JP4830461B2 - Manufacturing method of antireflection material - Google Patents

Manufacturing method of antireflection material Download PDF

Info

Publication number
JP4830461B2
JP4830461B2 JP2005333833A JP2005333833A JP4830461B2 JP 4830461 B2 JP4830461 B2 JP 4830461B2 JP 2005333833 A JP2005333833 A JP 2005333833A JP 2005333833 A JP2005333833 A JP 2005333833A JP 4830461 B2 JP4830461 B2 JP 4830461B2
Authority
JP
Japan
Prior art keywords
refractive index
low refractive
acid
silica
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005333833A
Other languages
Japanese (ja)
Other versions
JP2007136849A (en
Inventor
国臻 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2005333833A priority Critical patent/JP4830461B2/en
Publication of JP2007136849A publication Critical patent/JP2007136849A/en
Application granted granted Critical
Publication of JP4830461B2 publication Critical patent/JP4830461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、光学フィルム基材上に塗布された、高透過率で、低屈折率の反射防止用の低屈折率組成物およびそれを用いた反射防止材並びにディスプレイに関する。   The present invention relates to an antireflective composition having a high transmittance and a low refractive index, which is applied on an optical film substrate, and an antireflective material and a display using the composition.

液晶ディスプレイ(LCD)、ブラウン管ディスプレイ(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(EL)などの各種ディスプレイ、光学部品のレンズ、スクリーンなどの反射防止塗層としては、低反射薄膜、反射防止薄膜が知られている。
低反射薄膜、反射防止薄膜は、多層膜からなり、残存反射率が低いものが一般的に知られている。多層膜からなる場合、作製方法は真空蒸着法、ディップコート法等のような方法を用いるため、煩雑であり、生産性が低く、コストが高く経済的に問題もある。
Antireflection coating layers for various displays such as liquid crystal displays (LCD), cathode ray tube displays (CRT), plasma displays (PDP), electroluminescent displays (EL), lenses for optical components, screens, etc. Thin films are known.
Low reflection thin films and antireflection thin films are generally known to be composed of multilayer films and have low residual reflectance. In the case of a multilayer film, the manufacturing method uses a method such as a vacuum vapor deposition method, a dip coating method, etc., which is complicated, low in productivity, high in cost, and economically problematic.

これに対して、2層または1層の塗膜層からなる構成も知られており、この構成ではコストが低く、量産が容易であるが残存反射率が高いという欠点があげられる。   On the other hand, a configuration composed of two or one coating layer is also known, and this configuration has the disadvantage that the cost is low and mass production is easy but the residual reflectance is high.

この問題を解決するために、各種低屈折率塗層の開発が行われてきた。シリカは比較的低屈折率の材料であり、広い波長範囲で光透過性も優れ、且つ、シリカに空隙を導入することにより、さらに低い屈折率材料を得ることができる。多孔性シリカ微粒子を用いて低屈折率薄膜を製造する方法例がある(特許文献1,2,3参照)。   In order to solve this problem, various low refractive index coating layers have been developed. Silica is a material having a relatively low refractive index, has excellent light transmittance in a wide wavelength range, and can obtain a lower refractive index material by introducing voids in silica. There is an example of a method for producing a low refractive index thin film using porous silica fine particles (see Patent Documents 1, 2, and 3).

特開2001−115028号公報Japanese Patent Laid-Open No. 2001-115028 特開平6−299091号公報JP-A-6-299091 特開平3−199043号公報JP-A-3-199043

しかし、上記の方法例では以下の問題がある。前記特許文献1では後処理の際、高温の加熱が必要であり、フィルムに対して低屈折率薄膜の作製が困難である。前記特許文献2ではシリカの酸性加水分解物と塩性加水分解物を混合することによって系の安定性が悪く、放置すると沈殿物が析出することがある。前記特許文献3では開孔剤を抽出する時に薄膜が膨潤したり、基材から、剥離するという問題がある。   However, the above method example has the following problems. In the said patent document 1, the high temperature heating is required in the case of post-processing, and preparation of a low refractive index thin film with respect to a film is difficult. In Patent Document 2, the stability of the system is poor by mixing an acidic hydrolyzate of silica and a salt hydrolyzate, and a precipitate may be deposited if left to stand. In Patent Document 3, there is a problem that the thin film swells or peels off from the substrate when the pore-opening agent is extracted.

そこで、本発明は前記従来技術の問題点を解決し、透明フィルムなどの基材に対して低屈折率低反射層を形成でき、安定なシリカ組成物を提供することを目的とする。また、それを用いた反射防止材とすることを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a stable silica composition capable of forming a low refractive index and low reflection layer on a substrate such as a transparent film. Moreover, it aims at setting it as the anti-reflective material using it.

請求項1の発明は、(1)少なくとも1種類の加水分解可能な官能基を2個以上有するアルコキシシランを有機溶媒中で酸性加水分解して得られた透明なシリカ前駆体を遠心分離して上澄み液を取る工程と、
(2)酸性シリカ粒子分散液を遠心分離して上澄み液を取る工程と、
前記(1)シリカ前駆体の上澄み液と、前記(2)酸性シリカ粒子分散液の上澄み液を攪拌し低屈折率組成物を得る工程と、
基材上に、該低屈折率組成物を塗布加熱し低屈折率層を形成する工程と、
を順に備えることを特徴とする反射防止材の製造方法である。
The invention of claim 1 is: (1) Centrifugating a transparent silica precursor obtained by acidic hydrolysis of an alkoxysilane having two or more hydrolyzable functional groups in an organic solvent. Removing the supernatant liquid;
(2) centrifuging the acidic silica particle dispersion and removing the supernatant;
(1) stirring the supernatant of the silica precursor and (2) the supernatant of the acidic silica particle dispersion to obtain a low refractive index composition;
A step of coating and heating the low refractive index composition on a substrate to form a low refractive index layer;
In order, the manufacturing method of the antireflective material characterized by the above-mentioned.

請求項2の発明は、前記低屈折率層の屈折率が1.2〜1.3以内であることを特徴とする請求項1記載の反射防止材の製造方法である。 The invention according to claim 2 is the method for producing an antireflection material according to claim 1 , wherein the refractive index of the low refractive index layer is within 1.2 to 1.3.

請求項3の発明は、前記基材と低屈折率層の間にハードコート層を有することを特徴とする請求項1または請求項2記載の反射防止材の製造方法である。
A third aspect of the present invention is the method for producing an antireflection material according to the first or second aspect, wherein a hard coat layer is provided between the substrate and the low refractive index layer .

本発明の低屈折率組成物はコーティングにより簡便に効率よく、絶対反射率が低い薄膜を形成でき、得られた薄膜は1.2〜1.3という低い屈折率を有する。尚、本発明のシリカ組成物は長時間(1週間)放置すると沈殿物を析出しないという特徴を有する。即ち、本発明のシリカ組成物の安定性が良い。このために、反射防止コーティング剤への応用したとき、安定した低屈折率膜を得ることができる。   The low refractive index composition of the present invention can easily and efficiently form a thin film having a low absolute reflectance by coating, and the obtained thin film has a low refractive index of 1.2 to 1.3. The silica composition of the present invention is characterized in that no precipitate is deposited when left for a long time (one week). That is, the stability of the silica composition of the present invention is good. For this reason, when applied to an antireflection coating agent, a stable low refractive index film can be obtained.

本発明の、(1)少なくとも1種類の加水分解可能な官能基を2個以上有するアルコキシシランを有機溶媒中で酸性加水分解して得られた透明なシリカ前駆体におけるアルコキシシランとしては、2官能基または3官能基またはそれ以上の官能基を有するものを用いることができる。   The alkoxysilane in the transparent silica precursor obtained by acidic hydrolysis of an alkoxysilane having two or more hydrolyzable functional groups in an organic solvent according to the present invention (1) is bifunctional. Those having a group or a trifunctional group or higher functional group can be used.

3官能基のアルコキシシランとしては、トリメトキシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシランなどが挙げられる。尚、本発明では3官能アルコキシシラン類の不完全加水分解生成物を原料としても良い。   Examples of trifunctional alkoxysilanes include trimethoxylane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and isobutyltrimethoxy. Examples include silane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, and allyltriethoxysilane. In the present invention, incomplete hydrolysis products of trifunctional alkoxysilanes may be used as raw materials.

2官能基のアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジメチルジ(n−プロポキシ)シラン、ジメチルジ(イソ−プロポキシ)シラン、ジメチルジ(n−プロポキシ)シラン、ジメチルジ(sec−ブトキシキシ)シラン、ジメチルジ(tert−ブトキシキシ)シラン、ジメチルジ(sec−ブトキシキシ)シラン、ジエチルジ(n−プロポキシ)シラン、ジエチルジ(イソ−プロポキシ)シラン、ジエチルジ(n−プロポキシ)シラン、ジエチルジ(sec−ブトキシキシ)シラン、ジエチルジ(tert−ブトキシキシ)シラン、ジエチルジ(sec−ブトキシキシ)シランなどが挙げられるが、この限りではない。   Bifunctional alkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, dimethyldi (n-propoxy) silane, dimethyldi (iso-propoxy) silane, and dimethyldi (n-propoxy) silane. , Dimethyldi (sec-butoxy) silane, dimethyldi (tert-butoxy) silane, dimethyldi (sec-butoxy) silane, diethyldi (n-propoxy) silane, diethyldi (iso-propoxy) silane, diethyldi (n-propoxy) silane, diethyldi Examples include (sec-butoxy) silane, diethyldi (tert-butoxy) silane, diethyldi (sec-butoxy) silane, and the like, but not limited thereto.

酸性加水分解の有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、エチルエーテルなどのエーテル類、酢酸エチルなどのエステル類あるいはメチルエチルケトンなどのケトン類を使用することができる。   As the organic solvent for acidic hydrolysis, alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as ethyl ether, esters such as ethyl acetate, and ketones such as methyl ethyl ketone can be used.

また、酸性触媒を含むことができる。酸性触媒としては塩酸、硫酸、燐酸、トリポリ燐酸、ホスフォン酸などの無機酸を挙げることができる。有機酸としては、酢酸、ブタン酸、ペンタン酸、ヘキサン酸、オクタン酸、メリット酸、ノナン酸、マレイン酸、セバミン酸、ステアリン酸、メチルマロン酸、シキミ酸、リノール酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、スルホン酸、フタル酸、クエン酸、コハク酸、酒石酸、イソニコチン酸などを挙げることができる。   Moreover, an acidic catalyst can be included. Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, tripolyphosphoric acid, and phosphonic acid. Organic acids include acetic acid, butanoic acid, pentanoic acid, hexanoic acid, octanoic acid, meritic acid, nonanoic acid, maleic acid, sebamic acid, stearic acid, methylmalonic acid, shikimic acid, linoleic acid, salicylic acid, benzoic acid, p -Aminobenzoic acid, p-toluenesulfonic acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, sulfonic acid, phthalic acid, citric acid, succinic acid, tartaric acid, isonicotinic acid, etc. be able to.

(2)酸性シリカ粒子分散液は、PH7.0以下で安定するシリカ粒子分散液である。
本発明では、この酸性シリカ粒子分散液を用いることにより、アルカリ性のシリカ粒子分散液を用いる場合に比べ、安定性が高く、長期間保存しても劣化しないものとなる。
この酸性シリカ粒子分散液は粒径15〜80nmのシリカ微粒子を含むことを特徴とする。例をとして、酸性ナノポーラスシリカ分散液、酸性シリカゾルなどを挙げることができる。具体的に例をとして、住友大阪セメント株式会社のナノポーラスシリカ、日産化学工業株式会社製スノーテックスOS、スノーテックスPS−MO、スノーテックスOUPなどを挙げることができる。
(2) The acidic silica particle dispersion is a silica particle dispersion that is stable at a pH of 7.0 or less.
In the present invention, by using this acidic silica particle dispersion, the stability is higher than in the case of using an alkaline silica particle dispersion, and it does not deteriorate even when stored for a long period of time.
This acidic silica particle dispersion contains silica fine particles having a particle diameter of 15 to 80 nm. Examples include acidic nanoporous silica dispersion and acidic silica sol. Specific examples include nanoporous silica manufactured by Sumitomo Osaka Cement Co., Ltd., Snowtex OS manufactured by Nissan Chemical Industries, Ltd., Snowtex PS-MO, Snowtex OUP, and the like.

本発明の安定な低屈折率組成物は、前記アルコキシシランを有機溶媒中で酸性加水分解して得られた透明なシリカ前駆体と酸性シリカ粒子分散液を混合して室温で3,4時間攪拌した後、基材に塗布し、80〜120℃で加熱乾燥、硬化させることにより低屈折率層を形成することができる。   The stable low refractive index composition of the present invention comprises a transparent silica precursor obtained by acidic hydrolysis of the alkoxysilane in an organic solvent and an acidic silica particle dispersion, and is stirred at room temperature for 3 to 4 hours. After that, a low refractive index layer can be formed by applying to a substrate, heating and drying at 80 to 120 ° C., and curing.

形成される低屈折率層の屈折率は膜厚、使用した成分種類、透明なシリカ前駆体と酸性シリカ粒子分散液の割合などによって変動する。光を垂直で入射する時に、低屈折率層単層では入射波長において、膜厚=1/4波長で与えられる条件が満たされる時に反射率が最低になる。
通常は人間の視感度の高い550nm前後の波長で最低値になるように設計するために、この時の膜厚は100nm前後になることが好ましい。薄膜の空隙率が高くなると屈折率が下がる。このために、収縮率の差に加えて、多孔性酸性シリカ粒子の割合が高い方が好ましく、特に該シリカ粒子の割合が7〜9割であることが好ましい。さらに、多量の溶剤の蒸発により、多数の気孔を含むことになり、薄膜の屈折率が低下するために、固体成分の量は0.5〜5.0%((wt%)になることが好ましい。
The refractive index of the low refractive index layer to be formed varies depending on the film thickness, the kind of components used, the ratio of the transparent silica precursor and the acidic silica particle dispersion, and the like. When light is incident vertically, the single layer of the low refractive index layer has the lowest reflectance at the incident wavelength when the condition given by the film thickness = 1/4 wavelength is satisfied.
Usually, the film thickness at this time is preferably about 100 nm in order to design so as to have a minimum value at a wavelength of about 550 nm with high human visibility. As the porosity of the thin film increases, the refractive index decreases. For this reason, in addition to the difference in shrinkage rate, it is preferable that the ratio of the porous acidic silica particles is high, and it is particularly preferable that the ratio of the silica particles is 70 to 90%. Furthermore, since a large amount of solvent is evaporated, a large number of pores are included, and the refractive index of the thin film is lowered. Therefore, the amount of the solid component may be 0.5 to 5.0% ((wt%)). preferable.

また、本発明の低屈折率組成物中には、汚染防止剤を混入させても良い。汚染防止剤を用いることで、反射防止材としてディスプレイの前面に設けたときに、汚れなどから保護または汚れが付着した際に容易に除去することができる。
汚染防止剤としては、特に限定はしないが、フッ素及び珪素を含む化合物などを好適に用いることができる。
特に、パーフルオロ基を有するアルコキシシラン化合物などが挙げられる。
Further, a contamination inhibitor may be mixed in the low refractive index composition of the present invention. By using the antifouling agent, when it is provided on the front surface of the display as an antireflection material, it can be easily removed when it is protected or contaminated from dirt.
Although it does not specifically limit as a pollution inhibitor, The compound etc. which contain a fluorine and silicon can be used conveniently.
In particular, an alkoxysilane compound having a perfluoro group can be used.

本発明では、前述の低屈折率組成物を基材上に塗布し、低屈折率層を形成することで反射防止材とすることができる。   In this invention, it can be set as an antireflection material by apply | coating the above-mentioned low refractive index composition on a base material, and forming a low refractive index layer.

基材としては、透明であることが好ましい。このようなものとしては、三酢酸セルロース(TAC)フィルム、ポリエチレンレテフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリカーボネート(PC)、ポリアクリル(PMMA)、ナイロン(Ny)、ポリエーテルサルフォン(PES)、ポリ塩化ビニール(PVC)、ポリプロピレン(PP)などのプラスチックフィルム系基材、ガラス基材などが挙げられる。
なお、LCDの表面に用いる反射防止材とする場合は、光学特性の点でTACフィルムを用いることが好ましい。
The substrate is preferably transparent. Such as cellulose triacetate (TAC) film, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyamide (PA), polycarbonate (PC), polyacryl (PMMA), nylon (Ny), Examples thereof include plastic film base materials such as polyethersulfone (PES), polyvinyl chloride (PVC), and polypropylene (PP), and glass base materials.
In addition, when using it as the antireflection material used for the surface of LCD, it is preferable to use a TAC film in the point of an optical characteristic.

プラスチックフィルム系基材を構成する有機高分子に、公知の添加剤、例えば、紫外線吸収剤、可塑剤、滑剤、着色剤、酸化防止剤、難燃剤等を含有させた物も使用することができる。また、このフィルム基材2としては、単層、あるいは、複数の有機高分子を積層したものでもよい。また、その厚みは特に限定されるものではないが、50〜200μmが好ましい。   It is also possible to use an organic polymer constituting the plastic film base material containing a known additive such as an ultraviolet absorber, a plasticizer, a lubricant, a colorant, an antioxidant, a flame retardant and the like. . The film substrate 2 may be a single layer or a laminate of a plurality of organic polymers. Moreover, although the thickness is not specifically limited, 50-200 micrometers is preferable.

また、前記基材と低屈折率層の間にハードコート層を設けても良い。
ハードコート層としては、透明性が高く、反射防止材の表面硬度、機械強度を向上させるものであれば特に限定するものではなく、公知のものを用いることができる。
A hard coat layer may be provided between the base material and the low refractive index layer.
The hard coat layer is not particularly limited as long as it has high transparency and improves the surface hardness and mechanical strength of the antireflection material, and a known one can be used.

ハードコート層は電離放射線や紫外線照射による硬化樹脂や熱硬化性の樹脂が使用でき、特に紫外線硬化型であるアクリル酸エステル類、アクリルアミド類、メタクリル酸エステル類、メタクリルアミド類等のアクリル系や、有機珪素系の樹脂、熱硬化型のポリシロキサン樹脂等が好適である。膜厚は3〜20μmの範囲であれば十分な機械強度が発現するが、透明性、塗工精度、取り扱いから、より望ましくは5〜15μmの範囲が好ましい。   The hard coat layer can be made of curable resin or thermosetting resin by ionizing radiation or ultraviolet irradiation. An organosilicon resin, a thermosetting polysiloxane resin, or the like is preferable. If the film thickness is in the range of 3 to 20 μm, sufficient mechanical strength is exhibited. However, from the viewpoint of transparency, coating accuracy, and handling, the range of 5 to 15 μm is more preferable.

また、ハードコート層には、防眩性、帯電防止性などの機能を持たせるため、機能性の添加剤を加えても良い。
防眩性を持たせるためには、例えば粒径0.1〜10μm程度のアクリル樹脂粒子やシリカ粒子などを用いることができる。
また、帯電防止性を持たせるためには、酸化亜鉛系粒子、スズ−インジウム複合酸化物(ITO)粒子、酸化スズ系粒子、酸化アンチモン系粒子などの導電性粒子を用いることができる。
In addition, a functional additive may be added to the hard coat layer in order to impart functions such as antiglare property and antistatic property.
In order to impart antiglare properties, for example, acrylic resin particles or silica particles having a particle size of about 0.1 to 10 μm can be used.
In order to impart antistatic properties, conductive particles such as zinc oxide-based particles, tin-indium composite oxide (ITO) particles, tin oxide-based particles, and antimony oxide-based particles can be used.

このようにして得られた反射防止材は、LCD、CRT、PDP、ELなどの各種ディスプレイの前面に貼り合わせて用いることができる。   The antireflection material thus obtained can be used by being attached to the front surface of various displays such as LCD, CRT, PDP and EL.

<実施例1>
(透明なシリカ前駆体の調製)
密閉ガラス容器中で、0.05molテトラエトキシラン、イソプロピルアルコール20.0g、0.12g1.0N塩酸及び0.62g水を混合し、2日間で攪拌した。得られた液体を5000rpmで10分間遠心分離、上澄み液を取り透明なシリカ前駆体を得た。
<Example 1>
(Preparation of transparent silica precursor)
In a sealed glass container, 0.05 mol tetraethoxylane, 20.0 g isopropyl alcohol, 0.12 g 1.0N hydrochloric acid and 0.62 g water were mixed and stirred for 2 days. The obtained liquid was centrifuged at 5000 rpm for 10 minutes, and the supernatant was removed to obtain a transparent silica precursor.

(酸性シリカ分散液の前処理)
20.0g酸性シリカ分散液日産化学工業株式会社製スノーテックスOUPを5000rpmで10分間遠心分離して、上澄みを取って17.0g分散液を得た。
(Pretreatment of acidic silica dispersion)
20.0 g acidic silica dispersion liquid Snowtex OUP manufactured by Nissan Chemical Industries, Ltd. was centrifuged at 5000 rpm for 10 minutes, and the supernatant was taken to obtain a 17.0 g dispersion liquid.

(低屈折率組成物の調製)
密閉ガラス容器中で、前記透明なシリカ前駆体2.0gと前記酸性シリカ分散液1.5g及び溶剤イソプロピルアルコール6.0gを混合し、3時間で攪拌した。6時間放置、低屈折率組成物を得た。該低屈折率組成物は安定であり、1週間放置しても、沈殿物は析出しなかった。
(Preparation of low refractive index composition)
In a sealed glass container, 2.0 g of the transparent silica precursor, 1.5 g of the acidic silica dispersion, and 6.0 g of the solvent isopropyl alcohol were mixed and stirred for 3 hours. The composition was left for 6 hours to obtain a low refractive index composition. The low refractive index composition was stable, and no precipitate was deposited even after being left for 1 week.

(反射防止材の形成)
得られた低屈折率組成物をトリアセチルセルロースフィルム基材(富士フィルム株式会社製)表面に1.5ml滴下し、室温にスピンコート法により、3000rpmの回転下で成膜した。80℃で15分乾燥、固定し低屈折率層を形成し、反射防止材を得た。なお、得られた低屈折率層の膜厚は0.14μmであった。
(Formation of antireflection material)
1.5 ml of the obtained low refractive index composition was dropped on the surface of a triacetylcellulose film substrate (manufactured by Fuji Film Co., Ltd.), and a film was formed at room temperature under a rotation of 3000 rpm by a spin coating method. An antireflection material was obtained by drying and fixing at 80 ° C. for 15 minutes to form a low refractive index layer. The film thickness of the obtained low refractive index layer was 0.14 μm.

次に得られた反射防止材の入射角8°での絶対反射率測定した。絶対反射率は(株)島津製作所製UV−Vis分光光度計UV−2400を用いて入射角8°で測定した。
測定した結果、560nmにおいて最小反射率を示し、低屈折率層がない場合に4.3%であったものが、0.3%に抑制された。またその低屈折率層の屈折率は1.28であった。
なお、この時の波長分散を図1に示す。
Next, the absolute reflectance of the obtained antireflection material at an incident angle of 8 ° was measured. The absolute reflectance was measured at an incident angle of 8 ° using a UV-Vis spectrophotometer UV-2400 manufactured by Shimadzu Corporation.
As a result of the measurement, the minimum reflectance was shown at 560 nm, and in the case where there was no low refractive index layer, what was 4.3% was suppressed to 0.3%. The refractive index of the low refractive index layer was 1.28.
The chromatic dispersion at this time is shown in FIG.

<比較例1>
実施例1において、酸性シリカ粒子分散液の代わりに、テトラエトキシシラン5.0g、イソプロピルアルコール41.4g、及び25%アンモニア水1.46gを密閉ガラス容器入れ、室温で4日間放置し、イソプロピルアルコール分散のコロイダルシリカ分散液を5000rpmで10分間遠心分離、上澄み液を取り透明なコロイダルシリカ分散液を用いた以外は、実施例1と同様に操作し低屈折率組成物を得た。
該低屈折率組成物は二日間放置すると沈殿物が見られた。上澄みを取ってTAC表面に1.5ml滴下し、室温にスピンコート法により、3000rpmの回転下で成膜した。80℃で15分乾燥、固定し、低屈折率層を形成し、反射防止材を得た。
得られた反射防止材の入射角8°での絶対反射率測定を実施例1と同様に測定したところ、560nmにおいて最小反射率を示し、0.8%になり、低屈折率層の屈折率が1.35であった。
<Comparative Example 1>
In Example 1, instead of the acidic silica particle dispersion, 5.0 g of tetraethoxysilane, 41.4 g of isopropyl alcohol, and 1.46 g of 25% aqueous ammonia are placed in a sealed glass container and left at room temperature for 4 days. A low refractive index composition was obtained in the same manner as in Example 1 except that the dispersed colloidal silica dispersion was centrifuged at 5000 rpm for 10 minutes, and the supernatant was removed and a transparent colloidal silica dispersion was used.
When the low refractive index composition was allowed to stand for 2 days, a precipitate was observed. The supernatant was taken and 1.5 ml was dropped on the TAC surface, and a film was formed at room temperature by spin coating at 3000 rpm. It was dried and fixed at 80 ° C. for 15 minutes to form a low refractive index layer to obtain an antireflection material.
When the absolute reflectance measurement at an incident angle of 8 ° of the obtained antireflection material was measured in the same manner as in Example 1, it showed a minimum reflectance at 560 nm, which was 0.8%, and the refractive index of the low refractive index layer. Was 1.35.

<実施例2>
実施例1において、酸性シリカ粒子分散液として、日産化学工業株式会社製スノーテックスPS−MOを用いた以外は、実施例1と同様の操作を行い、低屈折率組成物を得た。該低屈折率組成物組成物溶液は1週間放置しても、沈殿物の析出がなかった。
その後実施例1と同様の操作で反射防止材を得て、入射角8°での絶対反射率測定を実施例1と同様に測定したところ、560nmにおいて最小反射率を示し、0.4%に抑制され、その低屈折率層の屈折率は1.29であった。
<Example 2>
In Example 1, the low refractive index composition was obtained by performing the same operation as in Example 1 except that Snowtex PS-MO manufactured by Nissan Chemical Industries, Ltd. was used as the acidic silica particle dispersion. The low refractive index composition solution did not precipitate even after being allowed to stand for 1 week.
Thereafter, an antireflection material was obtained by the same operation as in Example 1, and the absolute reflectance measurement at an incident angle of 8 ° was measured in the same manner as in Example 1. As a result, the minimum reflectance was shown at 560 nm, which was 0.4%. The refractive index of the low refractive index layer was 1.29.

<実施例3>
実施例1において、酸性シリカ粒子分散液として、日産化学工業株式会社製スノーテックスOSを使用し、溶剤としてメチルエチルケトンを用いた以外は、実施例1と同様の操作を行い、低屈折率組成物を得た。該低屈折率組成物組成物は1週間放置しても、沈殿物の析出がなかった。
その後実施例1と同様の操作で反射防止材を得て、入射角8°での絶対反射率測定を実施例1と同様に測定したところ、560nmにおいて最小反射率を示し、0.4%に抑制され、その低屈折率層の屈折率は1.29であった。
<Example 3>
In Example 1, the same operation as in Example 1 was performed except that Snowtex OS manufactured by Nissan Chemical Industries, Ltd. was used as the acidic silica particle dispersion, and methyl ethyl ketone was used as the solvent. Obtained. The low refractive index composition did not precipitate even after being allowed to stand for 1 week.
Thereafter, an antireflection material was obtained by the same operation as in Example 1, and the absolute reflectance measurement at an incident angle of 8 ° was measured in the same manner as in Example 1. As a result, the minimum reflectance was shown at 560 nm, which was 0.4%. The refractive index of the low refractive index layer was 1.29.

実施例1における基材と反射防止材の反射率を示すスペクトル図である。It is a spectrum figure which shows the reflectance of the base material in Example 1, and an antireflection material.

Claims (3)

(1)少なくとも1種類の加水分解可能な官能基を2個以上有するアルコキシシランを有機溶媒中で酸性加水分解して得られた透明なシリカ前駆体を遠心分離して上澄み液を取る工程と、
(2)酸性シリカ粒子分散液を遠心分離して上澄み液を取る工程と、
前記(1)シリカ前駆体の上澄み液と、前記(2)酸性シリカ粒子分散液の上澄み液を攪拌し低屈折率組成物を得る工程と、
基材上に、該低屈折率組成物を塗布加熱し低屈折率層を形成する工程と、
を順に備えることを特徴とする反射防止材の製造方法。
(1) a step of centrifuging a transparent silica precursor obtained by acidic hydrolysis of an alkoxysilane having two or more hydrolyzable functional groups in an organic solvent and taking a supernatant;
(2) centrifuging the acidic silica particle dispersion and removing the supernatant;
(1) stirring the supernatant of the silica precursor and (2) the supernatant of the acidic silica particle dispersion to obtain a low refractive index composition;
A step of coating and heating the low refractive index composition on a substrate to form a low refractive index layer;
In order. The manufacturing method of the antireflection material characterized by the above-mentioned.
前記低屈折率層の屈折率が1.2〜1.3以内であることを特徴とする請求項1記載の反射防止材の製造方法。 The method for producing an antireflection material according to claim 1, wherein the low refractive index layer has a refractive index of 1.2 to 1.3 or less. 前記基材と低屈折率層の間にハードコート層を有することを特徴とする請求項1または
請求項2記載の反射防止材の製造方法。

The method for producing an antireflection material according to claim 1, wherein a hard coat layer is provided between the base material and the low refractive index layer.

JP2005333833A 2005-11-18 2005-11-18 Manufacturing method of antireflection material Expired - Fee Related JP4830461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333833A JP4830461B2 (en) 2005-11-18 2005-11-18 Manufacturing method of antireflection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333833A JP4830461B2 (en) 2005-11-18 2005-11-18 Manufacturing method of antireflection material

Publications (2)

Publication Number Publication Date
JP2007136849A JP2007136849A (en) 2007-06-07
JP4830461B2 true JP4830461B2 (en) 2011-12-07

Family

ID=38200287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333833A Expired - Fee Related JP4830461B2 (en) 2005-11-18 2005-11-18 Manufacturing method of antireflection material

Country Status (1)

Country Link
JP (1) JP4830461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242463A (en) * 2010-05-14 2011-12-01 Daicel Chem Ind Ltd Low reflection film and producing method thereof
WO2012020899A1 (en) * 2010-08-10 2012-02-16 연세대학교 산학협력단 Anti-reflective glass and a production method therefor
US9285584B2 (en) * 2010-10-06 2016-03-15 3M Innovative Properties Company Anti-reflective articles with nanosilica-based coatings and barrier layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299091A (en) * 1993-04-13 1994-10-25 Asahi Optical Co Ltd Reflection-preventive film-forming coating composition
JPH07287102A (en) * 1994-04-14 1995-10-31 Dainippon Printing Co Ltd Reflection preventing film, its production and polarizing plate and liquid crystal display device
JP3635692B2 (en) * 1994-10-20 2005-04-06 日産化学工業株式会社 Low refractive index antireflection film
JPH0996702A (en) * 1995-07-27 1997-04-08 Fukuvi Chem Ind Co Ltd Optical material

Also Published As

Publication number Publication date
JP2007136849A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
TWI468481B (en) Anti-reflective coating film
JP6986339B2 (en) Antireflection film forming composition, antireflection film and its forming method
TWI238894B (en) Laminate containing silica and application composition for forming porous silica layer
TWI465532B (en) Coating material for forming transparent coating film and a substrate with a transparent coating film
TWI613264B (en) Anti-reflection coating composition containing siloxane compound, anti-reflection film using the same
KR20140058565A (en) Anti-reflective film and anti-reflective plate
JP2013218172A5 (en)
JP4309744B2 (en) Fluorine-based composite resin film and solar cell
JP6329959B2 (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
JP5629973B2 (en) Low refractive index composition and method for producing antireflection material
TW201538636A (en) Low refractive composition, method for producing the same, and transparent conductive film
JP4830461B2 (en) Manufacturing method of antireflection material
KR20090087285A (en) Coating composition for anti-reflection, method of preparing the composition, and anti-reflection film composed of the composition
WO2003005069A1 (en) Antireflection film and method for production thereof
KR101970934B1 (en) Application solution for formation of coating film for spray application and coating film
JP5357503B2 (en) Coating material composition and painted product
JP6204227B2 (en) Aqueous composition and method for producing the same, hard coat film, laminated film, transparent conductive film, and touch panel
KR20070022311A (en) Siloxane coating material, optical articles and process for the production of siloxane coating materials
KR20120098165A (en) Anti-reflection film and method of producing the same
JP2009102508A (en) Low refractive index composition, antireflection material, and display
WO2017022175A1 (en) Composition for optical films, base having optical film, molded body and method for producing molded body
WO2024048254A1 (en) Light absorbing composition, light absorber, optical filter, environmental light sensor, imaging device, method for producing light absorbing composition, and method for producing light absorber
JP2007078818A (en) Antireflective film
KR101764581B1 (en) Method for producing film coating agent having anti-finger treatemtn and anti-reflection
JP2016020409A (en) Coating composition and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees