JP4831586B2 - Control device for aircraft gas turbine engine - Google Patents

Control device for aircraft gas turbine engine Download PDF

Info

Publication number
JP4831586B2
JP4831586B2 JP2009219582A JP2009219582A JP4831586B2 JP 4831586 B2 JP4831586 B2 JP 4831586B2 JP 2009219582 A JP2009219582 A JP 2009219582A JP 2009219582 A JP2009219582 A JP 2009219582A JP 4831586 B2 JP4831586 B2 JP 4831586B2
Authority
JP
Japan
Prior art keywords
engine
misfire
speed
temperature
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009219582A
Other languages
Japanese (ja)
Other versions
JP2009293629A (en
Inventor
幸伸 杉谷
弘宜 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009219582A priority Critical patent/JP4831586B2/en
Publication of JP2009293629A publication Critical patent/JP2009293629A/en
Application granted granted Critical
Publication of JP4831586B2 publication Critical patent/JP4831586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、航空機用ガスタービンエンジンの制御装置に関し、特に燃焼器が失火状態にあるか否かを判定する失火判定手段を有し、この失火判定手段により失火と判定されると所要の再着火操作を行う航空機用ガスタービンエンジンの制御装置に関するものである。   The present invention relates to a control device for an aircraft gas turbine engine, and in particular, has a misfire determination means for determining whether or not a combustor is in a misfire state. When the misfire determination means determines that a misfire has occurred, a required reignition is performed. The present invention relates to a control device for an aircraft gas turbine engine that performs an operation.

航空機用ガスタービンエンジンにおいては、飛行中に燃焼器が失火を起こすと、エンジン回転数やガス温度などに変化が現れるため、これらの測定値に基づいて失火したか否かを判定することができる(特許文献1・2参照)。   In an aircraft gas turbine engine, if a combustor misfires during flight, changes in the engine speed, gas temperature, etc. appear, so it is possible to determine whether or not a misfire has occurred based on these measured values. (See Patent Documents 1 and 2).

特開昭58−79627号公報JP 58-79627 A 特開昭59−18241号公報JP 59-18241

ところが、失火判定の指標となるエンジン回転数やガス温度は飛行条件(高度や機速)やエンジンの運転状態(回転数)により大きく変動するため、正常な運転状態、特に減速との判別が難しく、失火判定を短時間に精度良く行うことが難しい。   However, the engine speed and gas temperature, which serve as indicators for misfire determination, vary greatly depending on flight conditions (altitude and speed) and engine operating conditions (rotational speed), making it difficult to distinguish between normal operating conditions, especially deceleration. It is difficult to make misfire determination accurately in a short time.

本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その目的は、飛行条件やエンジンの運転状態のいかんによらずに失火判定を短時間に精度良く行うことができるように構成された航空機用ガスタービンエンジンの制御装置を提供することにある。   The present invention has been devised to solve such problems of the prior art, and its purpose is to perform misfire determination accurately in a short time regardless of flight conditions and engine operating conditions. An object of the present invention is to provide a control device for an aircraft gas turbine engine configured to be capable of performing the above.

前記課題を解決するためになされた第1の発明は、燃焼器(2)が失火状態にあるか否かを判定する失火判定手段(3)を有し、該失火判定手段により失火と判定されると所定の再着火操作を行う航空機用ガスタービンエンジン(1)の制御装置において、失火判定手段は、ガス温度及びエンジン回転数の2種類の特性値で表される運転状態が予め設定された失火領域内にあるか否かで判定を行い、前記ガス温度の特性値は、ガス温度の変化率をエンジン入口温度、高度並びに機速で修正して得られる構成とする。 The first invention made to solve the above-described problem has misfire determination means (3) for determining whether or not the combustor (2) is in a misfire state, and the misfire determination means determines that misfire has occurred. Then, in the control device for an aircraft gas turbine engine (1) that performs a predetermined reignition operation, the misfire determination means is preset with operating states represented by two characteristic values of gas temperature and engine speed. there rows determined by whether the misfire region characteristic value of the gas temperature, the rate of change of the gas temperature engine inlet temperature, a configuration obtained by modifying a highly and machine speed.

これによると、温度及び回転数の2種類の特性値で表される運転状態で判定を行うことにより、簡単な手順で失火状態と減速状態とを的確に判別することができるため、失火判定に要する時間を短縮すると同時に判定精度を高めることができる。   According to this, since it is possible to accurately determine the misfire state and the deceleration state by a simple procedure by performing the determination in the operation state represented by the two types of characteristic values of temperature and rotation speed, The time required can be shortened and at the same time the determination accuracy can be increased.

前記課題を解決するためになされた第2の発明は、前記第1の発明において、前記エンジン回転数の特性値は、エンジン回転数をエンジン入口温度で修正して得られる構成とする。 A second invention has been made in order to solve the above problems, in the first invention, the engine speed characteristic value, a configuration obtained by modifying the engine speed at the engine inlet temperature.

このように本発明によれば、ガス温度の変化率(導関数)をエンジン入口温度、高度並びに機速で修正して得られる温度特性値と、エンジン回転数をエンジン入口温度で修正して得られる回転数特性値とを用いて判定を行うため、飛行条件やエンジンの運転状態のいかんによらずに失火判定を短時間に精度良く行うことができる。   Thus, according to the present invention, the temperature characteristic value obtained by correcting the rate of change (derivative) of the gas temperature with the engine inlet temperature, altitude and speed, and the engine rotational speed with the engine inlet temperature are obtained. Therefore, the misfire determination can be performed with high accuracy in a short time regardless of the flight condition and the operating state of the engine.

本発明による航空機用ガスタービンエンジンの制御装置を示すブロック図。The block diagram which shows the control apparatus of the gas turbine engine for aircrafts by this invention. 本発明による失火判定の基準となる領域を示すグラフ。The graph which shows the area | region used as the reference | standard of misfire determination by this invention. 本発明による再着火条件判定の基準となる領域を示すグラフ。The graph which shows the area | region used as the reference | standard of reignition condition determination by this invention. 本発明による制御の手順を示す流れ図。The flowchart which shows the procedure of control by this invention.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明が適用されたガスタービンエンジンの制御装置を示している。ここでは、ガスタービンエンジン1の燃焼器2が失火状態にあるか否かを失火判定ブロック(失火判定手段)3にて判定し、ここで失火と判定されると再着火条件判定ブロック(再着火条件判定手段)4にて再着火可能な条件を判定し、ここで求められた再着火条件に従って所定の再着火操作を行うようになっている。   FIG. 1 shows a control apparatus for a gas turbine engine to which the present invention is applied. Here, it is determined in the misfire determination block (misfire determination means) 3 whether or not the combustor 2 of the gas turbine engine 1 is in a misfire state, and if it is determined that there is a misfire here, a reignition condition determination block (reignition) Condition determining means) 4 determines a re-ignitable condition and performs a predetermined re-ignition operation according to the re-ignition condition obtained here.

ガスタービンエンジン1は、コンプレッサ6及び高圧タービン7を連結する高圧軸8と、低圧タービン9及びファン10を連結する低圧軸11とを有し、エンジン入口温度T1がエンジン入口温度検出部12にて検出され、エンジン入口圧P1がエンジン入口圧検出部13にて検出され、高圧軸8の回転数(エンジン回転数)Nがエンジン回転数検出部14にて検出され、低圧タービン9の入口部分の温度(ガス温度)Tがガス温度検出部15にて検出される。この他、大気圧P0が大気圧検出部16にて検出され、高度ALTが高度検出部17にて検出され、機速Mnが機速検出部18にて検出される。なお、高度ALTは大気圧P0から、機速Mnは大気圧P0及びエンジン入口圧P1からそれぞれ算出しても良い。 Gas turbine engine 1 comprises a high-pressure shaft 8 for connecting the compressor 6 and the high-pressure turbine 7, and a low pressure shaft 11 which connects the low pressure turbine 9 and the fan 10, the engine inlet temperature T 1 is the engine inlet temperature detecting unit 12 The engine inlet pressure P 1 is detected by the engine inlet pressure detector 13, the rotational speed (engine speed) N of the high-pressure shaft 8 is detected by the engine rotational speed detector 14, and the inlet of the low-pressure turbine 9 is detected. The temperature (gas temperature) T of the portion is detected by the gas temperature detector 15. In addition, the atmospheric pressure P 0 is detected by the atmospheric pressure detector 16, the altitude ALT is detected by the altitude detector 17, and the aircraft speed Mn is detected by the aircraft speed detector 18. Incidentally, altitude ALT from atmospheric pressure P 0, aircraft speed Mn may be calculated respectively from the atmospheric pressure P 0 and the engine inlet pressure P 1.

失火判定ブロック(失火判定手段)3では、図2に示すように、温度及び回転数の2種類の特性値で表される運転状態が予め設定された失火領域内にあるか否かで判定を行い、温度特性値TCは、温度特性値計算部20にて低圧タービン入口温度(ガス温度)Tの導関数(変化率)Tdをエンジン入口温度T1、高度ALT並びに機速Mnで修正して得られ、回転数特性値NCは、回転数特性値計算ブロック21にてエンジン回転数Nをエンジン入口温度T1で修正して得られる。 In the misfire determination block (misfire determination means) 3, as shown in FIG. 2, the determination is made based on whether or not the operation state represented by the two characteristic values of the temperature and the rotational speed is within a preset misfire region. The temperature characteristic value TC is obtained by correcting the derivative (rate of change) Td of the low-pressure turbine inlet temperature (gas temperature) T with the engine inlet temperature T 1 , the altitude ALT and the machine speed Mn in the temperature characteristic value calculator 20. The obtained engine speed characteristic value NC is obtained by correcting the engine speed N with the engine inlet temperature T 1 in the engine speed characteristic value calculation block 21.

具体的には、温度特性値TCは次式で得られる。

Figure 0004831586
ここで、T1/288.15はエンジン入口温度、P0/1.033は高度、P1/P0は機速に基づく変量である。また第2項は次式で得られる。
C(Mn,Td)=(−0.5934×Mn2−(2.372E-17)×Mn)×Td+13.52×Mn2 (式2) Specifically, the temperature characteristic value TC is obtained by the following equation.
Figure 0004831586
Here, T 1 /288.15 is an engine inlet temperature, P 0 /1.033 is an altitude, and P 1 / P 0 is a variable based on the aircraft speed. The second term is obtained by the following equation.
C (Mn, Td) = (− 0.5934 × Mn 2 − (2.372E −17 ) × Mn) × Td + 13.52 × Mn 2 (Formula 2)

回転数特性値NCは次式で得られる。

Figure 0004831586
The rotational speed characteristic value NC is obtained by the following equation.
Figure 0004831586

温度特性値計算部20では、導関数計算ブロック22にてガス温度検出部15で得た低圧タービン入口温度Tをもとに、40ms制御サイクル毎にタービン入口温度導関数Tdを生成する。温度特性値第1項計算ブロック23では、導関数計算ブロック22で得たタービン入口温度導関数Td、エンジン入口温度検出部12からのエンジン入口温度T1、エンジン入口圧検出部13からのエンジン入口圧P1、並びに大気圧検出部16からの大気圧P0をもとに、式1で示される温度特性値の第1項を算出する。温度特性値第2項計算ブロック24では、機速Mn、並びにタービン入口温度導関数Tdをもとに、式1で示される温度特性値の第2項を算出する。加算点25では、温度特性値第1項計算ブロック23で得た第1項の値と温度特性値第2項計算ブロック24で得た第2項の値とを加算して温度特性値TCを算出する。 The temperature characteristic value calculation unit 20 generates a turbine inlet temperature derivative Td every 40 ms control cycle based on the low pressure turbine inlet temperature T obtained by the gas temperature detection unit 15 in the derivative calculation block 22. In the temperature characteristic value first term calculation block 23, the turbine inlet temperature derivative Td obtained in the derivative calculation block 22, the engine inlet temperature T 1 from the engine inlet temperature detector 12, and the engine inlet from the engine inlet pressure detector 13. Based on the pressure P 1 and the atmospheric pressure P 0 from the atmospheric pressure detector 16, the first term of the temperature characteristic value represented by Equation 1 is calculated. In the temperature characteristic value second term calculation block 24, the second term of the temperature characteristic value represented by Equation 1 is calculated based on the machine speed Mn and the turbine inlet temperature derivative Td. At the addition point 25, the temperature characteristic value TC is obtained by adding the value of the first term obtained by the temperature characteristic value first term calculation block 23 and the value of the second term obtained by the temperature characteristic value second term calculation block 24. calculate.

回転数特性値計算ブロック21では、エンジン回転数検出部14で得たエンジン回転数N、並びにエンジン入口温度検出部12で得たエンジン入口温度T1をもとに式3から回転数特性値NCを算出する。 In the rotational speed characteristic value calculation block 21, the rotational speed characteristic value NC is obtained from Equation 3 based on the engine rotational speed N obtained by the engine rotational speed detection unit 14 and the engine inlet temperature T 1 obtained by the engine inlet temperature detection unit 12. Is calculated.

図2に示した失火判定ラインL1は、シミュレーションにより得ることができる。様々なエンジン入口条件でシミュレーションを行うと、失火の場合には温度及び回転数の両特性値が概ね失火ラインL2上に集まり、減速の場合には両特性値が概ね減速ラインL3上に集まり、この失火及び減速の両ラインL2・L3の中間位置に失火判定ラインL1を定めることで、失火と減速との判別を精度良く行うことができる。   The misfire determination line L1 shown in FIG. 2 can be obtained by simulation. When simulation is performed under various engine inlet conditions, both characteristic values of temperature and rotational speed are gathered on the misfire line L2 in the case of misfire, and both characteristic values are gathered on the deceleration line L3 in the case of deceleration. By setting the misfire determination line L1 at an intermediate position between the misfire and deceleration lines L2 and L3, it is possible to accurately determine misfire and deceleration.

再着火条件判定ブロック(再着火条件判定手段)4では、機速Mn及び高度ALTとエンジン回転数Nとに基づいて再着火可能な条件を判定する。ここでは、図3に示すように、機速Mn及び高度ALTで表される飛行状態がフライトエンベロープ内に予め設定された3つの領域内のいずれに入るかで判定が行われ、この3つの領域は、高い高度でエンジン回転数が着火可能性を左右する回転数制限領域、低い機速でスタータでアシストしてエンジン回転数を引き上げるスタータアシスト操作を要とするスタータアシスト領域、並びに高い機速でスタータアシスト操作が不要なウインドミル領域である。   A re-ignition condition determination block (re-ignition condition determination means) 4 determines a re-ignitable condition based on the speed Mn, the altitude ALT, and the engine speed N. Here, as shown in FIG. 3, a determination is made based on which of the three states preset in the flight envelope the flight state represented by the speed Mn and the altitude ALT. Is a speed limit area where the engine speed is likely to ignite at a high altitude, a starter assist area that requires a starter assist operation to assist the starter at a low speed and increase the engine speed, and a high speed. This is a windmill area that does not require starter assist operation.

回転数制限領域とウインドミル領域及びスタータアシスト領域との境界となる判定ラインL4は、燃焼器単独の着火条件、すなわち燃焼器の入口条件(入口圧力及び入口空気温度)と、空気流量を左右するエンジン回転数とから一律的に定まるものであり、判定ラインL4より高い高度の領域(回転数制限領域)ではエンジン回転数Nが着火可能性を左右し、エンジン回転数Nが所定の値を下回る場合には再着火が不能である。判定ラインL4より低い高度の領域(ウインドミル領域及びスタータアシスト領域)では、燃焼器単独では常時着火可能である。   The determination line L4 that becomes the boundary between the rotation speed limit region, the windmill region, and the starter assist region is an engine that affects the ignition condition of the combustor, that is, the inlet condition (inlet pressure and inlet air temperature) of the combustor and the air flow rate. The engine speed N is determined uniformly from the engine speed, and the engine speed N influences the possibility of ignition in an altitude area higher than the determination line L4 (the engine speed limit area), and the engine speed N falls below a predetermined value. Cannot be re-ignited. In a region at an altitude lower than the determination line L4 (wind mill region and starter assist region), the combustor alone can always ignite.

他方、ウインドミル領域とスタータアシスト領域との境界となる判定ラインL5は、燃料ポンプの吐出条件及び燃料ノズルの流量条件により定まるものである。燃焼器で常時着火可能でも燃料ポンプの吐出量が不足すると着火不能となり、さらに着火流量を燃料ポンプが吐出可能な状態でも、燃料ノズルで十分微粒化し得る燃料流量が得られないと着火することができない。そして燃料ポンプの吐出量はエンジン回転数で一律的に定まるため、着火可能な吐出量の下限となるエンジン回転数に対応した判定ラインL5より機速が高い領域(ウインドミル領域)ではウインドミルで所要のエンジン回転数が得られるために常時着火可能であり、判定ラインL5より機速が低い領域(スタータアシスト領域)ではウインドミルで所要のエンジン回転数を得られず、スタータアシストでエンジン回転数を引き上げるスタータアシスト操作が必要になる。   On the other hand, the determination line L5 that becomes the boundary between the windmill region and the starter assist region is determined by the discharge condition of the fuel pump and the flow rate condition of the fuel nozzle. Even if the combustor can always be ignited, if the fuel pump discharge amount is insufficient, it will be impossible to ignite, and even if the fuel flow rate can be discharged by the fuel pump, the fuel nozzle may ignite if the fuel flow rate that can be sufficiently atomized is not obtained. Can not. Since the discharge amount of the fuel pump is uniformly determined by the engine speed, the required speed is determined by the wind mill in the region where the machine speed is higher than the judgment line L5 corresponding to the engine speed which is the lower limit of the ignitable discharge amount (wind mill region). A starter that can always ignite because the engine speed can be obtained, and that the required engine speed cannot be obtained with the wind mill in the area where the machine speed is lower than the judgment line L5 (starter assist area). Assist operation is required.

以上の失火判定及び再着火条件判定とこれに続いて行われる再着火操作とは、図4に示す手順で行えば良い。まず、タービン入口温度T、エンジン入口温度T1、エンジン入口圧P1、大気圧P0、機速Mnを検出し(ステップ1)、これらに基づいて前記の手順で失火判定を行う(ステップ2)。ここで失火なしと判定されるとステップ1に戻り、失火ありと判定されると燃料流量制御器26にて制御弁27を操作して燃料の燃焼器2への流入を遮断する(ステップ3)。 The misfire determination and reignition condition determination described above and the reignition operation performed subsequently may be performed according to the procedure shown in FIG. First, the turbine inlet temperature T, the engine inlet temperature T 1 , the engine inlet pressure P 1 , the atmospheric pressure P 0 , and the machine speed Mn are detected (step 1), and misfire determination is performed according to the above procedure based on these (step 2). ). If it is determined that there is no misfire, the process returns to step 1. If it is determined that there is a misfire, the fuel flow controller 26 operates the control valve 27 to block the flow of fuel into the combustor 2 (step 3). .

ついで機速Mn、高度ALT、エンジン回転数Nを検出し(ステップ4)、これらに基づいて前記の手順で再着火条件判定を行う(ステップ5)。ここで飛行状態が回転数制限領域にあり、かつエンジン回転数Nが所定の下限値を下回るために再着火不能と判定されると、警告を表示してパイロットに高度を下げるなどの所要の操作を促す(ステップ6)。   Next, the machine speed Mn, the altitude ALT, and the engine speed N are detected (step 4), and based on these, the re-ignition condition is determined by the above procedure (step 5). If it is determined that re-ignition is impossible because the flight state is in the speed limit range and the engine speed N falls below a predetermined lower limit, a required operation such as displaying a warning and lowering the altitude to the pilot (Step 6).

ステップ5で、飛行状態がウインドミル領域にあるか、あるいは飛行状態が回転数制限領域にあり、かつエンジン回転数Nが所定の下限値を上回るため、ウインドミルスタートと判定されると、点火制御器28にて点火プラグ29を作動させ(ステップ7)、燃料流量制御器26にて制御弁27を操作して燃料の供給を開始した後(ステップ8)、点火プラグ29の作動を停止する(ステップ9)。   If it is determined in step 5 that the flight state is in the windmill region, or the flight state is in the rotational speed limit region and the engine rotational speed N exceeds a predetermined lower limit value, and it is determined that the windmill starts, the ignition controller 28 The spark plug 29 is operated (step 7), the fuel flow controller 26 operates the control valve 27 to start supplying fuel (step 8), and then the operation of the spark plug 29 is stopped (step 9). ).

ステップ5で、飛行状態がスタータアシスト領域にあり、スタータアシストスタートと判定されると、スタータ制御器30にてスタータ31を作動させた上で(ステップ10)、点火制御器28にて点火プラグ29を作動させ(ステップ11)、燃料流量制御器26にて制御弁27を操作して燃料の供給を開始した後(ステップ12)、点火プラグ29の作動を停止し(ステップ13)、スタータ31の作動を停止する(ステップ14)。   If it is determined in step 5 that the flight state is in the starter assist region and the starter assist start is determined, the starter controller 30 operates the starter 31 (step 10), and the ignition controller 28 sets the spark plug 29. (Step 11), the fuel flow controller 26 operates the control valve 27 to start supplying fuel (step 12), and then the operation of the spark plug 29 is stopped (step 13). The operation is stopped (step 14).

なお、飛行状態がスタータアシスト領域にあっても、実際にはエンジン回転数Nが所定の下限値(例えば3000rpm)を越える場合があり、この場合、スタータアシスト操作を行うことなく再着火することが可能であるため、前記のウインドミルスタートと同一の手順で再着火操作を行えば良い。   Even if the flight state is in the starter assist region, the engine speed N may actually exceed a predetermined lower limit (for example, 3000 rpm). In this case, reignition may be performed without performing the starter assist operation. Since it is possible, the re-ignition operation may be performed in the same procedure as the windmill start.

1 ガスタービンエンジン
2 燃焼器
3 失火判定ブロック(失火判定手段)
4 再着火条件判定ブロック(再着火条件判定手段)
7 高圧タービン
8 高圧軸
9 低圧タービン
11 低圧軸
12 エンジン入口温度検出部
13 エンジン入口圧検出部
14 エンジン回転数検出部
15 ガス温度検出部
20 温度特性値計算部
21 回転数特性値計算ブロック
31 スタータ
1 Gas Turbine Engine 2 Combustor 3 Misfire Determination Block (Misfire Determination Means)
4 Re-ignition condition determination block (re-ignition condition determination means)
7 High-pressure turbine 8 High-pressure shaft 9 Low-pressure turbine 11 Low-pressure shaft 12 Engine inlet temperature detector 13 Engine inlet pressure detector 14 Engine speed detector 15 Gas temperature detector 20 Temperature characteristic value calculator 21 Rotational speed characteristic value calculation block 31 Starter

Claims (2)

燃焼器が失火状態にあるか否かを判定する失火判定手段を有し、該失火判定手段により失火と判定されると所定の再着火操作を行う航空機用ガスタービンエンジンの制御装置であって、
前記失火判定手段は、ガス温度及びエンジン回転数の2種類の特性値で表される運転状態が予め設定された失火領域内にあるか否かで判定を行い、前記ガス温度の特性値は、ガス温度の変化率をエンジン入口温度、高度並びに機速で修正して得られることを特徴とする航空機用ガスタービンエンジンの制御装置。
A control device for an aircraft gas turbine engine that includes a misfire determination unit that determines whether or not a combustor is in a misfire state, and performs a predetermined reignition operation when the misfire determination unit determines a misfire,
The misfire determining means, have rows determined by whether in the misfire region operating state represented by two characteristic values of the gas temperature and the engine speed is set in advance, the characteristic value of the gas temperature A control apparatus for an aircraft gas turbine engine, which is obtained by correcting the rate of change in gas temperature with the engine inlet temperature, altitude and speed .
前記エンジン回転数の特性値は、エンジン回転数をエンジン入口温度で修正して得られることを特徴とする請求項1に記載の航空機用ガスタービンエンジンの制御装置。 2. The aircraft gas turbine engine control device according to claim 1, wherein the characteristic value of the engine speed is obtained by correcting the engine speed with an engine inlet temperature .
JP2009219582A 2009-09-24 2009-09-24 Control device for aircraft gas turbine engine Expired - Lifetime JP4831586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219582A JP4831586B2 (en) 2009-09-24 2009-09-24 Control device for aircraft gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219582A JP4831586B2 (en) 2009-09-24 2009-09-24 Control device for aircraft gas turbine engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000301947A Division JP4430220B2 (en) 2000-10-02 2000-10-02 Control device for aircraft gas turbine engine

Publications (2)

Publication Number Publication Date
JP2009293629A JP2009293629A (en) 2009-12-17
JP4831586B2 true JP4831586B2 (en) 2011-12-07

Family

ID=41541992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219582A Expired - Lifetime JP4831586B2 (en) 2009-09-24 2009-09-24 Control device for aircraft gas turbine engine

Country Status (1)

Country Link
JP (1) JP4831586B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334008A (en) * 1976-09-09 1978-03-30 Kawasaki Heavy Ind Ltd Misfire detector for gas turbine
JPS60216098A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Performance monitor for hydraulic machine

Also Published As

Publication number Publication date
JP2009293629A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4865276B2 (en) Method and apparatus for avoiding lean blowout of a gas turbine engine
CA2348342C (en) Surge detection system of gas turbine aeroengine
JP6633960B2 (en) Ignition detection device for aircraft gas turbine engine
EP3121389A1 (en) Gas turbine engine control method with mitigation action if potential shaft failure detected
US20170356302A1 (en) Control system for a gas turbine engine
US20120006032A1 (en) Systems, methods, and apparatus for confirming ignition in a gas turbine
US20120088197A1 (en) System and method for determining a flame condition in a combustor
JP2006300065A (en) Method and device for gas turbine engine ignition system
CN106523163A (en) Surge control method and electronic controller for aero-gas turbine engine
US10082445B2 (en) Method for monitoring the change in state of a valve by measuring pressure
US9896958B2 (en) Method for monitoring an ignition sequence of a turbomachine engine
JP4113728B2 (en) Flame-out detection method, flame-out detection apparatus, and gas turbine engine
KR101895642B1 (en) Method for starting a turbomachine
JP6633962B2 (en) Aircraft gas turbine engine controller
US6474935B1 (en) Optical stall precursor sensor apparatus and method for application on axial flow compressors
JP4430220B2 (en) Control device for aircraft gas turbine engine
JP4831586B2 (en) Control device for aircraft gas turbine engine
CN112832910A (en) Method for identifying air flameout and secondary starting success of turbofan engine
KR20210033518A (en) Acoustic flashback detection in gas turbine combustion section
US20190032560A1 (en) Method and system for detecting an abnormal engine start
JP4705732B2 (en) Surge detector for aircraft gas turbine engine
RU2527850C1 (en) Method of control over gas turbine engine compressor actuators
JP4119575B2 (en) Gas turbine flame detector
EP3530911B1 (en) Light-off detection for gas turbine engines
JP4599652B2 (en) Jet engine control method and control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

R150 Certificate of patent or registration of utility model

Ref document number: 4831586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250