JP4831323B2 - How to remove solid components from rice effluent and how to reuse solid components from rice effluent - Google Patents

How to remove solid components from rice effluent and how to reuse solid components from rice effluent Download PDF

Info

Publication number
JP4831323B2
JP4831323B2 JP2006180545A JP2006180545A JP4831323B2 JP 4831323 B2 JP4831323 B2 JP 4831323B2 JP 2006180545 A JP2006180545 A JP 2006180545A JP 2006180545 A JP2006180545 A JP 2006180545A JP 4831323 B2 JP4831323 B2 JP 4831323B2
Authority
JP
Japan
Prior art keywords
rice
protease
solid component
effluent
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180545A
Other languages
Japanese (ja)
Other versions
JP2007038214A (en
Inventor
昌規 渡辺
秀宝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2006180545A priority Critical patent/JP4831323B2/en
Publication of JP2007038214A publication Critical patent/JP2007038214A/en
Application granted granted Critical
Publication of JP4831323B2 publication Critical patent/JP4831323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、凝集・沈降剤を用いない洗米排水の固形成分の除去方法、及び、除去した固形成分の再利用方法に関する。   The present invention relates to a method for removing a solid component of rice effluent without using a flocculant / precipitation agent, and a method for reusing the removed solid component.

日本酒醸造、食品加工業等では、原料米を精米する際に大量の洗米排水を産生している。さらに近年、無洗米と呼ばれる洗米処理済の米の需要が、一般家庭ならびにファーストフード、ファミリーレストラン等の飲食業界を中心に高まっている。洗米排水は有機物、窒素、リン等を含むため、水質汚濁の原因になる。無洗米製造現場では、無洗米製造機を導入しているが、その結果、洗米排水は高濃度化し、処理量も増えて、排水処理費の負担増を余儀なくされている。   In sake brewing, food processing industries, etc., large amounts of washed rice wastewater are produced when rice is milled. Furthermore, in recent years, the demand for washed rice, which is referred to as non-washed rice, has increased mainly in the food and drink industry such as ordinary households and fast food and family restaurants. Washed rice wastewater contains organic matter, nitrogen, phosphorus, etc., which causes water pollution. In the washing-free rice production site, washing-free rice production machines have been introduced. As a result, the concentration of washed rice wastewater has increased, the amount of treatment has increased, and the burden of wastewater treatment costs has been increased.

一方で、洗米排水に含まれる米糠成分は、γ−アミノ酪酸(GABA)やその前駆体の有用アミノ酸(グルタミン酸)、フィチン酸やイノシトールなどの有用物質を含んでおり、機能性食品としての利用を期待できる。また、洗米排水中に含まれているデンプン粒子を、バイオエタノールや生分解性プラスチック等の原材料として積極的に利用しようとする試みも報告されている。   On the other hand, the rice bran component contained in the washed rice wastewater contains useful substances such as γ-aminobutyric acid (GABA) and its precursor useful amino acids (glutamic acid), phytic acid and inositol, and can be used as a functional food. I can expect. There have also been reports of attempts to positively use starch particles contained in washed rice wastewater as raw materials such as bioethanol and biodegradable plastics.

このため、様々な洗米排水を処理する方法が開示されているが、その処理方法は、凝集沈殿剤添加による固液分離能を付加して処理するもの(例えば、特許文献1)と、フィルタープレス等のろ過プロセスを用いたもの(例えば、特許文献2)に大別される。   For this reason, although various methods for treating washed rice wastewater have been disclosed, the treatment methods include a method of adding solid-liquid separation ability by adding a coagulating precipitant (for example, Patent Document 1), and a filter press. And the like (for example, Patent Document 2) using a filtration process such as the above.

特許文献1に開示の発明は、イオン交換/吸着成分、凝結成分及び助沈成分を含む、食品の洗浄排水処理用凝集剤である。イオン交換/吸着成分として人工ゼオライト、凝結成分として水溶性アルミニウム等、そして助沈成分として硫酸カルシウム等を用いている。   The invention disclosed in Patent Document 1 is a flocculant for washing wastewater treatment of food, which includes an ion exchange / adsorption component, a coagulation component, and a coprecipitation component. Artificial zeolite is used as an ion exchange / adsorption component, water-soluble aluminum or the like as a coagulation component, and calcium sulfate or the like as a coprecipitation component.

イオン交換機能及び吸着機能により、洗米排水に対する凝集作用を促進し、凝集物を形成し、その際に発生する悪臭成分を吸着している。   By the ion exchange function and the adsorption function, the flocculation action on the washed rice waste water is promoted to form agglomerates and adsorb malodorous components generated at that time.

特許文献2に開示の発明は、ろ過手段とクリーニング手段を設けた洗米排水の処理装置である。ろ過手段として、柔軟性ろ材と柔軟性網状体との2層構造としたフィルターを複数並列して設置し、フィルターの一端から他端までローラでクリーニングすることによって、フィルターの目詰まりを防止している。
特開2002−225513号公報 特開平11−267411号公報
The invention disclosed in Patent Document 2 is a rice effluent treatment apparatus provided with filtering means and cleaning means. As a filtering means, two or more filters with a flexible filter medium and a flexible network are installed in parallel, and the filter is cleaned from one end to the other with a roller to prevent clogging of the filter. Yes.
JP 2002-225513 A JP-A-11-267411

特許文献1に記載の発明の凝集剤は、塩素分、ゼオライト等を含み、凝集した沈殿物も当然それらを含む。このため、食品材料として再利用することができないという問題がある。   The flocculant of the invention described in Patent Document 1 contains chlorine, zeolite and the like, and naturally agglomerated precipitates also contain them. For this reason, there is a problem that it cannot be reused as a food material.

また、凝集剤を調製するには複数の物質が必要で、調製が複雑という課題も残る。   Moreover, in order to prepare the flocculant, a plurality of substances are required, and there remains a problem that the preparation is complicated.

特許文献2に記載の発明は、ろ材、クリーニング装置等が必要であり、装置が複雑である。装置自体が高価になることに加え、洗米排水を処理するための運転費、メンテナンス費等で、コストが高くなるという難点がある。   The invention described in Patent Document 2 requires a filter medium, a cleaning device, and the like, and the device is complicated. In addition to the cost of the apparatus itself, there are disadvantages in that the cost increases due to operating costs, maintenance costs, etc. for treating the washed rice waste water.

本発明は、上記事項に鑑み、簡易な方法で洗米排水の固形成分を除去し、且つ、除去した固形成分を機能性食品等の原料として再利用することを課題とする。   In view of the above matters, an object of the present invention is to remove a solid component of washed rice effluent by a simple method and reuse the removed solid component as a raw material for functional foods and the like.

本発明は洗米排水にプロテアーゼ含有酵素を添加し、前記洗米排水に含まれる固形成分を凝集して沈降させることを特徴とする。   The present invention is characterized in that a protease-containing enzyme is added to the rice washing waste water, and the solid components contained in the rice washing waste water are aggregated and settled.

また、本発明は前記プロテアーゼ含有酵素として、酸性プロテアーゼを用いることを特徴とする。   The present invention is characterized in that an acidic protease is used as the protease-containing enzyme.

更に、本発明は前記プロテアーゼ含有酵素として、プロテアーゼM、プロテアーゼA、又はビオザイムを用いることを特徴とする。   Furthermore, the present invention is characterized in that protease M, protease A, or biozyme is used as the protease-containing enzyme.

更に、本発明は前記洗米排水に金属陽イオンを添加することを特徴とする。   Furthermore, the present invention is characterized in that a metal cation is added to the washed rice waste water.

更に、本発明はプロテアーゼ含有酵素で洗米排水に含まれる固形成分の表層蛋白質を除去して水酸基を露出させ、前記水酸基と前記洗米排水に含まれる金属イオンとの結合により、前記固形成分を凝集して沈降させることを特徴とする。   Furthermore, the present invention removes the surface protein of the solid component contained in the rice washing wastewater with a protease-containing enzyme to expose the hydroxyl group, and the solid component is aggregated by the bond between the hydroxyl group and the metal ion contained in the rice washing wastewater. It is characterized by making it settle.

更に、本発明は前記プロテアーゼ含有酵素として、酸性プロテアーゼを用いることを特徴とする。   Furthermore, the present invention is characterized in that an acidic protease is used as the protease-containing enzyme.

更に、本発明は前記プロテアーゼ含有酵素として、プロテアーゼM、プロテアーゼA、又はビオザイムを用いることを特徴とする。   Furthermore, the present invention is characterized in that protease M, protease A, or biozyme is used as the protease-containing enzyme.

更に、本発明は前記洗米排水に金属陽イオンを添加することを特徴とする。   Furthermore, the present invention is characterized in that a metal cation is added to the washed rice waste water.

更に、本発明は洗米排水にプロテアーゼ含有酵素を添加し、前記洗米排水に含まれる固形成分の表層蛋白質を除去し、デンプン質由来の水酸基を露出して負の表面電位を形成し、前記水酸基と前記洗米排水に含まれる金属陽イオンとを静電的相互作用によって結合させて前記固形成分を凝集し、凝集した前記固形成分を自重によって沈降させることを特徴とする。   Furthermore, the present invention adds a protease-containing enzyme to the rice washing waste water, removes the surface protein of the solid component contained in the rice washing waste water, exposes starchy hydroxyl groups to form a negative surface potential, The solid cation is agglomerated by binding metal cations contained in the rice sewage wastewater by electrostatic interaction, and the agglomerated solid component is precipitated by its own weight.

更に、本発明は請求項1〜9のいずれか1に記載の洗米排水の固形成分の沈降方法によって沈降させた固形成分を除去した上澄み液を、そのまま排水として処理することを特徴とする。   Furthermore, the present invention is characterized in that the supernatant liquid from which the solid components settled by the solid component sedimentation method of the rice washing wastewater according to any one of claims 1 to 9 is removed is treated as wastewater as it is.

更に、本発明は請求項1〜9のいずれか1に記載の洗米排水の固形成分の除去方法によって沈降させた固形成分を、機能性食品の原料として再利用することを特徴とする。   Furthermore, this invention recycle | reuses the solid component settled by the removal method of the solid component of the rice washing waste water of any one of Claims 1-9 as a raw material of a functional food.

本発明によると、洗米排水にプロテアーゼ含有酵素を添加するだけで、簡単に洗米排水に含まれる固形成分を除去できる。プロテアーゼ含有酵素が固形成分の表層蛋白質を除去し、デンプン質由来の水酸基が露出され、この水酸基と洗米排水に含まれる金属陽イオンとの静電的相互作用によって、固形成分が凝集して、自重で沈降するためである。   According to the present invention, the solid components contained in the rice washing wastewater can be easily removed simply by adding the protease-containing enzyme to the rice washing wastewater. The protease-containing enzyme removes the surface protein of the solid component, and the starch-derived hydroxyl group is exposed, and the solid component aggregates due to electrostatic interaction between this hydroxyl group and the metal cation contained in the washed rice effluent. This is because of sedimentation.

また、洗米排水は、固形成分との結合に関与する金属陽イオンを元々含んでいる。このため、洗米排水にプロテアーゼ含有酵素を添加するだけで、複雑な操作等を要さずに、自然に固形成分を凝集、沈降できる利点がある。   Moreover, the rice washing wastewater originally contains the metal cation involved in the coupling | bonding with a solid component. For this reason, there is an advantage that a solid component can be naturally aggregated and settled without adding a complicated operation or the like only by adding a protease-containing enzyme to the washed rice waste water.

更に、洗米排水のpHと、ほぼ等しい活性pHを有する酸性プロテアーゼを用いるため、効率的に洗米排水の固形成分の表層蛋白質を除去でき、固形成分の凝集、沈降を効率よく行える。   Furthermore, since an acidic protease having an active pH almost equal to the pH of the rice effluent is used, the surface protein of the solid component of the rice effluent can be efficiently removed, and the solid component can be efficiently aggregated and settled.

更に、前述のように、本発明は洗米排水にプロテアーゼ含有酵素を添加するだけで、洗米排水の固形成分を凝集できるため、従来のように凝集剤を使わなくてよいという利点がある。このため、複雑な凝集剤が不要であり、固形成分もそのまま取り出せる。   Furthermore, as described above, the present invention has an advantage that a flocculant need not be used as in the prior art because the solid components of the rice effluent can be agglomerated only by adding the protease-containing enzyme to the rice effluent. For this reason, a complicated flocculant is unnecessary and a solid component can also be taken out as it is.

更に、本発明では、ろ材やクリーニング装置等を用いる必要が無いため、高価な装置が不要であることに加え、洗米排水を処理するための運転費、メンテナンス費等が不要である。このため、低コストで洗米排水の処理を実現している。   Furthermore, in the present invention, since it is not necessary to use a filter medium or a cleaning device, an expensive device is not necessary, and an operation cost, a maintenance cost, etc. for treating washed rice waste water are unnecessary. For this reason, the processing of the rice washing waste water is realized at low cost.

更に、金属陽イオンを添加することで、洗米排水の固形成分の凝集、沈降を更に促進できる。金属陽イオンを増量すれば、固形成分の水酸基との結合が促進されるからである。   Further, by adding a metal cation, aggregation and sedimentation of the solid components of the washed rice wastewater can be further promoted. This is because if the amount of the metal cation is increased, the bonding with the hydroxyl group of the solid component is promoted.

更に、プロテーゼ含有酵素によって、洗米排水の有機物を固形成分として、ほぼ凝集、沈降でき、上澄み液はほとんど有機物等を含まないので、洗米排水から固形成分を除去した上澄み液を、そのまま排水として処理できる。更に、プロテアーゼ含有酵素は一定時間経過すると、失活し、上澄み液に酵素剤も残らないからである。   Furthermore, the prosthesis-containing enzyme can almost coagulate and settle the organic matter in the washed rice effluent as a solid component, and the supernatant liquid contains almost no organic matter, so the supernatant liquid from which the solid component has been removed from the washed rice effluent can be treated as it is. . Furthermore, the protease-containing enzyme is deactivated after a certain period of time, and no enzyme agent remains in the supernatant.

更に、除去した固形成分を機能性食品等の材料として利用できる。本発明では、凝集剤を一切使わず、洗米排水にプロテアーゼ含有酵素を添加しているだけである。プロテアーゼ含有酵素は一定時間経過すると失活する。そして、凝集剤を一切使わないため、当然に体内に影響を与える有害物質を含まない。このため、除去した固形成分には米糠成分だけが含まれ、γ−アミノ酪酸、有用アミノ酸等、豊富に含まれている成分を有効に再利用できる。   Furthermore, the removed solid component can be used as a material for functional foods. In the present invention, a protease-containing enzyme is merely added to the washing waste water without using any flocculant. The protease-containing enzyme is deactivated after a certain period of time. And since no flocculant is used, naturally harmful substances that affect the body are not included. For this reason, only the rice bran component is contained in the removed solid component, and abundantly contained components such as γ-aminobutyric acid and useful amino acids can be effectively reused.

図1は、本発明による洗米排水の凝集、沈降メカニズムを示す模式図である。図2は、本発明によって処理をした洗米排水の固形成分のFT−IR分析図である。図3は、本発明によって処理をした洗米排水の固形成分の表面電位測定図である。図4は、洗米排水成分の沈降性に及ぼすキレート剤添加の影響を示す、沈降定数測定図である。図5は、本発明のプロテアーゼ含有酵素添加による、洗米排水の固形成分の凝集状態を示す拡大写真である。図6は、本発明のプロテアーゼ含有酵素添加による、洗米排水の固形成分の沈降性を示す沈降定数測定図である。図7は、洗米排水の固形成分の沈降性に及ぼすプロテアーゼ含有酵素の添加量の影響を示す、沈降定数測定図である。図8は、本発明によって洗米排水の固形成分を沈降させた後の、上澄み液の炭素量を示す濃度測定図である。図9は、本発明による洗米排水の固形成分の凝集・沈殿装置の工程図である。   FIG. 1 is a schematic diagram showing the coagulation and sedimentation mechanism of washed rice wastewater according to the present invention. FIG. 2 is an FT-IR analysis diagram of the solid components of the rice effluent treated according to the present invention. FIG. 3 is a surface potential measurement diagram of the solid components of the rice washing wastewater treated according to the present invention. FIG. 4 is a sedimentation constant measurement diagram showing the effect of addition of a chelating agent on the sedimentation properties of the washed rice wastewater component. FIG. 5 is an enlarged photograph showing the state of aggregation of the solid components of the rice washing wastewater by addition of the protease-containing enzyme of the present invention. FIG. 6 is a sedimentation constant measurement diagram showing the sedimentation property of the solid component of the rice effluent by addition of the protease-containing enzyme of the present invention. FIG. 7 is a sedimentation constant measurement chart showing the effect of the added amount of protease-containing enzyme on the sedimentation properties of the solid components of the washed rice waste water. FIG. 8 is a concentration measurement diagram showing the amount of carbon in the supernatant liquid after the solid component of the rice effluent is settled according to the present invention. FIG. 9 is a process diagram of the apparatus for aggregating and precipitating solid components of the rice washing wastewater according to the present invention.

図1は、本発明による洗米排水に含まれる固形成分の凝集、沈降メカニズムを示す模式図である。   FIG. 1 is a schematic diagram showing the aggregation and sedimentation mechanism of solid components contained in the rice washing wastewater according to the present invention.

本発明では、洗米排水にプロテアーゼ含有酵素を添加する工程(酵素添加工程)と、洗米排水に含まれる固形成分の表層蛋白質を除去し、デンプン質由来の水酸基を露出して負の表面電位を形成する工程(負の表面電位形成工程)と、水酸基と洗米排水に含まれる金属陽イオンとを、静電的相互作用によって結合させて固形成分を凝集し、凝集した固形成分を自重によって沈降させる工程(凝集沈降工程)から構成される。   In the present invention, the step of adding a protease-containing enzyme to the rice effluent (enzyme addition step) and the removal of the surface protein of the solid component contained in the rice effluent, exposing the starch-derived hydroxyl group to form a negative surface potential A step of forming a negative surface potential, a step of binding the hydroxyl group and the metal cation contained in the washed rice water wastewater by electrostatic interaction, aggregating the solid component, and precipitating the aggregated solid component by its own weight (Coagulation sedimentation step).

酵素添加工程について説明する。   The enzyme addition process will be described.

洗米排水の固形成分である精白かすは、乾燥重量あたり50%以上のデンプン質、10%以上の蛋白質、及びミネラル分を含む。このため、洗米排水の固形成分は表層が蛋白質に覆われた微粒子である。また、ミネラル分は洗米排水中に金属陽イオンとして存在している。   Refined white residue, which is a solid component of the waste water for washing rice, contains 50% or more of starch, 10% or more of protein, and mineral content per dry weight. For this reason, the solid component of the rice effluent is fine particles whose surface is covered with protein. Minerals are present as metal cations in the washed rice effluent.

本実施例には、(株)食協中深川精米工場の無洗米加工装置(SJR2A型、(株)サタケ)で得た洗米排水を用いた。この洗米排水は処理量2000kg/h、使用水量(排水量)300l/h、稼働時間8h/dayの条件で無洗米製造を行った際に排出されたものである。   In this example, the rice-washed wastewater obtained from the washing-free rice processing apparatus (SJR2A type, Satake Co., Ltd.) of the Naka Fukagawa rice mill, Co., Ltd. was used. This rice effluent was discharged when washing-free rice was produced under the conditions of a throughput of 2000 kg / h, an amount of water used (drainage) of 300 l / h, and an operating time of 8 h / day.

表1に、本実施例に供した洗米排水の基本成分を示す。洗米排水の成分は、全有機体炭素計(TOC−500、(株)島津製作所)、化学的酸素要求量(COD)は、過マンガン酸カリウム法(JIS0K102)に従い分析した。汚泥濃度(MLSS)は、洗米排水100mlを乾燥し、水分を除去した後の固形成分の乾燥重量で測定した。   Table 1 shows the basic components of the washed rice wastewater used in this example. The components of the washed rice waste water were analyzed according to the total organic carbon meter (TOC-500, Shimadzu Corporation), and the chemical oxygen demand (COD) was analyzed according to the potassium permanganate method (JIS 0K102). The sludge concentration (MLSS) was measured by the dry weight of the solid component after drying 100 ml of washed rice waste water and removing water.

Figure 0004831323
Figure 0004831323

全炭素濃度(TC)が100,000mg/lを超えており、また汚泥濃度(MLSS)も高いことから、固形成分を多量に含む排水であることが明らかである。なお、本実施例では、TCは洗米排水中の固形成分がプロテアーゼ含有酵素によって溶解せずに、沈降したか否かを示す指標として用いる。   Since the total carbon concentration (TC) exceeds 100,000 mg / l and the sludge concentration (MLSS) is also high, it is clear that the waste water contains a large amount of solid components. In this example, TC is used as an index indicating whether or not the solid component in the washed rice wastewater has settled without being dissolved by the protease-containing enzyme.

また、活性汚泥法で通常処理されている排水のCOD値は、5000ppm以下であり、この洗米排水は、微生物が分解できる有機物量を超えている。このまま活性汚泥法によって処理すると、有機物が分解されることなく海域や湖沼に流出され、環境を悪化させてしまう。更に、本排水は弱酸性(pH4.3〜4.6)である。このため、活性汚泥処理法を行う前に、希釈、ろ過、中和、遠心分離等の段階的な前処理が不可欠な排水である。   Moreover, the COD value of the wastewater normally treated by the activated sludge method is 5000 ppm or less, and this washed rice wastewater exceeds the amount of organic matter that can be decomposed by microorganisms. If treated by the activated sludge process as it is, the organic matter is discharged into the sea area and lakes without being decomposed, and the environment is deteriorated. Furthermore, this waste water is weakly acidic (pH 4.3 to 4.6). For this reason, stepwise pretreatment such as dilution, filtration, neutralization, and centrifugal separation is indispensable drainage before performing the activated sludge treatment method.

ポリプロピレン150ml遠心管120mm×16φ(corning430790,Corning)に洗米排水100mlを準備し、任意のプロテアーゼ含有酵素(0.01〜2.0mg)を、酢酸緩衝液(pH5.0、0.1M)0.05mlに溶解させて洗米排水中に添加し、ボルテックスミキサーで充分に攪拌・混合した。なお、新米の洗米排水の場合、pHがほぼ4.5であるため、酢酸緩衝液によるpH調製は不要である。   Prepare 100 ml of washing waste water in a polypropylene 150 ml centrifuge tube 120 mm × 16φ (corning 430790, Corning), and add any protease-containing enzyme (0.01-2.0 mg) to acetate buffer (pH 5.0, 0.1 M). It was dissolved in 05 ml, added to the rice effluent, and stirred and mixed thoroughly with a vortex mixer. In the case of fresh rice washing wastewater, the pH is approximately 4.5, so pH adjustment with an acetate buffer is not necessary.

本実施例では、プロテアーゼ含有酵素として、食品添加物用酵素であるプロテアーゼM(3000u/mg、(株)天野エンザイム)、プロテアーゼA(10,000u/mg、(株)天野エンザイム)、及び、ビオザイムM(90u/mg、(株)天野エンザイム)を洗米排水の酵素処理に供した。   In this example, as protease-containing enzymes, protease additives (3000 u / mg, Amano Enzyme), protease A (10,000 u / mg, Amano Enzyme), and biozyme, which are enzymes for food additives, are used. M (90 u / mg, Amano Enzyme Co., Ltd.) was subjected to enzyme treatment of washed rice wastewater.

酵素反応溶液は、酵素添加後、レシプロ式振とう恒温槽(BW201+BF400型、(株)yamato)で、振とう速度100rpm、反応温度20、30、40、50℃の条件下で振とうし、酵素反応の進行中は均一に分散する状態を維持した。   The enzyme reaction solution was shaken in a reciprocal shaking thermostatic bath (BW201 + BF400 type, Yamato Co., Ltd.) with a shaking speed of 100 rpm and reaction temperatures of 20, 30, 40, and 50 ° C. During the course of the reaction, a uniformly dispersed state was maintained.

反応時間を12、24、36時間とし、反応後の反応溶液を60分、120分静置したサンプルの固形成分と上澄み液との境界線を測定し、反応溶液に占める固形成分の体積比を沈降定数SV(%)として測定した。なお、60分静置した反応溶液をSV60とし、120分静置したものをSV120とする。 The reaction time was 12, 24, 36 hours, the reaction solution after the reaction was allowed to stand for 60 minutes, 120 minutes, the boundary line between the solid component of the sample and the supernatant was measured, and the volume ratio of the solid component in the reaction solution was determined. The sedimentation constant was measured as SV (%). Note that the 60 minutes standing the reaction solution and SV 60, to those allowed to stand for 120 minutes and SV 120.

また、沈降性を比較するために、プロテアーゼ含有酵素を添加しないもの(コントロール)も同様に行った。   In addition, in order to compare the sedimentation properties, a sample containing no protease-containing enzyme (control) was also performed in the same manner.

次に、負の表面電位形成工程について説明する。   Next, the negative surface potential forming step will be described.

プロテアーゼ含有酵素は蛋白質を分解、除去する働きがある。洗米排水にプロテアーゼ含有酵素を添加すると、洗米排水に含まれるこの表層蛋白質を除去する。   Protease-containing enzymes have the function of decomposing and removing proteins. When a protease-containing enzyme is added to the rice washing wastewater, the surface protein contained in the rice washing wastewater is removed.

表層蛋白質の除去により、固形成分内部のアミロペクチン、アミロース等のデンプン質が表層に現れる。このため、デンプン質の官能基である水酸基が現れる。水酸基は負の電位を帯びているので、固形成分の表面に負の電位を形成する。   By removing the surface protein, starch such as amylopectin and amylose in the solid component appears on the surface. For this reason, the hydroxyl group which is a starch functional group appears. Since the hydroxyl group has a negative potential, it forms a negative potential on the surface of the solid component.

図2は、本発明によって処理をした反応溶液のFT−IR分析図である。   FIG. 2 is an FT-IR analysis diagram of a reaction solution treated according to the present invention.

洗米排水100mlに、各プロテアーゼ含有酵素0.1gを添加して、30℃で24時間反応を行い、その後60分静置した反応溶液を分析した。   0.1 g of each protease-containing enzyme was added to 100 ml of washed rice waste water, reacted at 30 ° C. for 24 hours, and then the reaction solution allowed to stand for 60 minutes was analyzed.

図2(A)は、プロテアーゼMを添加した反応溶液、図2(B)はプロテアーゼAを添加した反応溶液、図2(C)はビオザイムを添加した反応溶液、図2(D)は酵素を添加しなかった反応溶液(コントロール)の分析図である。   2A is a reaction solution to which protease M is added, FIG. 2B is a reaction solution to which protease A is added, FIG. 2C is a reaction solution to which biozyme is added, and FIG. 2D is an enzyme. It is an analysis figure of the reaction solution (control) which was not added.

プロテアーゼ含有酵素を添加した洗米排水では、3150cm−1付近で特異的に吸収量が増えている。3150cm−1付近の吸収帯は水酸基由来の吸収帯である。一方、コントロールでは同様の吸収はない。 In the rice washing wastewater to which the protease-containing enzyme is added, the amount of absorption increases specifically in the vicinity of 3150 cm −1 . The absorption band near 3150 cm −1 is an absorption band derived from a hydroxyl group. On the other hand, there is no similar absorption in the control.

米のデンプンは、15〜30%のアミロースと70〜85%のアミロペクチンとから構成されているが、プロテアーゼ含有酵素で固形成分の表層蛋白質が除去され、アミロース及びアミロペクチンに含まれるグルコース由来の水酸基が、固形成分表層に露出したことが確認できる。   Rice starch is composed of 15-30% amylose and 70-85% amylopectin, but the surface protein of the solid component is removed by a protease-containing enzyme, and the hydroxyl group derived from glucose contained in amylose and amylopectin is removed. It can be confirmed that the surface of the solid component is exposed.

図3は反応溶液の沈降物の表面電位を示している。   FIG. 3 shows the surface potential of the reaction solution sediment.

反応溶液(洗米排水)中に含まれる沈降成分を、遠心分離(11,000xg、4℃、10min)により回収し、純水により再懸濁・洗浄した沈降成分の表面電位値を測定した。表面ゼータ電位の測定は、顕微鏡電気泳動法ゼータ電位測定装置(Zeecom ZC−2000型、(株)マイクロテック・ニチオン)を用いた。   The sediment component contained in the reaction solution (washed rice wastewater) was collected by centrifugation (11,000 × g, 4 ° C., 10 min), and the surface potential value of the sediment component resuspended and washed with pure water was measured. The surface zeta potential was measured using a microscopic electrophoresis zeta potential measuring device (Zeecom ZC-2000 type, Microtech Nichion Co., Ltd.).

沈降性を示したプロテアーゼ含有酵素を添加した反応溶液の粒子表面の負の表面電位が高い。特に、プロテアーゼM処理後の洗米粒子表層の表面電位が約−65mVであるのに対し、沈降性を示さなかったコントロールは、約−35mVである。プロテアーゼMを添加することで、コントロールの倍近い電位差の形成が確認できる。これらから、反応溶液の沈降物とその表面電位との間には、高い相関関係(相関係数:r=0.848)があることがわかる。   The negative surface potential of the particle surface of the reaction solution to which the protease-containing enzyme exhibiting sedimentation was added is high. In particular, the surface potential of the rice-washed particle surface layer after treatment with protease M is about -65 mV, while the control that did not show sedimentation is about -35 mV. By adding protease M, formation of a potential difference close to twice that of the control can be confirmed. From these, it can be seen that there is a high correlation (correlation coefficient: r = 0.848) between the sediment of the reaction solution and its surface potential.

プロテアーゼ含有酵素で処理することで、固形成分表層の負の表面電位が増加し、それに伴って固形成分の沈降容積が減少する。このことから、洗米粒子表層の負電荷形成が固形成分の沈降性促進の直接的な原因であることがわかる。   By treating with a protease-containing enzyme, the negative surface potential of the solid component surface layer increases, and the sedimentation volume of the solid component decreases accordingly. From this, it can be seen that the formation of negative charges on the surface layer of the washed rice particles is a direct cause of the acceleration of sedimentation of the solid component.

凝集沈降工程について説明する。   The coagulation sedimentation process will be described.

洗米排水の固形成分となる精白かすは、珪素、カリウム、マグネシウム等、多量の金属陽イオンを含む。固形成分のデンプン質由来の水酸基と洗米排水に含まれる金属陽イオンとが静電的相互作用によって架橋形成や、静電的反発力を消去する。これらによって固形成分が凝集してマクロ分子を形成する。このマクロ分子の自重によって、固形成分が沈降する。   Polished residue which is a solid component of the rice effluent contains a large amount of metal cations such as silicon, potassium and magnesium. Crosslinking formation and electrostatic repulsion are eliminated by electrostatic interaction between the starch-derived hydroxyl group of the solid component and the metal cation contained in the washed rice effluent. As a result, the solid components aggregate to form macromolecules. The solid component settles due to the weight of the macromolecule.

図4は、洗米排水に含まれる金属陽イオンの沈降性に与える影響を示している。   FIG. 4 shows the influence of the metal cation contained in the washed rice waste water on the sedimentation property.

洗米排水中の金属キレート剤濃度を0、1、10、100、1000ppmに調製し、各サンプル100mlにプロテアーゼ含有酵素0.1gを添加して、上述の様に反応を行い、沈降定数を測定した。   The metal chelating agent concentration in the rice effluent was adjusted to 0, 1, 10, 100, 1000 ppm, 0.1 g of protease-containing enzyme was added to 100 ml of each sample, the reaction was performed as described above, and the sedimentation constant was measured. .

金属キレート剤として、エチレンジアミン四酢酸(EDTA)、エチレングリコールビス四酢酸(EGTA)、塩化−1,10−フェナントロニウム(塩化−フェナントロニウム)、及び、メシル酸デフェロキサミン(DFMO)を用いた。   As metal chelating agents, ethylenediaminetetraacetic acid (EDTA), ethylene glycol bistetraacetic acid (EGTA), 1,10-phenantronium chloride (phenantronium chloride), and deferoxamine mesylate (DFMO) were used.

なお、EDTAは種々の金属イオンと錯体形成するキレート剤である。また、EGTAはCaイオン、塩化―フェナントロニウムはFe(二価)イオン、DFMOはFe(三価)イオンと、それぞれ選択的に錯体形成するキレート剤である。   EDTA is a chelating agent that forms a complex with various metal ions. EGTA is a chelating agent that selectively forms a complex with Ca ions, phenantronium chloride with Fe (divalent) ions, and DFMO with Fe (trivalent) ions.

金属キレート剤濃度が0のものが、洗米排水そのものであり、洗米排水に含まれる金属陽イオンと固形成分が結合するため、良好な沈降性を示しているが、金属キレート剤濃度が高くなるにつれ、沈降定数の悪化が見られる。   The metal chelating agent concentration of 0 is the washed rice wastewater itself, and the metal cation and solid components contained in the washed rice wastewater combine to show good sedimentation, but as the metal chelating agent concentration increases. In addition, deterioration of the sedimentation constant is observed.

一方、コントロールでは、金属キレート剤の濃度変化による沈降性の変化は見られない。   On the other hand, in the control, no change in sedimentation due to the concentration change of the metal chelating agent is observed.

これらから、金属キレート剤が洗米排水に含まれる金属陽イオンと錯体を形成し、これが洗米排水の固形成分と金属陽イオンとの結合を阻害し、沈降定数の悪化を招いていることがわかる。   From these, it can be seen that the metal chelating agent forms a complex with the metal cation contained in the rice washing wastewater, which inhibits the binding between the solid component of the rice washing wastewater and the metal cation, leading to deterioration of the sedimentation constant.

中でも、塩化―フェナントロニウムを添加した反応溶液では、塩化―フェナントロニウム濃度の増加に伴い、顕著に沈降定数が増加している。Fe(二価)イオンが洗米排水の固形成分の凝集に大きな影響を与えていることを示唆している。   In particular, in the reaction solution to which chloride-phenantronium was added, the sedimentation constant increased remarkably as the chloride-phenanthronium concentration increased. This suggests that Fe (divalent) ions have a great influence on the aggregation of the solid components of the washed rice waste water.

精白かすには珪素、カリウム、マグネシウム等、大量のミネラルを含んでいる。これらの陽イオンのミネラル成分が、プロテアーゼ含有酵素で表層蛋白質を除去し、水酸基が露出した洗米排水の固形成分と洗米排水に含まれる金属陽イオンとが、静電的な相互作用によって架橋形成や静電的反発力を消す。こうしたことによって、凝集、沈降を促進していることがわかる。   Refined lees contain a large amount of minerals such as silicon, potassium and magnesium. These cation mineral components remove surface layer proteins with protease-containing enzymes, and the solid components of the rice effluent from which the hydroxyl groups are exposed and the metal cations contained in the rice effluent are cross-linked by electrostatic interaction. Turn off electrostatic repulsion. It can be seen that this promotes aggregation and sedimentation.

また、固形成分との結合に関与する金属陽イオンの量が増えると、固形成分の凝集が促進される。多くの金属陽イオンが結合に関与すれば、固形成分の凝集によるマクロ分子が更に大きくなり、且つ、密度も大きくなる。このため、洗米排水に金属陽イオンを添加して、プロテアーゼ含有酵素で反応を行えば、更に固形成分の凝集、沈降を促進できる。   Further, when the amount of the metal cation involved in the binding with the solid component increases, aggregation of the solid component is promoted. If many metal cations are involved in the binding, the macromolecules due to the aggregation of the solid components will become larger and the density will also increase. For this reason, if a metal cation is added to the washing waste water and the reaction is carried out with a protease-containing enzyme, the aggregation and sedimentation of solid components can be further promoted.

図5は、本発明のプロテアーゼ含有酵素添加による、洗米排水の固形成分の凝集状態を示す拡大図である。   FIG. 5 is an enlarged view showing the aggregation state of the solid components of the rice washing wastewater by addition of the protease-containing enzyme of the present invention.

図5(A)はコントロールの拡大写真、図5(B)がプロテアーゼMを添加した反応溶液の拡大写真である。図5(A)では固形成分が分散しており、微粒子状であるため、沈降性が著しく悪いことがわかる。一方、図5(B)では固形成分の凝集が見られる。このように洗米排水の固形成分が凝集してマクロ分子が形成されるため、その自重によって沈降性を促進している。   5A is an enlarged photograph of the control, and FIG. 5B is an enlarged photograph of the reaction solution to which protease M is added. In FIG. 5A, it can be seen that the solid component is dispersed and in the form of fine particles, so that the sedimentation property is remarkably poor. On the other hand, in FIG. 5B, aggregation of solid components is observed. In this way, the solid components of the rice washing wastewater are aggregated to form macromolecules, and thus the sedimentation is promoted by its own weight.

図6はプロテアーゼ含有酵素添加による洗米排水の固形成分の沈降性を示す沈降定数測定図である。   FIG. 6 is a sedimentation constant measurement diagram showing the sedimentation properties of the solid components of the rice effluent drained by the protease-containing enzyme addition.

プロテアーゼ含有酵素を添加した反応溶液は、いずれも沈降性が向上している。   The reaction solution to which the protease-containing enzyme is added has improved sedimentation properties.

特に、30℃及び40℃で反応した反応溶液では、優れた固形成分の沈降を示し、24時間静置した反応溶液が最も高い沈降性を示した。   In particular, the reaction solution reacted at 30 ° C. and 40 ° C. showed excellent sedimentation of solid components, and the reaction solution allowed to stand for 24 hours showed the highest sedimentation property.

中でも、プロテアーゼMを添加した反応溶液では、さほど酵素活性の値が高くないにもかかわらず、反応温度30℃、24時間静置時の汚泥容積の値は43%と、最も良好な値を示した。また、SVI値(汚泥容量指数)は7.2(ml/g)を示した。この値は、良好な沈降性を示す活性汚泥処理の値(56ml/g)の約1/7であり、活性汚泥処理よりも優れた沈降性を有することを示している。   Among them, the reaction solution to which protease M was added showed the most favorable value of 43% for the sludge volume when left at a reaction temperature of 30 ° C. for 24 hours, even though the enzyme activity was not so high. It was. The SVI value (sludge capacity index) was 7.2 (ml / g). This value is about 1/7 of the value (56 ml / g) of the activated sludge treatment exhibiting good sedimentation properties, and indicates that the sedimentation performance is superior to that of the activated sludge treatment.

プロテアーゼMは酸性プロテアーゼであり、pH4.5で高い酵素活性を示す酵素である。洗米排水のpHは4.5であり、活性pHと同じであるため、活性酵素数がさほど多くないにも関わらず、固形成分の表層蛋白質を効果的に除去できる。このため、優れた沈降性を与えている。   Protease M is an acidic protease and exhibits high enzyme activity at pH 4.5. Since the pH of the washed rice wastewater is 4.5, which is the same as the active pH, the surface protein of the solid component can be effectively removed even though the number of active enzymes is not so large. For this reason, the outstanding sedimentation property is given.

プロテアーゼAはpH7.0の条件下、高い酵素活性を示す酵素であり、洗米排水とは活性pHが異なる。しかし、10,000u/mgと活性酵素数が多いために、洗米排水に含まれる固形成分の表層蛋白質を除去でき、凝集、沈降を促進する。   Protease A is an enzyme that exhibits a high enzyme activity under the condition of pH 7.0, and has an active pH different from that of washed rice waste water. However, since the number of active enzymes is as large as 10,000 u / mg, it is possible to remove the surface protein of the solid component contained in the washed rice wastewater, and promote aggregation and sedimentation.

ビオザイムMは、150u/mgと活性酵素数は低いが、高い沈降性を示している。ビオザイムはα−アミラーゼを含有している。α−アミラーゼは糖を分解する性質を持ち、また、界面活性剤の働きをする。このため、表層蛋白質とデンプン質の結合を弱め、表層蛋白質を剥ぎ取り、デンプン質の水酸基を露出して、固形成分を凝集、沈降させている。   Biozyme M has 150 u / mg and a low number of active enzymes, but shows high sedimentation properties. Biozyme contains α-amylase. α-Amylase has the property of degrading sugar and also acts as a surfactant. For this reason, the bond between the surface protein and the starch is weakened, the surface protein is peeled off, the starch hydroxyl groups are exposed, and the solid components are aggregated and precipitated.

一方、酵素を添加していないコントロールでは、どの反応温度、反応時間後においても固形成分の沈降が見受けられない。このことからも、プロテアーゼ含有酵素が洗米排水の固形成分の沈降を促進していることがわかる。   On the other hand, in the control to which no enzyme was added, no precipitation of solid components was observed after any reaction temperature and reaction time. This also shows that the protease-containing enzyme promotes the precipitation of the solid components of the washed rice waste water.

なお、36時間静置の反応溶液は、24時間静置の反応溶液より沈降性が悪化している。洗米排水はデンプン粒子を核とした粒子成分を含んでおり、酵素処理が長時間に及ぶと、デンプン粒子の膨潤や可溶化が進み、粒子の密度が水に近くなるためである。このことから、反応溶液の静置は24時間程度とすることが好ましい。   In addition, the sedimentation property of the reaction solution that was allowed to stand for 36 hours was worse than that of the reaction solution that was allowed to stand for 24 hours. This is because the rice effluent contains a particle component having starch particles as the core, and when the enzyme treatment is continued for a long time, the starch particles are swollen and solubilized, and the density of the particles becomes close to water. Therefore, it is preferable that the reaction solution is allowed to stand for about 24 hours.

図7に、洗米排水の固形成分の沈降性に及ぼす、プロテアーゼ含有酵素の添加量の影響を示す。   FIG. 7 shows the influence of the added amount of protease-containing enzyme on the sedimentation properties of the solid components of the washed rice waste water.

洗米排水100mlに、プロテアーゼMを0.01、0.05、0.1、1.0、2.0g添加した各サンプルを、上述同様に30℃で24時間反応を行い、その後60、120分静置して沈降定数を測定した。プロテアーゼMの添加量を増やすと、洗米排水成分の沈降が促進されている。プロテアーゼMの添加によって、洗米排水の固形成分の沈降性が向上することは明らかである。   Each sample in which 0.01, 0.05, 0.1, 1.0, and 2.0 g of protease M was added to 100 ml of washed rice waste water was reacted at 30 ° C. for 24 hours in the same manner as described above, and then 60, 120 minutes. The sedimentation constant was measured after standing. When the amount of protease M added is increased, sedimentation of the washed rice wastewater component is promoted. It is clear that the addition of protease M improves the sedimentation properties of the solid components of the washed rice waste water.

プロテアーゼM添加量が1.0gの場合と2.0gの場合では、さほど沈降性に差異が見受けられない。本洗米排水100mlの沈降性付加に対する酵素添加量は、沈降効果及びコストの面から、0.1〜1mg(3000u/ml)が好ましい。また、60分静置と120分静置のものを比べてもさほど差異はないため、60分程度静置すれば十分に固形成分を沈降できる。   When the amount of protease M added is 1.0 g and 2.0 g, there is not much difference in sedimentation. The amount of enzyme added to 100 ml of settled rice wastewater is preferably 0.1 to 1 mg (3000 u / ml) from the standpoint of sedimentation effect and cost. Moreover, since there is not much difference even if it compares the thing left still for 60 minutes and the thing left still for 120 minutes, if it leaves still for about 60 minutes, a solid component can fully settle.

図8で、洗米排水の固形成分を沈降させた後の上澄み液について説明する。   With reference to FIG. 8, the supernatant liquid after the solid component of the washed rice waste water has been settled will be described.

プロテアーゼMを添加していないもの(stock soln)と比較してみると、プロテアーゼMの添加量に伴い、上澄み液の全炭素(TC)量が減少している。プロテアーゼMの添加によって、ほぼ固形成分が上澄み液に溶解していないことがわかる。このことから、酵素添加によりデンプン粒などの洗米排水中に含まれる固形成分はほとんど溶解せずに沈降し、底部で凝集、沈降している。   When compared with the sample without the addition of protease M (stock sol), the total amount of carbon (TC) in the supernatant decreases with the amount of protease M added. It can be seen that almost no solid components are dissolved in the supernatant liquid by addition of protease M. From this, the solid components contained in the washing wastewater such as starch granules are settled almost without dissolution due to enzyme addition, and are aggregated and settled at the bottom.

また、プロテアーゼ含有酵素処理をしていない、遠心分離機(11,000xg、4℃、10min)で分離した上澄み成分(可溶性TC成分)と殆ど値が変わらない。   Moreover, the value is almost the same as the supernatant component (soluble TC component) separated by a centrifuge (11,000 × g, 4 ° C., 10 min), which is not treated with protease-containing enzyme.

なお、反応溶液の上澄み液のCODは4000〜5000ppmであった。これは通常の活性汚泥法により微生物が分解できる有機物量であるため、この上澄み液を活性汚泥法によって処理することができる。また、海域、湖沼に排出しない場合には法令上の制限を受けないため、そのまま排水として捨てることができる。   The COD of the supernatant of the reaction solution was 4000 to 5000 ppm. Since this is the amount of organic matter that can be decomposed by microorganisms by a normal activated sludge method, this supernatant can be treated by the activated sludge method. In addition, if it is not discharged into the sea area or lake, it is not subject to legal restrictions and can be discarded as wastewater.

プロテアーゼ含有酵素は一定時間を経過すると失活する。したがって、本発明で除去した洗米排水の固形成分は米糠成分そのものであるため、体内に入っても何ら問題ない。米糠成分にはγ−アミノ酪酸、グルタミン酸、フィチン酸やイノシトール等の有用成分を含んでいるため、除去した固形成分を機能性食品等の原料として再利用することが可能である。   Protease-containing enzymes are deactivated after a certain period of time. Therefore, since the solid component of the rice washing wastewater removed in the present invention is the rice bran component itself, there is no problem even if it enters the body. Since the rice bran component contains useful components such as γ-aminobutyric acid, glutamic acid, phytic acid and inositol, the removed solid component can be reused as a raw material for functional foods and the like.

次に、図9に基づいて、本発明の一実施形態を説明する。図9は、本発明による洗米排水の固形成分の凝集・沈殿装置の工程図である。この装置は、pH調整槽3、酵素投入槽4、凝集沈殿槽(酵素反応槽)5から構成される。符号1は、本装置を全体的に示す。   Next, an embodiment of the present invention will be described with reference to FIG. FIG. 9 is a process diagram of the apparatus for aggregating and precipitating solid components of the rice washing wastewater according to the present invention. This apparatus includes a pH adjusting tank 3, an enzyme charging tank 4, and a coagulating sedimentation tank (enzyme reaction tank) 5. Reference numeral 1 generally indicates the present apparatus.

この洗米排水に含まれる固形成分の凝集・沈降装置1は以下のようなものである。洗米排水投入口2から、洗米排水をpH調整槽3に投入する。ここで、酸、アルカリ溶液の滴下により、設定したpHに調整する。所定のpHに調整した後、酵素投入槽4に投入し、同時に酵素剤を添加する。酵素が洗米排水中に均一に分散するように攪拌した後、酵素剤を含んだ洗米排水は、酵素投入槽から凝集沈殿槽(酵素反応槽)5に注がれる。ここで、酵素反応(タンパク質分解反応)と洗米排水中の固形成分の凝集・沈降が同時進行する。凝集・沈降した固形成分は、回収バルブ6から回収される。   The coagulation / sedimentation apparatus 1 for solid components contained in this rice effluent is as follows. The rice washing wastewater is introduced into the pH adjustment tank 3 from the rice washing wastewater inlet 2. Here, the pH is adjusted to the set pH by dropwise addition of an acid or alkali solution. After adjusting to a predetermined pH, it is put into the enzyme charging tank 4 and an enzyme agent is added simultaneously. After stirring so that the enzyme is uniformly dispersed in the washing rice wastewater, the rice washing wastewater containing the enzyme agent is poured from the enzyme charging tank to the coagulating sedimentation tank (enzyme reaction tank) 5. Here, the enzyme reaction (proteolysis reaction) and the aggregation / sedimentation of the solid components in the washed rice wastewater proceed simultaneously. Aggregated and settled solid components are collected from the collection valve 6.

また、上澄み液排出口7から排出される。上澄み液はそのまま捨てることもできるが、活性汚泥装置等の生物処理装置で処理し、放流してもよい。   Further, it is discharged from the supernatant liquid discharge port 7. The supernatant liquid can be discarded as it is, but it may be treated and released by a biological treatment apparatus such as an activated sludge apparatus.

以上のように、本実施形態によると、遠心分離やろ過装置等を必要とせず、簡便に洗米排水中の固形成分の沈降・回収が可能である。   As described above, according to the present embodiment, it is possible to easily settle and recover the solid components in the washed rice waste water without requiring a centrifugal separator or a filtration device.

洗米排水にプロテアーゼ含有酵素を添加するだけで、簡単に洗米排水に含まれる固形成分を除去できる。また、除去した洗米排水に含まれる固形成分は有用なアミノ酸等を含み、健康食品等に再利用できる。このため、無洗米製造業、排水処理業、並びに食品製造業等での利用が期待できる。   By simply adding protease-containing enzymes to the rice washing wastewater, the solid components contained in the rice washing wastewater can be easily removed. Moreover, the solid component contained in the removed rice effluent contains useful amino acids and can be reused for health foods. For this reason, use in washing-free rice manufacturing industry, wastewater treatment industry, food manufacturing industry, etc. can be expected.

本発明による洗米排水の固形成分の凝集、沈降メカニズムを示す模式図である。It is a schematic diagram which shows the aggregation and sedimentation mechanism of the solid component of the rice washing waste_water | drain by this invention. 本発明によって処理をした洗米排水の固形成分のFT−IR分析図である。It is a FT-IR analysis figure of the solid component of the rice washing wastewater processed by this invention. 本発明によって処理をした洗米排水の固形成分の表面電位測定図である。It is a surface potential measurement figure of the solid component of the rice washing wastewater processed by the present invention. 洗米排水成分の沈降性に及ぼすキレート剤添加の影響を示す沈降定数測定図である。It is a sedimentation constant measurement figure which shows the influence of the chelating agent addition on the sedimentation property of the rice washing wastewater component. 本発明のプロテアーゼ含有酵素添加による洗米排水の固形成分の凝集状態を示す拡大写真である。It is an enlarged photograph which shows the aggregation state of the solid component of the rice washing waste_water | drain by addition of the protease containing enzyme of this invention. 本発明のプロテアーゼ含有酵素添加による洗米排水の固形成分の沈降性を示す沈降定数測定図である。It is a sedimentation constant measurement figure which shows the sedimentation property of the solid component of the rice washing waste_water | drain by addition of the protease containing enzyme of this invention. 洗米排水の固形成分の沈降性に及ぼすプロテアーゼ含有酵素の添加量の影響を示す沈降定数測定図である。It is a sedimentation constant measurement figure which shows the influence of the addition amount of the protease containing enzyme which affects the sedimentation property of the solid component of the rice washing waste_water | drain. 本発明によって洗米排水の固形成分を沈降させた後の上澄み液の炭素量を示す濃度測定図である。It is a density | concentration measurement figure which shows the carbon content of the supernatant liquid after making the solid component of the rice washing waste_water | drain settle by this invention. 本発明による洗米排水の固形成分の除去方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the removal method of the solid component of the rice washing waste_water | drain by this invention.

符号の説明Explanation of symbols

1 凝集沈殿装置
2 洗米排水投入口
3 pH調整槽
4 酵素投入槽
5 凝集沈殿槽(酵素反応槽)
6 回収バルブ
7 上澄み液排出口
DESCRIPTION OF SYMBOLS 1 Coagulation sedimentation apparatus 2 Rice washing drainage inlet 3 pH adjustment tank 4 Enzyme introduction tank 5 Coagulation sedimentation tank (enzyme reaction tank)
6 Recovery valve 7 Supernatant discharge port

Claims (11)

洗米排水にプロテアーゼ含有酵素を添加し、前記洗米排水に含まれる固形成分を凝集して沈降させることを特徴とする洗米排水の固形成分の除去方法。   A method for removing solid components from rice washing wastewater, comprising adding a protease-containing enzyme to the rice washing wastewater, and aggregating and precipitating the solid components contained in the rice washing wastewater. 前記プロテアーゼ含有酵素として酸性プロテアーゼを用いることを特徴とする請求項1に記載の洗米排水の固形成分の除去方法。   The method for removing solid components from washed rice effluent according to claim 1, wherein acidic protease is used as the protease-containing enzyme. 前記プロテアーゼ含有酵素としてプロテアーゼM、プロテアーゼA、又はビオザイムを用いることを特徴とする請求項1に記載の洗米排水の固形成分の除去方法。   The method for removing a solid component of rice effluent according to claim 1, wherein protease M, protease A, or biozyme is used as the protease-containing enzyme. 前記洗米排水に金属陽イオンを添加することを特徴とする請求項1に記載の洗米排水の固形成分の除去方法。   2. The method for removing solid components from rice washing wastewater according to claim 1, wherein a metal cation is added to the rice washing wastewater. プロテアーゼ含有酵素で洗米排水に含まれる固形成分の表層蛋白質を除去して水酸基を露出させ、
前記水酸基と前記洗米排水に含まれる金属イオンとの結合により、前記固形成分を凝集して沈降させることを特徴とする洗米排水の固形成分の除去方法。
The protease-containing enzyme removes the surface protein of the solid component contained in the rice washing wastewater to expose the hydroxyl group,
A method for removing a solid component of rice effluent, wherein the solid component is aggregated and settled by a bond between the hydroxyl group and metal ions contained in the rice effluent.
前記プロテアーゼ含有酵素として酸性プロテアーゼを用いることを特徴とする請求項5に記載の洗米排水の固形成分の除去方法。   6. The method for removing solid components from washed rice effluent according to claim 5, wherein acidic protease is used as the protease-containing enzyme. 前記プロテアーゼ含有酵素としてプロテアーゼM、プロテアーゼA、又はビオザイムを用いることを特徴とする請求項5に記載の洗米排水の固形成分の除去方法。   The method for removing a solid component of rice effluent according to claim 5, wherein protease M, protease A, or biozyme is used as the protease-containing enzyme. 前記洗米排水に金属陽イオンを添加することを特徴とする請求項5に記載の洗米排水の固形成分の除去方法。   6. The method for removing solid components from rice washing wastewater according to claim 5, wherein metal cations are added to the rice washing wastewater. 洗米排水にプロテアーゼ含有酵素を添加し、
前記洗米排水に含まれる固形成分の表層蛋白質を除去し、デンプン質由来の水酸基を露出して負の表面電位を形成し、
前記水酸基と前記洗米排水に含まれる金属陽イオンとを静電的相互作用により結合させて前記固形成分を凝集し、
凝集した前記固形成分を自重によって沈降させることを特徴とする洗米排水の固形成分の除去方法。
Add protease-containing enzyme to the washed rice effluent,
Removing the surface protein of the solid component contained in the rice effluent, exposing the starch-derived hydroxyl group to form a negative surface potential;
The solid component is aggregated by binding the hydroxyl group and the metal cation contained in the washed rice waste water by electrostatic interaction,
A method for removing a solid component from waste water for washing rice, wherein the aggregated solid component is settled by its own weight.
請求項1〜9のいずれか1に記載の洗米排水の固形成分の除去方法によって沈降させた固形成分を除去した上澄み液をそのまま排水として処理することを特徴とする洗米排水の固形成分の除去方法。   A method for removing a solid component of rice washing wastewater, wherein the supernatant liquid from which the solid component settled by the method for removing the solid component of rice washing wastewater according to any one of claims 1 to 9 is treated as wastewater as it is. . 請求項1〜9のいずれか1に記載の洗米排水の固形成分の除去方法によって沈降させた固形成分を機能性食品の原料として再利用することを特徴とする洗米排水の固形成分の再利用方法。   A method for reusing a solid component of rice effluent, wherein the solid component precipitated by the method for removing a solid component of rice effluent according to any one of claims 1 to 9 is reused as a raw material for functional food. .
JP2006180545A 2005-07-01 2006-06-30 How to remove solid components from rice effluent and how to reuse solid components from rice effluent Active JP4831323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180545A JP4831323B2 (en) 2005-07-01 2006-06-30 How to remove solid components from rice effluent and how to reuse solid components from rice effluent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005193309 2005-07-01
JP2005193309 2005-07-01
JP2006180545A JP4831323B2 (en) 2005-07-01 2006-06-30 How to remove solid components from rice effluent and how to reuse solid components from rice effluent

Publications (2)

Publication Number Publication Date
JP2007038214A JP2007038214A (en) 2007-02-15
JP4831323B2 true JP4831323B2 (en) 2011-12-07

Family

ID=37796683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180545A Active JP4831323B2 (en) 2005-07-01 2006-06-30 How to remove solid components from rice effluent and how to reuse solid components from rice effluent

Country Status (1)

Country Link
JP (1) JP4831323B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029756A (en) * 2008-07-25 2010-02-12 Kameda Seika Co Ltd Method for subjecting rice washing drainage to solid-liquid separation
JP5829800B2 (en) * 2010-08-30 2015-12-09 渡辺 昌規 Boiled noodle wastewater purification device
JP5725813B2 (en) * 2010-11-29 2015-05-27 渡辺 昌規 Precipitation method for solid components of rice effluent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889207A (en) * 1972-02-29 1973-11-21
JPS52126942A (en) * 1976-04-17 1977-10-25 Yokoyama Enjiniaringu Kk Method of treating rice washing water for sake production and so on
JPS6168189A (en) * 1984-09-10 1986-04-08 Genichi Shigehiro Treatment of waste rice washing water or the like
JPH07163996A (en) * 1993-12-15 1995-06-27 Kiichiro Sarui Treatment of sewage and sludge

Also Published As

Publication number Publication date
JP2007038214A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP2373588B1 (en) Method and device for the regeneration of polluted scrubbing solutions
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP4831323B2 (en) How to remove solid components from rice effluent and how to reuse solid components from rice effluent
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
WO2013001791A1 (en) Water treatment system
JP6996866B2 (en) Parlor wastewater treatment method and its wastewater treatment equipment
EP1375439A1 (en) Liquid treatment method and apparatus
JP4272122B2 (en) Coagulated water treatment method and apparatus
CN111908663A (en) High-salinity mine water strengthening pretreatment system and method
JP2000140861A (en) Treatment of waste water incorporating fine abrasive grains-dispersed polishing liquid
JP5249545B2 (en) Water treatment apparatus and water treatment method using microbubbles
JP4457027B2 (en) Disposal water treatment method
KR101879208B1 (en) High-rate Water Treatment Method and Equipment using Mixed Mineral As Weighting Agent
JP5250486B2 (en) Purification process for steel manufacturing wastewater
JPS58166914A (en) Treatment of waste water
KR20180050254A (en) High-rate Water Treatment Method and Equipment using Mixed Mineral As Weighting Agent
JP5023247B1 (en) Radioactive substance removal method and removal apparatus
JP2010253424A (en) Muddy water purification system
RU2330816C2 (en) Method of treatment of titanium and magnesium industry sewage
JP2861370B2 (en) Wastewater treatment method
JPH11309304A (en) Precipitant
CN115072812B (en) Silicon steel magnesium oxide wastewater recycling treatment method and treatment system
JP2002192163A (en) Water cleaning method by rapid filtration
JP2010240625A (en) Method of recovering phosphorus
JP2005193125A (en) Waste sludge treatment method of water purification plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4831323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250