JP4831607B2 - Pattern defect inspection method and photomask manufacturing method - Google Patents

Pattern defect inspection method and photomask manufacturing method Download PDF

Info

Publication number
JP4831607B2
JP4831607B2 JP2006096756A JP2006096756A JP4831607B2 JP 4831607 B2 JP4831607 B2 JP 4831607B2 JP 2006096756 A JP2006096756 A JP 2006096756A JP 2006096756 A JP2006096756 A JP 2006096756A JP 4831607 B2 JP4831607 B2 JP 4831607B2
Authority
JP
Japan
Prior art keywords
pattern
photomask
light
inspection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096756A
Other languages
Japanese (ja)
Other versions
JP2007271425A (en
Inventor
昇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006096756A priority Critical patent/JP4831607B2/en
Priority to TW096106686A priority patent/TW200736601A/en
Priority to CN2007100890910A priority patent/CN101046624B/en
Priority to KR1020070031279A priority patent/KR20070098695A/en
Publication of JP2007271425A publication Critical patent/JP2007271425A/en
Application granted granted Critical
Publication of JP4831607B2 publication Critical patent/JP4831607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706845Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706849Irradiation branch, e.g. optical system details, illumination mode or polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706851Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、被検査体における繰り返しパターンの欠陥を検査するパターン欠陥検査装置及びパターン欠陥検査方法、並びにこれらの欠陥検査を実施してフォトマスクを製造するフォトマスクの製造方法に関する。   The present invention relates to a pattern defect inspection apparatus and a pattern defect inspection method for inspecting a defect of a repetitive pattern in an object to be inspected, and a photomask manufacturing method for manufacturing a photomask by performing these defect inspections.

従来、被検査体としてのデバイス、或いは、このデバイスを製造するためのフォトマスクにおいては、表面に形成されたパターンの欠陥を検査する必要がある。このパターンの欠陥には、規則的に配列したパターンに、意図せずに発生した異なる規則性をもつエラーが含まれる。これはムラ欠陥とも称され、製造工程等において何らかの原因により発生する。   Conventionally, in a device as an object to be inspected or a photomask for manufacturing this device, it is necessary to inspect for defects in a pattern formed on the surface. The defect of this pattern includes an error with different regularity that occurs unintentionally in a regularly arranged pattern. This is also called a mura defect and occurs due to some cause in the manufacturing process or the like.

特に、表示デバイスにおいて上記欠陥が存在すると表示ムラが発生し、デバイス性能の低下につながる恐れがある。この表示デバイスを製造する際に用いられるフォトマスクにおいても、フォトマスクのパターンに欠陥が発生すると、その欠陥が表示デバイスのパターンに転写されるため、表示デバイスの性能が低下する恐れがある。   In particular, if the above-described defect exists in a display device, display unevenness occurs, which may lead to a decrease in device performance. Even in a photomask used for manufacturing the display device, when a defect occurs in the photomask pattern, the defect is transferred to the display device pattern, which may degrade the performance of the display device.

従来、上述のような表示デバイスのパターンやフォトマスクのパターンにおける欠陥は、通常微細な欠陥が規則的に配列していることにより、個々のパターンの形状検査においては検出できない場合が多いものの、領域全体として見たときに、他の部分と異なる状態となってしまうものである。そのため、欠陥検査は、目視による斜光検査等の外観検査によって主に実施されている。   Conventionally, defects in display device patterns and photomask patterns as described above are usually not detected by shape inspection of individual patterns due to the regular arrangement of fine defects. When viewed as a whole, it will be in a different state from the other parts. Therefore, the defect inspection is mainly performed by visual inspection such as visual oblique light inspection.

しかしながら、この目視検査は、作業者によって検査結果にばらつきが発生するという問題があるため、欠陥検査装置の自動化が望まれていた。
目視の斜光検査を自動化した装置としては、例えば、半導体ウエハのマクロ検査装置がその一つである。例えば、特許文献1には、半導体ウエハ上の周期的構造(繰り返しパターン)に所望の波長の光を照射する光源と、基板の表面からの回折光を受光するカメラと、このカメラによって撮影した画像データと無欠陥の基準データとを比較することによって欠陥を検出するための検出手段と、を有する装置が開示されている。このマクロ検査装置は、焦点のオフセット、ウエハの下面にゴミ(粒子)が存在してウエハ上下位置が変動することによるデフォーカス、ウエハの現像/エッチング/剥離工程に起因する半導体ウエハの構造における表面欠陥を、ウエハ全面を単一視野に収めて検査するというものである。
特開平9‐329555号公報
However, since this visual inspection has a problem that the inspection results vary depending on the operator, automation of the defect inspection apparatus has been desired.
One example of an apparatus that automates visual oblique light inspection is a macro inspection apparatus for semiconductor wafers. For example, Patent Document 1 discloses a light source that irradiates a periodic structure (repeated pattern) on a semiconductor wafer with light having a desired wavelength, a camera that receives diffracted light from the surface of the substrate, and an image captured by the camera. An apparatus having a detection means for detecting a defect by comparing the data with defect-free reference data is disclosed. This macro inspection apparatus has a focus offset, defocusing due to the presence of dust (particles) on the lower surface of the wafer and changing the vertical position of the wafer, and the surface of the semiconductor wafer structure resulting from the wafer development / etching / peeling process. A defect is inspected by putting the entire wafer surface in a single field of view.
JP-A-9-329555

このように、半導体ウェハの繰り返しパターンからの回折光を用いて当該繰り返しパターンの欠陥を検査する場合、上記半導体ウェハを、当該半導体ウェハを支持する支持面内において回転させる必要がある。これは、繰り返しパターンを構成する単位パターンの形状が単純な直線形状ではなく、2次元形状を有する場合があることから、上述のように半導体ウェハを回転させることにより繰り返しパターンへ異なった方向から光を照射して、この繰り返しパターンの欠陥を良好に検査するためである。   Thus, when inspecting the defect of the said repeating pattern using the diffracted light from the repeating pattern of a semiconductor wafer, it is necessary to rotate the said semiconductor wafer within the support surface which supports the said semiconductor wafer. This is because the unit pattern constituting the repetitive pattern may have a two-dimensional shape instead of a simple linear shape. Therefore, by rotating the semiconductor wafer as described above, light is emitted from different directions to the repetitive pattern. This is because the defect of the repeated pattern is inspected satisfactorily.

特許文献1での被検査体は半導体ウェハが対象であり、この半導体ウェハはそのサイズが直径200mm、最大でも直径300mm程度である。しかも、当該特許文献1に記載の欠陥検査装置では、図7に示すように、この半導体ウェハ100の全面をカメラの単一視野104で検査しており、半導体ウェハ100は、その中心がステージ101の回転中心102と一致するように当該ステージ101に支持されて回転される。従って、半導体ウェハ100を支持するステージ101のサイズは、半導体ウェハ100のサイズとほぼ等しく設定される。   The object to be inspected in Patent Document 1 is a semiconductor wafer, and this semiconductor wafer has a diameter of 200 mm and a maximum diameter of about 300 mm. Moreover, in the defect inspection apparatus described in Patent Document 1, as shown in FIG. 7, the entire surface of the semiconductor wafer 100 is inspected with a single field of view 104 of the camera. The rotation is supported by the stage 101 so as to coincide with the rotation center 102. Accordingly, the size of the stage 101 that supports the semiconductor wafer 100 is set substantially equal to the size of the semiconductor wafer 100.

ところで、液晶パネルなどの表示デバイスや、この液晶パネル製造用のフォトマスクにあっては、一辺が1mを超え、更には2mを超える大型の基板103(図8)が存在する。このような大型基板103における繰り返しパターンの欠陥を特許文献1に記載の欠陥検査装置を用いて検査しようとする場合には、次のような種々の課題が存在する。   By the way, in a display device such as a liquid crystal panel and a photomask for manufacturing the liquid crystal panel, there is a large substrate 103 (FIG. 8) having a side exceeding 1 m and further exceeding 2 m. In the case of inspecting such a repeated pattern defect in the large substrate 103 using the defect inspection apparatus described in Patent Document 1, there are various problems as follows.

まず第一に、上述のような大型基板103の全面を単一視野で検査することはできないため、大型基板103の検査領域を、単一視野104を単位とする複数の分割検査領域105に分割し、各分割検査領域105内での欠陥検査毎にステージ101を回転させて、繰り返しパターンに存在する欠陥を検査する。しかし、この場合、大型基板103の端部に位置する分割検査領域105において欠陥を検査するときには、この大型基板103を回転させたときの回転範囲106は、当該大型基板103の対角線107を回転半径とする円となり、ステージ101は、この回転範囲106とほぼ等しいサイズが必要となる。更に、ステージ101に重量の大きな大型基板103が支持されることになるので、このステージ101において重量が偏在してしまう。従って、大型基板103に撓みが生じて検査精度に悪影響を及ぼすことのないように基板を支持しつつ、ステージを回転駆動させることは、装置構成上、複雑且つ困難である。   First, since the entire surface of the large substrate 103 as described above cannot be inspected with a single visual field, the inspection region of the large substrate 103 is divided into a plurality of divided inspection regions 105 with the single visual field 104 as a unit. Then, the stage 101 is rotated for each defect inspection in each divided inspection area 105 to inspect defects existing in the repeated pattern. However, in this case, when a defect is inspected in the divided inspection region 105 located at the end of the large substrate 103, the rotation range 106 when the large substrate 103 is rotated is the rotational radius of the diagonal line 107 of the large substrate 103. The stage 101 needs to have a size approximately equal to the rotation range 106. Further, since the large substrate 103 having a large weight is supported on the stage 101, the weight is unevenly distributed in the stage 101. Therefore, it is complicated and difficult in terms of the apparatus configuration to rotate the stage while supporting the substrate so that the large substrate 103 is not bent and does not adversely affect the inspection accuracy.

また、大型基板103を回転させ、分割検査領域105を撮影するカメラを回転させない場合には、図9(A)に示すように、大型基板103の検査領域を分割する分割検査領域105は、例えば19個必要になり、検査時間が長時間となってしまう。この場合、カメラにより撮影された各分割検査領域105の画像は、図9(B)に示すように、画像処理によって正規位置に回転して修正されることになるが、分割検査領域105の数が多いため画像処理に時間を要し、これも検査時間を長時間とする一因になっている。   When the large substrate 103 is rotated and the camera for photographing the divided inspection area 105 is not rotated, as shown in FIG. 9A, the divided inspection area 105 for dividing the inspection area of the large substrate 103 is, for example, Nineteen are required, resulting in a long inspection time. In this case, as shown in FIG. 9B, the image of each divided inspection area 105 photographed by the camera is corrected by being rotated to a normal position by image processing. Therefore, it takes time for image processing, which also contributes to a long inspection time.

本発明の目的は、上述の事情を考慮してなされたものであり、被検査体の表面の、複雑な形状の単位パターンからなる繰り返しパターンに生じた欠陥を良好に検出できると共に、被検査体を支持するステージを含む装置構成を容易化できるパターン欠陥検査装置、パターン欠陥検査方法、及びフォトマスクの製造方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and it is possible to satisfactorily detect defects generated in a repetitive pattern composed of unit patterns having a complicated shape on the surface of the object to be inspected, and to be inspected. The present invention provides a pattern defect inspection apparatus, a pattern defect inspection method, and a photomask manufacturing method capable of facilitating the apparatus configuration including a stage that supports the substrate.

また、本発明の他の目的は、被検査体の検査領域を分割して検査する場合には、分割検査領域の数を最小化して、被検査体の繰り返しパターンに生じた欠陥の検査時間を短縮できるパターン欠陥検査装置、パターン欠陥検査方法、及びフォトマスクの製造方法を提供することにある。   Another object of the present invention is to minimize the number of divided inspection areas and divide the inspection time of defects generated in the repetitive pattern of the inspection object when the inspection area of the inspection object is divided and inspected. An object of the present invention is to provide a pattern defect inspection apparatus, a pattern defect inspection method, and a photomask manufacturing method that can be shortened.

態様1に記載の発明は、
単位パターンが規則的に配列されてなる繰り返しパターンを表面に備えた被検査体の、上記繰り返しパターンに発生した欠陥を検査するパターン欠陥検査装置であって、
上記被検査体を支持する支持面を備えたステージと、
上記被検査体の検査領域を複数の分割検査領域に分割した各々の分割検査領域に対し、変更可能な入射角θiで、平行度が2°以内の光を照射する、光源手段と、
上記分割検査領域に、複数の異なる方向から光を照射するために、上記光源手段を上記支持面と平行な面内で回転させ、所望の入射角θiのまま照射方向を変更可能とする回転手段と、
上記分割検査領域の上記繰り返しパターンからの回折光を受光する、上記支持面に垂直な方向から対向する位置に設けられた観察手段と、
を有することを特徴とするパターン欠陥検査装置である。
態様2に記載の発明に係るパターン欠陥検査装置は、態様1に記載の発明において
上記観察手段は、上記分割検査領域からの回折光のうち、0次よりも絶対値の大きな次数の回折光を受光することを特徴とするものである。
態様3に記載の発明は、
単位パターンが規則的に配列されてなる繰り返しパターンを表面に備えた被検査体をステージの支持面に支持し、
上記被検査体の検査領域を複数の分割検査領域に分割した該分割検査領域に対し、変更可能な入射角θiで、平行度が2°以内の光を光源手段により照射し、
上記照射によって上記分割検査領域の上記繰り返しパターンから生ずる回折光を、上記支持面に垂直な方向から対向する位置に設けられた観察手段により受光し、
上記受光した回折光から、上記繰り返しパターンに発生した欠陥に起因する回折光を検出して、当該欠陥を検査するパターン欠陥検査方法であって、
上記光の照射は、上記検査領域に複数の異なる方向から光を照射するために、上記光源手段を上記支持面と平行な面内で、所望の入射角θiのまま所定角度回転させて行うことを特徴とする、パターン欠陥検査方法である
態様4に記載の発明に係るパターン欠陥検査方法は、態様3に記載の発明において、
上記分割検査領域からの回折光のうち、0次よりも絶対値の大きな次数の回折光を観察手段が受光することを特徴とするものである。
態様5に記載の発明は、
基板上に遮光膜パターンを形成してフォトマスクを製造するフォトマスクの製造方法において、
態様3または4に記載のパターン欠陥検査方法を行う工程を含むことを特徴とするフォトマスクの製造方法である。
The invention described in aspect 1
A pattern defect inspection apparatus for inspecting a defect generated in the repetitive pattern of an object to be inspected provided with a repetitive pattern in which unit patterns are regularly arranged,
A stage having a support surface for supporting the test object;
A light source means for irradiating each divided inspection region obtained by dividing the inspection region of the inspection object into a plurality of divided inspection regions with light having a changeable incident angle θi and a parallelism of 2 ° or less;
In order to irradiate the divided inspection region with light from a plurality of different directions, the light source means is rotated in a plane parallel to the support surface, and the rotating means can change the irradiation direction while maintaining a desired incident angle θi. When,
Observation means provided at a position facing the support surface from a direction perpendicular to the diffracted light from the repetitive pattern of the divided inspection region,
It is a pattern defect inspection apparatus characterized by having .
The pattern defect inspection apparatus according to the invention described in aspect 2 is the invention described in aspect 1 ,
The observing means receives diffracted light having an order larger in absolute value than the 0th order out of diffracted light from the divided inspection region .
The invention according to aspect 3,
Supporting the object to be inspected on the support surface of the stage, which has a repeating pattern in which unit patterns are regularly arranged on the surface,
With respect to the divided inspection area obtained by dividing the inspection area of the inspection object into a plurality of divided inspection areas, light having a changeable incident angle θi and a parallelism of 2 ° or less is irradiated by a light source means,
The diffracted light generated from the repeated pattern in the divided inspection region by the irradiation is received by an observation means provided at a position facing the support surface from a direction perpendicular to the support surface,
A pattern defect inspection method for inspecting the defect by detecting diffracted light caused by the defect generated in the repetitive pattern from the received diffracted light,
The light irradiation is performed by rotating the light source means by a predetermined angle while maintaining a desired incident angle θi in a plane parallel to the support surface in order to irradiate the inspection region from a plurality of different directions. Is a pattern defect inspection method .
The pattern defect inspection method according to the invention described in aspect 4 is the invention described in aspect 3,
Of the diffracted light from the divided inspection region, the observation means receives diffracted light of an order larger in absolute value than the 0th order .
The invention according to aspect 5,
In a photomask manufacturing method for manufacturing a photomask by forming a light shielding film pattern on a substrate,
A method for producing a photomask, comprising a step of performing the pattern defect inspection method according to aspect 3 or 4.

態様1、3又は5に記載の発明によれば、被検査体へ異なる方向から光を照射し、または/及び被検査体からの回折光を異なる方向から受光するために、光源手段と観察手段の少なくとも一方をステージに対し所定角度回転させる態様を含む。このことから、被検査体の表面における繰り返しパターンを構成する単位パターンが複雑な形状であっても、この繰り返しパターンに生じた欠陥を回折光を用いて良好に検出することができる。 According to the invention described in the aspect 1, 3 or 5 , the light source means and the observation means for irradiating the object to be inspected from different directions and / or receiving the diffracted light from the inspected object from different directions A mode in which at least one of the above is rotated by a predetermined angle with respect to the stage. For this reason, even if the unit pattern constituting the repetitive pattern on the surface of the object to be inspected has a complicated shape, defects generated in the repetitive pattern can be detected well using diffracted light.

また、被検査体へ異なる方向から光を照射し、または/及び被検査体からの回折光を異なる方向から受光するために、光源手段と観察手段の少なくとも一方をステージに対し所定角度回転させ、被検査体を支持するステージを回転させる必要がない。このため、被検査体の一辺が1mを超える大型基板の場合にも、ステージの大型化を回避でき、大型で重量の大きな被検査体を回転駆動する装置上の問題を回避できるなど、ステージを含む装置構成を容易化できる。   Further, in order to irradiate the object to be inspected from different directions and / or to receive diffracted light from the inspected object from different directions, at least one of the light source means and the observation means is rotated by a predetermined angle with respect to the stage, There is no need to rotate the stage that supports the object to be inspected. For this reason, even in the case of a large substrate with a side of the object to be inspected exceeding 1 m, it is possible to avoid an increase in the size of the stage and to avoid problems on the apparatus for rotating and driving a large and heavy object to be inspected. Including the apparatus configuration can be facilitated.

光源手段をステージに対して所定角度回転させる場合には、被検査体の検査領域を分割して検査する際に、検査領域の辺に沿って分割検査領域を設定できるので、分割検査領域の数を最小化できる。この結果、被検査体の繰り返しパターンに生じた欠陥の検査時間を短縮できる。   When the light source means is rotated by a predetermined angle with respect to the stage, when the inspection area of the object to be inspected is divided and inspected, the divided inspection areas can be set along the sides of the inspection area. Can be minimized. As a result, it is possible to shorten the inspection time for defects generated in the repeated pattern of the inspection object.

態様1又は3に記載の発明によれば、被検査体へ異なる方向から光を照射し、または被検査体からの回折光を異なる方向から受光するために、光源手段と観察手段の少なくとも一方がステージに対し複数個設置される態様が含まれる。このことから、被検査体の表面における繰り返しパターンを構成する単位パターンが複雑な形状であっても、この繰り返しパターンに生じた欠陥を回折光を用いて良好に検出することができる。 According to the first or third aspect of the invention, at least one of the light source means and the observation means is used to irradiate light from a different direction to the object to be inspected or to receive diffracted light from the object to be inspected from different directions. A mode in which a plurality of stages are installed is included. For this reason, even if the unit pattern constituting the repetitive pattern on the surface of the object to be inspected has a complicated shape, defects generated in the repetitive pattern can be detected well using diffracted light.

また、被検査体へ異なる方向から光を照射し、または/及び被検査体からの回折光を異なる方向から受光するために、光源手段と観察手段の少なくとも一方がステージに対し複数個設置され、被検査体を支持するステージを回転させる必要がない。このため、被検査体の基準長が1mを超える大型の場合にも、ステージの大型化を回避でき、大型で重量の大きな被検査体を支持して回転駆動することを回避できるなど、ステージを含む装置構成を容易化できる。   Further, in order to irradiate light from different directions to the object to be inspected and / or to receive diffracted light from the object to be inspected from different directions, at least one of light source means and observation means is installed on the stage, There is no need to rotate the stage that supports the object to be inspected. For this reason, even when the reference length of the object to be inspected is larger than 1 m, it is possible to avoid an increase in the size of the stage, and it is possible to avoid rotating and supporting a large and heavy object to be inspected. Including the apparatus configuration can be facilitated.

光源手段がステージに対し複数個設置された場合には、被検査体の検査領域を分割して検査する際に、検査領域の辺に沿って分割検査領域を設定できるので、分割検査領域の数を最小化できる。この結果、被検査体の繰り返しパターンに生じた欠陥の検査時間を短縮できる。   When a plurality of light source means are installed on the stage, when the inspection area of the inspection object is divided and inspected, the divided inspection areas can be set along the side of the inspection area. Can be minimized. As a result, it is possible to shorten the inspection time for defects generated in the repeated pattern of the inspection object.

態様2又は4に記載の発明によれば、被検査体の繰り返しパターンに生じた欠陥の情報を含む回折光を観察手段が受光することで、上記欠陥を良好に検査することができる。 According to invention of aspect 2 or 4 , the said defect can be test | inspected favorably because an observation means receives the diffracted light containing the information of the defect which arose in the repeating pattern of to-be-inspected object.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。
[A]第1の実施の形態(図1〜図5)
図1は、本発明に係るパターン欠陥検査装置における第1の実施の形態を示す概略斜視図である。図2は、図1のパターン欠陥検査装置を示す概略側面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
[A] First embodiment (FIGS. 1 to 5)
FIG. 1 is a schematic perspective view showing a first embodiment of a pattern defect inspection apparatus according to the present invention. FIG. 2 is a schematic side view showing the pattern defect inspection apparatus of FIG.

これらの図1及び図2に示すパターン欠陥検査装置10は、被検査体としてのフォトマスク50の表面に形成された繰り返しパターン51に発生した欠陥を検査するものであり、ステージ11、光源手段としての光源装置12、観察手段としての観察装置13、この観察装置13に備えられた受光光学系14、回転手段としての回転装置16を有して構成される。   The pattern defect inspection apparatus 10 shown in FIGS. 1 and 2 inspects defects generated in a repeated pattern 51 formed on the surface of a photomask 50 as an object to be inspected. The light source device 12, the observation device 13 as observation means, the light receiving optical system 14 provided in the observation device 13, and the rotation device 16 as rotation means.

ここで、フォトマスク50は、例えば液晶表示装置(特にFlat Panel Display:FPD)、プラズマ表示装置、EL表示装置、LED表示装置、DMD表示装置などの表示デバイスを製造する際に用いられる露光用マスクである。   Here, the photomask 50 is an exposure mask used when manufacturing a display device such as a liquid crystal display device (particularly Flat Panel Display: FPD), a plasma display device, an EL display device, an LED display device, a DMD display device, or the like. It is.

次に、被検査体であるフォトマスク50について説明する。このフォトマスク50は、通常、合成石英ガラス基板等の透明基板上にクロム膜等の遮光膜が設けられ、この遮光膜が所望のパターンとなるように部分的に除去されて遮光膜パターンが形成されたものである。本実施形態において検査されるフォトマスク50は、単位パターン53が規則的に配列して構成された繰り返しパターン51が、その表面に形成されている。   Next, the photomask 50 that is an object to be inspected will be described. This photomask 50 is usually provided with a light shielding film such as a chromium film on a transparent substrate such as a synthetic quartz glass substrate, and this light shielding film is partially removed to form a light shielding film pattern. It has been done. The photomask 50 to be inspected in the present embodiment has a repetitive pattern 51 formed by regularly arranging unit patterns 53 on the surface thereof.

このフォトマスク50は、図5に示すように、互いに直交する辺L1、L2の少なくとも一方が1mを越す大型フォトマスクである。また、図2に示すように、このフォトマスク50における繰り返しパターン(画素パターン)51のピッチ(画素ピッチ)dは、例えば50〜1000μm程度である。   As shown in FIG. 5, the photomask 50 is a large photomask in which at least one of the sides L1 and L2 orthogonal to each other exceeds 1 m. As shown in FIG. 2, the pitch (pixel pitch) d of the repetitive pattern (pixel pattern) 51 in the photomask 50 is, for example, about 50 to 1000 μm.

一般的に、この種のフォトマスク50の製造方法としては、まず、透明基板上に遮光膜を形成し、この遮光膜上にレジスト膜を形成する。次に、このレジスト膜に描画機におけるレーザのビームを照射して描画を施し、所定のパターンを露光する。次に、描画部と非描画部を選択的に除去してレジストパターンを形成する。その後、レジストパターンをマスクとして遮光膜をエッチングし、この遮光膜に繰り返しパターン(遮光膜パターン)51を形成し、最後に、残存レジストを除去してフォトマスク50を製造する。   In general, in order to manufacture this type of photomask 50, first, a light shielding film is formed on a transparent substrate, and a resist film is formed on the light shielding film. Next, the resist film is drawn by irradiating a laser beam in a drawing machine, and a predetermined pattern is exposed. Next, the drawing portion and the non-drawing portion are selectively removed to form a resist pattern. Thereafter, the light shielding film is etched using the resist pattern as a mask, a repeated pattern (light shielding film pattern) 51 is formed on the light shielding film, and finally, the remaining resist is removed to manufacture the photomask 50.

上述の製造工程では、レーザのビームの走査により、レジスト膜に直接描画を施す際に、スキャン走査精度や、ビームの径やスキャン幅に依存して生ずる繋ぎ目に起因して、描画不良によるエラーが描画単位ごとに周期的に発生することがあり、これが繰り返しパターン51における前記欠陥発生の一因となっている。その他、種々の原因で規則性のあるパターン欠陥が生じることがある。   In the manufacturing process described above, when writing directly on the resist film by scanning with a laser beam, errors due to drawing defects due to joints that depend on scan scanning accuracy, beam diameter, and scan width. May occur periodically for each drawing unit, which contributes to the occurrence of the defect in the repeated pattern 51. In addition, regular pattern defects may occur due to various causes.

この欠陥の一例を図4に示す。この図4では、欠陥領域を符号54で示す。図4(A)は、ビームによる描画の繋ぎ目に位置ずれが発生することによって、繰り返しパターン51における単位パターン53の間隔が部分的に異なってしまうことによる欠陥を示す。図4(B)は、同じく、ビームによる描画の繋ぎ目に位置ずれが発生することによって、繰り返しパターン51における単位パターン53の位置が、他の単位パターン53に対しずれてしまうことによる欠陥を示す。これらの図4(A)及び(B)に示す欠陥を座標位置変動系の欠陥と称する。また、図4(C)及び(D)は、描画機のビーム強度がばらつくこと等によって、繰り返しパターン51の単位パターン53が部分的に細くなったり、太くなる欠陥であり、これらの欠陥を寸法変動系の欠陥と称する。   An example of this defect is shown in FIG. In FIG. 4, the defect area is indicated by reference numeral 54. FIG. 4A shows a defect due to a partial difference in the interval of the unit patterns 53 in the repetitive pattern 51 due to the occurrence of a positional shift at the drawing joint by the beam. FIG. 4B also shows a defect caused by the position of the unit pattern 53 in the repetitive pattern 51 being shifted with respect to other unit patterns 53 due to the occurrence of a position shift at the drawing joint by the beam. . The defects shown in FIGS. 4A and 4B are referred to as coordinate position variation system defects. FIGS. 4C and 4D show defects in which the unit pattern 53 of the repetitive pattern 51 is partially thinned or thickened due to variations in the beam intensity of the drawing machine. This is called a fluctuating flaw.

さて、図1及び図2に示すパターン欠陥検査装置10における前記ステージ11は、フォトマスク50を支持する支持面を備えた台である。このステージ11は、X方向及びY方向に移動可能なX−Yステージとすることで、フォトマスク50の各分割検査領域58(後述)を所定位置に設定することができる。   Now, the stage 11 in the pattern defect inspection apparatus 10 shown in FIGS. 1 and 2 is a stage having a support surface for supporting the photomask 50. The stage 11 is an XY stage movable in the X direction and the Y direction, so that each divided inspection region 58 (described later) of the photomask 50 can be set at a predetermined position.

光源装置12は、高輝度(照度が300000Lx以上)で、平行性が高い(平行度が2°以内)の光源を用いる。このような条件を満足することができる光源としては、超高圧水銀ランプ、キセノンランプ、メタルハライドランプが好ましい。   The light source device 12 uses a light source with high luminance (illuminance is 300000 Lx or more) and high parallelism (parallelism is within 2 °). As a light source that can satisfy such conditions, an ultrahigh pressure mercury lamp, a xenon lamp, and a metal halide lamp are preferable.

この光源装置12は、上記光源を収納した装置本体17からライトガイド18を経てコリメータレンズ19へ光を導くものであり、ステージ11の下方に配置される。この光源装置12は、ステージ11の支持面に支持されたフォトマスク50の表面の、単位パターン53が規則的に配列された繰り返しパターン51へ斜め下方から所望の入射角θiで光を照射する。   The light source device 12 guides light from the device main body 17 containing the light source to the collimator lens 19 through the light guide 18 and is disposed below the stage 11. The light source device 12 irradiates light at a desired incident angle θi obliquely from below to a repetitive pattern 51 on which the unit patterns 53 are regularly arranged on the surface of the photomask 50 supported on the support surface of the stage 11.

観察装置13は、例えば対物レンズを備えたCCDカメラを撮像装置として用いることができ、ステージ11における支持面に対し垂直方向に対向する位置に、または支持面に対して所定角度で対向する位置に配置される。観察装置13は、受光光学系14にて受光された、フォトマスク50を透過した光の回折光を受光し、CCDカメラに画像情報として取り込む。受光光学系14を備えた観察装置13が、ステージ11における支持面に対し垂直方向に対向する位置に配置される場合には、斜めに配置されることにより受光光学系14の対物レンズとフォトマスク50との距離が均一にならず、面内で遠近感が生じて、本来均一な寸法の繰り返しパターン像が不均一になったり、面内でフォーカスがずれるという問題を低減できる。   As the observation device 13, for example, a CCD camera equipped with an objective lens can be used as an imaging device. The observation device 13 is positioned at a position facing the support surface of the stage 11 in the vertical direction or at a position facing the support surface at a predetermined angle. Be placed. The observation device 13 receives the diffracted light of the light transmitted through the photomask 50 received by the light receiving optical system 14 and captures it as image information into the CCD camera. When the observation device 13 including the light receiving optical system 14 is disposed at a position facing the support surface of the stage 11 in the vertical direction, the objective lens and the photomask of the light receiving optical system 14 are disposed obliquely. Thus, the distance to 50 is not uniform, and a sense of perspective is generated in the surface, so that the problem that the repeated pattern image with originally uniform dimensions becomes non-uniform or the focus shifts in the surface can be reduced.

上記観察装置13は、フォトマスク50を透過した光の回折光のうち、0次よりも絶対値の大きな次数の回折光を受光する。ここで、繰り返しパターン51を備えたフォトマスク50へ照射される照射光(入射光)と、繰り返しパターン51からの回折光との間には、図2及び図3に示すように、繰り返しパターン51のピッチをd、入射角をθi、次数がnのn次回折光の回折角をθn、入射光の波長λとしたとき、次の関係式(1)が成立する。
d(sinθn±sinθi)=nλ …(1)
The observation device 13 receives the diffracted light of the order having a larger absolute value than the 0th order among the diffracted light transmitted through the photomask 50. Here, between the irradiation light (incident light) irradiated to the photomask 50 provided with the repeated pattern 51 and the diffracted light from the repeated pattern 51, as shown in FIGS. Where d is the incident angle, θi is the incident angle, θn is the diffraction angle of the nth order diffracted light of order n, and λ is the wavelength λ of the incident light, the following relational expression (1) holds.
d (sin θn ± sin θi) = nλ (1)

0次回折光(直接光)は、微細な欠陥情報が相対的に極めて少なく、0次よりも絶対値の大きな次数の回折光ほど微細な欠陥情報が相対的に多く含まれることから、微細欠陥情報を得ためには、前述のごとく、0次回折光よりも絶対値の大きな次数の回折光(n次回折光)を観察装置13が受光する必要がある。また、回折次数nは、繰り返しパターン51のピッチdに基づいて決定される。従って、式(1)から、繰り返しパターン51の所定のピッチdに対し、観察装置13が所定のn次回折光を受光するために、n次回折光の方向(n次回折角θn)や入射光の波長λ、入射角θiが適宜変更して設定される。尚、図2及び図3中におけるn次回折角θnは、−1次回折光の回折角を示している。   The 0th-order diffracted light (direct light) contains relatively small amount of fine defect information, and the diffracted light of the order having a larger absolute value than the 0th order contains a relatively large amount of fine defect information. In order to obtain the above, as described above, it is necessary for the observation device 13 to receive the diffracted light of the order (n-order diffracted light) having a larger absolute value than the 0th-order diffracted light. The diffraction order n is determined based on the pitch d of the repeated pattern 51. Therefore, from the equation (1), in order for the observation device 13 to receive the predetermined n-th order diffracted light with respect to the predetermined pitch d of the repetitive pattern 51, the direction of the n-th order diffracted light (n-th order diffraction angle θn) and the wavelength of the incident light λ and the incident angle θi are appropriately changed and set. 2 and 3, the n-order diffraction angle θn indicates the diffraction angle of the −1st-order diffracted light.

また、観察装置13がCCDカメラ等のカメラを撮像装置として用いることにより、このCCDカメラより取り込まれた画像を表示画面に表示させることができ、また、その画像を画像データとして解析装置(図示せず)により解析させることができる。このCCDカメラは、2次元の画像を撮影するエリアカメラである。また、この観察装置13に接眼レンズを装備してもよい。   In addition, when the observation device 13 uses a camera such as a CCD camera as an imaging device, an image captured from the CCD camera can be displayed on a display screen, and the image is analyzed as an image data (not shown). )). This CCD camera is an area camera that captures a two-dimensional image. The observation device 13 may be equipped with an eyepiece.

観察装置13にて得られた画像データは、図示しない解析装置へ送信される。この解析装置は、観察装置13からの画像データそのものに閾値を設けるなどによって、フォトマスク50における繰り返しパターン51の欠陥を顕在化して検査する。   Image data obtained by the observation device 13 is transmitted to an analysis device (not shown). This analysis apparatus inspects the defects of the repetitive pattern 51 in the photomask 50 by making a threshold value for the image data itself from the observation apparatus 13.

ところで、図2及び図3に示すフォトマスク50における繰り返しパターン51の単位パターン53は、単なる直線形状ではなく、2次元的に複雑な形状の場合がある。このような場合には、フォトマスク50の繰り返しパターン51へ照射される光を、当該フォトマスク50と平行な面内において所定角度ずらした位置からも再度照射し、回折光を受光して、繰り返しパターン51の欠陥を検査する必要がある。そのため、本実施の形態のパターン欠陥検査装置10には、ステージ11上のフォトマスク50へ異なる方向から光を照射するために、光源装置12のコリメータレンズ19をステージ11の支持面と平行な面内で所定角度回転させる前記回転装置16が設置されている。   Incidentally, the unit pattern 53 of the repetitive pattern 51 in the photomask 50 shown in FIGS. 2 and 3 may not be a simple linear shape but may be a two-dimensionally complicated shape. In such a case, the light irradiated to the repeated pattern 51 of the photomask 50 is again irradiated from a position shifted by a predetermined angle in a plane parallel to the photomask 50, and the diffracted light is received and repeated. It is necessary to inspect the pattern 51 for defects. Therefore, in the pattern defect inspection apparatus 10 of the present embodiment, the collimator lens 19 of the light source device 12 is parallel to the support surface of the stage 11 in order to irradiate the photomask 50 on the stage 11 from different directions. The rotating device 16 that rotates a predetermined angle is installed.

また、フォトマスク50は、図1及び図5に示すように、互いに直交する辺L1、L2の少なくとも一方が1mを超える大型基板であるため、欠陥検査においては、フォトマスク50の検査領域57を分割し、各分割検査領域58毎に光を照射し、回折光を受光して欠陥を検査する必要がある。これらの分割検査領域58は、フォトマスク50の互いに直交する辺L1、L2に沿って並設される。前記ステージ11は、支持されたフォトマスク50の各分割検査領域58を観察装置13の真下(各分割検査領域58の中央位置と、受光光学系14における対物レンズの光軸とが一致する位置)に位置付けるようにフォトマスク50をX方向、Y方向に移動させる。   Further, as shown in FIGS. 1 and 5, the photomask 50 is a large substrate in which at least one of the sides L1 and L2 orthogonal to each other exceeds 1 m. Therefore, in the defect inspection, the inspection region 57 of the photomask 50 is formed. It is necessary to divide and irradiate each divided inspection region 58 with light and receive diffracted light to inspect defects. These divided inspection regions 58 are arranged side by side along the sides L1 and L2 orthogonal to each other of the photomask 50. The stage 11 places each divided inspection area 58 of the supported photomask 50 directly below the observation device 13 (a position where the center position of each divided inspection area 58 coincides with the optical axis of the objective lens in the light receiving optical system 14). The photomask 50 is moved in the X direction and the Y direction so as to be positioned at.

上記回転装置16は、具体的には、各分割検査領域58における中央位置に頂点が位置付けられ、ステージ11の支持面に平行な面に底面が位置付けられた円錐の側面に沿って、コリメータレンズ19から照射される光を所定角度回転させ、コリメータレンズ19を複数位置に配置可能とするものである。上記円錐の中心軸にコリメータレンズ19の回転軸20が一致し、この回転軸20と観察装置13の光軸21とが一致して設定される。また、コリメータレンズ19から照射される光の照射範囲22は、フォトマスク50の単一の分割検査領域58を含むサイズに設定される。   Specifically, the rotating device 16 has a collimator lens 19 along the side surface of the cone in which the apex is positioned at the center position in each divided inspection region 58 and the bottom surface is positioned in a plane parallel to the support surface of the stage 11. The collimator lens 19 can be arranged at a plurality of positions by rotating the light emitted from the lens by a predetermined angle. The rotation axis 20 of the collimator lens 19 coincides with the central axis of the cone, and the rotation axis 20 and the optical axis 21 of the observation device 13 are set to coincide. Further, the irradiation range 22 of the light irradiated from the collimator lens 19 is set to a size including the single divided inspection region 58 of the photomask 50.

上記回転装置16は、例えば回転軸20に一致して駆動軸を設け、この駆動軸から、一端にコリメータレンズ19が設置されたアームを延設させ、駆動軸をモータなどにより所定角度回転可能に構成したものである。尚、図1中の符号23は、コリメータレンズ19からの入射光の光軸を示す。   The rotating device 16 is provided with a driving shaft that coincides with the rotating shaft 20, for example, an arm having a collimator lens 19 installed at one end is extended from the driving shaft, and the driving shaft can be rotated by a predetermined angle by a motor or the like. It is composed. 1 indicates the optical axis of the incident light from the collimator lens 19.

上述のようなパターン欠陥検査装置10を用いてフォトマスク50における繰り返しパターン51(遮光膜パターン)に生じた欠陥を検査する場合には、まず、フォトマスク50をステージ11の支持面に支持し、このステージ11によりフォトマスク50をX方向及びY方向に移動させて、当該フォトマスク50の任意の分割欠陥領域58を観察装置13の真下に設定する。   When inspecting defects generated in the repetitive pattern 51 (light-shielding film pattern) in the photomask 50 using the pattern defect inspection apparatus 10 as described above, first, the photomask 50 is supported on the support surface of the stage 11, The stage 11 moves the photomask 50 in the X direction and the Y direction, and an arbitrary division defect area 58 of the photomask 50 is set directly below the observation device 13.

次に、光源装置12のコリメータレンズ19からフォトマスク50の上記任意の分割検査領域58へ所望の入射角θiで光を照射し、フォトマスク50からの回折光のうち、0次よりも絶対値の大きな次数の回折光(n次回折光)を観察装置13が受光して、当該分割検査領域58における画像データを取得する。この画像データから、解析装置は当該分割検査領域58における繰り返しパターン51の欠陥を検査する。   Next, light is irradiated from the collimator lens 19 of the light source device 12 to the arbitrary divided inspection region 58 of the photomask 50 at a desired incident angle θi, and the absolute value of the diffracted light from the photomask 50 is higher than the 0th order. The observation device 13 receives diffracted light of a large order (n-order diffracted light), and acquires image data in the divided inspection region 58. From this image data, the analysis apparatus inspects the defect of the repeated pattern 51 in the divided inspection area 58.

次に、回転装置16により光源装置12のコリメータレンズ19を、ステージ11の支持面と平行な面内で所定角度回転させ、この位置で、上記任意の分割検査領域58へ所望の入射角θiで同様に光を照射する。このときのフォトマスク50からの0次よりも絶対値の大きな次数の回折光(n次回折光)を観察装置13が受光し、解析装置が観察装置13からの画像データに基づいて、当該分割検査領域58における繰り返しパターン51の欠陥を検査する。   Next, the collimator lens 19 of the light source device 12 is rotated by a predetermined angle in a plane parallel to the support surface of the stage 11 by the rotating device 16, and at this position, the desired incident angle θi is input to the arbitrary divided inspection region 58. Similarly, light is irradiated. At this time, the observation device 13 receives diffracted light (n-th order diffracted light) having an absolute value larger than the 0th order from the photomask 50, and the analysis device performs the divided inspection based on the image data from the observation device 13. A defect of the repeated pattern 51 in the region 58 is inspected.

当該任意の分割検査領域58について、上述のような光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施した後、ステージ11を動作させて、隣接した分割検査領域58について、光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施する。フォトマスク50の全ての分割検査領域58について、光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施して、このフォトマスク50の欠陥検査を終了する。これをフォトマスク50の製造工程の一環として行う。   After performing the defect inspection of the repeated pattern 51 that is performed by changing the light irradiation direction as described above for the arbitrary divided inspection region 58, the stage 11 is operated and the adjacent divided inspection region 58 is changed. Then, the defect inspection of the repeated pattern 51 performed by changing the light irradiation direction is performed a plurality of times. For all the divided inspection areas 58 of the photomask 50, the defect inspection of the repeated pattern 51 performed by changing the light irradiation direction is performed a plurality of times, and the defect inspection of the photomask 50 is completed. This is performed as part of the manufacturing process of the photomask 50.

従って、上記実施の形態によれば、次の効果(1)〜(4)を奏する。
(1)光源装置12のコリメータレンズ19からフォトマスク50の各分割検査領域58へ異なる複数の方向から光を照射するために、回転装置16が、光源装置12のコリメータレンズ19をステージ11の支持面に平行な面内で所定角度回転させる。このことから、フォトマスク50の表面における繰り返しパターン51を構成する単位パターン53が複雑な2次元形状であっても、この繰り返しパターン51に生じた欠陥を、0次よりも大きな次数の回折光(n次回折光)を用いて良好に検査することができる。
Therefore, according to the said embodiment, there exist the following effects (1)-(4).
(1) The rotating device 16 supports the collimator lens 19 of the light source device 12 on the stage 11 in order to irradiate light from the collimator lens 19 of the light source device 12 to each divided inspection region 58 of the photomask 50 from different directions. A predetermined angle is rotated in a plane parallel to the plane. Therefore, even if the unit pattern 53 constituting the repetitive pattern 51 on the surface of the photomask 50 has a complicated two-dimensional shape, the defects generated in the repetitive pattern 51 are diffracted light having a higher order than the 0th order ( n-order diffracted light) can be used for good inspection.

(2)光源装置12のコリメータレンズ19からフォトマスク50の各分割検査領域58へ異なる複数の方向から光を照射するために、光源装置12のコリメータレンズ19をステージ11の支持面に平行な面内で所定角度回転させ、フォトマスク50を支持するステージ11を回転させることがない。このため、フォトマスク50の辺L1、L2の少なくとも一方が1mを超える大型基板の場合にも、ステージ11の大型化を回避でき、また、大型で重量の大きなフォトマスク50が支持されるステージ11の複雑な回転駆動を必要とせず、ステージ11を含む装置構成を容易化できる。   (2) The surface of the collimator lens 19 of the light source device 12 parallel to the support surface of the stage 11 in order to irradiate light from the collimator lens 19 of the light source device 12 to each divided inspection region 58 of the photomask 50 from different directions. The stage 11 that supports the photomask 50 is not rotated by a predetermined angle. Therefore, even in the case of a large substrate in which at least one of the sides L1 and L2 of the photomask 50 exceeds 1 m, it is possible to avoid an increase in the size of the stage 11, and the stage 11 on which the large and heavy photomask 50 is supported. Therefore, the apparatus configuration including the stage 11 can be simplified.

(3)フォトマスク50の検査領域57を分割して分割検査領域58毎にフォトマスク50の繰り返しパターン51における欠陥を検査する際に、各分割検査領域58を検査領域57の辺に沿って設定できるので、これらの分割検査領域58の数を最小化できる。例えば、従来の如く大型基板103(図8)を支持するステージ101を回転させ、カメラをステージ101と同期して回転させない場合には、図9に示すように、大型基板103の検査領域を分割する分割検査領域105は、例えば19個必要になるが、図5に示すように、本実施の形態では、分割検査領域58を15個と最小個数にすることができる。この結果、検査回数を低減できるので、フォトマスク50の繰り返しパターン51に生じた欠陥の検査時間を短縮できる。   (3) When the inspection area 57 of the photomask 50 is divided and a defect in the repetitive pattern 51 of the photomask 50 is inspected for each divided inspection area 58, each divided inspection area 58 is set along the side of the inspection area 57. As a result, the number of these divided inspection areas 58 can be minimized. For example, when the stage 101 that supports the large substrate 103 (FIG. 8) is rotated as in the prior art and the camera is not rotated in synchronization with the stage 101, the inspection area of the large substrate 103 is divided as shown in FIG. For example, 19 divided inspection areas 105 are required. However, as shown in FIG. 5, in this embodiment, the number of divided inspection areas 58 can be reduced to 15 pieces. As a result, since the number of inspections can be reduced, the inspection time for defects generated in the repeated pattern 51 of the photomask 50 can be shortened.

(4)フォトマスク50の繰り返しパターン51に生じた欠陥の情報を含む0次よりも大きな次数の回折光(n次回折光)を観察装置13が受光することから、上記欠陥を良好に検査することができる。   (4) Since the observation device 13 receives diffracted light of the order greater than the 0th order (nth order diffracted light) including information on the defect generated in the repeated pattern 51 of the photomask 50, the defect is well inspected. Can do.

[B]第2の実施の形態(図6)
図6は、本発明に係るパターン欠陥検査装置における第2の実施の形態を示す概略斜視図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付すことにより説明を省略する。
[B] Second embodiment (FIG. 6)
FIG. 6 is a schematic perspective view showing a second embodiment of the pattern defect inspection apparatus according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態のパターン欠陥検査装置10では、観察装置13の撮像装置(CCDカメラなど)が1次元の画像を検査するラインカメラである。従って、光源装置12のコリメータレンズ19及び観察装置13は、ラインカメラの撮影方向(例えばY方向)と直交するX方向に走査可能に設けられる。また、フォトマスク50の繰り返しパターン51を分割する分割検査領域59は、フォトマスク50のX方向に延在した帯状であり、フォトマスク50のY方向に並設される。従って、ステージ11は、支持したフォトマスク50を上記Y方向に沿って移動可能に構成される。   In the pattern defect inspection apparatus 10 of the present embodiment, the imaging device (CCD camera or the like) of the observation apparatus 13 is a line camera that inspects a one-dimensional image. Accordingly, the collimator lens 19 and the observation device 13 of the light source device 12 are provided so as to be able to scan in the X direction orthogonal to the shooting direction (for example, the Y direction) of the line camera. The division inspection region 59 for dividing the repetitive pattern 51 of the photomask 50 has a strip shape extending in the X direction of the photomask 50 and is arranged in parallel in the Y direction of the photomask 50. Accordingly, the stage 11 is configured to be able to move the supported photomask 50 along the Y direction.

従って、このパターン欠陥検査装置30によるフォトマスク50の繰り返しパターン51の欠陥検査では、ステージ11に支持されたフォトマスク50の任意の分割検査領域59を観察装置13の真下に位置づけた後、光源装置12のコリメータレンズ19から所望の入射角θiで光を照射し、この状態でコリメータレンズ19及び観察装置13をX方向に走査して、観察装置13がn次回折光を受光し、この画像データから解析装置が、当該分割検査領域59における繰り返しパターン51の欠陥を検査する。   Therefore, in the defect inspection of the repetitive pattern 51 of the photomask 50 by the pattern defect inspection apparatus 30, after positioning an arbitrary divided inspection area 59 of the photomask 50 supported by the stage 11 directly below the observation apparatus 13, the light source device In this state, the collimator lens 19 and the observation device 13 are scanned in the X direction, and the observation device 13 receives the nth-order diffracted light. From this image data, light is emitted from the twelve collimator lenses 19 at a desired incident angle θi. The analysis apparatus inspects the defect of the repeated pattern 51 in the divided inspection area 59.

次に、光源装置12のコリメータレンズ19と観察装置13を元の位置に戻し、回転装置16によりコリメータレンズ19を、ステージ11の支持面と平行な面内で所定角度回転させて、コリメータレンズ19によるフォトマスク50への光の照射方向を変更する。この状態でコリメータレンズ19及び観察装置13をX方向に走査して、観察装置13がn次回折光を受光し、その画像データから当該分割検査領域59におけるフォトマスク51の欠陥を検査する。   Next, the collimator lens 19 and the observation device 13 of the light source device 12 are returned to their original positions, and the collimator lens 19 is rotated by a predetermined angle in a plane parallel to the support surface of the stage 11 by the rotation device 16. The irradiation direction of the light to the photomask 50 is changed. In this state, the collimator lens 19 and the observation device 13 are scanned in the X direction, and the observation device 13 receives the nth-order diffracted light, and inspects the defect of the photomask 51 in the divided inspection region 59 from the image data.

当該任意の分割検査領域59について、上述のように光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施した後、ステージ11によりフォトマスク50をY方向に移動させて、隣接した分割検査領域59について、光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施する。フォトマスク50の全ての分割検査領域59について、光の照射方向を変更して実施する繰り返しパターン51の欠陥検査を複数回実施して、このフォトマスク50の欠陥検査を終了する。これをフォトマスク50の製造工程の一環として行う。   After the defect inspection of the repeated pattern 51 performed by changing the light irradiation direction as described above for the arbitrary divided inspection region 59 a plurality of times, the photomask 50 is moved in the Y direction by the stage 11, For the adjacent divided inspection regions 59, the defect inspection of the repeated pattern 51 performed by changing the light irradiation direction is performed a plurality of times. For all the divided inspection regions 59 of the photomask 50, the defect inspection of the repeated pattern 51 performed by changing the light irradiation direction is performed a plurality of times, and the defect inspection of the photomask 50 is completed. This is performed as part of the manufacturing process of the photomask 50.

従って、本実施の形態においても、前記実施の形態の効果(1)〜(4)と同様な効果を奏する。   Therefore, also in the present embodiment, the same effects as the effects (1) to (4) of the above-described embodiment are obtained.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、上記両実施の形態では、観察装置13がフォトマスク50を透過した光の回折光を受光するものを述べたが、光源装置12をステージ11に対し観察装置13と同じ側に配置して、観察装置13が、フォトマスク50にて反射した光の回折光を受光してもよい。更に、観察装置13は、フォトマスク50のパターン形成面側から観察してもよく、その裏面である基板面側から観察してもよい。このように、観察装置13の配置位置を適宜選択することができる。
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
For example, in the above embodiments, the observation device 13 receives the diffracted light of the light transmitted through the photomask 50. However, the light source device 12 is arranged on the same side as the observation device 13 with respect to the stage 11. The observation device 13 may receive the diffracted light of the light reflected by the photomask 50. Furthermore, the observation apparatus 13 may observe from the pattern formation surface side of the photomask 50, and may observe from the substrate surface side which is the back surface. Thus, the arrangement position of the observation device 13 can be selected as appropriate.

また、上記両実施の形態における光源装置12のコリメータレンズ19と観察装置13との設置位置を逆転させてもよい。つまり、光源装置12のコリメータレンズ19をステージ11の支持面に対して垂直な位置に配置し、観察装置13をステージ11の支持面に対し斜めの位置に配置して、この観察装置13にてn次回折光を受光する。そして、回転装置16の作用で、観察装置13をステージ11の支持面に平行な面内で所定角度回転させ、これにより、観察装置13がフォトマスク50の繰り返しパターン51からのn次回折光を複数の異なる方向から受光できるようにしてもよい。   Moreover, you may reverse the installation position of the collimating lens 19 of the light source device 12 and the observation apparatus 13 in both the said embodiment. That is, the collimator lens 19 of the light source device 12 is disposed at a position perpendicular to the support surface of the stage 11, and the observation device 13 is disposed at an oblique position with respect to the support surface of the stage 11. Receives nth order diffracted light. Then, by the action of the rotating device 16, the observation device 13 is rotated by a predetermined angle in a plane parallel to the support surface of the stage 11, whereby the observation device 13 generates a plurality of n-order diffracted lights from the repeated pattern 51 of the photomask 50. The light may be received from different directions.

更に、前記両実施の形態の観察装置13を、ステージ11の支持面に対して垂直な位置から一定角度ずらした位置に配置し、この観察装置13と光源装置12のコリメータレンズ19との位置関係を、観察装置13がフォトマスク50の繰り返しパターン51からn次回折光を受光する状態に保持して、観察装置13、コリメータレンズ19をそれぞれステージ11の支持面に平行な面内で所定角度回転させるようにしてもよい。これにより、光源装置12のコリメータレンズ19がステージ11上のフォトマスク50へ複数の異なる方向から光を照射し、且つ観察装置13がステージ11上のフォトマスク50からのn次回折光を複数の異なる方向から受光するようにしてもよい。   Further, the observation device 13 of both the embodiments is arranged at a position shifted from the position perpendicular to the support surface of the stage 11 by a certain angle, and the positional relationship between the observation device 13 and the collimator lens 19 of the light source device 12. Is held in a state where the observation device 13 receives the nth-order diffracted light from the repeated pattern 51 of the photomask 50, and the observation device 13 and the collimator lens 19 are rotated by a predetermined angle in a plane parallel to the support surface of the stage 11, respectively. You may do it. As a result, the collimator lens 19 of the light source device 12 irradiates the photomask 50 on the stage 11 with light from a plurality of different directions, and the observation device 13 applies the nth-order diffracted light from the photomask 50 on the stage 11 to a plurality of different directions. Light may be received from the direction.

また、上記両実施の形態では、光源装置12のコリメータレンズ19がステージ11の支持面と平行な面内で回転するものを述べたが、上記コリメータレンズ19がステージ11の支持面に平行な面内で円弧軌跡上に複数個配列され、それぞれが順次光を照射して、ステージ11上のフォトマスク50へ複数の異なる方向から光を照射するようにしてもよい。或いは、両実施形態における光源装置12のコリメータレンズ19と観察装置13とを逆配置し、観察装置13をステージ11の支持面と平行な面内で円弧軌跡上に複数個配列し、それぞれの観察装置13がステージ11上のフォトマスク50からのn次回折光を順次複数の異なる方向から受光してもよい。または、上記両実施の形態における光源装置12のコリメータレンズ19と観察装置13とをそれぞれ、ステージ11の支持面に平行な面内で円弧軌跡上に複数個を配置し、各コリメータレンズ19がステージ11上のフォトマスク50へ複数の異なる方向から順次光を照射し、各観察装置13がステージ11上のフォトマスク50からのn次回折光を複数の異なる方向から順次受光してもよい。   In the above embodiments, the collimator lens 19 of the light source device 12 rotates in a plane parallel to the support surface of the stage 11. However, the collimator lens 19 is a surface parallel to the support surface of the stage 11. It is also possible to arrange a plurality of light beams on a circular arc trajectory, and sequentially irradiate light to irradiate the photomask 50 on the stage 11 from a plurality of different directions. Alternatively, the collimator lens 19 and the observation device 13 of the light source device 12 in both embodiments are reversely arranged, and a plurality of the observation devices 13 are arranged on a circular locus in a plane parallel to the support surface of the stage 11, and each observation is performed. The apparatus 13 may receive n-order diffracted light from the photomask 50 on the stage 11 sequentially from a plurality of different directions. Alternatively, a plurality of collimator lenses 19 and observation devices 13 of the light source device 12 in both the above-described embodiments are arranged on an arc locus in a plane parallel to the support surface of the stage 11, and each collimator lens 19 is a stage. 11 may be sequentially irradiated with light from a plurality of different directions, and each observation device 13 may sequentially receive n-order diffracted light from the photomask 50 on the stage 11 from a plurality of different directions.

また、上記両実施の形態では被検査体がフォトマスク50であり、パターン欠陥検査装置10、30は、表示デバイスを製造するための上記フォトマスク50の繰り返しパターン51に発生した欠陥を検査するものを述べたが、この被検査体は表示デバイスであってもよい。この場合には、パターン欠陥検査装置10、30は、表示デバイスにおける表示面を形成する画素パターン(具体的には、液晶表示パネルの薄膜トランジスタや対向基板、カラーフィルタ等の繰り返しパターン)に生じた欠陥を検査するものであってもよい。   In both the above embodiments, the object to be inspected is the photomask 50, and the pattern defect inspection apparatuses 10 and 30 inspect defects generated in the repeated pattern 51 of the photomask 50 for manufacturing a display device. However, the device under test may be a display device. In this case, the pattern defect inspection apparatuses 10 and 30 have defects generated in a pixel pattern (specifically, a repeated pattern such as a thin film transistor, a counter substrate, and a color filter of a liquid crystal display panel) that forms a display surface in a display device. It may be one that inspects.

本発明に係るパターン欠陥検査装置における第1の実施の形態を示す概略斜視図である。It is a schematic perspective view which shows 1st Embodiment in the pattern defect inspection apparatus which concerns on this invention. 図1のパターン欠陥検査装置を示す概略側面図である。It is a schematic side view which shows the pattern defect inspection apparatus of FIG. 図1及び図2におけるフォトマスクの繰り返しパターンと、この繰り返しパターンからの回折光等を説明するための図である。It is a figure for demonstrating the repeating pattern of the photomask in FIG.1 and FIG.2, and the diffracted light from this repeating pattern, etc. FIG. 図1〜図3のフォトマスクにおける繰り返しパターンに発生した欠陥を示し、(A)及び(B)が座標変動系の欠陥、(C)及び(D)が寸法変動系の欠陥をそれぞれ示す概略図である。FIGS. 1 to 3 are schematic diagrams showing defects generated in a repetitive pattern in the photomask, in which (A) and (B) are defects in a coordinate variation system, and (C) and (D) are defects in a dimension variation system. It is. 図1〜図3のフォトマスクの検査領域を分割して検査するための分割検査領域を示すフォトマスクの平面図である。It is a top view of the photomask which shows the division | segmentation inspection area | region for dividing | segmenting and test | inspecting the test | inspection area | region of the photomask of FIGS. 本発明に係るパターン欠陥検査装置における第2の実施の形態を示す概略斜視図である。It is a schematic perspective view which shows 2nd Embodiment in the pattern defect inspection apparatus which concerns on this invention. 従来の欠陥検査装置におけるカメラ視野を、被検査体としての半導体ウェハと共に示す平面図である。It is a top view which shows the camera visual field in the conventional defect inspection apparatus with the semiconductor wafer as a to-be-inspected object. 上記従来の欠陥検査装置を用いて大型基板の欠陥を検査する場合の状況を示す平面図である。It is a top view which shows the condition in the case of test | inspecting the defect of a large sized board | substrate using the said conventional defect inspection apparatus. 上記従来の欠陥検査装置を用いて大型基板の欠陥を分割して検査したときの分割検査領域を示す大型基板の平面図である。It is a top view of the large sized board | substrate which shows the division | segmentation inspection area | region when dividing | segmenting and test | inspecting the defect of a large sized board | substrate using the said conventional defect inspection apparatus.

10 パターン欠陥検査装置
11 ステージ
12 光源装置(光源手段)
13 観察装置(観察手段)
16 回転装置(回転手段)
19 コリメータレンズ
50 フォトマスク(被検査体)
51 繰り返しパターン
53 単位パターン
57 検査領域
58 分割検査領域
d 繰り返しパターンのピッチ
n 回折次数
θn n次回折角
θi 入射角
DESCRIPTION OF SYMBOLS 10 Pattern defect inspection apparatus 11 Stage 12 Light source device (light source means)
13 Observation device (observation means)
16 Rotating device (rotating means)
19 Collimator lens 50 Photomask (inspection object)
51 Repeat Pattern 53 Unit Pattern 57 Inspection Area 58 Divided Inspection Area d Repeat Pattern Pitch n Diffraction Order θn nth Diffraction Angle θi Incident Angle

Claims (3)

直線以外の形状を含む単位パターンが規則的に配列されてなる繰り返しパターンを表面に備えたフォトマスクをステージの支持面に支持し、
上記被検査体の検査領域を複数の分割検査領域に分割した該分割検査領域に、変更可能な入射角θiで、平行度が2°以内の光を光源手段により照射し、
上記照射によって上記分割検査領域の上記繰り返しパターンから生ずる回折光を、上記支持面に垂直な方向から対向する位置に設けられた観察手段により受光し、
上記受光した回折光から、上記繰り返しパターンに発生した欠陥に起因する回折光を検出して、当該欠陥を検査するパターン欠陥検査方法であって、
上記光の照射は、上記検査領域に複数の異なる方向から光を照射するために、上記光源手段を上記支持面と平行な面内で所定角度回転させて行うことを特徴とする、パターン欠陥検査方法。
A unit pattern including a shape other than a straight line is regularly arranged , a photomask having a repeated pattern on the surface is supported on the support surface of the stage,
The divided inspection region obtained by dividing the inspection region of the object to be inspected into a plurality of divided inspection regions is irradiated with light having a changeable incident angle θi and a parallelism within 2 ° by a light source means,
The diffracted light generated from the repeated pattern in the divided inspection region by the irradiation is received by an observation means provided at a position facing the support surface from a direction perpendicular to the support surface,
A pattern defect inspection method for inspecting the defect by detecting diffracted light caused by the defect generated in the repetitive pattern from the received diffracted light,
The light irradiation is performed by rotating the light source means by a predetermined angle in a plane parallel to the support surface in order to irradiate the inspection area from a plurality of different directions. Method.
上記分割検査領域からの回折光のうち、0次よりも絶対値の大きな次数の回折光を観察手段が受光することを特徴とする請求項に記載のパターン欠陥検査方法。 2. The pattern defect inspection method according to claim 1 , wherein the observing means receives diffracted light having an order larger in absolute value than the 0th order among the diffracted light from the divided inspection region. 基板上に遮光膜パターンを形成してフォトマスクを製造するフォトマスクの製造方法において、
請求項1または2に記載のパターン欠陥検査方法を行う工程を含むことを特徴とするフォトマスクの製造方法。
In a photomask manufacturing method for manufacturing a photomask by forming a light shielding film pattern on a substrate,
A method for manufacturing a photomask, comprising a step of performing the pattern defect inspection method according to claim 1 .
JP2006096756A 2006-03-31 2006-03-31 Pattern defect inspection method and photomask manufacturing method Expired - Fee Related JP4831607B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006096756A JP4831607B2 (en) 2006-03-31 2006-03-31 Pattern defect inspection method and photomask manufacturing method
TW096106686A TW200736601A (en) 2006-03-31 2007-02-27 Pattern defect inspecting apparatus, pattern defect inspecting method, and method of producing a photomask
CN2007100890910A CN101046624B (en) 2006-03-31 2007-03-29 Pattern defect detection device, pattern defect detection method and manufacturing method for photomask
KR1020070031279A KR20070098695A (en) 2006-03-31 2007-03-30 Apparatus and method for inspecting defect of pattern and method for manufacturing photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096756A JP4831607B2 (en) 2006-03-31 2006-03-31 Pattern defect inspection method and photomask manufacturing method

Publications (2)

Publication Number Publication Date
JP2007271425A JP2007271425A (en) 2007-10-18
JP4831607B2 true JP4831607B2 (en) 2011-12-07

Family

ID=38674381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096756A Expired - Fee Related JP4831607B2 (en) 2006-03-31 2006-03-31 Pattern defect inspection method and photomask manufacturing method

Country Status (4)

Country Link
JP (1) JP4831607B2 (en)
KR (1) KR20070098695A (en)
CN (1) CN101046624B (en)
TW (1) TW200736601A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156687A (en) * 2007-12-26 2009-07-16 Hoya Corp Defect inspection device of photomask, defect inspection method of photomask, and manufacturing method of photomask
JP5245482B2 (en) * 2008-03-21 2013-07-24 株式会社ニコン Substrate inspection apparatus and mask substrate manufacturing method
KR20100042924A (en) 2008-10-17 2010-04-27 삼성전자주식회사 System for monitoring hazes of photomask and method for monitoring thereof
CN101738400B (en) * 2008-11-14 2011-12-07 中芯国际集成电路制造(上海)有限公司 Method and device for judging repeated defects on surface of wafer
CN102519968A (en) * 2011-11-28 2012-06-27 上海华力微电子有限公司 Defect detection device for mask plate
CN102495070A (en) * 2011-12-09 2012-06-13 北京凌云光视数字图像技术有限公司 System for detecting three-dimensional defects on surface of large-breadth adhesive label
JP2014035326A (en) 2012-08-10 2014-02-24 Toshiba Corp Defect inspection device
WO2015167492A1 (en) 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Imaging appratus and methods using diffraction-based illumination
JP2016070730A (en) * 2014-09-29 2016-05-09 株式会社Screenホールディングス Image acquisition device and image acquisition method
CN106783648B (en) * 2016-12-28 2019-01-25 歌尔股份有限公司 A kind of preparation method of LED display
KR102112053B1 (en) * 2018-08-01 2020-05-18 주식회사 뷰온 An Apparatus and Method for Inspecting Surface Defect using Image Sensor
CN112557400B (en) * 2020-11-30 2021-10-22 电子科技大学 System and method for detecting surface defect contour of lens of satellite telescope

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226901A (en) * 1995-02-21 1996-09-03 Dainippon Printing Co Ltd View finder color-filter inspection device
AU1549301A (en) * 1999-11-25 2001-06-04 Olympus Optical Co., Ltd. Defect inspection data processing system
JP4671573B2 (en) * 2000-03-24 2011-04-20 オリンパス株式会社 Substrate transport device and visual inspection device
KR20040039372A (en) * 2001-09-21 2004-05-10 올림푸스 가부시키가이샤 Defect Inspection Apparatus
JP2004117059A (en) * 2002-09-24 2004-04-15 Sony Corp Inspection method and inspection device for transparent body
JP4474904B2 (en) * 2003-11-18 2010-06-09 凸版印刷株式会社 Periodic pattern unevenness inspection device
JP4480001B2 (en) * 2004-05-28 2010-06-16 Hoya株式会社 Nonuniformity defect inspection mask, nonuniformity defect inspection apparatus and method, and photomask manufacturing method
JP2007170827A (en) * 2005-12-19 2007-07-05 Toppan Printing Co Ltd Defect inspection device of periodic pattern

Also Published As

Publication number Publication date
KR20070098695A (en) 2007-10-05
TW200736601A (en) 2007-10-01
JP2007271425A (en) 2007-10-18
CN101046624B (en) 2011-11-02
CN101046624A (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4831607B2 (en) Pattern defect inspection method and photomask manufacturing method
JP4993934B2 (en) Pattern defect inspection method, photomask manufacturing method, and display device substrate manufacturing method
US7355691B2 (en) Defect inspection apparatus and defect inspection method
JP4869129B2 (en) Pattern defect inspection method
JP4480001B2 (en) Nonuniformity defect inspection mask, nonuniformity defect inspection apparatus and method, and photomask manufacturing method
JP4480009B2 (en) Defect inspection apparatus and method, and photomask manufacturing method
JP5178561B2 (en) Pattern inspection method, pattern inspection apparatus, photomask manufacturing method, and pattern transfer method
TW201346438A (en) Using reflected and transmission maps to detect reticle degradation
TW201339742A (en) Time-varying intensity map generation for reticles
JP4583155B2 (en) Defect inspection method and system, and photomask manufacturing method
JP2012242268A (en) Inspection device and inspection method
JP4949928B2 (en) Pattern defect inspection method, pattern defect inspection apparatus, photomask product manufacturing method, and display device substrate manufacturing method
JP2007170827A (en) Defect inspection device of periodic pattern
JP2007121269A (en) Defect inspection apparatus, defect inspection method, photomask manufacturing method, pattern transferring method and semiconductor wafer manufacturing method
JP4771871B2 (en) Pattern defect inspection method, pattern defect inspection test pattern substrate, pattern defect inspection apparatus, photomask manufacturing method, and display device substrate manufacturing method
JP2008170371A (en) Pattern flaw inspection method, and pattern flaw inspecting device
JP2009156687A (en) Defect inspection device of photomask, defect inspection method of photomask, and manufacturing method of photomask
JP2007333590A5 (en)
JP2012058029A (en) Periodic pattern inspection device
JP5252286B2 (en) Surface inspection method, surface inspection apparatus and inspection method
JP2009156618A (en) Flaw inspection device of photomask, flaw inspection method of photomask and photomask manufacturing method
JP2013092494A (en) Photomask inspection method and inspection apparatus
JP2013076651A (en) Method and apparatus for inspecting periodical pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees