーザ光R、GおよびBによって励起される蛍光色素は測定しようとする生体物質等の試料12に付着されており、測定対象物としてフローセル体31の測定点を通過する際、測定点でレーザ光R、GおよびBの照射を受けて特定の波長で蛍光を発する。   The R light source 22r, the G light source 22g, and the B light source 22b oscillate in a predetermined wavelength band so that the laser lights R, G, and B excite the fluorescent dye to emit fluorescence in a specific wavelength band. The fluorescent dye excited by the laser beams R, G, and B is attached to the sample 12 such as a biological material to be measured, and when passing through the measurement point of the flow cell body 31 as the measurement object, the laser beam is measured at the measurement point. Fluorescent light is emitted at a specific wavelength when irradiated with R, G, and B.

受光部24は、管路30及びフローセル体31を挟んでレーザ光源部22と対向するように配置されており、測定点を通過する試料12によってレーザ光が前方散乱することにより試料12が測定点を通過する旨の検出信号を出力する光電変換器を備える。この受光部24から出力される信号は、処理部28及び制御部29に供給され、処理部28において試料12が管路30中の測定点を通過するタイミングを知らせるトリガー信号として用いられる。   The light receiving unit 24 is disposed so as to face the laser light source unit 22 with the pipe 30 and the flow cell body 31 interposed therebetween, and the sample 12 is measured at the measurement point by the forward scattering of the laser light by the sample 12 passing through the measurement point. And a photoelectric converter that outputs a detection signal indicating that the light passes through. The signal output from the light receiving unit 24 is supplied to the processing unit 28 and the control unit 29, and is used as a trigger signal that notifies the timing at which the sample 12 passes through the measurement point in the pipe 30 in the processing unit 28.

図3は、受光部24の一例の概略の構成を示す概略構成図である。図3では、試料12の流れる方向が紙面に対して垂直方向である。
受光部24は、試料12に当たって前方散乱するレーザ光を集光する集光レンズ24aと、集光した光を検出する多チャンネルの前方散乱光検出ユニット24bと、遮蔽板24cと、を有する。
FIG. 3 is a schematic configuration diagram illustrating a schematic configuration of an example of the light receiving unit 24. In FIG. 3, the direction in which the sample 12 flows is perpendicular to the paper surface.
The light receiving unit 24 includes a condensing lens 24a that condenses laser light that strikes the sample 12 and scatters forward, a multi-channel forward scattered light detection unit 24b that detects the condensed light, and a shielding plate 24c.

集光レンズ24aは、試料12に照射されて前方(レーザ光の進行方向前方、図3中の右側方向)に散乱したレーザ光を集光するために用いられる。
前方散乱光検出ユニット24bは、レーザ光の照射方向と直交し、かつ、試料12の流れる方向(図3中紙面に垂直方向)と直交する方向に、複数の検出器24dが並列配置されている。検出器24dのそれぞれは、検出信号が処理部28及び制御部29に出力されるように接続されている。検出器24dは、例えば、いずれも同じ構成をしたフォトダイオードが用いられる。このように、検出器24dを複数並列配置したのは、試料12が予め設定された測定点(レーザ光の集束点)の中心に対して位置ずれして通過するときの位置ずれの情報を得るためである。具体的には、試料12が、図3中、X方向に位置ずれした場合、レーザ光の前方散乱光は、散乱光検出ユニット24bの中心位置Aより図中下側の位置(図3中矢印の方向の位置)で集束する。試料12が、図3中、X方向と反対側方向に位置ずれした場合、レーザ光の前方散乱光は、散乱光検出ユニット24bの中心位置Aより図中上側の位置で集束する。この集束位置は、試料12のX方向の位置ずれ量に応じて変化する。したがって、計測した散乱光の最大強度がどの検出器24dで検出されたかによって、集束位置を知ることができる。これより、測定対象の試料12が測定点に対してどのくらい位置ずれして流れたかを知ることができる。測定した検出器24dの検知信号が処理部28及び制御部29に供給される。検知信号は、検出器24dそれぞれから出力されるので、最大値を示す検知信号を特定することで、散乱光の最大強度がどの検出器24dで検出されたか、知ることができる。また、検知信号は、データ処理の開始のためにトリガー信号として用いられる。
遮蔽板24cは、照射されたレーザ光の直接光が検出器24dで受光されないように、この直接光を遮蔽するために用いられる。
The condensing lens 24a is used to condense the laser light that is irradiated to the sample 12 and scattered forward (forward in the direction of travel of the laser light, right side in FIG. 3).
In the forward scattered light detection unit 24b, a plurality of detectors 24d are arranged in parallel in a direction perpendicular to the irradiation direction of the laser light and perpendicular to the direction in which the sample 12 flows (perpendicular to the paper surface in FIG. 3). . Each of the detectors 24 d is connected so that a detection signal is output to the processing unit 28 and the control unit 29. For the detector 24d, for example, photodiodes having the same configuration are used. As described above, a plurality of detectors 24d are arranged in parallel to obtain information on positional deviation when the sample 12 passes with a positional deviation from the center of a preset measurement point (laser beam focusing point). Because. Specifically, when the sample 12 is displaced in the X direction in FIG. 3, the forward scattered light of the laser light is positioned below the center position A of the scattered light detection unit 24b (the arrow in FIG. 3). Focusing at a position in the direction of. When the sample 12 is displaced in the direction opposite to the X direction in FIG. 3, the forward scattered light of the laser light is focused at a position on the upper side in the figure from the center position A of the scattered light detection unit 24b. This focusing position changes according to the amount of positional deviation of the sample 12 in the X direction. Therefore, the focusing position can be known depending on which detector 24d detects the maximum intensity of the measured scattered light. From this, it can be known how much the sample 12 to be measured has shifted with respect to the measurement point. The detected detection signal of the detector 24d is supplied to the processing unit 28 and the control unit 29. Since the detection signal is output from each detector 24d, it is possible to know which detector 24d has detected the maximum intensity of the scattered light by specifying the detection signal indicating the maximum value. The detection signal is used as a trigger signal for starting data processing.
The shielding plate 24c is used to shield the direct light of the irradiated laser light so that the detector 24d does not receive the direct light.

一方、受光部26は、レーザ光源部22から出射されるレーザ光の出射方向に対して垂直方向であって、かつフローセル体31の流路中の試料12の移動方向に対して垂直方向に配置されており、測定点にて照射された試料12が発する蛍光を受光する光電変換器を備える。
図4は、受光部26の一例の概略の構成を示す概略構成図である。
On the other hand, the light receiving unit 26 is arranged in a direction perpendicular to the emitting direction of the laser light emitted from the laser light source unit 22 and perpendicular to the moving direction of the sample 12 in the flow path of the flow cell body 31. And a photoelectric converter that receives fluorescence emitted from the sample 12 irradiated at the measurement point.
FIG. 4 is a schematic configuration diagram illustrating a schematic configuration of an example of the light receiving unit 26.

図4に示す受光部26は、試料12からの蛍光信号を集束させるレンズ系26aと、ダイクロイックミラー26b,26bと、バンドパスフィルタ26c〜26cと、光電子倍増管等の光電変換器40〜50と、を有する。
レンズ系26aは、受光部26に入射した蛍光を後述する散乱板52〜56の面上で集束させるように構成されている。
ダイクロイックミラー26b,26bは、所定の範囲の波長帯域の蛍光を反射させて、それ以外は透過させるミラーである。バンドパスフィルタ26c〜26cでフィルタリングして光電変換器40〜50で所定の波長帯域の蛍光を取り込むように、ダイクロイックミラー26b,26bの反射波長帯域および透過波長帯域が設定されている。
4 includes a lens system 26a that focuses a fluorescent signal from the sample 12, dichroic mirrors 26b 1 and 26b 2 , band pass filters 26c 1 to 26c 3, and a photoelectric converter such as a photomultiplier tube. 40-50.
The lens system 26a is configured to focus the fluorescence incident on the light receiving unit 26 on the surfaces of the scattering plates 52 to 56 described later.
The dichroic mirrors 26b 1 and 26b 2 are mirrors that reflect fluorescence in a wavelength band within a predetermined range and transmit the other fluorescence. The reflection wavelength band and the transmission wavelength band of the dichroic mirrors 26b 1 and 26b 2 are set so as to be filtered by the band pass filters 26c 1 to 26c 3 and to capture fluorescence of a predetermined wavelength band by the photoelectric converters 40 to 50. .

バンドパスフィルタ26c〜26cは、各光電変換器40〜50の受光面の前面に設けられ、所定の波長帯域の蛍光のみが透過するフィルタである。透過する蛍光の波長帯域は、蛍光色素の発する蛍光の波長帯域に対応して設定されている。
光電変換器40、42,44,46,48,50には、それぞれ順に、同じフィルタ特性を有するバンドパスフィルタ26c,26c、同じフィルタ特性を有するバンドパスフィルタ26c2,26c2 、同じフィルタ特性を有するバンドパスフィルタ26c3,26c3が設けられている。
The band-pass filters 26c 1 to 26c 3 are filters that are provided in front of the light receiving surfaces of the photoelectric converters 40 to 50 and transmit only fluorescence in a predetermined wavelength band. The wavelength band of the transmitted fluorescence is set corresponding to the wavelength band of the fluorescence emitted by the fluorescent dye.
The photoelectric converters 40, 42, 44, 46, 48, and 50 have, in order, band-pass filters 26c 1 and 26c 1 having the same filter characteristics, band-pass filters 26c 2 and 26c 2 having the same filter characteristics, and the same filters, respectively. Band pass filters 26c 3 and 26c 3 having characteristics are provided.

光電変換器40,44,48は、光電子倍増管を備えたセンサであり、光電面で受光した光を受光信号に変換する部分であり、光電変換器42,46,50は、シリコン等の半導体で構成されたフォトダイオードを備えたセンサであり、光電面で受光した光を受光信号に変換する部分である。
光電変換器40,44,48は、いずれも、図5に示すように、複数の光電子増倍管70が複数並列配置した構成のマルチチャンネル光電子増倍管となっており、処理部28は、光電子増倍管70がそれぞれで受光し出力した受光信号中のパルス信号の数をカウント(計数)し、このときのカウント値を合計することで、受光した蛍光の光子数である合計カウント値(計数値)を求める。
光電変換器40,44,48から出力される受光信号は、後述するように、蛍光強度が微弱あるいは比較的弱いとき蛍光強度の情報として用い、光電変換器42,46,50から出力される受光信号は、蛍光強度が比較的強いとき、蛍光強度の情報として用いる。
The photoelectric converters 40, 44, and 48 are sensors equipped with photomultiplier tubes, and are portions that convert light received by the photoelectric surface into received light signals. The photoelectric converters 42, 46, and 50 are semiconductors such as silicon. This is a sensor including a photodiode configured as described above, and is a part that converts light received by the photocathode into a light reception signal.
As shown in FIG. 5, each of the photoelectric converters 40, 44, and 48 is a multi-channel photomultiplier tube having a configuration in which a plurality of photomultiplier tubes 70 are arranged in parallel. The number of pulse signals in the received light signals received and output by the photomultiplier tube 70 is counted (counted), and the total count value at this time is summed to obtain a total count value (the number of photons of received fluorescence) Count).
As will be described later, the light reception signals output from the photoelectric converters 40, 44, and 48 are used as fluorescence intensity information when the fluorescence intensity is weak or relatively weak, and the light reception signals output from the photoelectric converters 42, 46, and 50 are used. The signal is used as fluorescence intensity information when the fluorescence intensity is relatively strong.

バンドパスフィルタ26c〜26cの前面には、光電変換器40〜50のそれぞれに対応して光量調整用絞り板58,60,62,64,66,68が設けられ、さらに、その前面には、光電変換器40,42に共通した散乱板52、光電変換器44,46に共通した散乱板54、光電変換器48,50に共通した散乱板56が、それぞれ設けられる。
散乱板52〜56は、レンズ系26aで集光した蛍光が、散乱板52〜56の面上で集束するように配置されている。散乱板52〜56は、入射した光を散乱して、均一な散乱光とする板材である。この板材で散乱した蛍光は、光電変換器40,42に向けて、光電変換器44,46に向けて、光電変換器48,50に向けて、それぞれ同じ強度で散乱する。本実施形態では、蛍光を拡散する光散乱体の一例として散乱板を用いる。
The front surface of the band-pass filter 26c 1 ~26c 3, the light quantity adjustment stop plate 58,60,62,64,66,68 corresponding to each of the photoelectric converters 40 to 50 are provided, further, on its front face Are provided with a scattering plate 52 common to the photoelectric converters 40 and 42, a scattering plate 54 common to the photoelectric converters 44 and 46, and a scattering plate 56 common to the photoelectric converters 48 and 50, respectively.
The scattering plates 52 to 56 are arranged so that the fluorescence condensed by the lens system 26 a is focused on the surfaces of the scattering plates 52 to 56. The scattering plates 52 to 56 are plate members that scatter incident light to obtain uniform scattered light. The fluorescence scattered by the plate material is scattered at the same intensity toward the photoelectric converters 40 and 42, toward the photoelectric converters 44 and 46, and toward the photoelectric converters 48 and 50, respectively. In this embodiment, a scattering plate is used as an example of a light scatterer that diffuses fluorescence.

光量調整用絞り板58,60,62,64,66,68は、それぞれ、開口部の大きさを調整できるように構成され、調整された開口部により通過しようとする散乱した蛍光の強度を調整する。具体的には、受光する光電変換器40,42の蛍光強度を調整し、受光する光電変換器44,46の蛍光強度を調整し、受光する光電変換器48,50の蛍光強度を調整する。蛍光強度を調整する点は、後述する。光量調整用絞り板は、光電子増倍管で構成される光電変換器40,44,48の受光面の前面にのみ設けられてもよいし、フォトダイオードで構成される光電変換器42,46,50の受光面の前面にのみ設けられてもよい。   The light quantity adjusting diaphragm plates 58, 60, 62, 64, 66, and 68 are each configured to be able to adjust the size of the opening, and adjust the intensity of scattered fluorescence that is going to pass through the adjusted opening. To do. Specifically, the fluorescence intensities of the photoelectric converters 40 and 42 that receive light are adjusted, the fluorescence intensities of the photoelectric converters 44 and 46 that receive light are adjusted, and the fluorescence intensities of the photoelectric converters 48 and 50 that receive light are adjusted. The point of adjusting the fluorescence intensity will be described later. The diaphragm plate for adjusting the light quantity may be provided only on the front surface of the light receiving surface of the photoelectric converters 40, 44, 48 constituted by photomultiplier tubes, or may be provided by the photoelectric converters 42, 46,. It may be provided only on the front surface of the 50 light receiving surfaces.

制御部29は、所定の強度でレーザ光を照射させ、受光部24から供給されたトリガー信号に基づいて処理部28における各処理の動作の制御管理を行う部分である。
処理部28は、所定の信号処理を行って蛍光強度の値を分析装置80に出力する部分である。
The control unit 29 is a part that performs laser beam irradiation with a predetermined intensity and controls and manages the operation of each process in the processing unit 28 based on the trigger signal supplied from the light receiving unit 24.
The processing unit 28 is a part that performs predetermined signal processing and outputs a fluorescence intensity value to the analyzer 80.

処理部28は、光電変換器40,42からの受光信号から、カウント値と受光信号積分値を求める。光電変換器40はマルチチャンネルの光電子増倍管で構成されているので、処理部28は、各光電子増倍管から出力された受光信号のうち、予め設定されている値を超える、所定時間内のパルス信号の数をそれぞれ計数し、各計数値を合計して光子数に相当する合計カウント値を求める。一方、光電変換器42は、フォトダイオードで構成されているので、処理部28は、光電変換器42からの受光信号(電圧信号)を所定時間内で積分した受光信号積分値を求める。
同様の処理が、マルチチャンネルの光電子増倍管で構成された光電変換器44,48からの受光信号、およびフォトダイオードで構成されている光電変換器46,50からの受光信号についても行われる。
The processing unit 28 obtains a count value and a light reception signal integrated value from the light reception signals from the photoelectric converters 40 and 42. Since the photoelectric converter 40 is composed of a multi-channel photomultiplier tube, the processing unit 28 is within a predetermined time that exceeds a preset value among the received light signals output from each photomultiplier tube. The number of pulse signals is counted, and each count value is summed to obtain a total count value corresponding to the number of photons. On the other hand, since the photoelectric converter 42 is composed of a photodiode, the processing unit 28 obtains an integrated value of the received light signal obtained by integrating the received light signal (voltage signal) from the photoelectric converter 42 within a predetermined time.
The same processing is performed for the light reception signals from the photoelectric converters 44 and 48 formed of multichannel photomultiplier tubes and the light reception signals from the photoelectric converters 46 and 50 formed of photodiodes.

このとき、マルチチャンネルの光電子増倍管で構成される光電変換器40の受光信号から求められる合計カウント値が所定値以下の場合、この合計カウント値を選択し、この合計カウント値を用いて蛍光強度の値を求める。合計カウント値が所定値を超える場合、フォトダイオードで構成される光電変換器42の受光信号から求められる受光信号積分値を選択し、この受光信号積分値を用いて蛍光強度の値を求める。   At this time, if the total count value obtained from the received light signal of the photoelectric converter 40 composed of a multi-channel photomultiplier tube is equal to or less than a predetermined value, the total count value is selected, and the total count value is used for fluorescence. Find the strength value. When the total count value exceeds a predetermined value, a light reception signal integrated value obtained from the light reception signal of the photoelectric converter 42 constituted by a photodiode is selected, and a fluorescence intensity value is obtained using the light reception signal integrated value.

このような蛍光強度の値の算出は、光電変換器44,46の受光信号から求められる合計カウント値及び受光信号積分値、及び光電変換器48,50の受光信号から求められる合計カウント値及び受光信号積分値においても同様に行われる。
合計カウント値及び受光信号積分値から蛍光強度の値を求める方法は、設定された参照テーブルを用いて蛍光強度の値を求める。
Such calculation of the fluorescence intensity value is performed by calculating the total count value and the received light signal integrated value obtained from the received light signals of the photoelectric converters 44 and 46, and the total count value and received light obtained from the received light signals of the photoelectric converters 48 and 50. The same applies to the signal integration value.
In the method of obtaining the fluorescence intensity value from the total count value and the received light signal integration value, the fluorescence intensity value is obtained using a set reference table.

このように、処理部28が、蛍光強度の値を求めるために、合計カウント値及び受光信号積分値のいずれか一方を選択して用いるのは以下の理由による。
図6(a),(b)は、光電子増倍管を用いたときの受光信号の例を示している。
蛍光が微弱光から弱い蛍光の場合、図6(a)に示すように、パルス信号が離散的に発生する信号形態を成し、この1つのパルス信号が1つ光子に相当する。図6(a)に示す場合、4つの光子を受光したことを意味する。したがって、このパルス信号の数を計数することで、受光した光子数を知ることができ、蛍光強度を知ることができる。なお、図6(a)中、パルス信号の振幅が変動しているが、これは、光電子増倍管の増幅機構の不安定性によるものである。
As described above, the processing unit 28 selects and uses one of the total count value and the received light signal integration value for obtaining the fluorescence intensity value for the following reason.
FIGS. 6A and 6B show examples of received light signals when a photomultiplier tube is used.
When the fluorescence is from weak light to weak fluorescence, as shown in FIG. 6A, a pulse signal is generated discretely, and this one pulse signal corresponds to one photon. In the case shown in FIG. 6A, it means that four photons are received. Therefore, by counting the number of pulse signals, the number of received photons can be known, and the fluorescence intensity can be known. In FIG. 6A, the amplitude of the pulse signal fluctuates due to instability of the amplification mechanism of the photomultiplier tube.

しかし、蛍光強度が中〜強になると、光子の到来が連続的となり、図6(b)に示す太線のように、パルス信号が重畳して連続信号となって計数することはできない。このため、フォトダイオードの受光信号を所定時間の範囲で積分した受光信号積分値を用いる。受光信号積分値が大きいほど、蛍光強度が強いことを意味する。
すなわち、蛍光強度が微弱〜弱の範囲では、光電子増倍管からの受光信号を用いて求められる合計カウント値を、蛍光強度が中〜強の範囲では、フォトダイオードからの受光信号を用いて求められる受光信号積分値を選択して用いる。
処理部28で求める蛍光強度は、蛍光強度が徐々に強く変化する場合、蛍光強度の値も連続的に変化するため、合計カウント値と受光信号積分値との間で選択を切り替えるとき、求める蛍光強度の値が連続的に繋がるように、光量調整用絞り板58,60,62,64,66,68の開口部の面積は調整される。
However, when the fluorescence intensity becomes medium to strong, the arrival of photons becomes continuous, and the pulse signal cannot be counted as a continuous signal as shown by the thick line in FIG. 6B. For this reason, a light reception signal integrated value obtained by integrating the light reception signal of the photodiode in a predetermined time range is used. It means that the larger the received light signal integration value, the stronger the fluorescence intensity.
That is, the total count value obtained using the received light signal from the photomultiplier tube in the range where the fluorescence intensity is weak to weak is obtained using the received light signal from the photodiode in the range where the fluorescence intensity is medium to strong. The received light signal integral value is selected and used.
The fluorescence intensity obtained by the processing unit 28 is obtained when the selection is switched between the total count value and the received light signal integral value because the value of the fluorescence intensity continuously changes when the fluorescence intensity gradually and strongly changes. The areas of the openings of the light amount adjusting diaphragm plates 58, 60, 62, 64, 66, and 68 are adjusted so that the intensity values are continuously connected.

図7(a)は、合計カウント値と蛍光強度との特性を、図7(b)は、受光信号積分値と蛍光強度との間の特性を、模式的に示す図である。
蛍光強度がL1以下の領域では、図7(a)の太線で示すように、合計カウント値は蛍光強度に比例して増大するが、蛍光強度L1を超えると、合計カウント値は一定値となって飽和する。これは、上述したように、パルス信号が重畳となって計数できないためである。
FIG. 7A schematically shows the characteristic between the total count value and the fluorescence intensity, and FIG. 7B schematically shows the characteristic between the light reception signal integrated value and the fluorescence intensity.
In the region where the fluorescence intensity is less than or equal to L 1 , the total count value increases in proportion to the fluorescence intensity as shown by the thick line in FIG. 7A, but when the fluorescence intensity exceeds L 1 , the total count value is a constant value. It becomes saturated. This is because the pulse signal is superimposed and cannot be counted as described above.

図7(b)中の太線で表される受光信号積分値と蛍光強度との間の特性では、蛍光強度がL2〜L4の領域で、受光信号積分値は蛍光強度に比例して増大するが、蛍光強度L4を超えると、受光信号積分値は一定値となって飽和する。また、図7(b)の太線の受光信号積分値は、蛍光強度がL2未満ではその値がδ未満となって、回路中のランダムノイズに埋もれて、受光信号積分値と蛍光強度との間で一定の特性を有さない。
この場合、蛍光強度がL1以下の領域では、図7(a)に示す太線の特性を用いた蛍光強度が求められ、蛍光強度がL2〜L4の領域では、図7(b)に示す太線の特性を用いた蛍光強度が求められる。しかし蛍光強度L1〜L2の領域で蛍光強度の値が存在しないため、蛍光強度がL1以下の値から蛍光強度の値がL4に徐々に変化したとき、蛍光強度の値は連続的に繋がらない。このため、蛍光強度の値が連続して繋がるように、光量調整用絞り板58,60,62,64,66,68の開口部の面積が調整される。
In the characteristic between the light reception signal integral value and the fluorescence intensity represented by the thick line in FIG. 7B, the light reception signal integral value increases in proportion to the fluorescence intensity in the region where the fluorescence intensity is L 2 to L 4. However, when the fluorescence intensity L 4 is exceeded, the integrated value of the received light signal becomes a constant value and becomes saturated. Also, the light reception signal integral value of the thick line in FIG. 7B is less than δ when the fluorescence intensity is less than L 2 , and is buried in random noise in the circuit. There is no constant property between.
In this case, in the region where the fluorescence intensity is less than or equal to L 1 , the fluorescence intensity using the characteristic of the thick line shown in FIG. 7A is obtained, and in the region where the fluorescence intensity is L 2 to L 4 , FIG. The fluorescence intensity using the characteristic of the bold line shown is obtained. However, since there is no fluorescence intensity value in the region of the fluorescence intensity L 1 to L 2 , the fluorescence intensity value is continuous when the fluorescence intensity value gradually changes from L 1 or less to L 4. It is not connected to. For this reason, the areas of the openings of the light quantity adjusting diaphragm plates 58, 60, 62, 64, 66, 68 are adjusted so that the values of the fluorescence intensity are continuously connected.

例えば、光電子増倍管で構成される光電変換器40,44,48の前面に設けられた光量調整用絞り板58,62,66の開口部の面積を狭くすることで、図7(a)に示す細線のように特性を変えることができる。このとき、蛍光強度L2とL3との間の領域で、合計カウント値と受光信号積分値との選択を切り替えることにより、蛍光強度の値は連続的に繋がる。 For example, by reducing the area of the openings of the light quantity adjusting diaphragm plates 58, 62, 66 provided in front of the photoelectric converters 40, 44, 48 formed of photomultiplier tubes, FIG. The characteristics can be changed as shown in the thin line. At this time, the value of the fluorescence intensity is continuously connected by switching the selection between the total count value and the received light signal integration value in the region between the fluorescence intensity L 2 and L 3 .

さらには、フォトダイオードで構成される光電変換器42,46,50の前面に設けられた光量調整用絞り板60,64,68の開口部の面積を広くすることで、図7(b)に示す細線のように特性を変えることができ、蛍光強度L1近傍で、合計カウント値と受光信号積分値との間の選択を切り替えることで、蛍光強度の値は連続的に繋がる。
このように、光量調整用絞り板58,60,62,64,66,68の開口部の面積を調整することにより、図7(a),(b)に示す細線のように特性を変えることができる。つまり、合計カウント値と受光信号積分値との間の選択を切り替えるとき、切り替える値において、合計カウント値から求められる蛍光強度の値と、受光信号積分値から求められる蛍光強度の値とが一致するように調整することができ、蛍光強度の値が連続して繋がるように調整できる。処理部28では、光量調整用絞り板58,60,62,64,66,68の調整に応じて、参照テーブルも自働的に設定されるように構成されていることが好ましい。
Furthermore, by widening the area of the apertures of the light quantity adjusting diaphragm plates 60, 64, 68 provided in front of the photoelectric converters 42, 46, 50 formed of photodiodes, FIG. The characteristic can be changed as shown by a thin line, and the value of the fluorescence intensity is continuously connected by switching the selection between the total count value and the light reception signal integral value in the vicinity of the fluorescence intensity L 1 .
In this way, by adjusting the area of the openings of the light quantity adjusting diaphragm plates 58, 60, 62, 64, 66, and 68, the characteristics are changed as shown by the thin lines in FIGS. 7A and 7B. Can do. That is, when the selection between the total count value and the light reception signal integral value is switched, the value of the fluorescence intensity obtained from the total count value matches the value of the fluorescence intensity obtained from the light reception signal integration value in the value to be switched. It can adjust so that the value of fluorescence intensity may be connected continuously. It is preferable that the processing unit 28 is configured to automatically set the reference table in accordance with the adjustment of the light quantity adjusting diaphragm plates 58, 60, 62, 64, 66, and 68.

処理部28は、合計カウント値と受光信号積分値との間の上記選択による切り替えの他に、フォトダイオードで構成される光電変換器42の受光信号から求められた受光信号積分値が設定された値以下の場合、光電変換器40の受光信号から求められる合計カウント値を選択し、この合計カウント値を用いて蛍光強度の値を求め、受光信号積分値が設定された値を超える場合、受光信号積分値を選択し、受光信号積分値を用いて蛍光強度の値を求めることもできる。このような選択は、光電変換器44,46の受光信号から求められる蛍光強度、及び光電変換器48,50の受光信号から求められる蛍光強度においても同様に行われる。
この場合も、合計カウント値と受光信号積分値との間の選択を切り替えるとき、切り替える値において、合計カウント値から求められる蛍光強度の値と、受光信号積分値から求められる蛍光強度の値とが一致するように調整することができ、蛍光強度の値が連続的に繋がるように調整できる。このときも同様に、処理部28では、光量調整用絞り板58,60,62,64,66,68の調整に応じて、参照テーブルも自働的に設定されるように構成されていることが好ましい。
In addition to the switching between the total count value and the light reception signal integral value, the processing unit 28 is set with the light reception signal integral value obtained from the light reception signal of the photoelectric converter 42 formed of a photodiode. If the value is equal to or smaller than the value, the total count value obtained from the light reception signal of the photoelectric converter 40 is selected, the value of the fluorescence intensity is obtained using this total count value, and the light reception signal integration value exceeds the set value, It is also possible to select the signal integral value and obtain the fluorescence intensity value using the light reception signal integral value. Such selection is similarly performed for the fluorescence intensity obtained from the light reception signals of the photoelectric converters 44 and 46 and the fluorescence intensity obtained from the light reception signals of the photoelectric converters 48 and 50.
Also in this case, when the selection between the total count value and the light reception signal integral value is switched, the value of the fluorescence intensity obtained from the total count value and the value of the fluorescence intensity obtained from the light reception signal integral value are switched in the switching value. It can adjust so that it may correspond, and can adjust so that the value of fluorescence intensity may be connected continuously. Similarly, at this time, the processing unit 28 is configured to automatically set the reference table in accordance with the adjustment of the light quantity adjusting diaphragm plates 58, 60, 62, 64, 66, and 68. Is preferred.

処理部28は、さらに、受光部24から供給された検出信号のうち、最大の値を取るものが、どの検出器24dからのものであるか特定し、これによって前方散乱光の集光位置を特定し、この特定位置から、求めた蛍光強度の値に対して補正をするための補正係数を求め、この補正係数を用いて、求めた蛍光強度の値を補正する。
処理部28は、検出器24dの集光位置からレーザ光の強度を求め、この強度に応じた補正係数を求める処理を一括して行うために、予め記憶されている補正テーブルを用いて補正を行う。この補正テーブルは、試料12に照射されるレーザ光の光強度分布の情報を用いて集束位置と蛍光強度の値を補正するための補正係数とを関係付けて設定されたものである。
The processing unit 28 further specifies from which detector 24d the signal having the maximum value among the detection signals supplied from the light receiving unit 24, and thereby determines the condensing position of the forward scattered light. From this specified position, a correction coefficient for correcting the obtained fluorescence intensity value is obtained, and the obtained fluorescence intensity value is corrected using this correction coefficient.
The processing unit 28 obtains the intensity of the laser beam from the condensing position of the detector 24d, and performs correction using a correction table stored in advance in order to collectively perform a process for obtaining a correction coefficient corresponding to the intensity. Do. This correction table is set by associating the focusing position and the correction coefficient for correcting the value of the fluorescence intensity using the information on the light intensity distribution of the laser light irradiated on the sample 12.

図8(a)〜(e)は、蛍光強度に補正を行う必要性を説明する図である。
本発明では、受光信号は、後述する分析装置80において、図8(d)に示すような蛍光強度に対する試料12の頻度分布を算出し、この頻度分布から、特定の蛍光が測定されたか否かを判別するために使用する。このとき、蛍光強度が2種類存在する場合、頻度分布において2つのピークを形成する。この2つのピークの蛍光強度が近接しているとき、この2つのピークが判別できるためには、ピークの幅が狭いこと(分散が小さいこと)が必要である。図8(e)のように、1つのピークのピーク幅が広い(分散が大きい)場合、2つのピークは判別できない。図8(e)は、上述の補正をしない場合の頻度分布である。
FIGS. 8A to 8E are diagrams for explaining the necessity of correcting the fluorescence intensity.
In the present invention, the received light signal is calculated by calculating the frequency distribution of the sample 12 with respect to the fluorescence intensity as shown in FIG. 8D in the analyzer 80 described later, and whether or not specific fluorescence is measured from this frequency distribution. Used to determine At this time, when two types of fluorescence intensity exist, two peaks are formed in the frequency distribution. When the fluorescence intensities of these two peaks are close to each other, it is necessary that the peaks have a narrow width (small dispersion) in order to be able to distinguish the two peaks. As shown in FIG. 8E, when the peak width of one peak is wide (the dispersion is large), the two peaks cannot be distinguished. FIG. 8E shows a frequency distribution when the above correction is not performed.

図8(a)に示すように、試料12の通過する位置A〜C等に応じて、この位置におけるレーザ光の光強度分布の逆数の分布を持つ補正係数を用い、この補正係数を蛍光強度に乗算する。試料12の位置は、図8(c)のように、分布を持ってばらつくが、上述したように補正係数を用いて蛍光強度を補正するので、補正をしない場合の頻度分布である図8(e)に対して、図8(d)のようにピークの幅が狭くなる。   As shown in FIG. 8A, a correction coefficient having a reciprocal distribution of the light intensity distribution of the laser light at this position is used according to the positions A to C through which the sample 12 passes, and this correction coefficient is used as the fluorescence intensity. Multiply by. Although the position of the sample 12 varies with a distribution as shown in FIG. 8C, the fluorescence intensity is corrected using the correction coefficient as described above, and therefore the frequency distribution in the case of no correction is shown in FIG. In contrast to e), the peak width becomes narrower as shown in FIG.

このように、求めた蛍光強度に対して補正をするのは、図8(d)のようにピークの幅を狭くし、頻度分布における分解能を向上させるためである。
補正は単純に補正係数を、求めた蛍光強度の値に乗算するものである。これは、蛍光の強度が照射されるレーザ光の光強度に応じて線形的に変化する部分を好適に用いるからである。しかし、本発明ではこれに限定されない。少なくとも蛍光の強度が照射されるレーザ光の光強度と対応関係にあり、この関係を用いて補正係数を定めるとよい。
The reason for correcting the obtained fluorescence intensity in this way is to narrow the peak width as shown in FIG. 8D and improve the resolution in the frequency distribution.
In the correction, the correction coefficient is simply multiplied by the obtained fluorescence intensity value. This is because a portion in which the fluorescence intensity changes linearly according to the light intensity of the laser beam irradiated is preferably used. However, the present invention is not limited to this. At least the intensity of the fluorescence has a corresponding relationship with the light intensity of the irradiated laser beam, and the correction coefficient may be determined using this relationship.

分析装置80は、処理部28から供給される補正された受光信号を用いて、図8(d)のような頻度分布を作成し、フローセル体31の測定点を通過する試料12中に含まれる生体物質の種類等を特定し、試料12中に含まれる生体物質の分析を行う装置である。   The analysis device 80 creates a frequency distribution as shown in FIG. 8D using the corrected received light signal supplied from the processing unit 28 and is included in the sample 12 passing through the measurement point of the flow cell body 31. This is an apparatus that identifies the type of biological material and the like and analyzes the biological material contained in the sample 12.

このような蛍光検出装置10では、試料12がレーザ光によって照射されたとき、試料12から発する前方散乱光を、散乱光検出ユニット24bの検出器24dで検出する。検出器24dの生成する検知信号によって、前方散乱光の集束位置がわかるので、この集束位置に基づいて、処理部28が保有する補正テーブルを用いて補正係数が求められる。
一方、処理部28では、光電変換器40〜50からの受光信号を用いて、合計カウント値及び受光信号積分値を求め、例えば、合計カウント値が所定値以下の場合、合計カウント値から、合計カウント値と蛍光強度との間の特性を示す参照テーブルに基づいて、蛍光強度の値を求める。合計カウント値が所定値を超える場合、受光信号積分値から、受光信号積分値と蛍光強度との間の特性を示す参照テーブルに基づいて、蛍光強度の値を求める。
求めた蛍光強度の値に対して、先に求めた補正係数を乗算することにより、蛍光強度は補正される。
補正された蛍光強度の値は、分析装置80に供給されて、図8(d)に示すような頻度分布が作成される。
In such a fluorescence detection device 10, when the sample 12 is irradiated with laser light, the forward scattered light emitted from the sample 12 is detected by the detector 24d of the scattered light detection unit 24b. Since the convergence position of the forward scattered light is known from the detection signal generated by the detector 24d, a correction coefficient is obtained using a correction table held by the processing unit 28 based on the convergence position.
On the other hand, the processing unit 28 obtains a total count value and a light reception signal integrated value using the light reception signals from the photoelectric converters 40 to 50. For example, when the total count value is a predetermined value or less, the total count value is calculated from the total count value. Based on a reference table indicating characteristics between the count value and the fluorescence intensity, a value of the fluorescence intensity is obtained. When the total count value exceeds a predetermined value, the value of the fluorescence intensity is obtained from the received light signal integrated value based on a reference table indicating the characteristics between the received light signal integrated value and the fluorescent intensity.
The fluorescence intensity is corrected by multiplying the obtained fluorescence intensity value by the previously obtained correction coefficient.
The corrected fluorescence intensity value is supplied to the analyzer 80, and a frequency distribution as shown in FIG. 8D is created.

蛍光検出装置10では、処理部28において、受光部26の光電子増倍管である光電変換器40,44,48から出力した受光信号に基づいて求められる光子数の計数値である合計カウント値と、フォトダイオードで構成された光電変換器42,46,50から出力した受光信号に基づいて求められる受光信号積分値との間で一方の値を選択することにより、測定対象物の発する蛍光強度を求める。このため、微弱な蛍光から強い蛍光まで蛍光強度の計測をすることができ、高ダイナミックレンジの蛍光検出が可能となる。特に、光電子増倍管で構成される光電変換器には、複数の光電子増倍管を並列配置したマルチチャンネルを構成し、各光電子増倍管で得られた受光信号からカウント値を求め、この各カウント値を合計することにより、受光する光子数が少ないことに起因して生じる蛍光強度の大きなばらつき(分散)を抑制し、蛍光強度のばらつきを小さくすることができ、安定した蛍光強度の値を求めることができる。
また、開口部の面積を調整可能な光量調整用絞り板58,60,62,64,66,68を光電変換器40〜50の前面に設けるので、光量調整用絞り板58,60,62,64,66,68を調整することにより、微弱な蛍光から強い蛍光まで、蛍光強度の値を連続したデータとして求めることができる。
さらに、レーザ光の光強度の分布を用いた補正テーブルを用いて蛍光強度の補正を行うので、分析装置80では、ピーク幅の狭い頻度分布を得ることができる。一方、レーザ光に光強度分布が存在しても、この分布を用いて補正するので、従来のように、一定の光強度を有するレーザ光の中心部のみを蛍光の測定に使用する必要はなく、従来測定に用いられなかったレーザ光の中心部分の外側部分も蛍光の測定に使用することができる。このため、レーザ光を効率よく使用することができる。
In the fluorescence detection device 10, the processing unit 28 includes a total count value that is a count value of the number of photons obtained based on the received light signals output from the photoelectric converters 40, 44, and 48 that are photomultiplier tubes of the light receiving unit 26. The fluorescence intensity emitted from the object to be measured is selected by selecting one value between the integrated values of the received light signals obtained based on the received light signals output from the photoelectric converters 42, 46, and 50 formed of photodiodes. Ask. For this reason, fluorescence intensity can be measured from weak fluorescence to strong fluorescence, and fluorescence detection with a high dynamic range becomes possible. In particular, the photoelectric converter composed of photomultiplier tubes is configured as a multi-channel in which a plurality of photomultiplier tubes are arranged in parallel, and the count value is obtained from the received light signal obtained by each photomultiplier tube. By summing each count value, it is possible to suppress a large variation (dispersion) in fluorescence intensity caused by a small number of received photons, to reduce the variation in fluorescence intensity, and to achieve a stable fluorescence intensity value. Can be requested.
Further, since the aperture plates 58, 60, 62, 64, 66, and 68 for adjusting the light amount capable of adjusting the area of the opening are provided on the front surface of the photoelectric converters 40 to 50, the aperture plates for adjusting the light amount 58, 60, 62, By adjusting 64, 66, and 68, the value of fluorescence intensity can be obtained as continuous data from weak fluorescence to strong fluorescence.
Furthermore, since the fluorescence intensity is corrected using the correction table using the light intensity distribution of the laser light, the analyzer 80 can obtain a frequency distribution with a narrow peak width. On the other hand, even if there is a light intensity distribution in the laser light, correction is made using this distribution, so that it is not necessary to use only the central part of the laser light having a constant light intensity for fluorescence measurement as in the past. The outer portion of the central portion of the laser beam that has not been used for the conventional measurement can also be used for the fluorescence measurement. For this reason, a laser beam can be used efficiently.

以上、本発明の蛍光検出装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the fluorescence detection apparatus of the present invention has been described in detail. However, the present invention is not limited to the above embodiment, and various improvements and modifications may be made without departing from the spirit of the present invention. is there.

本発明の蛍光検出装置を用いたフローサイトメータの概略構成図である。It is a schematic block diagram of the flow cytometer using the fluorescence detection apparatus of this invention. 本発明の蛍光検出装置に用いられるレーザ光源部の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the laser light source part used for the fluorescence detection apparatus of this invention. 本発明の蛍光検出装置に用いられる試料の通過時の前方散乱光を受光する受光部の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the light-receiving part which receives the forward scattered light at the time of passage of the sample used for the fluorescence detection apparatus of this invention. 本発明の蛍光検出装置に用いられる、蛍光を受光する受光部の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the light-receiving part which receives the fluorescence used for the fluorescence detection apparatus of this invention. 図4に示す光電子増倍管の構成の一例を示す図である。It is a figure which shows an example of a structure of the photomultiplier tube shown in FIG. (a),(b)は、図4に示す光電変換器で得られる受光信号を説明する図である。(A), (b) is a figure explaining the light reception signal obtained by the photoelectric converter shown in FIG. (a)は、合計カウント値と蛍光強度との間の特性を示す図であり、(b)は、受光信号積分値と蛍光強度との間の特性を模式的に示す図である。(A) is a figure which shows the characteristic between a total count value and fluorescence intensity, (b) is a figure which shows typically the characteristic between a light reception signal integral value and fluorescence intensity. (a)〜(e)は、本発明の蛍光検出装置の補正について説明する図である。(A)-(e) is a figure explaining the correction | amendment of the fluorescence detection apparatus of this invention.

符号の説明Explanation of symbols

10 フローサイトメータ
12 試料
20 信号処理装置
22 レーザ光源部
22r R光源
22g G光源
22b B光源
23a1,23a2,26b1,26b2 ダイクロイックミラー
23c レンズ系
24,26 受光部
24a 集光レンズ
24b 前方散乱検出ユニット
24c 遮蔽板
24d 検出器
26a 集束レンズ
26c1,26c2,26c バンドパスフィルタ
28 処理部
29 制御部
30 管路
31 フローセル体
32 回収容器
34r,34g,34b レーザドライバ
35 パワースプリッタ
40,42,44,46,48,50 光電変換器
52,54,56 散乱板
58,60,62,64,66,68 光量調整用絞り板
70 光電子増倍管
80 分析装置
10 flow cytometer 12 sample 20 signal processor 22 laser light source unit 22r R light source 22 g G light 22b B light source 23a 1, 23a 2, 26b 1 , 26b 2 dichroic mirrors 23c lens system 24, 26 light-receiving portion 24a condenser lens 24b forward Scattering detection unit 24c Shielding plate 24d Detector 26a Focusing lens 26c 1 , 26c 2 , 26c 3 Band pass filter 28 Processing unit 29 Control unit 30 Pipe line 31 Flow cell body 32 Collection container 34r, 34g, 34b Laser driver 35 Power splitter 40, 42, 44, 46, 48, 50 Photoelectric converters 52, 54, 56 Scattering plate 58, 60, 62, 64, 66, 68 Light amount adjusting diaphragm plate 70 Photomultiplier tube 80 Analyzer

Claims (6)

流路中を流れる測定対象物にレーザ光を照射し、そのとき発する蛍光を測定する蛍光検出装置であって、
流路中の測定点を通過する測定対象物に対してレーザ光を照射するレーザ光源部と、
レーザ光の照射された測定対象物の蛍光を散乱させる光散乱体と、
散乱した蛍光の一部を取り込んで受光することにより、受光信号を出力する光電子増倍管およびフォトダイオードが、並列して構成された受光部と、
前記受光部の光電子増倍管から出力した受光信号に基づいて求められるパルス信号の計数値と、前記フォトダイオードから出力した受光信号に基づいて求められる受光信号積分値とのいずれか一方を選択することにより、測定対象物の発する蛍光強度を求める処理部と、を有することを特徴とする蛍光検出装置。
A fluorescence detection device that irradiates a measurement object flowing in a flow path with laser light and measures fluorescence emitted at that time,
A laser light source unit for irradiating a laser beam to a measurement object passing through a measurement point in the flow path;
A light scatterer that scatters fluorescence of a measurement object irradiated with laser light; and
A photomultiplier tube and a photodiode that output a light reception signal by capturing a part of the scattered fluorescence and receiving the light, and a light receiving unit configured in parallel;
Select either the count value of the pulse signal obtained based on the light reception signal output from the photomultiplier tube of the light receiving unit or the light reception signal integral value obtained based on the light reception signal output from the photodiode. And a processing unit that obtains the fluorescence intensity emitted from the measurement object.
前記処理部は、前記光電子増倍管からの受光信号に基づいて求められた前記計数値が所定値以下の場合、前記計数値から蛍光強度の値を求め、前記計数値が前記所定値を超える場合、前記処理部は前記受光信号積分値から蛍光強度の値を求める請求項1に記載の蛍光検出装置。   The processing unit obtains a fluorescence intensity value from the count value when the count value obtained based on a light reception signal from the photomultiplier is equal to or less than a predetermined value, and the count value exceeds the predetermined value. In this case, the processing unit obtains a fluorescence intensity value from the integrated value of the received light signal. 前記処理部は、前記フォトダイオードからの受光信号に基づいて求められた前記受光信号積分値が設定された値以下の場合、前記計数値から蛍光強度の値を求め、前記受光信号積分値が設定された値を超える場合、前記処理部は前記受光信号積分値から蛍光強度の値を求める請求項1に記載の蛍光検出装置。   The processing unit obtains a fluorescence intensity value from the count value when the received light signal integrated value obtained based on the received light signal from the photodiode is equal to or less than a set value, and the received light signal integrated value is set. The fluorescence detection device according to claim 1, wherein if the measured value is exceeded, the processing unit obtains a fluorescence intensity value from the integrated value of the received light signal. 前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱板との間に、蛍光の光量を調整する絞り板が設けられている請求項1〜3のいずれか1項に記載の蛍光検出装置。   The diaphragm plate which adjusts the light quantity of fluorescence is provided between at least any one of the photomultiplier tube and the photodiode, and the light scattering plate. Fluorescence detection device. 前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱体との間に、蛍光の光量を調整する絞り板が設けられ、
前記所定値において、前記計数値から求められる蛍光強度の値と、前記受光信号積分値から求められる蛍光強度の値とが一致するように、前記絞り板が調整される請求項2に記載の蛍光検出装置。
A diaphragm plate for adjusting the amount of fluorescence is provided between at least one of the photomultiplier tube and the photodiode and the light scatterer,
3. The fluorescence according to claim 2, wherein the diaphragm plate is adjusted so that a fluorescence intensity value obtained from the count value and a fluorescence intensity value obtained from the received light signal integration value coincide with each other at the predetermined value. Detection device.
前記光電子増倍管および前記フォトダイオードの少なくともいずれか一方と前記光散乱体との間に、蛍光の光量を調整する絞り板が設けられ、
前記設定された値において、前記計数値から求められる蛍光強度の値と、前記受光信号積分値から求められる蛍光強度の値とが一致するように、前記絞り板が調整される請求項3に記載の蛍光検出装置。
A diaphragm plate for adjusting the amount of fluorescence is provided between at least one of the photomultiplier tube and the photodiode and the light scatterer,
The diaphragm plate is adjusted so that the fluorescence intensity value obtained from the count value matches the fluorescence intensity value obtained from the received light signal integration value at the set value. Fluorescence detection device.
JP2008090628A 2008-03-31 2008-03-31 Fluorescence detection device Expired - Fee Related JP4834024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090628A JP4834024B2 (en) 2008-03-31 2008-03-31 Fluorescence detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090628A JP4834024B2 (en) 2008-03-31 2008-03-31 Fluorescence detection device

Publications (2)

Publication Number Publication Date
JP2009244080A JP2009244080A (en) 2009-10-22
JP4834024B2 true JP4834024B2 (en) 2011-12-07

Family

ID=41306140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090628A Expired - Fee Related JP4834024B2 (en) 2008-03-31 2008-03-31 Fluorescence detection device

Country Status (1)

Country Link
JP (1) JP4834024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321635A (en) * 2012-06-06 2015-01-28 索尼公司 Data correction method in fine particle measuring device and fine particle measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525212A1 (en) * 2010-01-15 2012-11-21 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence measurement device and fluorescence measurement method
JP5681600B2 (en) * 2010-09-24 2015-03-11 新日本空調株式会社 Biological particle evaluation apparatus and biological particle evaluation method
ES2897531T3 (en) * 2010-10-25 2022-03-01 Accuri Cytometers Inc Systems and user interface for collecting a data set in a flow cytometer
US11808688B2 (en) * 2018-10-25 2023-11-07 Plair, SA Method and device for detection and/or measurement of impurities in droplets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387548A (en) * 1986-09-29 1988-04-18 Matsushita Refrig Co Air conditioner
JPH0510946A (en) * 1991-07-03 1993-01-19 Fuji Electric Co Ltd Cell analysis device
JP3640461B2 (en) * 1996-04-03 2005-04-20 シスメックス株式会社 Particle analyzer
JP3720458B2 (en) * 1996-06-19 2005-11-30 オリンパス株式会社 Analysis equipment
JP3453595B2 (en) * 2000-07-07 2003-10-06 独立行政法人海上技術安全研究所 Multi-wavelength fluorescence measurement device
JP2002311027A (en) * 2001-04-09 2002-10-23 Hitachi Software Eng Co Ltd Beads, manufacturing method of beads, flow cytometer, and program
WO2005029046A2 (en) * 2003-04-29 2005-03-31 S3I, Llc A multi-spectral optical method and system for detecting and classifying biological and non-biological particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321635A (en) * 2012-06-06 2015-01-28 索尼公司 Data correction method in fine particle measuring device and fine particle measuring device
CN104321635B (en) * 2012-06-06 2018-06-05 索尼公司 Data correcting method and microparticle measuring device in microparticle measuring device

Also Published As

Publication number Publication date
JP2009244080A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4489146B2 (en) Fluorescence detection apparatus and fluorescence detection method
US9201138B2 (en) Photon detector with a paralyzable photon-sensitive element, in particular SPAD, and distance measuring device comprising said type of photon detector
JP4834024B2 (en) Fluorescence detection device
JP5381741B2 (en) Optical measuring apparatus and optical measuring method
US20120085933A1 (en) Fluorescence detection device and fluorescence detection method
JPH05119035A (en) Imaging flow sight meter
JP4902582B2 (en) Fluorescence detection device
CN110121643A (en) Systems for optical inspection, flow cytometer systems and its application method for flow cytometer
JP2008513770A (en) Examination of eggs for the presence of blood
JP2000241335A (en) Method and device for counting algae and fine particle
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
Shapiro Optical measurements in cytometry: light scattering, extinction, absorption, and fluorescence
CN108195823B (en) Laser-induced breakdown spectroscopy detection system
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
JP7348933B2 (en) Optical measuring device and optical measuring method
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
JP2003004625A (en) Flow sight meter
JP2749928B2 (en) Sample measuring method and sample measuring device
JP7365649B2 (en) Optical microscope with photon counting detector element and imaging method
TW201416659A (en) Biochip detecting device and light source detection method thereof
JPH0718788B2 (en) Optical particle measuring device
CN116106524B (en) blood analysis device
US20240102916A1 (en) Emission optical system, emission device, and optical measurement device
JP6673336B2 (en) Detector
JP3136102B2 (en) Photometric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees