JP4831385B2 - Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component - Google Patents
Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component Download PDFInfo
- Publication number
- JP4831385B2 JP4831385B2 JP2001141295A JP2001141295A JP4831385B2 JP 4831385 B2 JP4831385 B2 JP 4831385B2 JP 2001141295 A JP2001141295 A JP 2001141295A JP 2001141295 A JP2001141295 A JP 2001141295A JP 4831385 B2 JP4831385 B2 JP 4831385B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- refractive index
- optical component
- polyimide copolymer
- dianhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCC(C=C)=C(C)[C@@]1N(CC)*1(C)C Chemical compound CCC(C=C)=C(C)[C@@]1N(CC)*1(C)C 0.000 description 1
Images
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Optical Integrated Circuits (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光用途に好適な新規のフッ素含有ポリイミド共重合体、その前駆体、前記フッ素含有ポリイミド共重合体を用いた光部品、及び光部品における屈折率の制御方法に関する。
【0002】
【従来の技術】
ポリイミドは、半導体製造プロセスの温度に耐えうる等の優れた特徴を有するため、電子部品の層間絶縁膜、多層配線板材料等に広く利用されている。さらに、光通信や光情報処理システムの部品(光部品)に組み込まれる光導波路等への光用途も期待され、この用途では高い透明性も要求される。
【0003】
透明性をもつポリイミドは、従来から、種々開発されている(例えば、特開平4−239037号公報、特開平4−328504号公報、特開平4−328127号公報等)。また、マクロモレキュールズ(Macromolecules)、第27巻、第6665−6670頁(1994)にも、透明性をもつポリイミドについての光伝送損失が記述されている。
【0004】
特開昭58−149916号公報には、次の式(A)
【化6】
(但し、Arは4価の有機基)の構成単位を有するポリイミド及びその前駆体であるポリアミドが開示されている。しかし、このポリイミドの光学的な性質、特に複屈折についての記述はない。
【0005】
また、特開平1−2614221号公報には、次の式(B)
【化7】
(但し、Arは4価の有機基、Rはパーフルオロアルキル基)の構成単位を有するポリイミド及びその前駆体であるポリアミドが開示されている。しかし、このポリイミドの光学的な性質、特に複屈折についての記述はない。
【0006】
また、特開平8−143666号公報には、特定の2種類の構成単位を有するポリイミド共重合体が開示され、各々の構成単位の構成比を変化させたときに、複屈折を一定のままで屈折率を変化させることができる旨記載されている。
【0007】
【発明が解決しようとする課題】
本発明では、低複屈折性を示し、光用途に用いられる新規なポリイミド共重合体(若しくはその前駆体)、これを応用した光部品、並びに光部品の屈折率の制御方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
光学用途のポリイミドの場合には、炭素−水素結合や酸素−水素結合の振動吸収の倍音や3倍音等が、用いる波長領域の光伝送損失の原因となるために、水素原子の重水素置換やフッ素置換(合成の容易さから主としてフッ素置換)がしばしば行われる。また、フッ素含有率を調整すると、屈折率を調整することも可能となる。しかし、分子構造が異なればその複屈折の大きさも異なるので、フッ素含有率の異なる二つのポリイミド共重合体の各々の比率によりコア材料とクラッド材料との屈折率差を制御しようとすると、複屈折(Δn)も大きく変化することとなる。シングルモード光導波路の場合では、コア部とクラッド部との複屈折が異なると偏波依存性のために大きな伝送損失が生じる。
【0009】
実際、前述の特開平8−143666号公報に開示されたフッ素化ポリイミド共重合系では、複屈折を変化させずにコア部の屈折率をクラッド部の屈折率よりも大きくできるが、この系での複屈折は0.005〜0.008程度であり、これは光部品用や光デバイス用としてはやや大きく、更に改良の余地がある。
【0010】
以上のような従来の技術、それに対する考察及び課題認識をきっかけとして、本発明者は、種々検討し、以下の発明を完成した。
【0011】
すなわち、本発明は、式(A)
【化8】
(但し、Arは4価の有機基)の構成単位Aと、
式(B)
【0012】
【化9】
(但し、Arは4価の有機基、Rはパーフルオロアルキル基)の構成単位Bとを含んでいるポリイミド共重合体(すなわち、フッ素含有ポリイミド共重合体)、である。
【0013】
ここで、上記ポリイミド共重合体における、式(A)及び式(B)中のArの好ましいものは、次式(1)の基である。
【化10】
【0014】
また、上記ポリイミド共重合体における、式(B)中のR(パーフルオロアルキル基)の好ましいものはトリフルオロメチル基である。
【0015】
本発明は、上記ポリイミド共重合体の前駆体、すなわち、加熱すれば、閉環して、上記ポリイミド共重合体を生成できるポリアミド酸(ポリイミド共重合体前駆体)にも関する。
【0016】
また、本発明は、コア部とクラッド部とを有する光部品であって、前記コア部とクラッド部には、前記式(A)の構成単位Aを含むポリイミド、及び前記式(B)の構成単位Bを含むポリイミド、並びに上記ポリイミド共重合体からなるポリマ群の中から、式(A):式(B)の構成比率(用いた原料のモル比換算)の異なる2種類のポリマが用いられている光部品にも関する。なお、光部品の動作に必要なものは、光だけではなく、光と電気、あるいは光と磁気等、光以外の要素を必要とするものでもよい。
【0017】
本発明は、上記光部品の屈折率の制御方法、すなわち、前記式(A):前記式(B)の構成比率(用いた原料のモル比換算)を適宜選ぶことで、コア部とクラッド部との屈折率差を所望値に調整する、光部品の屈折率の制御方法にも関する。
【0018】
【発明の実施の形態】
本発明において、構成単位A,Bに共通の4価の有機基(Ar)の供給源となる酸無水物成分(原料の一つ)としては、テトラカルボン酸二無水物、テトラカルボン酸半エステル、テトラカルボン酸塩化物、テトラカルボン酸半エステル半塩化物、カルボン酸塩化物基を有するカルボン酸無水物等があり、更に具体的に以下に例示する(但し、これらに限られるものではない。)
【0019】
1,2,3,4−ベンゼンテトラカルボン酸二無水物、
1,2,4,5−ベンゼンテトラカルボン酸二無水物、
3,6−ジフルオロ−1,2,4,5−ベンゼンテトラカルボン酸二無水物、
3,6−ビス(トリフルオロメチル)−1,2,4,5−ベンゼンテトラカルボン酸二無水物、
3−トリフルオロメチル−1,2,4,5−ベンゼンテトラカルボン酸二無水物、
3,6−ビス(トリフルオロメチル)−1,2,4,5−ベンゼンテトラカルボン酸二無水物、
3,6−ジフルオロ−1,2,4,5−ベンゼンテトラカルボン酸二無水物、
【0020】
1,2,3,4−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,5,6−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,6,7−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,7,8−ナフタレンテトラカルボキシカルボン酸二無水物、
2,3,5,6−ナフタレンテトラカルボキシカルボン酸二無水物、
【0021】
2,3,6,7−ナフタレンテトラカルボキシカルボン酸二無水物、
2,3,7,8−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,3,4−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,5,6−ナフタレンテトラカルボキシカルボン酸二無水物、
1,2,6,7−ナフタレンテトラカルボキシカルボン酸二無水物、
1,4,5,8−ナフタレンテトラカルボキシカルボン酸二無水物、
【0022】
1,4,5,8−テトラフルオロ−2,3,6,7−ナフタレンテトラカルボン酸二無水物、
1,4,5,8−テトラキス(フルオロオロメチル)−2,3,6,7−ナフタレンテトラカルボン酸二無水物、
2,3,6,7−テトラフルオロ−1,4,5,8−ナフタレンテトラカルボン酸二無水物、
1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、
1,2,3,4−シクロブタンテトラカルボン酸二無水物、
ビス(3,4−ジカルボキシ)フェニル二無水物、
ビス(3,4−ジカルボキシ)フェニルエーテル二無水物、
ビス(3,4−ジカルボキシ)フェニルスルホン二無水物、
ビス(3,4−ジカルボキシ)フェニルケトン二無水物、
ビス(3,4−ジカルボキシ)フェニルメタン二無水物、
ビス[(3,4−ジカルボキシ)フェニルジメチルシリル]エーテル二無水物、
【0023】
2,2−ビス(3,4−ジカルボキシ)プロパン二無水物、
2,2−ビス(3,4−ジカルボキシ)−1,1,3,3−テトラフルオロプロパン二無水物、
2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、
アルカンジオール(ビストリメリット酸無水物)、
1,4−ビス[(3,4−ジカルボキシ)フェニル]ベンゼン二無水物、
2,2−ビス{4−[(3,4−ジカルボキシ)フェニルオキシ]フェニル}ドデカン二無水物、
2,2−ビス{4−[(3,4−ジカルボキシ)フェニルオキシ]フェニル}トリデカン二無水物、
1,4−ビス[(3,4−ジカルボキシ)フェニルオキシ]ベンゼン二無水物、
【0024】
2,3,5,6−テトラフルオロ−1,4−ビス[(3,4−ジカルボキシ−2,5,6−トリフルオロ)フェニルオキシ]ベンゼン二無水物、
ビス(3,4−ジカルボキシ)シクロヘキシル二無水物、
ビス(1,2−ジカルボキシエチル)二無水物、
無水トリメリット酸、
無水トリメリット酸塩化物、
無水トリメリット酸臭化物、及び
無水トリメリット酸ヨウ化物。
【0025】
本発明において、式(A)で表される構成単位Aの2価の有機基の供給源となるジアミン成分(原料)の一つは、次式(2)のジアミンである。
【化11】
【0026】
また、本発明において、式(B)で表される構成単位Bの2価の有機基の供給源(原料)となるジアミン成分の他の一つは、次式(3)のジアミンである。
【0027】
【化12】
(式中のRは、パーフルオロアルキル基である。)
【0028】
本発明におけるポリイミド共重合前駆体(ポリアミド酸)は、式(2)及び(3)のジアミンと、これら合計のジアミン量に等モル(又は概ね等モル)の前記酸無水物とを、有機溶媒中で混合して反応させることにより製造できる。
用いる有機溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル等のエーテル系溶媒、ペンタン、ヘキサン、オクタン、シクロペンタン、シクロヘキサン等の飽和炭化水素系溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒、フェノール、クレゾール等のフェノール系溶媒及びそれらの混合溶媒等がある。
【0029】
反応の温度は、反応が進行する温度であれば、特に制限はない。200℃以下であることが好ましく、150℃以下であることが更に好ましい。
得られたポリイミド共重合前駆体(ポリアミド酸)が閉環する条件(温度及び時間)、例えば、200℃以上で所定時間加熱すれば、ポリイミド共重合体が得られる。
【0030】
式(2)のジアミンと式(3)の構成単位の比率(A/Bの構成比)は、少量であってもいずれも含有する範囲であればどの範囲でもよい(すなわち、構成単位A/Bの構成比は0/100から100/0まで)。例えば、光導波路を作製する場合には、導波光の漏れ光を少なくするためにコア部の屈折率をクラッド部の屈折率よりも十分高くなるように構成比を選ぶ。
【0031】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
【0032】
合成例1 構成単位(A/B)の比率が1/99のポリイミド共重合体
(1)ジアミン成分である1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノ−5−トリフルオロメチルフェノキシフェニル)フェニル]プロパン289.8mg(0.4455mmol、構成比99%)と1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノフェノキシ)フェニル]プロパン2.9mg(0.0045mmol、構成比1%)とをN,N−ジメチルアセトアミド1.476gに溶解し、酸無水物成分である2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物199.9mg(0.4500mmol)を加えて窒素雰囲気下で6時間攪拌して、ポリアミド酸ワニス(NV25wt%)を得た。
【0033】
(2)得られたポリアミド酸ワニスを、シリコンウエハ上に500rpmで5秒、1000rpmで30秒スピンコートして薄膜状とし、これを100℃で3分、続いて200℃で30分及び300℃で1時間加熱し、薄膜(サンプルNo.1)を得た。
【0034】
合成例2 構成単位(A/B)の比率が50/50のポリイミド共重合体
(1)ジアミン成分である1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノ−5−トリフルオロメチルフェノキシフェニル)フェニル]プロパン146.3mg(0.2250mmol、構成比50%)と1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノフェノキシ)フェニル]プロパンとを115.7mg(0.2250mmol、構成比50%)をN,N−ジメチルアセトアミド1.386gに溶解し、酸無水物成分である2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物199.9mg(0.4500mmol)を加えて窒素雰囲気下で6時間攪拌してポリアミド酸ワニス(NV25wt%)を得た。
(2)得られたポリアミド酸ワニスを、合成例1と同様に処理して、薄膜(サンプルNo.2)を得た。
【0035】
合成例3 構成単位(A/B)の比率が99/1のポリイミド共重合体
(1)ジアミン成分である1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノ−5−トリフルオロメチルフェノキシフェニル)フェニル]プロパン2.9mg(0.0045mmol、構成比1%)と1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノフェノキシ)フェニル]プロパン229.2mg(0.4455mmol、構成比99%)とをN,N−ジメチルアセトアミド1.296gに溶解し、酸無水物成分である2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物199.9mg(0.4500mmol)を加えて窒素雰囲気下で6時間攪拌してポリアミド酸ワニス(NV25wt%)を得た。
(2)得られたポリアミド酸ワニスを、合成例1と同様に処理して、薄膜(サンプルNo.3)を得た。
【0036】
参考合成例1 構成単位(A/B)の比率が100/0のポリイミド
(1)ジアミン成分である1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノ−5−トリフルオロメチルフェノキシフェニル)フェニル]プロパン294.6mg(0.450mmol、構成比100%)をN,N−ジメチルアセトアミド1.97gに溶解し、酸無水物成分である2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物200.0mg(0.450mmol)を加えて窒素雰囲気下で6時間攪拌して、ポリアミド酸ワニス(NV25wt%)を得た。
(2)得られたポリアミド酸ワニスを、合成例1と同様に処理して、薄膜(サンプルNo.4)を得た。
【0037】
参考合成例2 構成単位(A/B)の比率が0/100のポリイミド
(1)ジアミン成分である1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス−[4−(3−アミノフェノキシ)フェニル]プロパン233.4mg(0.450mmol、構成比100%)294.6mg(0.450mmol、構成比100%)をN,N−ジメチルアセトアミド1.97gに溶解し、酸無水物成分である2,2−ビス(3,4−ジカルボキシ)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物200.0mg(0.450mmol)を加えて窒素雰囲気下で6時間攪拌して、ポリアミド酸ワニス(NV25wt%)を得た。
(2)得られたポリアミド酸ワニスを、合成例1と同様に処理して、薄膜(サンプルNo.5)を得た。
【0038】
<評価試験>TEモードの屈折率及びTMモードのその屈折率の差(複屈折)
合成例1〜3で得られた薄膜サンプル(No.1〜No.3)及び参考合成例1〜2で得られた薄膜サンプル(No.4〜No.5)をスラブ導波路として、プリズム結合方式で測定した屈折率(TEモード及びTMモード)とその屈折率の差(複屈折)を表1〜表4に示した。また、表1の結果をグラフで表したものが図1である。なお、屈折率はメトリコン社製屈折率計Model2010を用いた。
【0039】
【表1】
(波長:830nm)
薄膜サンプル 屈折率( TE ) 屈折率( TM ) 複屈折( TE − TM )
No.1(99%B) 1.5226 1.5191 0.0035
No.2(50%B) 1.5371 1.5340 0.0031
No.3(1%B) 1.5538 1.5504 0.0034
No.4(100%B) 1.5228 1.5199 0.0029
No.5(0%B) 1.5540 1.5508 0.0032
【0040】
【表2】
(波長:633nm)
薄膜サンプル 屈折率( TE ) 屈折率( TM ) 複屈折( TE − TM )
No.2(50%B) 1.5489 1.5456 0.0033
No.4(100%B) 1.5344 1.5312 0.0032
No.5(0%B) 1.5661 1.5627 0.0034
【0041】
【表3】
(波長:1300nm)
薄膜サンプル 屈折率( TE ) 屈折率( TM ) 複屈折( TE − TM )
No.2(50%B) 1.5275 1.5244 0.0031
No.4(100%B) 1.5136 1.5107 0.0029
No.5(0%B) 1.5440 1.5408 0.0032
【0042】
【表4】
(波長:1550nm)
薄膜サンプル 屈折率( TE ) 屈折率( TM ) 複屈折( TE − TM )
No.2(50%B) 1.5256 1.5226 0.0030
No.4(100%B) 1.5120 1.5093 0.0027
No.5(0%B) 1.5417 1.5387 0.0030
【0043】
図1の結果は、式(A)の構成単位と式(B)の構成単位との構成比を100/0から0/100まで変化させるとき、式(B)の構成単位の比率が高いほど屈折率は直線的に減少し、両極端の屈折率差の最大は約0.03であることを示している。また、複屈折は種々の波長で0.004未満と小さい。構成単位A/Bの構成比を適宜選べば、複屈折を変えずに所定の範囲で屈折率差を制御ができる。
【0044】
【発明の効果】
本発明のポリイミド共重合体は、式(A)の構成単位及び式(B)の構成単位を有する新規なポリイミド共重合体である。また、式(A)の構成単位と式(B)の構成単位との構成比を変化させれば、その屈折率は直線的に変化し、そのときの複屈折は小さい。そのため、光導波路等の光用途に好適に用いられる。本発明のポリイミド共重合体前駆体も新規なポリマーである。これを加熱すれば、本発明のポリイミド共重合体が得られる。本発明の屈折率の制御方法によれば、構成単位Aと構成単位Bとの構成比を適宜選択するだけで、約0.003程度の低い一定の複屈折で、光部品の屈折率を制御ができる。そのため、コア部とクラッド部とをもつ光導波路等の光部品における屈折率の制御に有用である。
【図面の簡単な説明】
【図1】合成例1〜3及び参考合成例で得られた薄膜サンプル(No.1〜5)のTEモードの屈折率及びTMモード屈折率のグラフ。横軸は、ポリイミド又はポリイミド共重合体における構成単位Bの構成比(%)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel fluorine-containing polyimide copolymer suitable for optical applications, a precursor thereof, an optical component using the fluorine-containing polyimide copolymer, and a method for controlling a refractive index in the optical component.
[0002]
[Prior art]
Since polyimide has excellent characteristics such as being able to withstand the temperature of the semiconductor manufacturing process, it is widely used as an interlayer insulating film for electronic parts, multilayer wiring board materials, and the like. Furthermore, optical applications such as optical waveguides incorporated in optical communication and optical information processing system components (optical components) are also expected, and high transparency is also required for these applications.
[0003]
Various polyimides having transparency have been conventionally developed (for example, JP-A-4-239037, JP-A-4-328504, JP-A-4-328127, etc.). Macromolecules, Vol. 27, pages 6665-6670 (1994) also describes optical transmission loss for transparent polyimide.
[0004]
JP-A-58-149916 discloses the following formula (A):
[Chemical 6]
A polyimide having a structural unit (where Ar is a tetravalent organic group) and a polyamide which is a precursor thereof are disclosed. However, there is no description of the optical properties of this polyimide, particularly birefringence.
[0005]
Japanese Patent Laid-Open No. 1-2614221 discloses the following formula (B):
[Chemical 7]
A polyimide having a structural unit (where Ar is a tetravalent organic group and R is a perfluoroalkyl group) and a polyamide which is a precursor thereof are disclosed. However, there is no description of the optical properties of this polyimide, particularly birefringence.
[0006]
JP-A-8-143666 discloses a polyimide copolymer having two specific types of structural units, and the birefringence remains constant when the composition ratio of each structural unit is changed. It is described that the refractive index can be changed.
[0007]
[Problems to be solved by the invention]
The present invention provides a novel polyimide copolymer (or a precursor thereof) that exhibits low birefringence and is used for optical applications, an optical component using the same, and a method for controlling the refractive index of the optical component. Objective.
[0008]
[Means for Solving the Problems]
In the case of polyimide for optical use, overtones and triple overtones of vibration absorption of carbon-hydrogen bonds and oxygen-hydrogen bonds cause optical transmission loss in the wavelength region to be used. Fluorine substitution (primarily fluorine substitution for ease of synthesis) is often performed. Further, the refractive index can be adjusted by adjusting the fluorine content. However, if the molecular structure is different, the magnitude of the birefringence is also different. Therefore, if the refractive index difference between the core material and the clad material is controlled by the ratio of each of the two polyimide copolymers having different fluorine contents, the birefringence is increased. (Δn) also changes greatly. In the case of a single mode optical waveguide, if the birefringence of the core part and the clad part is different, a large transmission loss occurs due to polarization dependence.
[0009]
Actually, in the fluorinated polyimide copolymer system disclosed in the above-mentioned JP-A-8-143666, the refractive index of the core part can be made larger than the refractive index of the cladding part without changing the birefringence. The birefringence is about 0.005 to 0.008, which is somewhat large for optical components and optical devices, and there is room for further improvement.
[0010]
The present inventor has made various studies and completed the following inventions based on the conventional techniques described above, considerations thereof, and recognition of problems.
[0011]
That is, the present invention provides the formula (A)
[Chemical 8]
A structural unit A (wherein Ar is a tetravalent organic group);
Formula (B)
[0012]
[Chemical 9]
(Wherein Ar is a tetravalent organic group and R is a perfluoroalkyl group) and a polyimide copolymer (that is, a fluorine-containing polyimide copolymer).
[0013]
Here, the preferable thing of Ar in Formula (A) and Formula (B) in the said polyimide copolymer is group of following Formula (1).
[Chemical Formula 10]
[0014]
Moreover, the preferable thing of R (perfluoroalkyl group) in Formula (B) in the said polyimide copolymer is a trifluoromethyl group.
[0015]
The present invention also relates to a precursor of the polyimide copolymer, that is, a polyamic acid (polyimide copolymer precursor) capable of ring-closing when heated to form the polyimide copolymer.
[0016]
Moreover, this invention is an optical component which has a core part and a clad part, Comprising: The core containing the structural unit A of the said Formula (A) in the said core part and a clad part, and the structure of the said Formula (B) Two types of polymers having different constitutional ratios of the formula (A): formula (B) (in terms of the molar ratio of the raw materials used) are used from the polyimide group including the unit B and the polymer group composed of the polyimide copolymer. Also related to optical components. In addition, what is necessary for operation | movement of an optical component may require elements other than light, such as not only light but light and electricity, or light and magnetism.
[0017]
The present invention provides a method for controlling the refractive index of the optical component, that is, the core portion and the cladding portion by appropriately selecting the composition ratio of the formula (A): the formula (B) (in terms of the molar ratio of the raw materials used). And a method for controlling the refractive index of the optical component, in which the refractive index difference between the optical component and the optical component is adjusted to a desired value.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as the acid anhydride component (one of the raw materials) serving as the supply source of the tetravalent organic group (Ar) common to the structural units A and B, tetracarboxylic dianhydride, tetracarboxylic acid half ester , Tetracarboxylic acid chlorides, tetracarboxylic acid half ester hemichlorides, carboxylic acid anhydrides having a carboxylic acid chloride group, etc., and more specifically exemplified below (however, they are not limited thereto). )
[0019]
1,2,3,4-benzenetetracarboxylic dianhydride,
1,2,4,5-benzenetetracarboxylic dianhydride,
3,6-difluoro-1,2,4,5-benzenetetracarboxylic dianhydride,
3,6-bis (trifluoromethyl) -1,2,4,5-benzenetetracarboxylic dianhydride,
3-trifluoromethyl-1,2,4,5-benzenetetracarboxylic dianhydride,
3,6-bis (trifluoromethyl) -1,2,4,5-benzenetetracarboxylic dianhydride,
3,6-difluoro-1,2,4,5-benzenetetracarboxylic dianhydride,
[0020]
1,2,3,4-naphthalenetetracarboxycarboxylic dianhydride,
1,2,5,6-naphthalenetetracarboxycarboxylic dianhydride,
1,2,6,7-naphthalenetetracarboxycarboxylic dianhydride,
1,2,7,8-naphthalenetetracarboxycarboxylic dianhydride,
2,3,5,6-naphthalenetetracarboxycarboxylic dianhydride,
[0021]
2,3,6,7-naphthalenetetracarboxycarboxylic dianhydride,
2,3,7,8-naphthalenetetracarboxycarboxylic dianhydride,
1,2,3,4-naphthalenetetracarboxycarboxylic dianhydride,
1,2,5,6-naphthalenetetracarboxycarboxylic dianhydride,
1,2,6,7-naphthalenetetracarboxycarboxylic dianhydride,
1,4,5,8-naphthalenetetracarboxycarboxylic dianhydride,
[0022]
1,4,5,8-tetrafluoro-2,3,6,7-naphthalenetetracarboxylic dianhydride,
1,4,5,8-tetrakis (fluoroolomethyl) -2,3,6,7-naphthalenetetracarboxylic dianhydride,
2,3,6,7-tetrafluoro-1,4,5,8-naphthalenetetracarboxylic dianhydride,
1,2,4,5-cyclohexanetetracarboxylic dianhydride,
1,2,3,4-cyclobutanetetracarboxylic dianhydride,
Bis (3,4-dicarboxy) phenyl dianhydride,
Bis (3,4-dicarboxy) phenyl ether dianhydride,
Bis (3,4-dicarboxy) phenylsulfone dianhydride,
Bis (3,4-dicarboxy) phenyl ketone dianhydride,
Bis (3,4-dicarboxy) phenylmethane dianhydride,
Bis [(3,4-dicarboxy) phenyldimethylsilyl] ether dianhydride,
[0023]
2,2-bis (3,4-dicarboxy) propane dianhydride,
2,2-bis (3,4-dicarboxy) -1,1,3,3-tetrafluoropropane dianhydride,
2,2-bis (3,4-dicarboxy) -1,1,1,3,3,3-hexafluoropropane dianhydride,
Alkanediol (bistrimellitic anhydride),
1,4-bis [(3,4-dicarboxy) phenyl] benzene dianhydride,
2,2-bis {4-[(3,4-dicarboxy) phenyloxy] phenyl} dodecane dianhydride,
2,2-bis {4-[(3,4-dicarboxy) phenyloxy] phenyl} tridecane dianhydride,
1,4-bis [(3,4-dicarboxy) phenyloxy] benzene dianhydride,
[0024]
2,3,5,6-tetrafluoro-1,4-bis [(3,4-dicarboxy-2,5,6-trifluoro) phenyloxy] benzene dianhydride,
Bis (3,4-dicarboxy) cyclohexyl dianhydride,
Bis (1,2-dicarboxyethyl) dianhydride,
Trimellitic anhydride,
Trimellitic anhydride,
Trimellitic anhydride bromide and trimellitic anhydride iodide.
[0025]
In the present invention, one of the diamine components (raw materials) serving as the supply source of the divalent organic group of the structural unit A represented by the formula (A) is a diamine of the following formula (2).
Embedded image
[0026]
In the present invention, the other diamine component that serves as a supply source (raw material) of the divalent organic group of the structural unit B represented by the formula (B) is a diamine of the following formula (3).
[0027]
Embedded image
(R in the formula is a perfluoroalkyl group.)
[0028]
In the present invention, the polyimide copolymer precursor (polyamide acid) comprises the diamines of the formulas (2) and (3), and the total amount of the diamines in an equimolar (or approximately equimolar) amount of the acid anhydride. It can manufacture by mixing and making it react in.
Examples of the organic solvent to be used include ether solvents such as diethyl ether, tetrahydrofuran, dioxane and diethylene glycol dimethyl ether, saturated hydrocarbon solvents such as pentane, hexane, octane, cyclopentane and cyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, Examples thereof include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, phenol solvents such as phenol and cresol, and mixed solvents thereof.
[0029]
The reaction temperature is not particularly limited as long as the reaction proceeds. The temperature is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
If the obtained polyimide copolymer precursor (polyamide acid) is heated at a condition (temperature and time) at which the ring is closed, for example, at 200 ° C. or higher for a predetermined time, a polyimide copolymer is obtained.
[0030]
The ratio of the diamine of the formula (2) and the structural unit of the formula (3) (constituent ratio of A / B) may be a small amount or any range as long as both are contained (that is, the structural unit A / B). The composition ratio of B is from 0/100 to 100/0). For example, when an optical waveguide is manufactured, the configuration ratio is selected so that the refractive index of the core portion is sufficiently higher than the refractive index of the cladding portion in order to reduce the leakage light of the guided light.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0032]
Synthesis Example 1 Polyimide copolymer having a structural unit (A / B) ratio of 1/99 (1) 1,1,1,3,3,3-hexafluoro-2,2-bis- [ 289.8 mg (0.4455 mmol, 99% composition) 4- (3-amino-5-trifluoromethylphenoxyphenyl) phenyl] propane and 1,1,1,3,3,3-hexafluoro-2,2 2-bis- [4- (3-aminophenoxy) phenyl] propane 2.9 mg (0.0045 mmol,
[0033]
(2) The obtained polyamic acid varnish was spin-coated on a silicon wafer at 500 rpm for 5 seconds and 1000 rpm for 30 seconds to form a thin film, which was formed at 100 ° C. for 3 minutes, followed by 200 ° C. for 30 minutes and 300 ° C. And heated for 1 hour to obtain a thin film (sample No. 1).
[0034]
Synthesis Example 2 Polyimide copolymer having a structural unit (A / B) ratio of 50/50 (1) 1,1,1,3,3,3-hexafluoro-2,2-bis- [ 146.3 mg (0.2250 mmol, 50% composition) 4- (3-amino-5-trifluoromethylphenoxyphenyl) phenyl] propane and 1,1,1,3,3,3-hexafluoro-2,2 -Bis- [4- (3-aminophenoxy) phenyl] propane and 115.7 mg (0.2250 mmol, composition ratio 50%) are dissolved in 1.386 g of N, N-dimethylacetamide, which is an acid anhydride component. 2,2-bis (3,4-dicarboxy) -1,1,1,3,3,3-hexafluoropropane dianhydride (199.9 mg, 0.4500 mmol) was added, and the mixture was stirred for 6 hours under a nitrogen atmosphere. Thus, a polyamic acid varnish (NV 25 wt%) was obtained.
(2) The obtained polyamic acid varnish was treated in the same manner as in Synthesis Example 1 to obtain a thin film (Sample No. 2).
[0035]
Synthesis Example 3 Polyimide copolymer having a structural unit (A / B) ratio of 99/1 (1) 1,1,1,3,3,3-hexafluoro-2,2-bis- [ 2.9 mg (0.0045 mmol,
(2) The obtained polyamic acid varnish was treated in the same manner as in Synthesis Example 1 to obtain a thin film (sample No. 3).
[0036]
Reference Synthesis Example 1 1,1,1,3,3,3-hexafluoro-2,2-bis- [4-, which is a polyimide (1) diamine component with a structural unit (A / B) ratio of 100/0 29. 6 mg (0.450 mmol, 100% composition ratio) of (3-amino-5-trifluoromethylphenoxyphenyl) phenyl] propane was dissolved in 1.97 g of N, N-dimethylacetamide, which was an acid anhydride component. , 2-bis (3,4-dicarboxy) -1,1,1,3,3,3-hexafluoropropane dianhydride 200.0 mg (0.450 mmol) was added, and the mixture was stirred under a nitrogen atmosphere for 6 hours. Thus, a polyamic acid varnish (NV 25 wt%) was obtained.
(2) The obtained polyamic acid varnish was treated in the same manner as in Synthesis Example 1 to obtain a thin film (sample No. 4).
[0037]
Reference Synthesis Example 2 1,1,1,3,3,3-hexafluoro-2,2-bis- [4-, which is a polyimide (1) diamine component with a structural unit (A / B) ratio of 0/100 (3-Aminophenoxy) phenyl] propane 233.4 mg (0.450 mmol,
(2) The obtained polyamic acid varnish was treated in the same manner as in Synthesis Example 1 to obtain a thin film (sample No. 5).
[0038]
<Evaluation test> Difference in refractive index between TE mode and TM mode (birefringence)
Using the thin film samples (No. 1 to No. 3) obtained in Synthesis Examples 1 to 3 and the thin film samples (No. 4 to No. 5) obtained in Reference Synthesis Examples 1 and 2 as slab waveguides, prism coupling Tables 1 to 4 show the refractive index (TE mode and TM mode) measured by the method and the difference in refractive index (birefringence). FIG. 1 is a graph showing the results of Table 1. In addition, the refractive index used the Metricon refractometer Model2010.
[0039]
[Table 1]
(Wavelength: 830 nm)
Thin film sample refractive index ( TE ) Refractive index ( TM ) Birefringence ( TE - TM )
No.1 (99% B) 1.5226 1.5191 0.0035
No.2 (50% B) 1.5371 1.5340 0.0031
No. 3 (1% B) 1.5538 1.5504 0.0034
No.4 (100% B) 1.5228 1.5199 0.0029
No.5 (0% B) 1.5540 1.5508 0.0032
[0040]
[Table 2]
(Wavelength: 633 nm)
Thin film sample refractive index ( TE ) Refractive index ( TM ) Birefringence ( TE - TM )
No.2 (50% B) 1.5489 1.5456 0.0033
No. 4 (100% B) 1.5344 1.5312 0.0032
No.5 (0% B) 1.5661 1.5627 0.0034
[0041]
[Table 3]
(Wavelength: 1300nm)
Thin film sample refractive index ( TE ) Refractive index ( TM ) Birefringence ( TE - TM )
No.2 (50% B) 1.5275 1.5244 0.0031
No. 4 (100% B) 1.5136 1.5107 0.0029
No.5 (0% B) 1.5440 1.5408 0.0032
[0042]
[Table 4]
(Wavelength: 1550 nm)
Thin film sample refractive index ( TE ) Refractive index ( TM ) Birefringence ( TE - TM )
No.2 (50% B) 1.5256 1.5226 0.0030
No. 4 (100% B) 1.5120 1.5093 0.0027
No.5 (0% B) 1.5417 1.5387 0.0030
[0043]
The result of FIG. 1 shows that when the constituent ratio of the constituent unit of formula (A) and the constituent unit of formula (B) is changed from 100/0 to 0/100, the ratio of the constituent unit of formula (B) is higher. The refractive index decreases linearly, indicating that the maximum of the refractive index difference between the extremes is about 0.03. Also, birefringence is small at less than 0.004 at various wavelengths. If the composition ratio of the structural units A / B is appropriately selected, the refractive index difference can be controlled within a predetermined range without changing the birefringence.
[0044]
【The invention's effect】
The polyimide copolymer of the present invention is a novel polyimide copolymer having a structural unit of the formula (A) and a structural unit of the formula (B). Moreover, if the structural ratio of the structural unit of Formula (A) and the structural unit of Formula (B) is changed, the refractive index changes linearly, and the birefringence at that time is small. Therefore, it is suitably used for optical applications such as an optical waveguide. The polyimide copolymer precursor of the present invention is also a novel polymer. If this is heated, the polyimide copolymer of this invention is obtained. According to the refractive index control method of the present invention, the refractive index of an optical component can be controlled with a low constant birefringence of about 0.003 by simply selecting the composition ratio between the composition unit A and the composition unit B as appropriate. Can do. Therefore, it is useful for controlling the refractive index in an optical component such as an optical waveguide having a core portion and a cladding portion.
[Brief description of the drawings]
FIG. 1 is a graph of TE mode refractive index and TM mode refractive index of thin film samples (Nos. 1 to 5) obtained in Synthesis Examples 1 to 3 and Reference Synthesis Example. The horizontal axis represents the composition ratio (%) of the structural unit B in the polyimide or polyimide copolymer.
Claims (5)
式(B)
Formula (B)
式(A)
Formula (A)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001141295A JP4831385B2 (en) | 2001-05-11 | 2001-05-11 | Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001141295A JP4831385B2 (en) | 2001-05-11 | 2001-05-11 | Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002332349A JP2002332349A (en) | 2002-11-22 |
JP4831385B2 true JP4831385B2 (en) | 2011-12-07 |
Family
ID=18987777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001141295A Expired - Fee Related JP4831385B2 (en) | 2001-05-11 | 2001-05-11 | Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4831385B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4900571B2 (en) * | 2006-03-20 | 2012-03-21 | Jsr株式会社 | Vertical liquid crystal aligning agent and vertical liquid crystal display element |
JP5360074B2 (en) * | 2009-02-13 | 2013-12-04 | 東洋紡株式会社 | Optical transmission material and optical waveguide using the same |
CN105408949B (en) * | 2013-12-04 | 2019-08-02 | 株式会社Lg化学 | The manufacturing method of substrate for organic electronic device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0299865B1 (en) * | 1987-07-15 | 1998-01-07 | National Aeronautics And Space Administration | Process for preparing low dielectric polyimides |
JPH01261422A (en) * | 1988-04-13 | 1989-10-18 | Central Glass Co Ltd | Fluorinated aromatic polyamide and polyimide |
JPH0253825A (en) * | 1988-08-16 | 1990-02-22 | Central Glass Co Ltd | Production of soluble polyimide and polyimide resin varnish |
JPH09230155A (en) * | 1996-02-27 | 1997-09-05 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical waveguide |
JPH10135547A (en) * | 1996-10-31 | 1998-05-22 | Hitachi Chem Co Ltd | Optical amplifier |
JPH11223740A (en) * | 1998-02-05 | 1999-08-17 | Nippon Telegr & Teleph Corp <Ntt> | Forming method of polyimide optical waveguide diffraction grating |
-
2001
- 2001-05-11 JP JP2001141295A patent/JP4831385B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002332349A (en) | 2002-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1112465A (en) | Polyamic acid solution, polyimide film, and method for controlling properties of polyimide film | |
EP3176219B1 (en) | Transparent polymer film and electronic device including the same | |
JP6993672B2 (en) | Polyimide powder, polyimide varnish and polyimide film | |
KR20000035320A (en) | Polyimide composition and process for the producing the same | |
US6303743B1 (en) | Polyimide for optical communications, method of preparing the same, and method of forming multiple polyimide film using the polyimide | |
JP4831385B2 (en) | Fluorine-containing polyimide copolymer, precursor, optical component, method for controlling refractive index of optical component | |
JP3131940B2 (en) | Polyimide copolymer and method for producing the same | |
JP2006312680A (en) | Polymer-inorganic hybrid optical material | |
JP2640553B2 (en) | Fluorinated polyimide copolymer and method for producing the same | |
JP2022527878A (en) | Polyamide-imide block copolymer, method for producing the same, and polyamide-imide film containing the same. | |
JP2008273934A (en) | New diamine compound, polyamic acid produced by using the same and imidated polymer | |
JP2994373B2 (en) | Polyamide imide for optical communication and method for producing the same | |
JP3425854B2 (en) | Low refractive index transparent polyimide copolymer, precursor solution thereof, and production method thereof | |
JP3486357B2 (en) | Optical polyimide substrate | |
JP2950521B2 (en) | Polyimide optical material for optical waveguide | |
JP2004131684A (en) | Polyamic acid, polyimide obtained by imidizing the same and use of the polyimide | |
Bes et al. | Syntheses and characterizations of bis (trialkoxysilyl) oligoimides. II. Syntheses and characterizations of fluorinated crosslinkable oligoimides with low refractive indices | |
JP3059147B2 (en) | Polyamide imide for optical communication and method for producing the same | |
JP2000256462A (en) | Polyimide composition and its production | |
JP3082879B2 (en) | Polyamic acid composition and polyimide composition | |
JP3506320B2 (en) | Polyimide for optical substrate and method for producing the same | |
JPH08134211A (en) | Polyimide for optical part and optical part | |
JP2002322275A (en) | Method for producing polyamic acid ester and polyimide | |
JP2827059B2 (en) | Fluorinated polyamic acid, fluorinated polyimide and methods for producing them | |
JP2000198843A (en) | Polyimide for optical substrate and polyimide substrate for optical use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060322 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080430 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |