JP4831303B2 - AC / AC direct converter controller - Google Patents

AC / AC direct converter controller Download PDF

Info

Publication number
JP4831303B2
JP4831303B2 JP2005323507A JP2005323507A JP4831303B2 JP 4831303 B2 JP4831303 B2 JP 4831303B2 JP 2005323507 A JP2005323507 A JP 2005323507A JP 2005323507 A JP2005323507 A JP 2005323507A JP 4831303 B2 JP4831303 B2 JP 4831303B2
Authority
JP
Japan
Prior art keywords
phase
voltage
switch
commutation
unidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323507A
Other languages
Japanese (ja)
Other versions
JP2007135260A (en
Inventor
康寛 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005323507A priority Critical patent/JP4831303B2/en
Publication of JP2007135260A publication Critical patent/JP2007135260A/en
Application granted granted Critical
Publication of JP4831303B2 publication Critical patent/JP4831303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Description

本発明は、半導体スイッチング素子のオン、オフにより多相交流電圧を任意の大きさ及び周波数を有する多相交流電圧に変換する半導体電力変換器に関し、特に、大型のエネルギーバッファを有しない交流交流直接変換器において、電源短絡を防止するための転流方法に特徴を有する制御装置に関するものである。   The present invention relates to a semiconductor power converter that converts a multiphase AC voltage into a multiphase AC voltage having an arbitrary magnitude and frequency by turning on and off a semiconductor switching element, and more particularly, an AC AC direct current that does not have a large energy buffer. In a converter, it is related with the control apparatus characterized by the commutation method for preventing a power supply short circuit.

一般に交流交流直接変換器は双方向の電流を制御可能な交流スイッチにより構成されているが、電源短絡及び負荷端開放が発生するようなスイッチングは、以下の理由によって避ける必要がある。すなわち、電源短絡により発生する過大な短絡電流はスイッチを破壊する恐れがあり、また、誘導性負荷の場合に負荷端の開放が発生すると、負荷に蓄積されたエネルギーの環流経路が消失するため過大なサージ電圧が発生し、スイッチの破壊につながるためである。   In general, an AC / AC direct converter is constituted by an AC switch capable of controlling a bidirectional current. However, switching that causes a power supply short circuit and a load end opening needs to be avoided for the following reason. In other words, an excessive short-circuit current generated by a power supply short-circuit may damage the switch. Also, in the case of an inductive load, if the load end is opened, the circulation path of the energy stored in the load is lost, which is excessive. This is because an excessive surge voltage is generated, leading to destruction of the switch.

ここで、多相交流電源として最も一般的な三相交流電源を使用し、直接変換器として周波数変換が可能なマトリクスコンバータを使用した場合を例にとって説明する。
図11(a)は、マトリクスコンバータの出力側一相分(U相)の回路を示している。
図11(a)において、vmaxは三相交流電源の最大電圧相(以下、単に最大相ともいう)、vmidは中間電圧相(同中間相)、vminは最小電圧相(同最小相)に接続される入力端子であり、以下では最大電圧、中間電圧、最小電圧自体もvmax,vmid,vminによってそれぞれ表すものとする。
Here, a case where the most common three-phase AC power supply is used as the multiphase AC power supply and a matrix converter capable of frequency conversion is used as the direct converter will be described as an example.
FIG. 11A shows a circuit for one phase (U phase) on the output side of the matrix converter.
In FIG. 11A, v max is the maximum voltage phase of the three-phase AC power supply (hereinafter also simply referred to as the maximum phase), v mid is the intermediate voltage phase (the same intermediate phase), and v min is the minimum voltage phase (the same minimum phase). In the following description, the maximum voltage, the intermediate voltage, and the minimum voltage are also represented by v max , v mid , and v min , respectively.

交流スイッチS,S,Sはそれぞれ一方向の電流を制御可能なIGBT等の2個の単方向スイッチS1a,S1b、S2a/b,S2b/a、S3a,S3bによって構成されており、スイッチS1a,S3aはIGBTモード(コレクタ−エミッタ間に順電圧が印加されている状態で、ゲートオンと同時に電流が流れるモード)で動作し、スイッチS1b,S3bは環流ダイオードモード(コレクタ−エミッタ間に逆電圧が印加されており、順電圧が印加されてゲートオンしないと電流が流れないモード)で動作する。なお、スイッチS2a/b,S2b/aは、交流スイッチSが他の交流スイッチS,Sとの関係で下アームで動作するか上アームで動作するかによってIGBTモード、環流ダイオードモードの何れでも動作するため、添字をa/b,b/aと表記してある。 The AC switches S 1 , S 2 , S 3 are two unidirectional switches S 1a , S 1b , S 2a / b , S 2b / a , S 3a , S 3b such as an IGBT that can control a current in one direction, respectively. The switches S 1a and S 3a operate in an IGBT mode (a mode in which a current flows simultaneously with the gate being turned on while a forward voltage is applied between the collector and the emitter), and the switches S 1b and S 3b It operates in a freewheeling diode mode (a mode in which a reverse voltage is applied between the collector and the emitter, and a forward voltage is applied and current does not flow unless the gate is turned on). The switches S 2a / b and S 2b / a are different from each other in IGBT mode, free-wheeling diode, depending on whether the AC switch S 2 operates in the lower arm or the upper arm in relation to the other AC switches S 1 and S 3. Since any of the modes operates, the subscripts are written as a / b and b / a.

ここで、図11(b)はマトリクスコンバータの概略的な全体構成図であり、三相交流入力端子R,S,Tと同出力端子U,V,Wとの間に接続されるスイッチ群S,S,Sからなっている。各スイッチ群S,S,Sはそれぞれ3個の交流スイッチから構成されており、例えば入力端子R,S,Tと出力端子Uとの間にそれぞれ接続された交流スイッチSRU,SSU,STUが図11(a)の交流スイッチS,S,Sに相当する。すなわち、最大相がR相、中間相がS相、最小相がT相であれば、図11(a)の交流スイッチSは図11(b)のSRUに、SはSSUに、SはSTUにそれぞれ相当することとなる。 Here, FIG. 11B is a schematic overall configuration diagram of the matrix converter, and a switch group S connected between the three-phase AC input terminals R, S, T and the output terminals U, V, W. It consists of R 1 , S S and S T. Each switch group S R , S S , S T is composed of three AC switches. For example, the AC switches S RU , S connected between the input terminals R, S, T and the output terminal U, respectively. SU 1 and S TU correspond to the AC switches S 1 , S 2 , and S 3 in FIG. That is, the maximum phase is R phase, the intermediate phase is S phase, if the minimum phase T phase, AC switch S 1 in FIG. 11 (a) to S RU in FIG 11 (b), S 2 to S SU , S 3 respectively corresponds to S TU .

さて、図11(a)の交流スイッチS,S,S間で転流を行うときは、前述したように電源短絡及び負荷端開放が発生しないようにそれぞれの単方向スイッチを制御する必要がある。そのためには、各相の交流スイッチに印加されている電圧の大きさを検出し、電圧の大きな相から小さな相への転流か、あるいは電源電圧の小さな相から大きな相への転流かを判別し、それぞれのモードに応じて転流パターンを生成する必要がある。 When commutation is performed between the AC switches S 1 , S 2 , and S 3 in FIG. 11A, each unidirectional switch is controlled so that the power supply short circuit and the load end opening do not occur as described above. There is a need. For this purpose, the magnitude of the voltage applied to the AC switch of each phase is detected, and it is determined whether the commutation is from a phase with a large voltage to a small phase or from a phase with a small power supply voltage to a large phase. It is necessary to discriminate and generate a commutation pattern according to each mode.

図12は、最大相と中間相との間で転流を行う場合の各スイッチのPWMパルス(PWMパターン)を示し、図13は、中間相と最小相との間で転流を行う場合の各スイッチのPWMパルスを示している。
例えば、最大相から中間相へ転流を行う場合には、スイッチS1a,S2a/bをIGBTとして、スイッチS1b,S2b/aを環流ダイオードとして動作させる。図12(b)に示すように、まず、スイッチS2b/aをオンにして環流経路を確保する。このように環流ダイオードモードの素子を常にオンさせている期間を転流期間と定義する。次に、スイッチS1aオフ、S2a/bオンと順に切り替え、最後にスイッチS1bをオフにして転流が完了する。
FIG. 12 shows a PWM pulse (PWM pattern) of each switch when commutation is performed between the maximum phase and the intermediate phase, and FIG. 13 is a diagram when commutation is performed between the intermediate phase and the minimum phase. The PWM pulse of each switch is shown.
For example, when commutation is performed from the maximum phase to the intermediate phase, the switches S 1a and S 2a / b are operated as IGBTs, and the switches S 1b and S 2b / a are operated as freewheeling diodes. As shown in FIG. 12B, first, the switch S2b / a is turned on to secure a reflux path. A period in which the element in the freewheeling diode mode is always turned on is defined as a commutation period. Next, switch S1a is turned off and S2a / b is turned on in turn, and finally switch S1b is turned off to complete commutation.

図12(b)から明らかなように、転流期間に交流スイッチS,S,Sのうち複数がオンすることはないので、電源短絡は発生しない。また、電流経路が常に確保されているため負荷端が開放されることもない。なお、図12(a),(b)に示すごとく、最大相と中間相との間で転流を行う場合には、スイッチングを行っていない交流スイッチSは常時オフである。
この種の技術は、例えば特許文献1に開示されている。
As is clear from FIG. 12B, since a plurality of AC switches S 1 , S 2 , S 3 are not turned on during the commutation period, a power supply short circuit does not occur. Further, since the current path is always secured, the load end is not opened. Incidentally, as shown in FIG. 12 (a), (b) , when performing the commutation between a maximum phase and the intermediate phase, AC switch S 3 not subjected to switching is always OFF.
This type of technology is disclosed in, for example, Patent Document 1.

特開2001−61276号公報([0025]〜[0044]、図5等)JP 2001-61276 A ([0025] to [0044], FIG. 5 etc.)

特許文献1に記載された従来技術では、転流を行う二相の電源電圧の大小関係に応じてPWMパターンを決定するため、電源電圧の大小関係を正確に判別することが必須となる。しかし、スイッチングにより発生するリプルの影響により、線間電圧が0〔V〕付近になる領域においては、電源電圧の大小関係を正確に判別することが困難であり、電源電圧の大小関係を誤って判別すると、転流失敗による電源短絡が発生する。   In the prior art described in Patent Document 1, since the PWM pattern is determined in accordance with the magnitude relationship between the two-phase power supply voltages for commutation, it is essential to accurately determine the magnitude relationship between the power supply voltages. However, in the region where the line voltage is near 0 [V] due to the influence of ripple generated by switching, it is difficult to accurately determine the magnitude relation of the power supply voltage. If determined, a power supply short circuit occurs due to a commutation failure.

図14は、交流スイッチSからSへの転流期間において、最大相と中間相との大小判別を誤った場合の動作説明図であり、図14(a)はPWMパルスを、図14(b)はマトリクスコンバータの出力側一相分(U相)の等価回路を示している。
PWMパルス発生回路は、常に、交流スイッチSには最大相が、Sには中間相が、Sには最小相がそれぞれ接続されていると判断するため、最大相から中間相への転流時には、図14(a)に示すように、図12(b)と同一のPWMパルスを出力する。このため、転流期間中はスイッチS1b,S2b/aが常時オンとなる。
14, in the commutation period from the AC switch S 1 to S 2, an operation explanatory diagram of the case where the wrong level decision between the maximum phase and the intermediate phase, Fig. 14 (a) a PWM pulse, FIG. 14 (B) shows an equivalent circuit for one phase (U phase) of the output side of the matrix converter.
PWM pulse generating circuit is always up phase to the AC switch S 1 is the intermediate phase in the S 2 is, for determining the minimum phase in the S 3 is connected, from the maximum phase to the intermediate phase At the time of commutation, the same PWM pulse as that shown in FIG. 12B is output as shown in FIG. For this reason, the switches S 1b and S 2b / a are always on during the commutation period.

しかしながら、最大相と中間相との大小判別を誤り、交流スイッチSが中間相に接続されると共に交流スイッチSが最大相に接続されると、図14(b)のような接続状態となる。このとき、転流期間中は図14(a)のようにスイッチS1b,S2b/aが常時オンしているので、これらのスイッチS1b,S2b/aを介して最大相と中間相との間で短絡電流が破線のように流れることになる。
中間相から最小相、すなわち交流スイッチSからSへの転流を行う場合も、中間相と最小相との大小判別を誤ると、同様の理由によって電源短絡が発生する。
その結果、定格以上の電流がスイッチング素子に流れて破壊に至るおそれがあり、装置の信頼性の低下が懸念される。
However, the error magnitude determination between the maximum phase and the intermediate phase, when the AC switch S 1 is AC switch S 2 is connected to the intermediate phase is connected to the maximum phase, the connection state as shown in FIG. 14 (b) Become. At this time, since the switches S 1b and S 2b / a are always on as shown in FIG. 14A during the commutation period, the maximum and intermediate phases are connected via these switches S 1b and S 2b / a. A short-circuit current flows between the two lines as shown by a broken line.
Minimum phase from the intermediate phase, i.e., when performing commutation to S 3 from the AC switch S 2, Incorrect level decision between the intermediate phase and the minimum phase, the power source short circuit is generated for the same reason.
As a result, a current exceeding the rating may flow to the switching element and cause destruction, and there is a concern that the reliability of the device may be reduced.

そこで本発明の解決課題は、電源電圧の大小関係を誤判別した場合にも電源短絡が発生しないPWMパターンを簡単に実現するようにした、信頼性が高く、安価な交流交流直接変換器の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to control a highly reliable and inexpensive AC / AC direct converter that simply realizes a PWM pattern in which a power supply short circuit does not occur even when the magnitude relationship between power supply voltages is misjudged. To provide an apparatus.

上記課題を解決するため、請求項1に記載した発明は、一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最小電圧相に接続されている交流スイッチ内の、電源側から負荷側に電流を通流する単方向スイッチを常時オンさせる手段と、
前記転流方向判別手段により最大電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の電源側から負荷側に電流を通流する単方向スイッチを常時オフさせる手段と、を備えたものである。
In order to solve the above-mentioned problem, the invention described in claim 1 comprises an AC switch capable of controlling a bidirectional current by combining a plurality of unidirectional switches capable of controlling a unidirectional current. In an AC / AC direct converter that directly converts a three-phase AC voltage to a three-phase AC voltage having an arbitrary magnitude and frequency by turning on and off,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages;
Means for constantly turning on a unidirectional switch for passing current from the power supply side to the load side in the AC switch connected to the minimum voltage phase;
Upon determining the commutation between a maximum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, the power source side in the AC switch connected to the intermediate voltage phase Means for always turning off a unidirectional switch for passing a current to the load side.

請求項2に記載した発明は、一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最大電圧相の電圧と中間電圧相の電圧とがほぼ等しい期間を判別する領域判別手段と、
この領域判別手段により最大電圧相の電圧と中間電圧相の電圧とがほぼ等しいと判別された期間において、最小電圧相に接続されている交流スイッチ内の、電源側から負荷側に 電流を通流する単方向スイッチを常時オンさせる手段と、
上記期間において、前記転流方向判別手段により最大電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の電源側から負荷側に電流を通流する単方向スイッチを常時オフさせる手段と、を備えたものである。
The invention described in claim 2 comprises an AC switch capable of controlling a bidirectional current by combining a plurality of unidirectional switches capable of controlling a unidirectional current, and a three-phase alternating current by turning the unidirectional switch on and off. In an AC / AC direct converter that directly converts a voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply ,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages ;
Region discriminating means for discriminating a period in which the voltage of the maximum voltage phase and the voltage of the intermediate voltage phase are substantially equal;
Current is passed from the power supply side to the load side in the AC switch connected to the minimum voltage phase during the period when the voltage of the maximum voltage phase and the voltage of the intermediate voltage phase are determined to be approximately equal by this region discrimination means. Means to always turn on the unidirectional switch,
In the period, when it is determined the commutation between a maximum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, in the AC switch connected to the intermediate voltage phase and means for always turning off the unidirectional switch flowing through the current to the load side from the power source side are those having a.

請求項3に記載した発明は、一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最大電圧相に接続されている交流スイッチ内の、負荷側から電源側に電流を通流する単方向スイッチを常時オンさせる手段と、
前記転流方向判別手段により最小電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の負荷側から電源側に電流を通流する単方向スイッチを常時オフさせる手段と、を備えたものである。
The invention described in claim 3 comprises an AC switch capable of controlling a bidirectional current by combining a plurality of unidirectional switches capable of controlling a unidirectional current, and a three-phase alternating current by turning the unidirectional switch on and off. In an AC / AC direct converter that directly converts a voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply ,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages ;
Means for constantly turning on a unidirectional switch for passing current from the load side to the power source side in the AC switch connected to the maximum voltage phase;
Upon determining the commutation between the minimum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, from the load side of the AC switch connected to the intermediate voltage phase And a means for always turning off a unidirectional switch for passing a current to the power source side.

請求項4に記載した発明は、一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最小電圧相の電圧と中間電圧相の電圧とがほぼ等しい期間を判別する領域判別手段と、
この領域判別手段により最小電圧相の電圧と中間電圧相の電圧とがほぼ等しいと判別された期間において、最大電圧相に接続されている交流スイッチ内の、負荷側から電源側に電流を通流する単方向スイッチを常時オンさせる手段と、
上記期間において、前記転流方向判別手段により最小電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の負荷側から電源側に電流を通流する単方向スイッチを常時オフさせる手段と、を備えたものである。
The invention described in claim 4 constitutes an AC switch capable of controlling a bidirectional current by combining a plurality of unidirectional switches capable of controlling a unidirectional current, and a three-phase alternating current by turning the unidirectional switch on and off. In an AC / AC direct converter that directly converts a voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply ,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages ;
Area discriminating means for discriminating a period in which the voltage of the minimum voltage phase and the voltage of the intermediate voltage phase are substantially equal;
Current is passed from the load side to the power supply side in the AC switch connected to the maximum voltage phase during the period in which the voltage of the minimum voltage phase and the voltage of the intermediate voltage phase are determined to be approximately equal by this region discrimination means. Means to always turn on the unidirectional switch,
In the period, when it is determined the commutation between the minimum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, in the AC switch connected to the intermediate voltage phase and means for turning off always unidirectional switch flowing through the current source side from the load side are those having a.

本発明においては、最大相、中間相、最小相の何れの相間における転流か、更には、必要に応じて各相電圧の大小関係を誤判別しやすい期間(領域)であるかを検出して、中間相に接続される環流ダイオードモードの単方向スイッチ等の特定のスイッチのオン、オフを制御することにより、転流時における負荷端開放を防ぐと共に、仮に電源電圧の大小判別を誤ったとしても電源短絡を生じさせない高信頼性の制御装置を提供することができる。   In the present invention, the commutation between the maximum phase, the intermediate phase, and the minimum phase is detected, and further, if necessary, it is detected whether it is a period (region) in which the magnitude relationship of each phase voltage is easily misidentified. In addition, by controlling on / off of a specific switch such as a unidirectional switch in the freewheeling diode mode connected to the intermediate phase, the load end is prevented from being opened at the time of commutation, and the power supply voltage is mistakenly determined. However, a highly reliable control device that does not cause a power supply short circuit can be provided.

以下、図に沿って本発明の実施形態を説明する。
図1は請求項1に相当する本発明の第1実施形態を示す機能ブロック図であり、図11に示したマトリクスコンバータの出力側一相分に対するPWMパルス発生回路に相当する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 is a functional block diagram showing a first embodiment of the present invention corresponding to claim 1, and corresponds to a PWM pulse generating circuit for one phase on the output side of the matrix converter shown in FIG.

図1において、転流方向判別手段としてのエッジ検出手段1には、図11(a)に示した交流スイッチS,S,Sに対するオンオフ指令値S ,S ,S が入力されており、これらの指令値のエッジを検出することでどの相からどの相への転流かを判別可能となっている。エッジ検出手段1の検出出力は転流発生手段2に入力されており、転流発生手段2では、エッジ検出手段1の出力に基づいて図11(a)の6個の単方向スイッチS1a,S1b、S2a/b,S2b/a、S3a,S3bのPWMパルスを作成し、パルス分配手段3側に出力する。なお、図1では、符号S1a,S1b、S2a/b,S2b/a、S3a,S3bをPWMパルスを指す場合にも用いるものとする。 In FIG. 1, the edge detection means 1 as the commutation direction determination means includes on / off command values S 1 * , S 2 * , S 3 for the AC switches S 1 , S 2 , S 3 shown in FIG. * Is input, and by detecting the edge of these command values, it is possible to determine from which phase to which phase. The detection output of the edge detection means 1 is input to the commutation generation means 2, and the commutation generation means 2 performs the six unidirectional switches S 1a , FIG. 11A based on the output of the edge detection means 1. PWM pulses of S 1b , S 2a / b , S 2b / a , S 3a , S 3b are created and output to the pulse distribution means 3 side. In FIG. 1, the symbols S 1a , S 1b , S 2a / b , S 2b / a , S 3a , S 3b are also used when referring to PWM pulses.

一方、大小判別手段4には三相交流電源の各相電圧v,v,vが入力されており、各相電圧の振幅に基づき最大相、中間相、最小相を判別して得た大小判別信号がパルス分配手段3に出力されている。パルス分配手段3では、大小判別信号に従って、PWMパルスS1a,S1b、S2a/b,S2b/a、S3a,S3bを出力側一相分の単方向スイッチ(例えば、図11(b)における交流スイッチSRU,SSU,STUを構成する合計6個の単方向スイッチ)に分配する。 On the other hand, each phase voltage v R , v S , v T of the three-phase AC power source is input to the magnitude discrimination means 4 and is obtained by discriminating the maximum phase, the intermediate phase, and the minimum phase based on the amplitude of each phase voltage. A magnitude discrimination signal is output to the pulse distribution means 3. In the pulse distribution means 3, the PWM pulses S 1a , S 1b , S 2a / b , S 2b / a , S 3a , S 3b are unidirectional switches corresponding to one phase on the output side (for example, FIG. 11 ( The AC switches S RU , S SU , S TU in b) are distributed to a total of six unidirectional switches).

ここで、転流発生手段2では、最小相に接続されている交流スイッチSのうち電源側から負荷側に電流を通流する単方向スイッチS3bのPWMパルスが常に1となる信号を出力しており、S3bは常時オンとなっている。また、エッジ検出手段1の出力側に接続された中間相環流ダイオード(FWD)モードオフ手段5Aでは、エッジ検出手段1の出力から、最大相と中間相との間の転流発生を検出し、この転流期間において0となる信号を出力する。この信号は中間相に接続されている交流スイッチSのうち電源側から負荷側に電流を通流する単方向スイッチ(最大相と中間相との間の転流時における環流ダイオードモードの単方向スイッチ)S2b/aに対するPWMパルスと共に論理積手段6に入力され、その出力が単方向スイッチS2b/aに対する最終的なPWMパルスとなる。
この結果、最大相と中間相との間で転流を行う際は、中間相に接続されている交流スイッチのうち電源側から負荷側へ電流を通流する単方向スイッチS2b/aが、転流期間中は常時オフとなる。なお、その他の単方向スイッチS1a,S1b,S2a/b,S3aのPWMパルス及びその作成方法は図12に示した従来技術と同一である。
Here, the commutation generator 2, a signal PWM pulse unidirectional switch S 3b flowing through the current to the load side from the power supply side of the AC switch S 3 which is connected to the minimum phase is always 1 and the output S3b is always on. The intermediate phase freewheeling diode (FWD) mode off means 5A connected to the output side of the edge detection means 1 detects the occurrence of commutation between the maximum phase and the intermediate phase from the output of the edge detection means 1, A signal that becomes 0 in this commutation period is output. Unidirectional this signal wheeling diode mode during commutation between the unidirectional switch (maximum phase and the intermediate phase flowing through the current to the load side from the power supply side of the AC switch S 2 being connected to an intermediate phase Switch) is input to AND means 6 together with the PWM pulse for S 2b / a , and its output becomes the final PWM pulse for unidirectional switch S 2b / a .
As a result, when commutation is performed between the maximum phase and the intermediate phase, the unidirectional switch S 2b / a that passes current from the power supply side to the load side among the AC switches connected to the intermediate phase is: It is always off during the commutation period. Note that the PWM pulses of the other unidirectional switches S 1a , S 1b , S 2a / b , S 3a and the method for producing them are the same as those in the prior art shown in FIG.

図2,図3はこの実施形態におけるPWMパルスを示しており、図2は最大相と中間相との間で転流する場合、図3は中間相と最小相との間で転流する場合である。
図2(a)より、交流スイッチSからSへの転流が発生すると、単方向スイッチS2b/aが即座にオフとなる。従来技術では、図12(a)に示したように、単方向スイッチS2b/aは正の負荷電流の経路を確保するために、転流終了までオンさせる必要がある。
しかしながら、この第1実施形態では、単方向スイッチS3bが常時オンしていて正の負荷電流の経路が常に確保されているため、単方向スイッチS2b/aを転流開始と同時にオフしても負荷端の開放を防止することができる。
2 and 3 show PWM pulses in this embodiment, FIG. 2 shows a case where commutation occurs between the maximum phase and the intermediate phase, and FIG. 3 shows a case where commutation occurs between the intermediate phase and the minimum phase. It is.
2 from (a), the commutation of the S 1 is generated from the AC switch S 2, unidirectional switch S 2b / a is turned off immediately. In the prior art, as shown in FIG. 12A, the unidirectional switch S2b / a needs to be turned on until commutation is completed in order to secure a positive load current path.
However, in this first embodiment, since the unidirectional switch S3b is always on and the path of the positive load current is always secured, the unidirectional switch S2b / a is turned off simultaneously with the start of commutation. Can also prevent the load end from being opened.

また、線間電圧が0〔V〕付近になる場合のように最大相電圧と中間相電圧の大きさがほぼ等しい領域では、大小関係を誤判別するおそれがある。従来技術では、図12(b)のように交流スイッチSからSへの転流期間中は単方向スイッチS1b,S2b/aが常時オンになっているため、図14に示したごとく大小関係の誤判別によって電源短絡が発生する。しかし、第1実施形態によれば、交流スイッチSからSへの転流期間中は単方向スイッチS2b/aが常時オフとなるため、最大相電圧と中間相電圧の大小関係を誤判別したとしても電源短絡が発生することはない。 Further, in the region where the maximum phase voltage and the intermediate phase voltage are approximately equal, as in the case where the line voltage is near 0 [V], the magnitude relationship may be erroneously determined. In the prior art, the unidirectional switches S 1b and S 2b / a are always on during the commutation period from the AC switch S 1 to S 2 as shown in FIG. In this way, a power supply short circuit occurs due to a misjudgment of the magnitude relationship. However, according to the first embodiment, since the commutation period in unidirectional switch S 2b / a from the AC switch S 1 to S 2 is turned off at all times, the magnitude of the maximum phase voltage and the intermediate phase voltage indetermination Even if it separates, a power supply short circuit does not occur.

一方、交流スイッチSからSへの転流が発生した場合、従来技術では、図12(b)のように転流開始と同時に単方向スイッチS2b/aがオンとなるが、第1実施形態では、図2(b)のごとく転流終了と同時に単方向スイッチS2b/aがオンする。この場合も、常時オンしている単方向スイッチS3bによって正の負荷電流の経路が常に確保されており、単方向スイッチS1b,S2b/aが同時にオンすることはないため、負荷端開放や、最大相電圧と中間相電圧の大小関係誤判別による電源短絡は発生しない。
なお、図3に示すように、交流スイッチSとSとの間の転流が発生した場合は、単方向スイッチS3bが常時オンとなる以外は、図13に示した従来技術のPWMパルスと同一である。
On the other hand, if the commutation from the AC switch S 1 to S 2 occurs, in the prior art, the commutation at the same time as the start unidirectional switch S 2b / a, as shown in FIG. 12 (b) is turned on, first In the embodiment, as shown in FIG. 2B, the unidirectional switch S2b / a is turned on simultaneously with the completion of commutation. Again, is the path of the positive load current by unidirectional switch S 3b, which are on, always is always ensured, since unidirectional switches S 1b, S 2b / a is never turned on at the same time, the load end open In addition, a power supply short circuit does not occur due to a misjudgment of the magnitude relationship between the maximum phase voltage and the intermediate phase voltage.
As shown in FIG. 3, if the commutation between the AC switch S 2 and S 3 occurs, except that the unidirectional switch S 3b is turned on at all times, the prior art PWM shown in FIG. 13 Same as pulse.

なお、前述したごとく、第1実施形態では単方向スイッチS3bを常時オンとしている。つまり、最大相の交流スイッチSと中間相の交流スイッチSとの間の転流が発生した場合においても、最小相の交流スイッチS内の単方向スイッチS3bをオンさせているため、出力可能な最大電圧が低下するという問題を生じる。 As described above, in the first embodiment, the unidirectional switch S3b is always on. That is, since the turning on when the commutation has occurred even unidirectional switch S 3b in AC switch S 3 of the minimum phase between the AC switch S 2 of the maximum phase of the AC switch S 1 and the intermediate phase This causes a problem that the maximum voltage that can be output decreases.

本発明の第2実施形態は上記の問題を解決するためのものである。すなわち、第2実施形態は、最大相電圧と中間相電圧との大きさがほぼ等しくなって大小関係を誤判別するおそれが大きい期間にのみ、第1実施形態によるPWMパルスを生成することとした。   The second embodiment of the present invention is for solving the above problem. That is, in the second embodiment, the PWM pulse according to the first embodiment is generated only during a period when the magnitudes of the maximum phase voltage and the intermediate phase voltage are substantially equal and there is a high possibility that the magnitude relationship is erroneously discriminated. .

図4は、請求項2に相当する本発明の第2実施形態を示す機能ブロック図である。この実施形態では、図1の第1実施形態に対し、各相電圧v,v,vが入力される領域判別手段7Aと、その出力である領域判別信号が単方向スイッチS3bに対するPWM信号と共に入力される論理和手段8とが追加されており、論理和手段8の出力が単方向スイッチS3bに対する最終的なPWMパルスとしてパルス分配手段3に入力されている。 FIG. 4 is a functional block diagram showing a second embodiment of the present invention corresponding to the second aspect. In this embodiment, compared to the first embodiment of FIG. 1, the region discriminating means 7A to which the phase voltages v R , v S , and v T are inputted, and the region discriminating signal that is the output thereof are applied to the unidirectional switch S 3b . The logical sum means 8 input together with the PWM signal is added, and the output of the logical sum means 8 is inputted to the pulse distribution means 3 as the final PWM pulse for the unidirectional switch S3b .

図5は、領域判別手段7Aの機能を説明する図である。領域判別手段7Aでは、三相交流電源の各相電圧v,v,vに基づいて最大相電圧と中間相電圧とがほぼ等しくなる期間(領域A)を検出し、図5の領域Aにおいて1となる領域判別信号を発生させる。単方向スイッチS3bのPWMパルスは転流発生手段2の出力と領域判別信号との論理和となるため、領域AではPWMパルスS3bが常に1となり、実質的に図1と同一の回路構成になると共に、図5の領域A以外の領域CではPWMパルスS3bは転流発生手段2の出力と等しくなり、従来技術と同様になる。
また、エッジ検出手段1の出力信号及び領域判別信号は図4の中間相FWDモードオフ手段5Bにも入力されているので、中間相FWDモードオフ手段5Bでは、最大相と中間相との間の転流期間中であり、かつ、現時点が領域Aである場合に0となる信号を出力する。よって、領域Aにおいては第1実施形態と同一のPWMパルスが、領域Cにおいては従来技術と同一のPWMパルスが各単方向スイッチに与えられることになる。
FIG. 5 is a diagram for explaining the function of the region discriminating means 7A. The area discriminating means 7A detects a period (area A) in which the maximum phase voltage and the intermediate phase voltage are substantially equal based on the phase voltages v R , v S , v T of the three-phase AC power supply, and the area shown in FIG. An area determination signal which is 1 in A is generated. Since the PWM pulse of the unidirectional switch S 3b is the logical sum of the output of the commutation generating means 2 and the region discrimination signal, the PWM pulse S 3b is always 1 in the region A, and the circuit configuration is substantially the same as in FIG. At the same time, in the region C other than the region A in FIG. 5, the PWM pulse S 3b is equal to the output of the commutation generating means 2 and is the same as in the prior art.
Further, since the output signal of the edge detection means 1 and the region discrimination signal are also input to the intermediate phase FWD mode off means 5B in FIG. 4, the intermediate phase FWD mode off means 5B has an intermediate phase between the maximum phase and the intermediate phase. A signal that is 0 is output when the commutation period is in progress and the current time is the region A. Therefore, in the region A, the same PWM pulse as that in the first embodiment is applied to each unidirectional switch in the region C, and the same PWM pulse as that in the conventional technique is applied to each unidirectional switch.

なお、領域Aは短期間であるため、この期間だけ最小電圧相の単方向スイッチS3bを常時オンとしても出力電圧に大きな影響は与えない。また、領域Cにおいては従来技術と同一のPWMパルスとなるが、最大相電圧と中間相電圧との大小関係を誤判別するおそれは少ないため、大小関係誤判別による電源短絡を防止することができる。よって、この第2実施形態でも第1実施形態と同様の効果を得ることができる。 Since the region A has a short period, even if the unidirectional switch S3b in the minimum voltage phase is always turned on only during this period, the output voltage is not greatly affected. In the region C, the PWM pulse is the same as that of the prior art, but since there is little possibility of misjudging the magnitude relationship between the maximum phase voltage and the intermediate phase voltage, it is possible to prevent a power supply short circuit due to a magnitude relationship misjudgment. . Therefore, the same effect as that of the first embodiment can be obtained in the second embodiment.

次に、図6は請求項3に相当する本発明の第3実施形態を示す機能ブロック図である。この実施形態では、中間相FWDモードオフ手段5Cの出力が、中間相に接続されている交流スイッチSのうち負荷側から電源側に電流を通流する単方向スイッチS2a/bのPWMパルスと共に論理積手段6に入力され、その出力が単方向スイッチS2a/bの最終的なPWMパルスとしてパルス分配手段3に入力されている。 FIG. 6 is a functional block diagram showing a third embodiment of the present invention corresponding to the third aspect. In this embodiment, the PWM pulse of the unidirectional switch S 2a / b in which the output of the intermediate phase FWD mode off means 5C flows current from the load side to the power source side of the AC switch S 2 connected to the intermediate phase. At the same time, it is input to the logical product means 6, and its output is input to the pulse distribution means 3 as the final PWM pulse of the unidirectional switch S2a / b .

この実施形態におけるPWMパルスの基本的な作成方法は第1実施形態と同一であるため、以下では第1実施形態と異なる部分を説明する。
本実施形態では、最大相に接続されている交流スイッチSのうち負荷側から電源側に電流を通流する単方向スイッチS1bのPWMパルスは、転流発生手段2から常に1となる信号を出力することによって常時オンとなる。また、中間相FWDモードオフ手段5Cでは、エッジ検出手段1の出力から中間相と最小相との間の転流発生を検出し、この転流期間において0となる信号を出力する。その結果、中間相と最小相との間で転流を行う際は、中間相に接続されている交流スイッチSのうち負荷側から電源側へ電流を通流する単方向スイッチ(中間相と最小相との間の転流時における環流ダイオードモードの単方向スイッチ)S2a/bが、転流期間中、常時オフとなる。
Since the basic method for generating the PWM pulse in this embodiment is the same as that in the first embodiment, the following description will be focused on the differences from the first embodiment.
In the present embodiment, the PWM pulse of the unidirectional switch S 1b that allows current to flow from the load side to the power source side of the AC switch S 1 connected to the maximum phase is a signal that is always 1 from the commutation generating means 2. Is always turned on. Further, the intermediate phase FWD mode off means 5C detects the occurrence of commutation between the intermediate phase and the minimum phase from the output of the edge detection means 1, and outputs a signal that becomes 0 during this commutation period. As a result, when performing commutation between the intermediate phase and the minimum phase, unidirectional switch (mesophase flowing through the current to the power supply side from the load side of the AC switch S 2 being connected to an intermediate phase The unidirectional switch in the freewheeling diode mode at the time of commutation with the minimum phase) S2a / b is always off during the commutation period.

図7,8はこの実施形態におけるPWMパルスを示しており、図7は中間相と最小相との間で転流を行う場合、図8は最大相と中間相との間で転流を行う場合である。
図7(a)より、交流スイッチSからSへの転流が発生すると、単方向スイッチS2a/bが即座にオフとなる。従来技術では、図13(a)に示したように、単方向スイッチS2a/bは負の負荷電流の経路を確保するために、転流終了までオンさせる必要がある。
しかし、この実施形態では、図7(a)のように単方向スイッチS1bが常時オンしていて負の負荷電流の経路が常に確保されているため、単方向スイッチS2a/bを転流開始と同時にオフしても負荷端の開放を防止することができる。
7 and 8 show PWM pulses in this embodiment. FIG. 7 shows commutation between the intermediate phase and the minimum phase, and FIG. 8 shows commutation between the maximum phase and the intermediate phase. Is the case.
7 (a), the commutation to S 3 is generated from the AC switch S 2, unidirectional switches S 2a / b is turned off immediately. In the prior art, as shown in FIG. 13A, the unidirectional switch S2a / b needs to be turned on until the commutation is completed in order to secure a negative load current path.
However, in this embodiment, as shown in FIG. 7A, the unidirectional switch S1b is always on and the path of the negative load current is always secured, so that the unidirectional switch S2a / b is commutated. Even if it is turned off simultaneously with the start, it is possible to prevent the load end from being opened.

また、従来技術において、中間相電圧と最小相電圧との大小関係を誤判別すると、図13(a)では、交流スイッチSからSへの転流期間中は単方向スイッチS3b,S2a/bが常時オンとなっているため、電源短絡が発生する。
しかし、この実施形態によれば、図7(a)のように交流スイッチSからSへの転流期間中は単方向スイッチS2a/bが常時オフしているため、仮に中間相電圧と最小相電圧との大小関係を誤判別しても電源短絡が発生することはない。
Further, in the prior art, the erroneous determines the size relationship between the intermediate phase voltage and the minimum phase voltage, FIG. 13 (a) in the AC switch S during commutation period to the S 3 from 2-way switch S 3b, S Since 2a / b is always on, a power supply short circuit occurs.
However, according to this embodiment, since the commutation period in unidirectional switches S 2a / b from AC switch S 2 to S 3 as shown in FIGS. 7 (a) is always off, if the intermediate phase voltage Even if the magnitude relationship between the voltage and the minimum phase voltage is misjudged, a power supply short circuit does not occur.

一方、交流スイッチSからSへの転流が発生した場合、従来技術では、図13(b)のように転流開始と同時に単方向スイッチS2a/bがオンとなるが、この実施形態では図7(b)のように転流終了と同時に単方向スイッチS2a/bがオンする。この場合も、常時オンしている単方向スイッチS1bにより負の負荷電流の経路が常に確保されており、単方向スイッチS3b,S2b/aが同時にオンすることはないため、負荷端開放や、中間相電圧と最小相電圧との大小関係誤判別による電源短絡は発生しない。
なお、図8に示すように、交流スイッチSとSとの間の転流が発生した場合は、単方向スイッチS1bが常時オンとなる以外は、図12に示した従来技術のPWMパルスと同一である。
On the other hand, if the commutation to S 2 from the AC switch S 3 is generated, in the prior art, although unidirectional switches S 2a / b simultaneously with commutation begins as shown in FIG. 13 (b) is turned on, this embodiment In the embodiment, as shown in FIG. 7B, the unidirectional switch S2a / b is turned on simultaneously with the completion of the commutation. Again, is the path of the negative load current by unidirectional switch S 1b are constantly on is always ensured, since unidirectional switches S 3b, S 2b / a is never turned on at the same time, the load end open In addition, a power supply short circuit due to a misjudgment of the magnitude relationship between the intermediate phase voltage and the minimum phase voltage does not occur.
As shown in FIG. 8, if the commutation between the AC switch S 1 and S 2 is generated, except that the unidirectional switch S 1b is turned on at all times, the prior art PWM shown in FIG. 12 Same as pulse.

上述した第3実施形態では、単方向スイッチS1bが常時オンとなるため、発生する出力電圧誤差が増加するおそれがある。
そこで、第4実施形態は上記の出力電圧誤差を抑制するようにしたものである。
In the third embodiment described above, the unidirectional switch S1b is always on, so that the generated output voltage error may increase.
Therefore, in the fourth embodiment, the output voltage error is suppressed.

図9は、請求項4に相当する本発明の第4実施形態を示す機能ブロック図である。
この実施形態は、領域判別手段7Bからの領域判別信号を論理和手段8に加えて単方向スイッチS1bのPWMパルスを生成すると共に、中間相FWDモードオフ手段5Dの出力を論理積手段6に加えて単方向スイッチS2a/bのPWMパルスを生成するようにしたものである。
FIG. 9 is a functional block diagram showing a fourth embodiment of the present invention corresponding to the fourth aspect.
This embodiment, an area discriminating signal from the region judging means 7B to generate a PWM pulse addition unidirectional switch S 1b to the logical sum unit 8, the output of the intermediate phase FWD mode off means 5D to the logical product means 6 In addition, the PWM pulse of the unidirectional switch S2a / b is generated.

領域判別手段7Bは、各相電圧v,v,vから中間相電圧と最小相電圧との大きさがほぼ等しくなる領域を判別する機能を有しおり、図10はこの機能の説明図である。
すなわち、領域判別手段7Bは、中間相電圧と最小相電圧との大きさがほぼ等しくなる図10の領域Bにおいて1となる判別信号を出力する。その結果、領域Bでは単方向スイッチS1bは常時オンとなるが、領域Dにおいては従来のPWMパルスと同一となる。
The region discriminating means 7B has a function of discriminating a region where the magnitudes of the intermediate phase voltage and the minimum phase voltage are substantially equal from the phase voltages v R , v S , and v T. FIG. 10 is an explanatory diagram of this function. It is.
That is, the region discriminating means 7B outputs a discrimination signal that becomes 1 in the region B of FIG. 10 in which the magnitudes of the intermediate phase voltage and the minimum phase voltage are substantially equal. As a result, in the region B, the unidirectional switch S1b is always on, but in the region D, it is the same as the conventional PWM pulse.

中間相FWDモードオフ手段5Dは、エッジ検出手段1の出力から中間相と最小相との間の転流を検出し、その転流期間であって中間相電圧と最小相電圧との大小関係が領域Bに該当する場合に0となる信号を出力する。よって、単方向スイッチS2a/bは、領域Bにおいて中間相と最小相との間で転流を行う場合は常時オフとなる。
以上より、図10の領域Bでは第3実施形態によるPWMパルスが、領域Dでは従来技術と同一のPWMパルスが各単方向スイッチに与えられることが分かる。
The intermediate phase FWD mode off means 5D detects the commutation between the intermediate phase and the minimum phase from the output of the edge detection means 1, and the magnitude relationship between the intermediate phase voltage and the minimum phase voltage is the commutation period. When it corresponds to the region B, a signal that becomes 0 is output. Therefore, the unidirectional switch S 2a / b is always turned off when commutation is performed between the intermediate phase and the minimum phase in the region B.
From the above, it can be seen that the PWM pulse according to the third embodiment is applied to each unidirectional switch in the region B of FIG.

領域Dにおいては、中間相電圧と最小相電圧との大小誤判別は発生しないため、従来技術と同様のPWMパルスを使用しても問題は発生しない。また、第3実施形態による単方向スイッチS1bを常時オンさせるPWMパルスを使用するのは、中間相電圧と最小相電圧とがほぼ等しくなる短期間であるため、出力電圧に与える影響を最小限に抑えて電圧誤差を低減することができる。 In the region D, since there is no difference in magnitude between the intermediate phase voltage and the minimum phase voltage, no problem occurs even if the same PWM pulse as in the prior art is used. Also, the PWM pulse that always turns on the unidirectional switch S1b according to the third embodiment is used for a short period in which the intermediate phase voltage and the minimum phase voltage are substantially equal, and therefore the influence on the output voltage is minimized. Thus, the voltage error can be reduced.

以上の説明において、第2実施形態により最大相電圧と中間相電圧との大小誤判別による電源短絡を、第4実施形態により中間相電圧と最小相電圧との大小誤判別による電源短絡を、それぞれ防止することができる。よって、これらの実施形態を併用すれば、どのような条件においても負荷端開放及び電源短絡が発生しない転流動作が可能となり、特に、電源電圧の大小判別を誤った場合にも電源短絡を生じない転流動作を実現することができる。   In the above description, a power supply short circuit due to a magnitude error determination between the maximum phase voltage and the intermediate phase voltage according to the second embodiment, and a power supply short circuit due to a size error determination between the intermediate phase voltage and the minimum phase voltage according to the fourth embodiment, respectively. Can be prevented. Therefore, when these embodiments are used in combination, it is possible to perform a commutation operation in which the load end opening and the power supply short circuit do not occur under any conditions, and in particular, a power supply short circuit occurs even when the power supply voltage magnitude determination is wrong. No commutation operation can be realized.

また、第2,第4実施形態における領域判別手段7A,7B及び中間相FWDモードオフ手段5B,5Dはそれぞれ機能的に共通する部分が多いため、これらの実施形態を併用する場合には、領域判別手段7A,7Bを単一手段に統合し、かつ、中間相FWDモードオフ手段5B,5Dを単一手段に統合することができ、回路が複雑化する等の問題もない。   In addition, since the area discriminating means 7A, 7B and the intermediate phase FWD mode off means 5B, 5D in the second and fourth embodiments have many functionally common parts, the area is used when these embodiments are used together. The discriminating means 7A, 7B can be integrated into a single means, and the intermediate phase FWD mode off means 5B, 5D can be integrated into a single means, and there is no problem such as a complicated circuit.

本発明の第1実施形態を示す機能ブロック図である。It is a functional block diagram which shows 1st Embodiment of this invention. 第1実施形態において、最大相−中間相間で転流を行う場合のPWMパルスの説明図である。In 1st Embodiment, it is explanatory drawing of the PWM pulse in the case of performing commutation between the largest phase and an intermediate | middle phase. 第1実施形態において、中間相−最小相間で転流を行う場合のPWMパルスの説明図である。In 1st Embodiment, it is explanatory drawing of the PWM pulse in the case of performing commutation between an intermediate | middle phase and the minimum phase. 本発明の第2実施形態を示す機能ブロック図である。It is a functional block diagram which shows 2nd Embodiment of this invention. 図4における領域判別手段の機能を説明する図である。It is a figure explaining the function of the area | region discrimination | determination means in FIG. 本発明の第3実施形態を示す機能ブロック図である。It is a functional block diagram which shows 3rd Embodiment of this invention. 第3実施形態において、中間相−最小相間で転流を行う場合のPWMパルスの説明図である。In 3rd Embodiment, it is explanatory drawing of the PWM pulse in the case of performing commutation between an intermediate | middle phase and the minimum phase. 第3実施形態において、最大相−中間相間で転流を行う場合のPWMパルスの説明図である。In 3rd Embodiment, it is explanatory drawing of the PWM pulse in the case of performing commutation between the largest phase-intermediate phase. 本発明の第4実施形態を示す機能ブロック図である。It is a functional block diagram which shows 4th Embodiment of this invention. 図9における領域判別手段の機能を説明する図である。It is a figure explaining the function of the area | region discrimination | determination means in FIG. マトリクスコンバータの交流スイッチの接続構成図である。It is a connection block diagram of the alternating current switch of a matrix converter. 中間相−最大相間で転流を行う場合のPWMパルスの説明図である。It is explanatory drawing of the PWM pulse in the case of performing commutation between an intermediate | middle phase and the largest phase. 中間相−最小相間で転流を行う場合のPWMパルスの説明図である。It is explanatory drawing of the PWM pulse in the case of performing commutation between an intermediate | middle phase and the minimum phase. 最大相電圧と中間相電圧との大小判別を誤った場合の動作説明図である。It is operation | movement explanatory drawing at the time of the magnitude discrimination between a maximum phase voltage and an intermediate phase voltage having been mistaken.

符号の説明Explanation of symbols

1:エッジ検出手段
2:転流発生手段
3:パルス発生手段
4:大小判別手段
5A,5B,5C,5D:中間相環流ダイオード(FWD)モードオフ手段
6:論理積手段
7A,7B:領域判別手段
8:論理和手段
,S,S:交流スイッチ
1a,S1b、S2a/b,S2b/a、S3a,S3b:単方向スイッチ
1: Edge detection means 2: Commutation generation means 3: Pulse generation means 4: Size determination means 5A, 5B, 5C, 5D: Intermediate phase freewheeling diode (FWD) mode-off means 6: Logical product means 7A, 7B: Area determination It means 8: logical OR means S 1, S 2, S 3 : AC switch S 1a, S 1b, S 2a / b, S 2b / a, S 3a, S 3b: unidirectional switch

Claims (4)

一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最小電圧相に接続されている交流スイッチ内の、電源側から負荷側に電流を通流する単方向スイッチを常時オンさせる手段と、
前記転流方向判別手段により最大電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の電源側から負荷側に電流を通流する単方向スイッチを常時オフさせる手段と、
を備えたことを特徴とする交流交流直接変換器の制御装置。
Combining multiple unidirectional switches that can control a unidirectional current to form an AC switch that can control a bidirectional current. By turning the unidirectional switch on and off, the three-phase AC voltage can be set to any magnitude and frequency In an AC / AC direct converter that converts directly into a three-phase AC voltage,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages;
Means for constantly turning on a unidirectional switch for passing current from the power supply side to the load side in the AC switch connected to the minimum voltage phase;
Upon determining the commutation between a maximum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, the power source side in the AC switch connected to the intermediate voltage phase Means for always turning off a unidirectional switch for passing current to the load side;
An AC / AC direct converter control device comprising:
一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最大電圧相の電圧と中間電圧相の電圧とがほぼ等しい期間を判別する領域判別手段と、
この領域判別手段により最大電圧相の電圧と中間電圧相の電圧とがほぼ等しいと判別された期間において、最小電圧相に接続されている交流スイッチ内の、電源側から負荷側に電流を通流する単方向スイッチを常時オンさせる手段と、
上記期間において、前記転流方向判別手段により最大電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の電源側から負荷側に電流を通流する単方向スイッチを常時オフさせる手段と、
を備えたことを特徴とする交流交流直接変換器の制御装置。
Combining multiple unidirectional switches that can control a unidirectional current to form an AC switch that can control a bidirectional current. By turning the unidirectional switch on and off, the three-phase AC voltage can be set to any magnitude and frequency In an AC / AC direct converter that converts directly into a three-phase AC voltage,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages;
Region discriminating means for discriminating a period in which the voltage of the maximum voltage phase and the voltage of the intermediate voltage phase are substantially equal;
Current is passed from the power supply side to the load side in the AC switch connected to the minimum voltage phase during the period when the voltage of the maximum voltage phase and the voltage of the intermediate voltage phase are determined to be approximately equal by this region discrimination means. Means to always turn on the unidirectional switch,
In the period, when it is determined the commutation between a maximum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, in the AC switch connected to the intermediate voltage phase and means for always turning off the unidirectional switch flowing through the current to the load side from the electrical side,
An AC / AC direct converter control device comprising:
一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最大電圧相に接続されている交流スイッチ内の、負荷側から電源側に電流を通流する単方向スイッチを常時オンさせる手段と、
前記転流方向判別手段により最小電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の負荷側から電源側に電流を通流する単方向スイッチを常時オフさせる手段と、
を備えたことを特徴とする交流交流直接変換器の制御装置。
Combining multiple unidirectional switches that can control a unidirectional current to form an AC switch that can control a bidirectional current. By turning the unidirectional switch on and off, the three-phase AC voltage can be set to any magnitude and frequency In an AC / AC direct converter that converts directly into a three-phase AC voltage,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages;
Means for constantly turning on a unidirectional switch for passing current from the load side to the power source side in the AC switch connected to the maximum voltage phase;
Upon determining the commutation between the minimum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, from the load side of the AC switch connected to the intermediate voltage phase Means for always turning off a unidirectional switch for passing current to the power supply side;
An AC / AC direct converter control device comprising:
一方向の電流を制御可能な単方向スイッチを複数組み合わせて双方向の電流を制御可能な交流スイッチを構成し、前記単方向スイッチのオン、オフにより三相交流電圧を任意の大きさ、周波数を有する三相交流電圧に直接変換する交流交流直接変換器において、
三相交流電源の各相電圧の大小関係を判別する大小判別手段と、
各相電圧のうち最大電圧相、中間電圧相、最小電圧相の何れの相間における転流かを判別する転流方向判別手段と、
最小電圧相の電圧と中間電圧相の電圧とがほぼ等しい期間を判別する領域判別手段と、
この領域判別手段により最小電圧相の電圧と中間電圧相の電圧とがほぼ等しいと判別された期間において、最大電圧相に接続されている交流スイッチ内の、負荷側から電源側に電流を通流する単方向スイッチを常時オンさせる手段と、
上記期間において、前記転流方向判別手段により最小電圧相と中間電圧相との間での転流を判別した際に、この転流期間中は、中間電圧相に接続されている交流スイッチ内の負荷側から電源側に電流を通流する単方向スイッチを常時オフさせる手段と、
を備えたことを特徴とする交流交流直接変換器の制御装置。
Combining multiple unidirectional switches that can control a unidirectional current to form an AC switch that can control a bidirectional current. By turning the unidirectional switch on and off, the three-phase AC voltage can be set to any magnitude and frequency In an AC / AC direct converter that converts directly into a three-phase AC voltage,
A magnitude discrimination means for discriminating the magnitude relationship between the phase voltages of the three-phase AC power supply,
A commutation direction discriminating means for discriminating between the phase of the maximum voltage phase, the intermediate voltage phase, and the minimum voltage phase among the phase voltages;
Area discriminating means for discriminating a period in which the voltage of the minimum voltage phase and the voltage of the intermediate voltage phase are substantially equal;
Current is passed from the load side to the power supply side in the AC switch connected to the maximum voltage phase during the period in which the voltage of the minimum voltage phase and the voltage of the intermediate voltage phase are determined to be approximately equal by this region discrimination means. Means to always turn on the unidirectional switch,
In the period, when it is determined the commutation between the minimum voltage phase and the intermediate voltage phase by the commutation direction identification means, in the commutation period, in the AC switch connected to the intermediate voltage phase and means for always turning off the unidirectional switch flowing through the current source side from the load side,
An AC / AC direct converter control device comprising:
JP2005323507A 2005-11-08 2005-11-08 AC / AC direct converter controller Expired - Fee Related JP4831303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323507A JP4831303B2 (en) 2005-11-08 2005-11-08 AC / AC direct converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323507A JP4831303B2 (en) 2005-11-08 2005-11-08 AC / AC direct converter controller

Publications (2)

Publication Number Publication Date
JP2007135260A JP2007135260A (en) 2007-05-31
JP4831303B2 true JP4831303B2 (en) 2011-12-07

Family

ID=38156482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323507A Expired - Fee Related JP4831303B2 (en) 2005-11-08 2005-11-08 AC / AC direct converter controller

Country Status (1)

Country Link
JP (1) JP4831303B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839943B2 (en) * 2006-04-19 2011-12-21 富士電機株式会社 Control method of direct power converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214386B2 (en) * 2003-04-09 2009-01-28 富士電機ホールディングス株式会社 AC-AC direct conversion power converter
JP4168842B2 (en) * 2003-06-09 2008-10-22 富士電機ホールディングス株式会社 AC-AC direct conversion power converter
JP4239072B2 (en) * 2003-06-24 2009-03-18 富士電機ホールディングス株式会社 Control device for AC-AC direct conversion power converter
JP4466830B2 (en) * 2004-01-21 2010-05-26 富士電機ホールディングス株式会社 AC / AC direct conversion device

Also Published As

Publication number Publication date
JP2007135260A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
CA2563457C (en) Inverter bridge controller implementing short-circuit protection scheme
JP4662316B2 (en) AC motor winding switching device and winding switching system thereof
JP6040582B2 (en) Protection control method for multi-level power conversion circuit
US6603647B2 (en) Method for controlling freewheeling paths in a matrix converter
JP2007259533A (en) Protective circuit for semiconductor element
JP4581892B2 (en) Robot controller
JP5157292B2 (en) 3-level inverter control system
JP6220456B2 (en) Power converter
JP5864241B2 (en) Power converter
JP2008172925A (en) Backup operation device of matrix converter
CN112740529A (en) Motor drive device, blower, compressor, and air conditioner
JP2008072857A (en) Motor drive device
JP3960125B2 (en) Commutation method of direct power converter
JP2008253008A (en) Power converter and method for deciding incorrect connection of power supply
JP4831303B2 (en) AC / AC direct converter controller
CN112715001B (en) DC power supply device, motor driving device, blower, compressor and air conditioner
JP4946103B2 (en) Power converter
CN115065263A (en) Three-level inverter, photovoltaic system and control method
JP2011228220A (en) Power converter
US20230261653A1 (en) Drive control circuit for power semiconductor element, power semiconductor module, and power converter
JP4839704B2 (en) AC to AC power converter
JP6879188B2 (en) Drive device abnormality judgment device
JP2005185003A (en) Protective device of power conversion apparatus
JP6457354B2 (en) Power converter
KR20060117559A (en) Device for detecting the output current direction of a matrix converter and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees