JP4831593B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4831593B2
JP4831593B2 JP2003031982A JP2003031982A JP4831593B2 JP 4831593 B2 JP4831593 B2 JP 4831593B2 JP 2003031982 A JP2003031982 A JP 2003031982A JP 2003031982 A JP2003031982 A JP 2003031982A JP 4831593 B2 JP4831593 B2 JP 4831593B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
cathode
anode
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003031982A
Other languages
Japanese (ja)
Other versions
JP2003318068A (en
Inventor
政広 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003031982A priority Critical patent/JP4831593B2/en
Publication of JP2003318068A publication Critical patent/JP2003318068A/en
Application granted granted Critical
Publication of JP4831593B2 publication Critical patent/JP4831593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサ及びその製造方法に関するものである。さらに詳しく言えば、誘電体皮膜を有する弁作用金属基体を積層する固体電解コンデンサにおいて、等価直列抵抗(ESR)を著しく低減させた固体電解コンデンサ及びその製造方法に関する。
【0002】
【従来の技術】
最近、電子機器の小型化・高周波化が進み、それに使用する電子部品の1種である固体電解コンデンサにおいても小型化が要求されているが、一般には積層型のチップ形状によって小型化の要求に対応している。
【0003】
図1は従来のチップ形状の固体電解コンデンサを示す斜視図であるが、外装樹脂6の内部にある固体電解コンデンサ素子1が複数個方向を揃えて配置されており、コンデンサ素子1の陽極部3と素子の表面に形成された陰極部2の底面とを、それぞれ一対の対向して配置されたリードフレームの陽極リード引き出し部である陽極リード部5と陰極リード引出し部である陰極リード部4に載置して導電材例えば導電性接着剤で接合された状態を示しており、別に用意したエポキシ樹脂等の外装樹脂6によって封口されている。
【0004】
例えば、固体電解コンデンサにおけるコンデンサ素子の形状が平板状のものに関しては、弁作用を有する平板状の金属からなる電極体の表面に誘電体皮膜を設け、この誘電体皮膜上に固体電解質層を設け、さらにこの固体電解質層上に陰極導電体層を設けたコンデンサ素子の陰極部を備え、このコンデンサ素子における電極体に一体に陽極部を設け、かつこの陽極引き出し部としてマスキング用のレジスト膜を施した部分を設け、更に前記陰極導電体層および陽極部の接続部がそれぞれ対応するように複数個のコンデンサ素子を重ね合わせて積層したものを陰極リード部及び陽極リード部に接続する構造を採用することにより、コンデンサ容量の容積効率(一定容積におけるコンデンサ容量値)を上げている。
【0005】
また、コンデンサ素子の等価直列抵抗を減ずる方法としてはコンデンサ素子に穴を開ける方法が提示されている(例えば、特許文献1参照。)。この方法では積層されたコンデンサ素子間の等価直列抵抗成分を有効に減少できていない。
【0006】
【発明が解決しようとする課題】
固体電解コンデンサの等価直列抵抗成分は陽極リード部の固有抵抗成分、陽極リード部とコンデンサ素子の陽極部との接合面における接触抵抗成分、コンデンサ素子が有している固有の抵抗成分、コンデンサ素子の陰極部と陰極リード部の接合面における接触抵抗成分、陰極リード部の固有抵抗成分が主に関与している。
【0007】
積層構造を有する固体電解コンデンサにおいては、1層目コンデンサ素子と陰極リード部は導電材(導電性接着剤)により電気的に接続されているが、2層目コンデンサ素子は導電材(導電性接着剤)を用いて1層目コンデンサ素子に結合されるので、陰極リード部とは1層目コンデンサ素子の表面に形成された陰極導電体層を介して電気的な接続が確保される構造となっていて、この陰極導電体層の抵抗成分が作製した固体電解コンデンサの等価直列抵抗を上昇させるという問題点があった。
【0008】
積層された各コンデンサ素子と陰極リード部を電気的に直接接続するために、導電性接着剤等をコンデンサ素子の積層後に塗布すると、固体電解コンデンサの等価直列抵抗は低くなるが、各コンデンサ素子にまたがって導電性接着剤を塗布するという工程が生じ、生産性、経済性に問題点があった。
【0009】
また、陰極リード部を各コンデンサ素子に直接接合するような形状とすることでも、固体電解コンデンサの等価直列抵抗成分を低くすることが出来るが、同様に陰極リード部に対して複雑な加工工程が必要となってしまう問題点があった。
【0010】
【特許文献1】
特開平4−119624号公報
【0011】
【課題を解決するための手段】
本発明者等は前述した課題を解決するために鋭意研究した結果、本発明は従来の固体電解コンデンサの製造方法を大きく変更することなく、単にコンデンサ素子陰極部の形状を変更することにより、積層された全てのコンデンサ素子と陰極リード部とを導電性接着剤を用いて直接接続することを可能ならしめるものである。
【0012】
弁作用を有する平板状の金属からなる電極体の表面に陽極酸化皮膜を設ける際に、コンデンサ素子の陰極部となる部分の少なくとも1ヶ所に、予め陰極切り欠き部を設ける。その後は固体電解質層を設け、さらにこの固体電解質層上に陰極導電体層を設けたコンデンサ素子を備え、このコンデンサ素子における電極体に一体に陽極端子を設け、かつこの陽極端子として絶縁樹脂帯(マスキング)を施した部分を設け、更に前記陰極導電体層および陽極端子部の接続部がそれぞれ対応するように複数個のコンデンサ素子を重ね合わせて積層したものを陰極リード部及び陽極リード部に接続することにより、等価直列抵抗成分が優れて低い固体電解コンデンサを得ることが出来る。
【0013】
即ち、本発明は以下の固体電解コンデンサ及びその製造方法を提供するものである。
1) 表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部を陽極部とし、この陽極基体の残部の該誘電体皮膜層上に固体電解質層、その上に導電体層が形成された陰極部を有する複数個の固体電解コンデンサ素子の該陽極部と該陰極部とがそれぞれ積層されてリードフレームに接続され、外装樹脂で封止成形されている固体電解コンデンサであって、それぞれの固体電解コンデンサ素子の陰極部の少なくとも一部に切り欠き部が有り、切り欠き部に導電材が充填されている固体電解コンデンサ、
2) 固体電解コンデンサ素子の陰極部の切り欠き部が、陰極部の縁部に有る上記1に記載の固体電解コンデンサ、
3) 固体電解コンデンサ素子が、陽極部と陰極部の境界部に絶縁性樹脂帯を周状に有する上記1または2に記載の固体電解コンデンサ、
4) 積層された陰極部の切り欠き部が、導電材で覆われている上記1乃至3のいずれかひとつに記載の固体電解コンデンサ、
5) 弁作用金属が、アルミニウム、タンタル、チタン、ニオブ及びそれらの合金から選ばれた一種である上記1乃至4のいずれかひとつに記載の固体電解コンデンサ、
6) 弁作用金属が、アルミニウム化成箔またはニオブ化成箔である上記1乃至4のいずれかひとつに記載の固体電解コンデンサ、
7) 弁作用金属が、30V未満の電圧で化成処理して得られた化成箔である上記1乃至6のいずれかひとつに記載の固体電解コンデンサ、
8) リードフレームが、銅または銅合金系の材料である上記1乃至7のいずれかひとつに記載の固体電解コンデンサ、
9) 固体電解質が、π電子共役系重合体を含んだものである上記1乃至8のいずれかひとつに記載の固体電解コンデンサ、
10) π電子共役系重合体が、複素五員環化合物から得られた重合体である上記9に記載の固体電解コンデンサ、
11) 複素五員環化合物が、ピロール、チオフェン、フラン、イソチアナフテン、1,3−ジヒドロイソチアナフテン及びそれらの置換誘導体から選ばれた少なくとも1種である上記10記載の固体電解コンデンサ、
12) 複素五員環化合物が、3,4−エチレンジオキシチオフェン及び1,3−ジヒドロイソチアナフテンから選ばれた少なくとも1種である上記10に記載の固体電解コンデンサ、
13) 表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部に陽極部を設け、この陽極基体の残部の少なくとも一部に切り欠き部を有する弁作用金属の該誘電体皮膜層上に固体電解質層、その上に導電体層を形成して陰極部を有する固体電解コンデンサ素子とし、これら素子を切り欠き部が重なるように複数個積層して切り欠き部に導電材を充填し、陰極部、陽極部をそれぞれリードフレームに接続し、外装樹脂で封止成形することを特徴とする固体電解コンデンサの製造方法、
14) 陽極部と陰極部の境界部に絶縁性樹脂帯を周状に設けた固体電解コンデンサ素子を切り欠き部が重なるように複数個積層して切り欠き部に導電材を充填し、陰極部、陽極部をそれぞれリードフレームに接続し、外装樹脂で封止成形する上記13に記載の固体電解コンデンサの製造方法、及び
15) 表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部を陽極部とし、この陽極基体の残部の該誘電体皮膜層上に固体電解質層、その上に導電体層が形成された陰極部を有する複数個の固体電解コンデンサ素子の該陽極部と該陰極部とがそれぞれ積層されてリードフレームに接続されている固体電解コンデンサ素子であって、それぞれの固体電解コンデンサ素子の陰極部の少なくとも一部に切り欠き部が有り、切り欠き部に導電材が充填されている固体電解コンデンサ素子。
【0014】
【発明の実施の形態】
以下、本発明について詳細に説明する。
(弁作用金属)
本発明において固体電解コンデンサの陽極基体として用いられる弁作用金属としては、例えばアルミニウム、タンタル、チタン、ニオブ、ジルコニウムおよびこれらを基質とする合金等がいずれも使用できる。そして陽極基体の形状としては、平板状の箔や板や棒状等が挙げられる。このうちアルミニウム化成箔が経済性に優れているので実用上多く用いられている。このアルミニウム化成箔は、40〜200μm厚、平板形素子単位として縦横1〜30mm程度の矩形のものが使用される。好ましくは幅2〜20mm、長さ2〜20mm、より好ましくは幅2〜5mm、長さ2〜6mmである。
【0015】
陽極基体の表面に設ける誘電体皮膜層は、弁作用金属の表面部分に設けられた弁作用金属自体の酸化物層であってもよく、或は、弁作用金属箔の表面上に設けられた他の誘電体層であってもよいが、特に弁作用金属自体の酸化物からなる層であることが望ましい。
【0016】
本発明では、表面に誘電体皮膜層が形成された平板状の陽極基体の端部の一区画に陽極部を設けて、さらにこの陽極基体の残部の誘電体皮膜上に固体電解質層、導電体層が形成された陰極部を設けており、この陰極部の少なくとも一部に切り欠き部を設けている。
【0017】
切り欠き部を設けるのは、陽極基体(弁作用金属)に誘電体皮膜層を形成する前に行うのが好ましいが、陽極基体に誘電体皮膜層を形成した後、または固体電解質層を形成する前でも、切り欠き部を設けることで生じた切り込み口の弁作用金属表面に誘電体皮膜を形成させることができればよい。結果的に陽極基体の弁作用金属表面が誘電体皮膜層で覆われていれば切り欠き部を設ける時機は特に差し支えがない。
【0018】
切り欠き部の大きさは、陰極部の大きさ、コンデンサ素子の積層枚数によって異なるため予備実験によって決められる。また切り欠き部の形状は円形、楕円形、半円形、三角形、四角形等公知のどのような形状でも差し支えない。切り欠き部の個数は、複数個でもよい。
【0019】
また、切り欠き部が有る部位としてはコンデンサ素子の陰極部であれば、例えば平板状の素子では縁部(外周部で隅部を含む)、平板央部どこでもよいが、加工し易さ、素子の強度等で縁部が好ましい。
【0020】
弁作用を有する平板状の金属からなる電極体の表面に陽極酸化皮膜を設ける際に、コンデンサ素子の陰極部となる部分の少なくとも1ケ所に、図2に示すような切り欠き部8を設ける。なお、図2の切り欠き部形状は四角形であるが、切り欠き形状は問わない。図3の如き側面に形成された切り欠き部8aであってもっよい。
【0021】
(固体電解質)
次に、陽極部とした以外の残りの誘電体皮膜層上に固体電解質を形成させているが、固体電解質層の種類には特に制限は無く、従来公知の固体電解質が使用できるが、とりわけ高導電率の導電性高分子を固体電解質として作製する固体電解質コンデンサは、従来の電解液を用いた湿式電解コンデンサや二酸化マンガンを用いた固体電解コンデンサに比べて、等価直列抵抗成分が低く、大容量でかつ小形となり、高周波性能が良好なために好ましい。
【0022】
本発明の固体電解コンデンサに用いられる固体電解質を形成する導電性重合体は限定されないが、好ましくはπ電子共役系構造を有する導電性重合体、例えばチオフェン骨格を有する化合物、多環状スルフィド骨格を有する化合物、ピロール骨格を有する化合物、フラン骨格を有する化合物等で示される構造を繰り返し単位として含む導電性重合体が挙げられる。
【0023】
導電性重合体の原料として用いられるモノマーのうち、チオフェン骨格を有する化合物としては、例えば、3−メチルチオフェン、3−エチルチオフェン、3−プロピルチオフェン、3−ブチルチオフェン、3−ペンチルチオフェン、3−ヘキシルチオフェン、3−ヘプチルチオフェン、3−オクチルチオフェン、3−ノニルチオフェン、3−デシルチオフェン、3−フルオロチオフェン、3−クロロチオフェン、3−ブロモチオフェン、3−シアノチオフェン、3,4−ジメチルチオフェン、3,4−ジエチルチオフェン、3,4−ブチレンチオフェン、3,4−メチレンジオキシチオフェン、3,4−エチレンジオキシチオフェン等の誘導体を挙げることができる。これらの化合物は、一般には市販されている化合物または公知の方法(例えば、Synthetic Metals誌,1986年,15巻,169頁)で準備できる。
【0024】
また、例えば、多環状スルフィド骨格を有する化合物としては、例えば、1,3−ジヒドロ多環状スルフィド(別名、1,3−ジヒドロベンゾ[c]チオフェン)骨格を有する化合物、1,3−ジヒドロナフト[2,3−c]チオフェン骨格を有する化合物が使用できる。さらには1,3−ジヒドロアントラ[2,3−c]チオフェン骨格を有する化合物、1,3−ジヒドロナフタセノ[2,3−c]チオフェン骨格を有する化合物を挙げることができ、公知の方法、例えば特開平8-3156号広報記載の方法により準備することができる。
【0025】
また、例えば、1,3−ジヒドロナフト[1,2−c]チオフェン骨格を有する化合物、1,3−ジヒドロフェナントラ[2,3−c]チオフェン誘導体、1,3−ジヒドロトリフェニロ[2,3−c]チオフェン骨格を有する化合物、1,3−ジヒドロベンゾ[a]アントラセノ[7,8−c]チオフェン誘導体等も使用できる。
【0026】
縮合環に窒素またはN−オキシドを任意に含んでいる化合物もあり、1,3−ジヒドロチエノ[3,4−b]キノキサリンや、1,3−ジヒドロチエノ[3,4−b]キノキサリン−4−オキシド、1,3−ジヒドロチエノ[3,4−b]キノキサリン−4,9−ジオキシド等を挙げることができるが、これらに限定されるものではない。
【0027】
また、ピロール骨格を有する化合物としては、例えば、3−メチルピロール、3−エチルピロール、3−プロピルピロール、3−ブチルピロール、3−ペンチルピロール、3−ヘキシルピロール、3−ヘプチルピロール、3−オクチルピロール、3−ノニルピロール、3−デシルピロール、3−フルオロピロール、3−クロロピロール、3−ブロモピロール、3−シアノピロール、3,4−ジメチルピロール、3,4−ジエチルピロール、3,4−ブチレンピロール、3,4−メチレンジオキシピロール、3,4−エチレンジオキシピロール等の誘導体を挙げられるが、これらに限られない。これらの化合物は、市販品または公知の方法で準備できる。
【0028】
また、フラン骨格を有する化合物としては、例えば、3−メチルフラン、3−エチルフラン、3−プロピルフラン、3−ブチルフラン、3−ペンチルフラン、3−ヘキシルフラン、3−ヘプチルフラン、3−オクチルフラン、3−ノニルフラン、3−デシルフラン、3−フルオロフラン、3−クロロフラン、3−ブロモフラン、3−シアノフラン、3,4−ジメチルフラン、3,4−ジエチルフラン、3,4−ブチレンフラン、3,4−メチレンジオキシフラン、3,4−エチレンジオキシフラン等の誘導体が挙げられるが、これらに限られるものではない。これらの化合物は市販品または公知の方法で準備できる。
【0029】
重合の手法は、電解重合でも、化学酸化重合でも、その組合せでもよい。また、誘電体皮膜上に導電性重合体でない固体電解質をまず形成し、次いで上記の重合方法で導電性重合体を形成する方法でもよい。
【0030】
導電性重合体を形成する例として、3,4−エチレンジオキシチオフェンモノマー及び酸化剤を好ましくは溶液の形態において、別々に前後してまたは一緒に誘電体皮膜上に塗布して形成する方法(特開平2-15611号公報や特開平10-32145号公報)等が利用できる。
【0031】
一般に導電性重合体には、ドーピング能のある化合物(ドーパント)が使用されるが、ドーパントはモノマー溶液と酸化剤溶液のいずれに添加しても良く、ドーパントと酸化剤が同一の化合物になっている有機スルホン酸金属塩の様なものでもよい。ドーパントとしては、好ましくはアリールスルホン酸塩系のドーパントが使用される。例えば、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、アントラキノンスルホン酸などの塩を用いることができる。
【0032】
(固体電解コンデンサ)
そしてこのような導電性重合体を含む固体電解質層上には、例えばカーボンペーストおよび/または銀ペースト等の従来公知の導電ペーストを積層して導電体層を形成して陰極部(導電体層形成部)を構成している。また、陽極部と陰極部との境界部に絶縁樹脂層(マスキング用のレジスト膜)により、周状(はち巻き状)に絶縁樹脂層を形成していてもよい。
【0033】
このように導電体層まで形成されたコンデンサ素子を複数枚方向を揃えて積層する方法を説明する。このコンデンサ素子11aを図4に示すように、陰極リード部21に導電性接着剤23aを用いて接合する。なお、図4においては陰極リード部上に導電性接着剤を塗布しているが、導電性接着剤の塗布は陰極リード部側でもコンデンサ素子側でも、或いはその双方でもかまわない。コンデンサ素子と陰極リード部を接合すると、図5に示すように導電性接着剤の一部が陰極切り欠き部にはみ出し、導電性接着部31を切り欠き部周辺に形成することとなる。次いで、コンデンサ素子11a上に導電性接着剤23bを用いてコンデンサ素子11bを接合すると図6に示すように、陰極切り欠き部からはみ出た余剰の導電性接着剤は導電性接着部31と接触し一体化して、導電性接着部41が形成される。この導電性接着部41を介して1層目コンデンサ素子11a、2層目コンデンサ素子11b及び陰極リード部21が電気的、機械的に直接接続することとなり、コンデンサ素子、陰極リード部間及びコンデンサ素子間の電気抵抗を減ずる効果をもたらし、等価直列抵抗が低下したコンデンサを得ることができる。
【0034】
図7は、積層したコンデンサ素子を導電性接着剤で接合した状態を示す断面図である。同図において、コンデンサ素子1の陰極部2の切り欠き部8が一致するように各コンデンサ素子を載置した後、導電性接着剤によって切り欠き部8を一体化して積層したコンデンサ素子としている。切り欠き部8の大半を導電性接着剤で埋めていれば、切り欠き部8の一部に導電性接着剤の未充填部があってもよい。
【0035】
積層したコンデンサ素子は、さらに各コンデンサ素子同志の接続を強固にするため、各コンデンサ素子の陰極部のみを、例えば銀ペースト等の導電材浴に浸漬し、乾燥硬化することにより一体化を計ってもよい。前述した導電材としては、銀ペースト等の公知の導電ペースト、クリーム半田等の溶融可能金属が挙げられる。
【0036】
このようにしてリードフレームに接続された固体電解コンデンサ素子はエポキシ樹脂等の外装樹脂により、トランスファー成形機等で、封止成形を行った後、リードフレームの凸部をコンデンサ素子の近辺で切断してチップ状の固体電解コンデンサとしている。
【0037】
リードフレームの材料は一般的に使用されるものであれば特に制限はないが、好ましくは銅系(例えばCu−Ni系、Cu−Ag系、Cu−Sn系、Cu−Fe系、Cu−Ni−Ag系、Cu−Ni−Sn系、Cu−Co−P系、Cu−Zn−Mg系、Cu−Sn−Ni−P系合金等)の材料もしくは表面に銅系の材料のメッキ処理を施した材料で構成すればリードフレームの形状の工夫により抵抗の減少、リードフレームの面取り作業性が良好になる等の効果が得られる。
【0038】
【実施例】
以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものでない。
【0039】
実施例1〜5
表1に示した形状と大きさの切り欠き部を有するアルミニウム化成箔(日本蓄電器工業株式会社製、箔種110LJB22B、定格皮膜耐電圧:4vf)(以下、化成箔と称する。)を先端から二分するように、化成箔の両面および両端にマスキング材(耐熱性樹脂)による幅1mmのマスキングを周状に形成した。陰極部(横3mm×縦4mm)と陽極部に分け、この化成箔の先端側区画部分である陰極部を、電解液としてアジピン酸アンモニウム10質量%水溶液を使用し、温度55℃、電圧4V、電流密度5mA/cm2、通電時間10分の条件で化成し、水洗した。
【0040】
その後、陰極部を、3,4−エチレンジオキシチオフェンのイソプロピルアルコール溶液1mol/lに浸漬後、2分間放置し、次いで、酸化剤(過硫酸アンモニウム:1.5mol/l)とドーパント(ナフタレン−2−スルホン酸ナトリウム:0.15mol/l)の混合水溶液に浸漬し、45℃、5分間放置することにより酸化重合を行った。
【0041】
この含浸工程及び重合工程を全体で12回繰り返し、ドーパントを含む固体電解質層を化成箔の微細孔内に形成した。このドーパントを含む固体電解質層を形成した化成箔を50℃温水中で水洗し固体電解質層を形成した。
固体電解質層を形成させた後、電解液としてアジピン酸アンモニウム10質量%水溶液を使用し、温度55℃、電圧4V、電流密度5mA/cm2、通電時間10分の条件で再度化成し、水洗の後、100℃で30分乾燥を行った。
その上にカーボンペースト、銀ペーストを順次被覆させて陰極導電体層を形成した。
【0042】
このコンデンサ素子3枚を、リードフレームの陰極リード部及び陽極リード部に対して導電性接着剤として銀ペーストを用いて方向を揃えて重ね、積層し陰極部の接合をした。積層した陽極部は陽極リード部をスポット熔接にて接合した。
【0043】
このコンデンサ素子の積層構造体を樹脂封止し、更に135℃の環境で2.5Vの電圧を45分間印加して、コンデンサ素子が3枚積層された構造を持つ定格容量100μF、定格電圧2Vの固体電解コンデンサを50個得た。
こうして得られた50個の固体電解コンデンサの容量、等価直列抵抗を実際に測定した結果を表2として示す。
【0044】
実施例6
実施例1において、過硫酸アンモニウムに代えて硫酸第2鉄を、また、3,4−エチレンジオキシチオフェンに代えてジヒドロイソチアナフテンとした以外は、実施例1と同様に50個のコンデンサ素子を作製させた。これら試験体の評価を実施例1と同様に行った。その結果を表2に示す。
【0045】
実施例7
実施例1において、3,4−エチレンジオキシチオフェンに代えてピロールとし、この時、ピロール溶液は含浸後、3℃で5分間乾燥し、さらに酸化剤溶液含浸後、5℃にて10分間重合させた以外は、実施例1と同様に50個のコンデンサ素子を作製させた。これら試験体の評価を実施例1と同様に行った。その結果を表2に示す。
【0046】
比較例1
陰極部に切り欠き部が無い化成箔を用いた、以外は実施例1と同様にして50個の固体電解コンデンサを作製した。その固体電解コンデンサの性能を表2に示した。なお各実施例または比較例は全数値とも50点の平均値である。
【0047】
【表1】

Figure 0004831593
【0048】
【表2】
Figure 0004831593
【0049】
【発明の効果】
このようにコンデンサ素子の陰極部に陰極切り欠き部を設けることにより、コンデンサ素子の積層枚数を何枚にしても、陰極切り欠き部に形成される余剰導電性接着剤が陰極リード部とコンデンサ素子を直接接続することとなり、積層されたコンデンサ素子と陰極リード部間の抵抗成分を減ずることが出来る。コンデンサ素子と陰極リード部間の抵抗成分を減ずることにより、等価直列抵抗成分の低い固体電解コンデンサの製造を可能とする。
【0050】
【図面の簡単な説明】
【図1】従来の積層型固体電解コンデンサ素子を示す斜視図。
【図2】本発明におけるコンデンサ素子の切り欠き部の例を示した平面図。
【図3】本発明におけるコンデンサ素子の切り欠き部の例を示した平面図。
【図4】本発明の1層目コンデンサ素子を陰極リード部及び陽極リード部に接合する状態を表す斜視図。
【図5】本発明の2層目コンデンサ素子を陰極リード部及び陽極リード部に接合する状態を表す斜視図。
【図6】本発明の2層目コンデンサ素子を陰極リード部及び陽極リード部に接合した状態を表す斜視図。
【図7】本発明の固体電解コンデンサ素子の断面図(a)及び平面図(b)。
【符号の説明】
1 コンデンサ素子
2 陰極部
3 陽極部
4 陰極リード部
5 陽極リード部
6 外装樹脂
7 マスキング(レジスト膜)
8、8a 切り欠き部
11a 1層目コンデンサ素子
11b 2層目コンデンサ素子
21 陰極リード
22 陽極リード
23a、23b 導電性接着剤
31 導電性接着部
41 導電性接着部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same. More specifically, the present invention relates to a solid electrolytic capacitor in which a valve action metal substrate having a dielectric film is laminated, the equivalent series resistance (ESR) being significantly reduced, and a method for manufacturing the same.
[0002]
[Prior art]
Recently, electronic devices have become smaller and higher in frequency, and solid electrolytic capacitors, which are one type of electronic components used therefor, are also required to be reduced in size. It corresponds.
[0003]
FIG. 1 is a perspective view showing a conventional chip-shaped solid electrolytic capacitor. A plurality of solid electrolytic capacitor elements 1 inside an exterior resin 6 are arranged in the same direction, and an anode portion 3 of the capacitor element 1 is arranged. And the bottom surface of the cathode part 2 formed on the surface of the element are respectively connected to an anode lead part 5 which is an anode lead lead part and a cathode lead part 4 which is a cathode lead lead part of a pair of opposingly arranged lead frames. It shows a state where it is placed and joined with a conductive material, for example, a conductive adhesive, and is sealed with a separately prepared exterior resin 6 such as an epoxy resin.
[0004]
For example, when the shape of the capacitor element in a solid electrolytic capacitor is a flat plate, a dielectric film is provided on the surface of a flat metal plate having a valve action, and a solid electrolyte layer is provided on the dielectric film. Furthermore, a cathode portion of a capacitor element in which a cathode conductor layer is provided on the solid electrolyte layer, an anode portion is provided integrally with the electrode body in the capacitor element, and a masking resist film is applied as the anode lead portion. And a structure in which a plurality of capacitor elements are stacked and stacked so that the connecting portions of the cathode conductor layer and the anode portion correspond to each other are connected to the cathode lead portion and the anode lead portion. As a result, the volumetric efficiency of the capacitor capacity (capacitor capacity value at a constant volume) is increased.
[0005]
Further, as a method of reducing the equivalent series resistance of the capacitor element, a method of making a hole in the capacitor element has been proposed (for example, see Patent Document 1). This method cannot effectively reduce the equivalent series resistance component between the stacked capacitor elements.
[0006]
[Problems to be solved by the invention]
The equivalent series resistance component of a solid electrolytic capacitor is the specific resistance component of the anode lead part, the contact resistance component at the joint surface between the anode lead part and the anode part of the capacitor element, the specific resistance component of the capacitor element, The contact resistance component at the joint surface of the cathode part and the cathode lead part and the specific resistance component of the cathode lead part are mainly involved.
[0007]
In a solid electrolytic capacitor having a multilayer structure, the first layer capacitor element and the cathode lead portion are electrically connected by a conductive material (conductive adhesive), but the second layer capacitor element is electrically conductive (conductive adhesive). In this case, the cathode lead portion is electrically connected via the cathode conductor layer formed on the surface of the first layer capacitor element. In addition, the resistance component of the cathode conductor layer has a problem of increasing the equivalent series resistance of the solid electrolytic capacitor produced.
[0008]
If a conductive adhesive or the like is applied after the capacitor elements are laminated in order to electrically connect each laminated capacitor element and the cathode lead portion directly, the equivalent series resistance of the solid electrolytic capacitor is lowered. In addition, a process of applying a conductive adhesive occurred, and there was a problem in productivity and economy.
[0009]
In addition, the shape in which the cathode lead portion is directly joined to each capacitor element can also reduce the equivalent series resistance component of the solid electrolytic capacitor. There was a problem that became necessary.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-119624
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the present invention can be obtained by simply changing the shape of the capacitor element cathode portion without greatly changing the conventional method of manufacturing a solid electrolytic capacitor. This makes it possible to directly connect all the capacitor elements and the cathode lead portion using a conductive adhesive.
[0012]
When an anodized film is provided on the surface of an electrode body made of a flat metal having a valve action, a cathode notch is provided in advance in at least one portion of the capacitor element serving as a cathode. Thereafter, a solid electrolyte layer is provided, and a capacitor element having a cathode conductor layer provided on the solid electrolyte layer is further provided. An anode terminal is provided integrally with the electrode body of the capacitor element, and an insulating resin band ( A masked part is provided, and a plurality of capacitor elements stacked and stacked so that the connecting portions of the cathode conductor layer and the anode terminal portion correspond to each other are connected to the cathode lead portion and the anode lead portion. By doing so, a solid electrolytic capacitor having an excellent equivalent series resistance component and a low value can be obtained.
[0013]
That is, this invention provides the following solid electrolytic capacitor and its manufacturing method.
1) One end of an anode substrate made of a valve metal having a dielectric coating layer on the surface is used as an anode portion, the solid electrolyte layer is formed on the dielectric coating layer on the remaining portion of the anode substrate, and the conductor layer is formed thereon. A solid electrolytic capacitor in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements each having a cathode part formed thereon are laminated and connected to a lead frame and sealed with an exterior resin. A solid electrolytic capacitor in which at least a part of the cathode part of each solid electrolytic capacitor element has a notch, and the notch is filled with a conductive material,
2) The solid electrolytic capacitor according to 1 above, wherein the cutout portion of the cathode portion of the solid electrolytic capacitor element is located at the edge of the cathode portion,
3) The solid electrolytic capacitor as described in 1 or 2 above, wherein the solid electrolytic capacitor element has an insulating resin band in a circumferential shape at the boundary between the anode part and the cathode part,
4) The solid electrolytic capacitor as described in any one of 1 to 3 above, wherein a cutout portion of the laminated cathode portion is covered with a conductive material,
5) The solid electrolytic capacitor as described in any one of 1 to 4 above, wherein the valve metal is one selected from aluminum, tantalum, titanium, niobium, and alloys thereof.
6) The solid electrolytic capacitor as described in any one of 1 to 4 above, wherein the valve metal is aluminum conversion foil or niobium conversion foil,
7) The solid electrolytic capacitor according to any one of 1 to 6 above, wherein the valve metal is a chemical conversion foil obtained by chemical conversion at a voltage of less than 30V,
8) The solid electrolytic capacitor according to any one of 1 to 7 above, wherein the lead frame is a copper or copper alloy-based material,
9) The solid electrolytic capacitor as described in any one of 1 to 8 above, wherein the solid electrolyte contains a π-electron conjugated polymer.
10) The solid electrolytic capacitor as described in 9 above, wherein the π-electron conjugated polymer is a polymer obtained from a hetero five-membered ring compound.
11) The solid electrolytic capacitor as described in 10 above, wherein the heterocyclic five-membered ring compound is at least one selected from pyrrole, thiophene, furan, isothianaphthene, 1,3-dihydroisothianaphthene and substituted derivatives thereof.
12) The solid electrolytic capacitor as described in 10 above, wherein the heterocyclic five-membered ring compound is at least one selected from 3,4-ethylenedioxythiophene and 1,3-dihydroisothianaphthene.
13) The dielectric of the valve action metal having an anode portion provided at one end portion of the anode base material made of the valve action metal having a dielectric coating layer on the surface, and having a notch in at least a part of the remaining portion of the anode base body. A solid electrolyte layer is formed on the coating layer, and a conductor layer is formed thereon to form a solid electrolytic capacitor element having a cathode part. A plurality of these elements are stacked so that the notch part overlaps, and a conductive material is applied to the notch part. Filling, connecting the cathode part and the anode part to the lead frame, respectively, and sealing molding with exterior resin, manufacturing method of the solid electrolytic capacitor,
14) A plurality of solid electrolytic capacitor elements each having an insulating resin band provided circumferentially at the boundary between the anode part and the cathode part are stacked so that the notch part overlaps, and the notch part is filled with a conductive material. (15) A method for producing a solid electrolytic capacitor as described in (13) above, wherein the anode part is connected to a lead frame and sealed with an exterior resin, and 15) One of anode substrates made of a valve metal having a dielectric film layer on the surface The anode part of a plurality of solid electrolytic capacitor elements having an anode part as an anode part and a cathode part in which a solid electrolyte layer is formed on the remaining dielectric coating layer of the anode substrate and a conductor layer is formed thereon And the cathode portion are laminated and connected to the lead frame, and at least a part of the cathode portion of each solid electrolytic capacitor element has a notch, and the notch The solid electrolytic capacitor element conductive material is filled.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(Valve action metal)
As the valve action metal used as the anode substrate of the solid electrolytic capacitor in the present invention, for example, aluminum, tantalum, titanium, niobium, zirconium and alloys based on these can be used. Examples of the shape of the anode substrate include a flat foil, a plate, and a rod. Of these, aluminum conversion foil is used in practice because it is economical. This aluminum chemical conversion foil is 40-200 micrometers thick, and a rectangular thing about 1-30 mm in length and width is used as a flat element unit. The width is preferably 2 to 20 mm and the length is 2 to 20 mm, more preferably the width is 2 to 5 mm and the length is 2 to 6 mm.
[0015]
The dielectric coating layer provided on the surface of the anode base may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or provided on the surface of the valve action metal foil. Other dielectric layers may be used, but a layer made of an oxide of the valve metal itself is particularly desirable.
[0016]
In the present invention, an anode portion is provided in a section of an end portion of a flat plate-like anode substrate having a dielectric coating layer formed on the surface, and a solid electrolyte layer and a conductor are formed on the remaining dielectric coating of the anode substrate. The cathode part in which the layer was formed is provided, and the notch part is provided in at least one part of this cathode part.
[0017]
The notch is preferably provided before the dielectric coating layer is formed on the anode substrate (valve metal), but after the dielectric coating layer is formed on the anode substrate or the solid electrolyte layer is formed. Even before, it is sufficient that a dielectric film can be formed on the valve metal surface of the cut-in opening formed by providing the notch. As a result, when the valve metal surface of the anode substrate is covered with the dielectric coating layer, the timing for providing the notch is not particularly limited.
[0018]
Since the size of the notch portion varies depending on the size of the cathode portion and the number of stacked capacitor elements, it is determined by a preliminary experiment. Further, the shape of the notch may be any known shape such as a circle, an ellipse, a semicircle, a triangle, and a quadrangle. The number of notches may be plural.
[0019]
Moreover, as long as the portion having the notch portion is the cathode portion of the capacitor element, for example, in the case of a flat plate-like element, the edge portion (including the corner portion at the outer peripheral portion) or the central portion of the flat plate may be used. The edge portion is preferable because of its strength.
[0020]
When an anodic oxide film is provided on the surface of an electrode body made of flat metal having a valve action, a notch portion 8 as shown in FIG. 2 is provided at least at one portion of the portion that becomes the cathode portion of the capacitor element. In addition, although the notch part shape of FIG. 2 is a rectangle, a notch shape is not ask | required. It may be a notch 8a formed on the side as shown in FIG.
[0021]
(Solid electrolyte)
Next, a solid electrolyte is formed on the remaining dielectric coating layer other than the anode portion. However, the type of the solid electrolyte layer is not particularly limited, and a conventionally known solid electrolyte can be used. Solid electrolyte capacitors made of conductive polymers with conductivity as solid electrolytes have a low equivalent series resistance component and a large capacity compared to conventional wet electrolytic capacitors using electrolytic solutions and solid electrolytic capacitors using manganese dioxide. In addition, it is preferable because of its small size and good high-frequency performance.
[0022]
The conductive polymer forming the solid electrolyte used in the solid electrolytic capacitor of the present invention is not limited, but preferably a conductive polymer having a π-electron conjugated structure, for example, a compound having a thiophene skeleton, a polycyclic sulfide skeleton Examples thereof include a conductive polymer including a structure represented by a compound, a compound having a pyrrole skeleton, a compound having a furan skeleton, or the like as a repeating unit.
[0023]
Among the monomers used as the raw material for the conductive polymer, examples of the compound having a thiophene skeleton include 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-pentylthiophene, 3- Hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-fluorothiophene, 3-chlorothiophene, 3-bromothiophene, 3-cyanothiophene, 3,4-dimethylthiophene, Examples include derivatives such as 3,4-diethylthiophene, 3,4-butylenethiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene. These compounds can be prepared by commercially available compounds or known methods (for example, Synthetic Metals, 1986, Vol. 15, p. 169).
[0024]
For example, as a compound having a polycyclic sulfide skeleton, for example, a compound having a 1,3-dihydropolycyclic sulfide (also known as 1,3-dihydrobenzo [c] thiophene) skeleton, 1,3-dihydronaphtho [ A compound having a 2,3-c] thiophene skeleton can be used. Furthermore, a compound having a 1,3-dihydroanthra [2,3-c] thiophene skeleton and a compound having a 1,3-dihydronaphthaceno [2,3-c] thiophene skeleton can be exemplified, and a known method, For example, it can be prepared by the method described in JP-A-8-3156.
[0025]
Further, for example, a compound having a 1,3-dihydronaphtho [1,2-c] thiophene skeleton, a 1,3-dihydrophenanthra [2,3-c] thiophene derivative, a 1,3-dihydrotriphenylo [2 , 3-c] thiophene skeleton, 1,3-dihydrobenzo [a] anthraceno [7,8-c] thiophene derivatives, and the like can also be used.
[0026]
Some compounds optionally contain nitrogen or N-oxide in the condensed ring, such as 1,3-dihydrothieno [3,4-b] quinoxaline and 1,3-dihydrothieno [3,4-b] quinoxaline-4-oxide 1,3-dihydrothieno [3,4-b] quinoxaline-4,9-dioxide, and the like, but is not limited thereto.
[0027]
Examples of the compound having a pyrrole skeleton include 3-methylpyrrole, 3-ethylpyrrole, 3-propylpyrrole, 3-butylpyrrole, 3-pentylpyrrole, 3-hexylpyrrole, 3-heptylpyrrole, and 3-octyl. Pyrrol, 3-nonylpyrrole, 3-decylpyrrole, 3-fluoropyrrole, 3-chloropyrrole, 3-bromopyrrole, 3-cyanopyrrole, 3,4-dimethylpyrrole, 3,4-diethylpyrrole, 3,4- Examples thereof include, but are not limited to, butylene pyrrole, 3,4-methylenedioxypyrrole, 3,4-ethylenedioxypyrrole, and the like. These compounds can be prepared commercially or by known methods.
[0028]
Examples of the compound having a furan skeleton include 3-methylfuran, 3-ethylfuran, 3-propylfuran, 3-butylfuran, 3-pentylfuran, 3-hexylfuran, 3-heptylfuran, and 3-octyl. Furan, 3-nonylfuran, 3-decylfuran, 3-fluorofuran, 3-chlorofuran, 3-bromofuran, 3-cyanofuran, 3,4-dimethylfuran, 3,4-diethylfuran, 3,4-butylenefuran, 3 Derivatives such as 1,4-methylenedioxyfuran and 3,4-ethylenedioxyfuran are exemplified, but not limited thereto. These compounds can be prepared commercially or by known methods.
[0029]
The polymerization method may be electrolytic polymerization, chemical oxidation polymerization, or a combination thereof. Alternatively, a method may be used in which a solid electrolyte that is not a conductive polymer is first formed on a dielectric film, and then a conductive polymer is formed by the above-described polymerization method.
[0030]
As an example of forming a conductive polymer, a method in which a 3,4-ethylenedioxythiophene monomer and an oxidizing agent are preferably applied in the form of a solution and applied separately on the dielectric film before or after separately ( JP-A-2-15611 and JP-A-10-32145) can be used.
[0031]
Generally, a conductive polymer uses a compound (dopant) having a doping ability, but the dopant may be added to either the monomer solution or the oxidant solution, and the dopant and the oxidant become the same compound. It may be an organic sulfonic acid metal salt. As the dopant, an aryl sulfonate-based dopant is preferably used. For example, salts of benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid, etc. can be used.
[0032]
(Solid electrolytic capacitor)
Then, on the solid electrolyte layer containing such a conductive polymer, for example, a conventionally known conductive paste such as a carbon paste and / or a silver paste is laminated to form a conductive layer to form a cathode portion (conductive layer formation). Part). In addition, an insulating resin layer may be formed in a circumferential shape (cylinder shape) by an insulating resin layer (masking resist film) at a boundary portion between the anode portion and the cathode portion.
[0033]
A method of laminating a plurality of capacitor elements formed up to the conductor layer in the same direction will be described. As shown in FIG. 4, the capacitor element 11a is joined to the cathode lead portion 21 using a conductive adhesive 23a. In FIG. 4, the conductive adhesive is applied on the cathode lead portion, but the conductive adhesive may be applied on the cathode lead portion side, the capacitor element side, or both. When the capacitor element and the cathode lead part are joined, as shown in FIG. 5, a part of the conductive adhesive protrudes into the cathode notch part, and the conductive adhesive part 31 is formed around the notch part. Next, when the capacitor element 11b is bonded onto the capacitor element 11a using the conductive adhesive 23b, as shown in FIG. 6, the excess conductive adhesive protruding from the cathode notch portion comes into contact with the conductive adhesive portion 31. The conductive adhesive part 41 is formed integrally. The first-layer capacitor element 11a, the second-layer capacitor element 11b, and the cathode lead portion 21 are directly and electrically connected via the conductive adhesive portion 41, so that the capacitor element, the cathode lead portion, and the capacitor element are connected. In this way, it is possible to obtain a capacitor having an effect of reducing the electric resistance between them and having a reduced equivalent series resistance.
[0034]
FIG. 7 is a cross-sectional view showing a state in which laminated capacitor elements are joined with a conductive adhesive. In the figure, each capacitor element is mounted so that the notch portions 8 of the cathode portion 2 of the capacitor element 1 coincide with each other, and then the notch portions 8 are integrated and laminated with a conductive adhesive. If most of the notch 8 is filled with a conductive adhesive, a part of the notch 8 may have an unfilled portion of the conductive adhesive.
[0035]
In order to further strengthen the connection between the capacitor elements, the laminated capacitor elements are integrated by immersing only the cathode portion of each capacitor element in a conductive material bath such as silver paste and drying and curing. Also good. Examples of the conductive material described above include known conductive pastes such as silver paste, and meltable metals such as cream solder.
[0036]
The solid electrolytic capacitor element connected to the lead frame in this way is sealed with an exterior resin such as an epoxy resin by a transfer molding machine or the like, and then the lead frame protrusion is cut in the vicinity of the capacitor element. Chip-shaped solid electrolytic capacitors.
[0037]
The lead frame material is not particularly limited as long as it is generally used, but is preferably copper-based (for example, Cu-Ni-based, Cu-Ag-based, Cu-Sn-based, Cu-Fe-based, Cu-Ni-based). -Ag, Cu-Ni-Sn, Cu-Co-P, Cu-Zn-Mg, Cu-Sn-Ni-P alloys, etc.) If the material is made of the above-described material, the lead frame shape can be devised to reduce the resistance and improve the lead frame chamfering workability.
[0038]
【Example】
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
[0039]
Examples 1-5
An aluminum conversion foil (noted as Nippon Kasei Denki Kogyo Co., Ltd., foil type 110LJB22B, rated film withstand voltage: 4 vf) (hereinafter referred to as conversion foil) having a notch with the shape and size shown in Table 1 is bisected from the tip. In this way, a masking material (heat-resistant resin) having a width of 1 mm was formed in a circumferential shape on both sides and both ends of the chemical conversion foil. The cathode part (3 mm wide × 4 mm long) and the anode part are divided into a cathode part which is a tip side partition part of this chemical conversion foil, an aqueous solution of 10% by weight ammonium adipate is used as an electrolyte, a temperature of 55 ° C., a voltage of 4 V, Chemical conversion was performed under conditions of a current density of 5 mA / cm 2 and an energization time of 10 minutes, and washed with water.
[0040]
Thereafter, the cathode part was immersed in 1 mol / l of an isopropyl alcohol solution of 3,4-ethylenedioxythiophene and allowed to stand for 2 minutes, and then an oxidizing agent (ammonium persulfate: 1.5 mol / l) and a dopant (naphthalene-2 -Sodium sulfonate: 0.15 mol / l) was immersed in a mixed aqueous solution and left to stand at 45 ° C for 5 minutes for oxidative polymerization.
[0041]
This impregnation step and the polymerization step were repeated 12 times in total to form a solid electrolyte layer containing a dopant in the micropores of the chemical conversion foil. The chemical conversion foil in which the solid electrolyte layer containing this dopant was formed was washed with 50 degreeC warm water, and the solid electrolyte layer was formed.
After forming the solid electrolyte layer, an aqueous solution of 10% by weight ammonium adipate is used as the electrolytic solution. The solution is again formed under conditions of a temperature of 55 ° C., a voltage of 4 V, a current density of 5 mA / cm 2 , and an energization time of 10 minutes. Thereafter, drying was performed at 100 ° C. for 30 minutes.
A cathode conductor layer was formed by sequentially coating a carbon paste and a silver paste thereon.
[0042]
The three capacitor elements were stacked in the same direction using a silver paste as a conductive adhesive on the cathode lead portion and the anode lead portion of the lead frame, laminated, and the cathode portions were joined. The laminated anode part was joined to the anode lead part by spot welding.
[0043]
The capacitor element laminated structure is resin-sealed, and a voltage of 2.5 V is applied for 45 minutes in an environment of 135 ° C. to have a structure in which three capacitor elements are laminated, with a rated capacity of 100 μF and a rated voltage of 2 V. 50 solid electrolytic capacitors were obtained.
Table 2 shows the results of actual measurement of the capacitance and equivalent series resistance of the 50 solid electrolytic capacitors thus obtained.
[0044]
Example 6
In Example 1, 50 capacitor elements were prepared in the same manner as in Example 1 except that ferric sulfate was used instead of ammonium persulfate and dihydroisothianaphthene was used instead of 3,4-ethylenedioxythiophene. I made it. These specimens were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0045]
Example 7
In Example 1, instead of 3,4-ethylenedioxythiophene, pyrrole was used. At this time, the pyrrole solution was impregnated and dried at 3 ° C. for 5 minutes, and further impregnated with an oxidant solution, followed by polymerization at 5 ° C. for 10 minutes. Except for the above, 50 capacitor elements were produced in the same manner as in Example 1. These specimens were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0046]
Comparative Example 1
Fifty solid electrolytic capacitors were produced in the same manner as in Example 1 except that chemical conversion foil having no notch in the cathode part was used. The performance of the solid electrolytic capacitor is shown in Table 2. Each example or comparative example is an average value of 50 points for all numerical values.
[0047]
[Table 1]
Figure 0004831593
[0048]
[Table 2]
Figure 0004831593
[0049]
【The invention's effect】
Thus, by providing the cathode notch portion in the cathode portion of the capacitor element, the surplus conductive adhesive formed in the cathode notch portion becomes the cathode lead portion and the capacitor element no matter how many capacitor elements are stacked. Are directly connected, and the resistance component between the laminated capacitor element and the cathode lead portion can be reduced. By reducing the resistance component between the capacitor element and the cathode lead portion, it is possible to manufacture a solid electrolytic capacitor having a low equivalent series resistance component.
[0050]
[Brief description of the drawings]
FIG. 1 is a perspective view showing a conventional multilayer solid electrolytic capacitor element.
FIG. 2 is a plan view showing an example of a notch portion of a capacitor element according to the present invention.
FIG. 3 is a plan view showing an example of a notch portion of the capacitor element according to the present invention.
FIG. 4 is a perspective view showing a state in which the first-layer capacitor element of the present invention is joined to a cathode lead portion and an anode lead portion.
FIG. 5 is a perspective view showing a state in which the second-layer capacitor element of the present invention is joined to the cathode lead portion and the anode lead portion.
FIG. 6 is a perspective view showing a state in which the second-layer capacitor element of the present invention is bonded to the cathode lead portion and the anode lead portion.
FIG. 7 is a cross-sectional view (a) and a plan view (b) of the solid electrolytic capacitor element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Cathode part 3 Anode part 4 Cathode lead part 5 Anode lead part 6 Exterior resin 7 Masking (resist film)
8, 8a Notch 11a First layer capacitor element 11b Second layer capacitor element 21 Cathode lead 22 Anode lead 23a, 23b Conductive adhesive 31 Conductive adhesive portion 41 Conductive adhesive portion

Claims (14)

表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部を陽極部とし、この陽極基体の残部の該誘電体皮膜層上に固体電解質層、その上に導電体層が形成された陰極部を有する複数個の固体電解コンデンサ素子の該陽極部と該陰極部とがそれぞれ積層されてリードフレームに接続され、外装樹脂で封止成形されている固体電解コンデンサであって、前記陰極部は導電性接着剤により積層され、それぞれの固体電解コンデンサ素子の陰極部でその縁部の少なくとも一部に切り欠き部が有り、切り欠き部に前記導電性接着剤と同じ導電性接着剤が陰極部の積層間の導電性接着剤に連通して充填されている固体電解コンデンサ。One end of an anode substrate made of a valve metal having a dielectric coating layer on the surface is used as an anode portion, and a solid electrolyte layer is formed on the dielectric coating layer on the remaining portion of the anode substrate, and a conductor layer is formed thereon. and the anode portion and the cathode portion of the plurality of the solid electrolytic capacitor element are laminated respectively connected to the lead frame, a solid electrolytic capacitor which is sealed molded by exterior resin, said having a cathode portion which is The cathode part is laminated with a conductive adhesive, and the cathode part of each solid electrolytic capacitor element has a notch in at least a part of its edge , and the same conductive adhesive as the conductive adhesive in the notch A solid electrolytic capacitor in which is filled in communication with a conductive adhesive between the laminated cathode layers . 固体電解コンデンサ素子が、陽極部と陰極部の境界部に絶縁性樹脂帯を周状に有する請求項1に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor element has an insulating resin band in a circumferential shape at a boundary portion between the anode portion and the cathode portion. 積層された陰極部の切り欠き部が、導電性接着剤で覆われている請求項1乃至3のいずれかひとつに記載の固体電解コンデンサ。The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the cutout portion of the laminated cathode portion is covered with a conductive adhesive . 弁作用金属が、アルミニウム、タンタル、チタン、ニオブ及びそれらの合金から選ばれた一種である請求項1乃至3のいずれかひとつに記載の固体電解コンデンサ。  The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the valve metal is one selected from aluminum, tantalum, titanium, niobium, and alloys thereof. 弁作用金属が、アルミニウム化成箔またはニオブ化成箔である請求項1乃至3のいずれかひとつに記載の固体電解コンデンサ。  The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the valve action metal is an aluminum conversion foil or a niobium conversion foil. 弁作用金属が、30V未満の電圧で化成処理して得られた化成箔である請求項1乃至5のいずれかひとつに記載の固体電解コンデンサ。  The solid electrolytic capacitor according to any one of claims 1 to 5, wherein the valve metal is a chemical conversion foil obtained by chemical conversion at a voltage of less than 30V. リードフレームが、銅または銅合金系の材料である請求項1乃至6のいずれかひとつに記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein the lead frame is made of copper or a copper alloy material. 固体電解質が、π電子共役系重合体を含んだものである請求項1乃至7のいずれかひとつに記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein the solid electrolyte contains a π-electron conjugated polymer. π電子共役系重合体が、複素五員環化合物から得られた重合体である請求項8に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 8, wherein the π-electron conjugated polymer is a polymer obtained from a hetero five-membered ring compound. 複素五員環化合物が、ピロール、チオフェン、フラン、イソチアナフテン、1,3−ジヒドロイソチアナフテン及びそれらの置換誘導体から選ばれた少なくとも1種である請求項9記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 9, wherein the hetero five-membered ring compound is at least one selected from pyrrole, thiophene, furan, isothianaphthene, 1,3-dihydroisothianaphthene and substituted derivatives thereof. 複素五員環化合物が、3,4−エチレンジオキシチオフェン及び1,3−ジヒドロイソチアナフテンから選ばれた少なくとも1種である請求項9に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 9, wherein the hetero five-membered ring compound is at least one selected from 3,4-ethylenedioxythiophene and 1,3-dihydroisothianaphthene. 表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部に陽極部を設け、この陽極基体の残部でその縁部の少なくとも一部に切り欠き部を有する弁作用金属の該誘電体皮膜層上に固体電解質層、その上に導電体層を形成して陰極部を有する固体電解コンデンサ素子とし、これら素子を切り欠き部が重なるように複数個積層し、該積層における陰極部は導電性接着剤により積層し、該積層の際に導電性接着剤をはみ出させ、積層間の導電性接着剤に連通させて切り欠き部に充填し、陰極部、陽極部をそれぞれリードフレームに接続し、外装樹脂で封止成形することを特徴とする固体電解コンデンサの製造方法。An anode portion is provided at one end of an anode base member made of a valve action metal having a dielectric film layer on the surface, and the valve action metal having a notch in at least a part of its edge at the remaining portion of the anode base body. A solid electrolyte layer is formed on the dielectric coating layer, and a conductor layer is formed thereon to form a solid electrolytic capacitor element having a cathode portion, and a plurality of these elements are stacked so that the cutout portions overlap , and the cathode portion in the stack Is laminated with a conductive adhesive, the conductive adhesive protrudes during the lamination, communicates with the conductive adhesive between the laminations and fills the notch, and the cathode and anode are respectively connected to the lead frame. A method for producing a solid electrolytic capacitor, comprising connecting and molding with an exterior resin. 陽極部と陰極部の境界部に絶縁性樹脂帯を周状に設けた固体電解コンデンサ素子を切り欠き部が重なるように複数個積層して切り欠き部に導電性接着剤を充填し、陰極部、陽極部をそれぞれリードフレームに接続し、外装樹脂で封止成形する請求項12に記載の固体電解コンデンサの製造方法。A plurality of solid electrolytic capacitor elements having insulating resin bands provided around the boundary between the anode part and the cathode part are stacked so that the notch part overlaps, and the notch part is filled with a conductive adhesive, and the cathode part The method for producing a solid electrolytic capacitor according to claim 12, wherein the anode part is connected to the lead frame and sealed with an exterior resin. 表面に誘電体皮膜層を有する弁作用金属からなる陽極基体の一方の端部を陽極部とし、この陽極基体の残部の誘電体皮膜層上に固体電解質層、その上に導電体層が形成された陰極部を有する複数個の固体電解コンデンサ素子の該陽極部と該陰極部とがそれぞれ積層されてリードフレームに接続されている固体電解コンデンサ素子であって、前記陰極部は導電性接着剤により積層され、それぞれの固体電解コンデンサ素子の陰極部でその縁部の少なくとも一部に切り欠き部が有り、切り欠き部に前記導電性接着剤と同じ導電性接着剤が陰極部の積層間の導電性接着剤に連通して充填されている固体電解コンデンサ素子。One end of an anode substrate made of a valve metal having a dielectric coating layer on the surface is used as an anode portion, and a solid electrolyte layer is formed on the remaining dielectric coating layer of this anode substrate, and a conductor layer is formed thereon. A solid electrolytic capacitor element in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements each having a cathode part are laminated and connected to a lead frame, wherein the cathode part is made of a conductive adhesive Each of the solid electrolytic capacitor elements is laminated, and at least part of the edge of the cathode portion of the solid electrolytic capacitor element has a notch , and the same conductive adhesive as the conductive adhesive is provided in the notch in the conductive portion between the laminates of the cathode portion. Solid electrolytic capacitor element filled in communication with adhesive .
JP2003031982A 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JP4831593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031982A JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002045248 2002-02-21
JP2002045248 2002-02-21
JP2002-45248 2002-02-21
JP2003031982A JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003318068A JP2003318068A (en) 2003-11-07
JP4831593B2 true JP4831593B2 (en) 2011-12-07

Family

ID=29551823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031982A Expired - Lifetime JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4831593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066853A1 (en) * 2010-11-15 2012-05-24 株式会社村田製作所 Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP2003318068A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
JP3231689B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
US7573699B2 (en) Solid state electrolyte capacitor and manufacturing method thereof
EP2251880B1 (en) Element for electronic component
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP4683318B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012039123A (en) Mechanically robust solid electrolytic capacitor assembly
US7697267B2 (en) Capacitor and method for manufacturing same
US8004824B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor using same
US6862169B2 (en) Solid electrolytic capacitor and method for producing the same
US7198733B2 (en) Formed substrate used for solid electrolytic capacitor, production method thereof and solid electrolytic capacitor using the substrate
JP4001329B2 (en) Chemical conversion substrate for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor
US6813141B2 (en) Solid electrolytic capacitor and method for producing the same
JP4831593B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JPH11329900A (en) Manufacture of solid-state electrolytic capacitor
JPWO2006129639A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003257788A (en) Solid electrolytic capacitor and its producing method
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP2007095937A (en) Solid electrolytic capacitor and manufacturing method thereof
US20020003689A1 (en) Solid electrolytic capacitor and method for producing the same
KR0148613B1 (en) Solid electrolytic capacitor & manufacturing method thereof
KR20020085539A (en) Solid Electrolyte Capacitor and Method for Producing the Same
JP2008109070A (en) Solid-state electrolytic capacitor element and method for manufacturing the same
JPH1187179A (en) Manufacture of solid electrolytic capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080808

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Ref document number: 4831593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

EXPY Cancellation because of completion of term