JP4829636B2 - Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers - Google Patents

Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers Download PDF

Info

Publication number
JP4829636B2
JP4829636B2 JP2006041297A JP2006041297A JP4829636B2 JP 4829636 B2 JP4829636 B2 JP 4829636B2 JP 2006041297 A JP2006041297 A JP 2006041297A JP 2006041297 A JP2006041297 A JP 2006041297A JP 4829636 B2 JP4829636 B2 JP 4829636B2
Authority
JP
Japan
Prior art keywords
water
value
processing capacity
remaining
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006041297A
Other languages
Japanese (ja)
Other versions
JP2007216173A (en
Inventor
記年 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP2006041297A priority Critical patent/JP4829636B2/en
Publication of JP2007216173A publication Critical patent/JP2007216173A/en
Application granted granted Critical
Publication of JP4829636B2 publication Critical patent/JP4829636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To numerically evaluate a residual treatment capacity of an ion exchange demineralizer. <P>SOLUTION: A total treatment capacity value A<SB>ALL</SB>of the demineralizer is calculated from total pure water collection amount (standard total pure water collection amount) in a demineralizer to be evaluated when standard water having a prescribed electric conductivity is used as water to be treated, as A<SB>ALL</SB>=(standard total pure water collection amount)&times;(the electric conductivity of the standard water). The passage amount L of raw water through the demineralizer, and the electric conductivity S of the raw water at the primary side of the demineralizer are measured. The treatment capacity reduction A<SB>LOSS</SB>due to the passage of the raw water is calculated from the passage amount L and the electric conductivity S as A<SB>LOSS</SB>=S&times;L. The residual treatment capacity value A<SB>REST</SB>of the demineralizer is calculated as A<SB>REST</SB>=A<SB>ALL</SB>-A<SB>LOSS</SB>. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明はイオン交換型純水器の残存処理能力評価方法及び同評価装置に関し,より詳細には,イオン交換型純水器の残存処理能力を数値化し,得られた数値に基づいて,例えば純水器(カートリッジ式の場合にはカートリッジ)を交換する迄に採取可能な純水量や使用回数,交換迄の時間(運転時間)等として評価する方法及び装置に関する。   The present invention relates to a residual treatment capacity evaluation method and an evaluation apparatus for an ion exchange type deionizer. More specifically, the residual treatment capacity of an ion exchange type deionizer is quantified, and based on the obtained numerical value, for example, The present invention relates to a method and an apparatus for evaluating the amount of pure water that can be collected before replacing a water bottle (cartridge in the case of a cartridge type), the number of times it is used, the time (operating time) until replacement, and the like.

純水器の用途の一例として,水循環式コンプレッサに装備する場合を例に説明すると,この水循環式コンプレッサは,油分を含む圧縮空気の供給を嫌う空気作業機や,油分を含む圧縮空気を使用できない例えば食品製造等の分野において使用する圧縮空気を得るために,一般に冷却,密封,潤滑のために使用される油に代えて,空気と共に水を吸い込んで吸入空気の圧縮を行うものである。   As an example of the use of a water purifier, the case where it is installed in a water circulation compressor will be described as an example. This water circulation compressor cannot use an air working machine that dislikes the supply of compressed air containing oil or compressed air containing oil. For example, in order to obtain compressed air to be used in the field of food production, for example, instead of oil used for cooling, sealing, and lubrication, water is sucked together with air to compress the sucked air.

この水循環式コンプレッサにおいて,空気と共に圧縮機本体内に供給された水は,圧縮空気と共に吐出されてセパレータレシーバタンク内に導入され,該セパレータレシーバタンク内で圧縮空気と水とに分離される。そして,セパレータレシーバタンク内で圧縮空気と分離された循環水は,ラジエータやフィルタなどを経て再度圧縮機本体に供給されて,圧縮作業の際の冷却,密封等に使用される。   In this water circulation compressor, the water supplied into the compressor body together with the air is discharged together with the compressed air, introduced into the separator receiver tank, and separated into compressed air and water in the separator receiver tank. The circulating water separated from the compressed air in the separator receiver tank is supplied again to the compressor body through a radiator, a filter, etc., and used for cooling, sealing, etc. during the compression work.

以上のように,水循環式コンプレッサでは,圧縮機本体,セパレータレシーバタンク,ラジエータ及びこれらを連通する管路等により形成された循環水の循環系が形成されていると共に,この循環水の循環系には,図示せざる外部給水源に連通された給水回路が連結され,この給水回路に設けた開閉弁の開閉により循環水の循環回路内に給水源から供給水を導入し得るように構成され,前記循環水の交換時,又は循環水の不足時,前記供給水を循環水の循環系に導入し得るように構成されている。   As described above, in the water circulation type compressor, a circulating water circulation system formed by the compressor body, the separator receiver tank, the radiator and the pipes connecting these is formed. Is configured such that a water supply circuit connected to an external water supply source (not shown) is connected, and supply water can be introduced from the water supply source into the circulation circuit of the circulating water by opening and closing an on-off valve provided in the water supply circuit. The supply water can be introduced into the circulation system of the circulating water when the circulating water is exchanged or when the circulating water is insufficient.

ところで,外部給水源からの供給水としては,一般に水道水(上水道)が使用されるが,この供給水には金属イオン等の不純物が含まれている。そのため,このような不純物を含んだままの供給水を循環水の循環系内に導入すると,圧縮作業の際の熱等によって循環水が蒸発して減少した際に,循環水中の金属イオンが濃縮され,濃縮された金属イオンが結晶化して析出し,配管詰まりの原因となる等の問題が発生する。   By the way, as the supply water from the external water supply source, tap water (water supply) is generally used, but this supply water contains impurities such as metal ions. For this reason, if such supply water containing impurities is introduced into the circulating system, the metal ions in the circulating water concentrate when the circulating water evaporates and decreases due to heat during compression work. As a result, the concentrated metal ions crystallize and precipitate, causing problems such as clogging of piping.

そのため,このような金属イオンの析出等による弊害を是正するために,水循環式コンプレッサに純水器を設け,外部給水源からの供給水中に含まれる不純物を予めこの純水器によって除去して純水に近付けた後,前記循環系に導入することが提案されている(特許文献1参照)。   Therefore, in order to correct such harmful effects caused by the deposition of metal ions, a water circulation compressor is provided with a deionizer, and impurities contained in the water supplied from the external water supply source are removed in advance by this deionizer. It has been proposed to introduce it into the circulation system after approaching water (see Patent Document 1).

なお,前述のような用途で使用される純水器は,イオン交換型と呼ばれるもので,導入された原水(処理前の水)が内部に充填されたイオン交換樹脂を通過する際に処理されて,純水または純水に近い状態で排出されるように構成されている。   The pure water device used for the above-mentioned purposes is called an ion exchange type, and is treated when the introduced raw water (water before treatment) passes through the ion exchange resin filled inside. Thus, it is configured to be discharged in a state close to pure water or pure water.

このようなイオン交換型純水器にあっては,使用するにつれて内部に充填されたイオン交換樹脂の能力が低下し,やがて必要な純度の処理水を得ることができなくなる。   In such an ion exchange type deionizer, the capacity of the ion exchange resin filled therein decreases as it is used, and it becomes impossible to obtain treated water with a required purity.

そのため,このようにして処理能力が低下した場合には,イオン交換樹脂が収容されたカートリッジ,又は純水器自体を交換する必要がある。   Therefore, when the processing capacity is reduced in this way, it is necessary to replace the cartridge containing the ion exchange resin or the pure water device itself.

このような,イオン交換樹脂カートリッジや純水器の交換時期を表示するために,純水器の二次側において純水の電気伝導率を測定し,この測定値が予め定められた電気伝導率の基準値を越える場合にイオン交換樹脂の終点と判断し,報知する方法が提案されている(特許文献2参照)。   In order to display the replacement time of the ion exchange resin cartridge or the deionizer, the electric conductivity of pure water is measured on the secondary side of the deionizer, and the measured value is determined in advance. A method has been proposed in which it is determined that the end point of the ion exchange resin is reached when the reference value is exceeded (see Patent Document 2).

この発明の先行技術文献情報としては次のものがある。
特許第3065302号公報 特許第3209488号公報
Prior art document information of the present invention includes the following.
Japanese Patent No. 30653302 Japanese Patent No. 3209488

前述の特許文献2に記載の発明は,使用により純水器のイオン交換樹脂の不純物除去能力が低下するにつれて,純水器による処理後の水に含まれる金属イオン等の不純物の量が増加すると,純水器を通過した水の電気伝導率も上昇することに着目し,純水器の二次側における電気伝導率の上昇に基づいてイオン交換樹脂の終点を判断し,報知等するように構成したものである。   In the invention described in the above-mentioned Patent Document 2, the amount of impurities such as metal ions contained in the water after treatment by the pure water device increases as the impurity removal capability of the ion exchange resin of the pure water device decreases due to use. Focusing on the fact that the electrical conductivity of water that has passed through the deionizer also increases, the end point of the ion exchange resin is judged based on the increase in the electric conductivity on the secondary side of the deionizer, and notification is made. It is composed.

そのため,イオン交換樹脂の終点が報知されたときには,イオン交換樹脂は既に使用に耐え得ないものとなっている。そのため,純水の供給を必要とする機器に組み込んだ純水器,例えば前述の水循環式コンプレッサに組み込んだ純水器に使用すると,イオン交換樹脂の終点が報知されたときには,既に不純物を含んだ水が前述の循環水の循環系に供給されているおそれがある。   For this reason, when the end point of the ion exchange resin is notified, the ion exchange resin is already unusable. Therefore, when used in a deionizer built into equipment that requires the supply of deionized water, for example, a deionizer built in the above-mentioned water circulation compressor, when the end point of the ion exchange resin is notified, it already contains impurities. There is a possibility that water is being supplied to the circulating system of the circulating water.

循環水の循環系に対し,不純物を含む供給水が導入されることを防止するためには,例えば純水器のイオン交換樹脂が交換時期にあることが判定されたときに,直ちにコンプレッサを非常停止させることも考えられるが,このような非常停止を行う場合には,イオン交換樹脂,又は純水器自体を交換するまでコンプレッサを再起動することができず,コンプレッサが比較的長時間に亘って使用できなくなり,その間,コンプレッサを使用した作業等も停止する。   In order to prevent the supply water containing impurities from being introduced into the circulation system of the circulating water, for example, when it is determined that the ion exchange resin of the deionizer is at the time of replacement, Although it is conceivable to stop the compressor, it is not possible to restart the compressor until the ion exchange resin or the deionizer itself is replaced. In the meantime, work using the compressor is also stopped.

また,前記判定の基準とする数値を,余裕を持たせて設定しておくことも考えられるが,純水器の二次側の電気伝導率は,イオン交換樹脂の性能低下が生じる前においては安定した数値を示して殆ど変化せず,一旦性能の低下が始まると急速に上昇し,比較的短時間で不純物の混入量が増大する(電気伝導率が上昇する:図6参照)。そして,水循環式コンプレッサにあっては,一例として電気伝導率1μS/cm以下の純水を循環系に導入するため,当初より余裕を持たせるだけの数値幅を確保することが困難である。   In addition, it is conceivable to set a numerical value as a reference for the determination with a margin, but the electrical conductivity on the secondary side of the deionizer is before the performance degradation of the ion exchange resin occurs. It shows a stable numerical value and hardly changes. Once the performance starts to deteriorate, it rises rapidly, and the amount of impurities mixed in increases in a relatively short time (electric conductivity increases: see FIG. 6). In the water circulation type compressor, pure water having an electric conductivity of 1 μS / cm or less is introduced into the circulation system as an example, so it is difficult to secure a numerical range with a margin from the beginning.

このように,前記従来の方法による場合には,いずれの場合においてもイオン交換樹脂の終点が報知された場合には,コンプレッサを早急に停止して純水器ないしはイオン交換樹脂を交換する必要がある。   Thus, in the case of the conventional method, if the end point of the ion exchange resin is notified in any case, it is necessary to stop the compressor immediately and replace the deionizer or the ion exchange resin. is there.

そのため,例えばイオン交換樹脂が終点となったことが報知されてから,交換用のイオン交換樹脂や純水器を販売元等から取り寄せていたのではコンプレッサに不純物を含む水が導入されてしまったり,又は,コンプレッサを使用した作業が長時間に亘って停止することとなり,折角,イオン交換樹脂の交換時期を表示するように構成した意味が失われてしまうことになる。そのため,比較的高価であるにも拘わらず,交換用のイオン交換樹脂カートリッジや純水器を常に在庫として保有しておく等,いつ訪れるが判らない交換の準備をしておく必要があった。   For this reason, for example, if an ion exchange resin or a deionizer for replacement is ordered from a distributor after notification that the ion exchange resin has reached the end point, water containing impurities may be introduced into the compressor. Or, the operation using the compressor is stopped for a long time, and the meaning of the configuration that displays the turning angle and the replacement time of the ion exchange resin is lost. Therefore, despite the fact that it is relatively expensive, it is necessary to make preparations for exchanges that cannot be seen at any time, such as always stocking ion-exchange resin cartridges and deionizers for replacement.

なお,上記従来技術が有する問題点は,イオン交換樹脂の終点が訪れて初めて報知等が行われることに起因するものであり,イオン交換樹脂の交換時期が何時到来するかが事前に予測できれば解消する。   The above-mentioned problems of the prior art are due to the fact that the notification is made only after the end point of the ion exchange resin arrives, and it can be solved if the time for replacement of the ion exchange resin can be predicted in advance. To do.

しかし,前述したようにイオン交換樹脂の性能は,低下が始まるまで殆ど変化せずに安定した状態を示し,従って,純水器の二次側における電気伝導率も,イオン交換樹脂が終点を迎える迄,殆ど変化しない(図6参照)。   However, as described above, the performance of the ion exchange resin shows a stable state with almost no change until the deterioration starts, and therefore the ion exchange resin reaches the end of the electrical conductivity on the secondary side of the water purifier. Until then, there is almost no change (see FIG. 6).

そのため,純水器の二次側の電気伝導率を測定し,これを基準値と比較してイオン交換樹脂の性能を判定する以上,終点が到来したことを事後的に判断する構成とならざるを得ず,事前に交換時期等の到来を予測することはできない。   Therefore, as long as the electrical conductivity of the secondary side of the deionizer is measured and compared with the reference value to judge the performance of the ion exchange resin, the end point has to be judged afterwards. It is not possible to predict the arrival of the replacement time in advance.

しかも,前述した電気伝導率の変化が現れる時期は,処理対象とする水の水質に影響されるために,一般に水道水を供給水として使用する水循環式コンプレッサでは,地域や季節等によって処理対象とする供給水の水質が変化するために,例えば純水器を通過させた水の量に基づいて予測することもできない。   In addition, since the time when the above-mentioned change in electrical conductivity appears is affected by the quality of the water to be treated, in general, a water-circulation compressor that uses tap water as the supply water is subject to treatment depending on the region and season. Since the quality of the supplied water changes, it cannot be predicted based on, for example, the amount of water that has passed through the deionizer.

そこで本発明は,イオン交換型純水器において,この純水器の残存処理能力を数値として評価し,交換までに採取できる純水量,使用回数,使用時間等を予測可能とした評価方法及び評価装置を提供することにより,上記従来技術では不可能であった,イオン交換樹脂の交換時期の事前予測を可能とすることを目的とする。   Therefore, the present invention evaluates the remaining treatment capacity of this pure water device as a numerical value in an ion exchange type pure water device, and makes it possible to predict the amount of pure water that can be collected before replacement, the number of times of use, the time of use, and the like. It is an object of the present invention to provide an apparatus for making it possible to predict in advance the replacement time of an ion exchange resin, which is impossible with the above-described conventional technology.

上記目的を達成するために,本発明の水循環式コンプレッサは,イオン交換型純水器の残存処理能力を以下の方法で評価する残存処理能力評価装置を備えている。
所定の電気伝導率を有する水を標準水とし,この標準水を処理対象としたときの評価対象純水器における総純水採取量(標準総純水採取量)と,前記標準水の電気伝導率との積を,前記純水器の総処理能力値AALLとし,
前記純水器に対する原水の導入時,前記純水器に対する前記供給水の通過量Lを測定すると共に,前記純水器の一次側において前記原水の電気伝導率Sを測定し,前記原水の通過量Lと電気伝導率Sとの積を,前記原水の通過により減少した前記純水器の処理能力減少値ALOSSとし,
前記総処理能力値AALLから,前記処理能力減少値ALOSSを減じて,前記純水器の処理能力残存値AREST とすること
In order to achieve the above object, the water circulation type compressor of the present invention is provided with a remaining processing capacity evaluation device that evaluates the remaining processing capacity of an ion exchange type deionizer by the following method.
Water with a predetermined electrical conductivity is standard water, and when this standard water is treated, the total pure water sampling amount (standard total pure water sampling amount) in the pure water device to be evaluated and the standard water electrical conductivity The product with the rate is the total treatment capacity value A ALL of the water purifier,
When the raw water is introduced into the pure water device, the passage amount L of the supply water to the pure water device is measured, and the electrical conductivity S of the raw water is measured on the primary side of the pure water device, so that the raw water passes. The product of the quantity L and the electrical conductivity S is defined as a treatment capacity reduction value A LOSS of the pure water device that has been reduced by the passage of the raw water,
Wherein the total capacity value A ALL, by subtracting the capacity reduction value A LOSS, capacity remaining values A REST and be Rukoto of the pure water device.

すなわち,純水器の残存処理能力を次式,
総処理能力値AALL=標準水の電気伝導率×標準総純水採取量
処理能力減少値ALOSS=原水の電気伝導率S×原水通過量L
処理能力残存値AREST=総処理能力値AALL−処理能力減少値ALOSS
に基づいて算出された数値として評価する。
In other words, the remaining treatment capacity of the deionizer is given by
Total treatment capacity value A ALL = standard water electrical conductivity x standard total pure water sampling amount Treatment capacity reduction value A LOSS = raw water electrical conductivity S x raw water passage amount L
Processing capacity remaining value A REST = Total processing capacity value A ALL -Processing capacity decrease value A LOSS
It is evaluated as a numerical value calculated based on

前記評価方法において,前記純水器に対する原水の通過を行う毎に前記原水の電気伝導率と通過量の測定を行って,各回毎に前記処理能力の減少値を求め,
第1回から最新回までの原水の通過による処理能力の減少値を合算して,前記総処理能力値より減算することができる。
In the evaluation method, each time the raw water is passed through the pure water device, the electrical conductivity and the amount of the raw water are measured, and the reduction value of the treatment capacity is obtained each time.
By summing the reduced values of the throughput due to the passage of the raw water to the most recent times from the first time, Ru can be subtracted from the total capacity value.

すなわち,
第1回目の給水による処理能力減少値=ALOSS1
第2回目の給水による処理能力減少値=ALOSS2
第n回目の給水による処理能力減少値=ALOSSn とした場合,
n回目の給水時における残存処理能力値ARESTn を,
RESTn = AALL −(ALOSS1 +ALOSS2 +・・・ALOSSn) として求め,又は,
第n−1回目の給水時に求めた処理能力残存値ARESTn-1に基づいて,
RESTn = ARESTn-1 −ALOSSn として求める。
That is,
Reduced processing capacity due to the first water supply = A LOSS1
Treatment capacity decrease due to the 2nd water supply = A LOSS2
When processing capacity decrease value by nth water supply = A LOSSn ,
Residual treatment capacity value A RESTn at the time of n-th water supply,
A RESTn = A ALL − (A LOSS1 + A LOSS2 +... A LOSSn ) or
Based on the processing capacity remaining value A RESTn-1 obtained at the time of the n- 1th water supply,
Determined as A RESTn = A RESTn-1 -A LOSSn.

さらに,前記評価方法において,前記原水の通過時における電気伝導率の測定を,所定の時間毎に複数回行うと共に,測定された電気伝導率の平均値に基づいて,前記処理能力減少値を算出することができる。 Furthermore, in the evaluation method, the electrical conductivity measurement when the raw water passes is performed a plurality of times every predetermined time, and the processing capacity decrease value is calculated based on the measured average value of the electrical conductivity. it is Ru can be.

また,前記処理能力の残存値ARESTを,前記原水の電気伝導率で除して見込み残存純水採取量を算出するものとしても良い。 Further, the residual value A REST of the processing capacity, yet good as to calculate the estimated residual pure water collection amount was divided by the electric conductivity of the raw water.

なお,前記純水器に対する原水の導入は,これを定量ずつ行い,前記見込み残存純水採取量を,前記一回分の導入量で除して見込み残存使用回数を算出し,さらに,前記純水器に対する原水の導入を,コンプレッサの所定の運転時間毎に行い,前記残存処理回数と,前記一定時間との積を,前記純水器又はイオン交換樹脂を交換する迄の見込み残存使用時間(見込み残存運転時間)として評価する。 Note that the introduction of raw water to pure water instrument, which had lines by quantitative, the estimated remaining pure water collection amount, the by dividing the amount of introduced dose was calculated estimated remaining number of uses, further, the pure the introduction of raw water to water unit, have rows for each predetermined operating time of the co-compressors, and the remaining number of times of processing, the product of the predetermined time, estimated remaining life of up to replacing the pure water device or ion-exchange resins Evaluated as time (expected remaining operating time) .

上記方法を実現する本発明のイオン交換型純水器の残存処理能力評価装置を備えた水循環式コンプレッサは,
循環水と共に圧縮空気を圧縮する圧縮機本体を備えると共に,前記圧縮機本体の吐出口に吐出回路を介して連通され,前記圧縮機本体より循環水との気液混合流体として吐出された圧縮空気を導入するセパレータレシーバタンクを備え,該セパレータレシーバタンク内で圧縮空気と分離された循環水を前記圧縮機本体の給水口に導入するリターン回路を設け,前記圧縮機本体と前記セパレータレシーバタンク間に循環水の循環系を形成した水循環式コンプレッサにおいて,
前記循環系に対する循環水の補充,交換を行うために,外部給水源からの供給水を,純水器を介して前記循環水の循環系に導入するための給水回路と,前記セパレータレシーバタンク内の循環水を排出可能に構成されている排水回路とを備え,
前記純水器45の一次側において,原水の電気伝導率を測定する,例えば電気伝導率計や抵抗計等の電気伝導率測定手段61と,
前記純水器45に対する前記原水の通過量を計測する流量計等の計量手段62と,
前記電気伝導率測定手段61により測定された電気伝導率と,前記計量手段62により計測された通過量に基づいて,前記純水器の残存処理能力を算定する,電子制御装置等によって実現される算定手段70と,
前記算定手段70による算定の結果を表示する表示手段80を備え,
前記算定手段70が,
所定の電気伝導率を有する水を標準水とし,この標準水を処理対象としたときの前記純水器における総純水採取量(標準総純水採取量)と前記標準水の電気伝導率とを記憶する記憶手段を有すると共に,
前記原水の導入時,前記電気伝導率測定手段61及び前記計量手段62により測定された前記原水の電気伝導率と通過量との積を処理能力減少値ALOSSとして算出する処理能力減少値算出手段と,
前記標準総純水採取量と標準水の電気伝導率の積を前記純水器45の総処理能力値AALLとし,該総処理能力値AALLから前記処理能力減少値ALOSSを減算して,前記純水器45の処理能力残存値ARESTを算出する,処理能力残存値算出手段を有し,前記処理能力残存値を前記原水の電気伝導率で除して見込み残存純水採取量を算出する,見込み残存純水採取量算出手段を備え,
前記純水器に対する原水の通過を定量ずつ行い,前記算定手段に,各回毎に得られた前記見込み残存純水採取量を,1回分の原水の通過量で除して見込み残存使用回数を算出する,見込み残存使用回数算出手段を設け,
前記純水器に対する原水の通過をコンプレッサの一定運転時間毎に行い,前記算定手段に,前記見込み残存処理回数と前記一定運転時間とを積算して見込み残存使用時間を算出する,見込み残存使用時間算出手段を設け,
前記表示手段に前記見込み残存使用時間算出手段で算出した見込み残存使用時間を表示することを特徴とする(請求項)。
A water circulation type compressor equipped with an apparatus for evaluating the remaining treatment capacity of an ion exchange type deionizer according to the present invention for realizing the above method is as follows:
Compressed air having a compressor body that compresses compressed air together with circulating water, communicated with a discharge port of the compressor body via a discharge circuit, and discharged from the compressor body as a gas-liquid mixed fluid with circulating water A separator receiver tank is provided, and a return circuit is provided for introducing the circulating water separated from the compressed air in the separator receiver tank into a water supply port of the compressor body, and is provided between the compressor body and the separator receiver tank. In a water circulation compressor that forms a circulation system of circulating water,
A water supply circuit for introducing water supplied from an external water supply source into the circulation system of the circulation water via a deionizer to replenish and replace the circulation water in the circulation system, and in the separator receiver tank A drainage circuit configured to discharge the circulating water of
On the primary side of the deionizer 45, the electrical conductivity of the raw water is measured, for example, an electrical conductivity measuring means 61 such as an electrical conductivity meter or a resistance meter;
Measuring means 62 such as a flow meter for measuring the amount of the raw water passing through the deionizer 45;
It is realized by an electronic control unit or the like that calculates the remaining treatment capacity of the pure water device based on the electric conductivity measured by the electric conductivity measuring means 61 and the passing amount measured by the measuring means 62. A calculation means 70;
Display means 80 for displaying the result of calculation by the calculation means 70;
The calculating means 70 is
The water having a predetermined electrical conductivity is standard water, and when this standard water is treated, the total pure water sampling amount (standard total pure water sampling amount) in the pure water device and the standard water electrical conductivity Having storage means for storing
When the raw water is introduced, a processing capacity decrease value calculating means for calculating a product of the electrical conductivity of the raw water measured by the electrical conductivity measuring means 61 and the measuring means 62 and the passing amount as a processing capacity decreasing value A LOSS. When,
Wherein the total capacity value A ALL standard total net water collection amount and the the product of electric conductivity of the standard water pure water device 45, by subtracting the capacity reduction value A LOSS from the aggregate capacity value A ALL the calculated processing capacity remaining values a REST pure water device 45, have a capacity remaining value calculation means, the estimated residual pure water collection amount by dividing the capacity remaining value in the electric conductivity of the raw water A means for calculating the expected remaining pure water sampling amount to be calculated;
Quantitative passage of raw water to the water purifier is performed, and the estimated remaining usage count is calculated by dividing the estimated remaining pure water sampling amount obtained each time by the amount of raw water passed for each time. Establishing the expected remaining usage count calculation means,
Expected remaining usage time is calculated by performing passage of raw water to the deionizer every fixed operation time of the compressor, and calculating the expected remaining usage time by adding the expected remaining treatment count and the constant operation time to the calculating means. Provide a calculation means,
The expected remaining usage time calculated by the expected remaining usage time calculation means is displayed on the display means (claim 1 ).

前記構成の評価装置において,前記処理能力減少値算出手段が,前記純水器45に対する原水の通過が行われる毎に前記原水の電気伝導率と通過量の測定を行って,各回毎に前記処理能力減少値を算出すると共に,
前記処理能力残存値算出手段が,第1回から最新回までの原水の通過による処理能力減少値を合算して,前記総処理能力値より減算するように構成しても良い(請求項)。
In the evaluation apparatus having the above configuration, the processing capacity decrease value calculation means measures the electric conductivity and the passing amount of the raw water every time the raw water passes through the deionizer 45, and each time the processing is performed. While calculating the ability reduction value,
The processing capacity remaining value calculating means may be configured to add up the processing capacity decrease values due to the passage of the raw water from the first time to the latest time and to subtract from the total processing capacity value (Claim 2 ). .

さらに,前記算定手段70が,前記原水の通過時における前記電気伝導率測定手段による測定結果を定時毎に取得して,平均値を算出する平均値算出手段を備えると共に,
前記処理能力減少値算出手段が,前記平均値算出手段が算出した前記電気伝導率の平均値に基づいて前記処理能力の減少値を算出するように構成することもできる(請求項)。
Further, the calculating means 70 includes an average value calculating means for obtaining a measurement result by the electric conductivity measuring means at the time of passage of the raw water every time and calculating an average value,
The capacity reduction value calculating means may be configured to calculate the reduced value of the capacity on the basis of the average value of the electrical conductivity the average value calculation means has calculated (Claim 3).

以上説明した本発明の構成により,本発明の水循環式コンプレッサによれば,原水の水質に関係なく,純水器45の残存処理能力を数値(残存処理能力値AREST)として評価することができ,この数値に基づいて,純水器又はイオン交換樹脂の交換時期等を事前に予測することが可能となった。 With the configuration of the present invention described above, according to the water circulation compressor of the present invention, the remaining treatment capacity of the pure water device 45 can be evaluated as a numerical value (residual treatment capacity value A REST ) regardless of the quality of raw water. Based on this value, it became possible to predict the replacement time of the deionizer or ion exchange resin in advance.

純水器45に対する供給水の通過毎に,処理能力減少値ALOSSを算出すると共に,第1回から最新回迄の処理能力減少値を合算して総処理能力値AALLより減算することにより,供給水の導入を行う毎に減少する純水器45の残存処理能力を確認することができ,交換時期等の把握を容易に行うことができた。 By calculating the processing capacity decrease value A LOSS for each passage of the feed water to the deionizer 45 and adding the processing capacity decrease values from the first to the latest time and subtracting it from the total processing capacity value A ALL The remaining treatment capacity of the deionizer 45, which decreases each time the supply water is introduced, can be confirmed, and the replacement time and the like can be easily grasped.

また,原水の電気伝導率を複数回に分けて測定し,測定された電気伝導率の平均値を以て前記残存処理能力を評価するよう構成した場合には,電気伝導率が安定しない原水を処理対象とする場合にあっても,正確に残存処理能力の評価を行うこうが可能であった。   In addition, when the electrical conductivity of raw water is measured in several batches and the residual treatment capacity is evaluated using the average value of the measured electrical conductivity, raw water with unstable electrical conductivity is treated. Even in this case, it was possible to accurately evaluate the remaining processing capacity.

さらに,残存処理能力値ARESTに基づき,残存純水採取量,残存使用回数,残存使用時間(運転時間)等の見込み値を算出することにより,より判りやすい,具体的な数値として,純水器の残存処理能力を判定することができた。 Furthermore, based on the remaining processing capacity value A REST , by calculating the expected values such as the amount of remaining pure water collected, the number of remaining uses, and the remaining use time (operating time), it is possible to obtain pure water as a more specific value. The remaining processing capacity of the vessel could be determined.

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

〔基本構成〕
1.前提
本発明において,残存能力の評価対象とする純水器は,純水器を構成する容器内に,イオン交換樹脂を充填したイオン交換型純水器であり,このイオン交換樹脂中に処理対象である供給水を通過させた際,原水中に含まれる金属イオン等の不純物を,イオン交換樹脂がイオン交換反応によって除去するものである。
[Basic configuration]
1. Assumptions In the present invention, the pure water device whose remaining capacity is to be evaluated is an ion exchange type pure water device in which a container constituting the pure water device is filled with an ion exchange resin. When the feed water is passed, the ion exchange resin removes impurities such as metal ions contained in the raw water by an ion exchange reaction.

従って,イオン交換樹脂が飽和に達すればイオン交換反応を行わなくなり,イオン交換樹脂が除去できる不純物の総量は,純水器に充填されたイオン交換樹脂の持つ飽和量によって決まる。   Accordingly, when the ion exchange resin reaches saturation, the ion exchange reaction is not performed, and the total amount of impurities that can be removed by the ion exchange resin is determined by the saturation amount of the ion exchange resin filled in the pure water device.

一方,水は,含有する電解質が多い程,電気を通しやすくなり,電気伝導率が上昇する。そのため,水の電気伝導率を測定することにより,この水に溶解している電解質,即ち金属イオン等の不純物量を推測することができる。   On the other hand, the more electrolyte the water contains, the easier it is to conduct electricity and the electrical conductivity increases. Therefore, by measuring the electrical conductivity of water, it is possible to estimate the amount of impurities such as electrolyte dissolved in the water, that is, metal ions.

以上の点を前提に,純水器における処理対象水(原水)の電気伝導率と,この純水器において採取可能な純水(ここでは,電気伝導率が1μS/cm以下のものを「純水」と定義)の総量を示す相関グラフ(図1参照)を観察すると,処理対象とする原水の電気伝導率が上昇するに従い,純水の総採取量が減少する関係にあるだけでなく,グラフに現れた電気伝導率と純水採取量との関係を詳細に検討すると,例えば電気伝導率が100(μS/cm)の原水を処理した場合には4000(L)であった純水採取量が,原水の電気伝導率が2倍の200(μS/cm)になると,1/2の2000(L)に,さらに4倍の400(μS/cm)になると,1/4の1000(L)に減少するという関係にあることが判る。   Based on the above assumptions, the electrical conductivity of the water to be treated (raw water) in the pure water device and the pure water that can be collected in this pure water device (in this case, those with an electrical conductivity of 1 μS / cm or less Observing a correlation graph (see Fig. 1) showing the total amount of water (defined as "water"), not only is the relationship between the total collected amount of pure water decreasing as the electrical conductivity of the raw water to be treated increases, Examining in detail the relationship between the electrical conductivity shown in the graph and the amount of pure water collected, for example, when raw water with an electrical conductivity of 100 (μS / cm) was treated, the pure water sample was 4000 (L). When the electric conductivity of the raw water is 200 (μS / cm), which is double, it is 2000 (L), which is 1/2, and when it is 400 (μS / cm), which is four times, it is 1000 (1/4). It can be seen that there is a relationship of decreasing to (L).

すなわち,原水の電気伝導率が2倍,4倍となると,純水採取量は,1/2,1/4となる関係にあり,電気伝導率の比は,原水中に含まれる不純物量の比をほぼそのまま正確に表すものであることに着目した。   That is, when the electrical conductivity of raw water is doubled or quadrupled, the amount of pure water collected is 1/2, 1/4, and the ratio of electrical conductivity is the amount of impurities contained in the raw water. We focused on the fact that the ratio is expressed almost exactly as it is.

なお,このような原水の電気伝導率と純水採取量との相関関係は,他のイオン交換型純水器においても同様に見られる現象である。   Such a correlation between the electrical conductivity of the raw water and the amount of pure water collected is a phenomenon that can be seen in other ion exchange type pure water devices as well.

そこで,本発明では,水の電気伝導率を,この水の単位容積当たりに含まれる不純物の量と仮定し,この電気伝導率と水の体積との積を,前記体積の水中に含まれる不純物の総量と仮定したことを出発点とする。   Therefore, in the present invention, the electrical conductivity of water is assumed to be the amount of impurities contained per unit volume of water, and the product of the electrical conductivity and the volume of water is calculated as the amount of impurities contained in the volume of water. The starting point is assumed to be the total amount.

2.純水器の総処理能力の数値化
以上の仮定から,或る純水器が飽和に達する迄に除去できる不純物の総量(飽和量)は,所定の電気伝導率を持った水(標準水)を処理対象としたときの純水採取量と,前記標準水の電気伝導率との積によって求めた値(総処理能力値AALL)として数値化することが可能である。
2. Based on the above assumptions, the total amount of impurities (saturation) that can be removed before a certain water purifier reaches saturation is the amount of water (standard water) with a predetermined electrical conductivity. Can be quantified as a value (total treatment capacity value A ALL ) obtained by the product of the amount of pure water collected when the water is treated and the electric conductivity of the standard water.

一例として,図1のグラフに示す純水器を例として説明すれば,電気伝導率が100(μS/cm)の水を標準水とすると,この標準水を処理対象としたときの純水採取量は,4000(L)であることから,この純水器の総処理能力値AALLは,
総処理能力値AALL=100(μS/cm) × 4000(L) = 400000
となる。
As an example, the pure water device shown in the graph of FIG. 1 will be described as an example. If water with an electrical conductivity of 100 (μS / cm) is standard water, pure water sampling when this standard water is treated Since the amount is 4000 (L), the total capacity value A ALL of this water purifier is
Total processing capacity A ALL = 100 (μS / cm) × 4000 (L) = 400000
It becomes.

この総処理能力値AALLは,純水器が同じであれば,例えば電気伝導率が200(μS/cm),400(μS/cm)の水を標準水とした場合であっても,
総処理能力値AALL=200(μS/cm) × 2000(L) = 400000
総処理能力値AALL=400(μS/cm) × 1000(L) = 400000
で一定となり,処理対象とする原水の電気伝導率に拘わらず,除去できる不純物の総量は略一定であることを示す。このことから,総処理能力値AALLを求めるための前記標準水の電気伝導率は,任意の値を取ることができる。
This total treatment capacity value A ALL is the same even if the water purifier is the same, for example, when water with electrical conductivity of 200 (μS / cm) or 400 (μS / cm) is used as standard water.
Total processing capacity A ALL = 200 (μS / cm) × 2000 (L) = 400000
Total processing capacity A ALL = 400 (μS / cm) × 1000 (L) = 400000
This indicates that the total amount of impurities that can be removed is substantially constant regardless of the electrical conductivity of the raw water to be treated. From this, the electric conductivity of the standard water for obtaining the total processing capacity value A ALL can take an arbitrary value.

従って,例えば純水器メーカーが公示する純水器の仕様,例えばカタログ等に表示されている純水採取量と,この純水採取量の算出基準とした原水の水質(電気伝導率)が判明している場合には,ここに示されている純水採取量と,算出基準とした原水の電気伝導率を前記標準水の電気伝導率に基づいて,この純水器における総処理能力値AALLを数値化することができる。 Therefore, for example, the specification of the water purifier published by the water purifier manufacturer, for example, the amount of pure water displayed in the catalog, etc., and the quality of the raw water (electrical conductivity) used as the calculation standard for this amount of pure water are found. In this case, the pure water sampling amount shown here and the electric conductivity of the raw water as the calculation standard are calculated based on the electric conductivity of the standard water, and the total processing capacity value A ALL can be quantified.

3.原水の通過により喪失した処理能力の数値化
また,純水器を通過する原水中に含まれる不純物量は,純水器を通過した原水の通過量L(測定値)と,純水器の一次側における原水の電気伝導率S(測定値)との積として,数値化することができる。
3. Quantification of processing capacity lost due to the passage of raw water The amount of impurities contained in the raw water passing through the water purifier is the amount L (measured value) of the raw water passing through the water purifier and the primary water purifier. It can be quantified as the product of the raw water electrical conductivity S (measured value) on the side.

そして,この原水中の不純物が,純水器を通過する際にイオン交換樹脂によって除去されたと仮定すると,この純水器が除去できる残りの不純物量は,除去した不純物の量分,減少する。   Assuming that the impurities in the raw water are removed by the ion exchange resin when passing through the deionizer, the remaining amount of impurities that can be removed by the deionizer decreases by the amount of the removed impurities.

従って,純水器を通過した原水の通過量L(測定値)と,純水器の一次側における原水の電気伝導率S(測定値)との積を,この供給水を処理することによる,純水器の処理能力減少値ALOSSとして数値化することができる。 Therefore, by treating the feed water with the product of the amount L (measured value) of raw water that has passed through the deionizer and the electrical conductivity S (measured value) of the raw water on the primary side of the deionizer, It can be quantified as the processing capacity decrease value A LOSS of the water purifier.

そして,純水器の総処理能力値AALLから,前記処理能力減少値ALOSSを減算すれば,純水器が持つ,残りの処理能力値(処理能力残存値AREST)を数値として算出することができる。 Then, if the processing capacity decrease value A LOSS is subtracted from the total processing capacity value A ALL of the pure water device, the remaining processing capacity value (processing capacity remaining value A REST ) of the pure water system is calculated as a numerical value. be able to.

一例として,純水器に,
電気伝導率S=200(μS/cm)
通過量L=26.8(L)
の原水を通過させた場合を想定すると,このときの純水器の処理能力減少値ALOSSは,
処理能力減少値ALOSS=S×L=200(μS/cm)×26.8(L)=5360
となる。
As an example,
Electrical conductivity S = 200 (μS / cm)
Passage L = 26.8 (L)
Assuming that the raw water is passed, the treatment capacity reduction value A LOSS of the pure water device at this time is
Processing capacity reduction value A LOSS = S × L = 200 (μS / cm) × 26.8 (L) = 5360
It becomes.

従って,前記供給水の通過後における純水器の処理能力残存値ARESTは,
処理能力残存値AREST=AALL−ALOSS=400000−5360=394640
となり,純水器の残りの処理能力を数値化することができる。
Therefore, the treatment capacity remaining value A REST of the pure water device after the supply water passes is
Processing capacity remaining value A REST = A ALL -A LOSS = 400000-5360 = 394640
Thus, the remaining processing capacity of the deionizer can be quantified.

ここで得た処理能力残存値ARESTは,これをそのまま,又は加工して,表示装置に表示することで,現状における純水器の残存処理能力を確認でき,これに従って純水器の交換時期等を予測することが可能となる。 The processing capacity remaining value A REST obtained here is displayed as it is or processed and displayed on the display device, so that the remaining processing capacity of the current pure water device can be confirmed, and the replacement time of the pure water device can be confirmed accordingly. Etc. can be predicted.

〔付加的要素〕
本発明では,前記基本構成を前提に,さらに純水器の残存処理能力を正確に表示するため,また,該純水器が例えば前述した水循環式コンプレッサに設ける場合を考慮し,以下のような構成を追加可能としている。
[Additional elements]
In the present invention, on the premise of the basic configuration, in order to accurately display the remaining treatment capacity of the deionizer, and in consideration of the case where the deionizer is provided, for example, in the water circulation compressor described above, The configuration can be added.

1.処理能力残存値ARESTの正確性を向上させるための構成
前記基本構成に加え,評価する残存値をより正確なものとするために,純水器45に対する原水の導入が行われているとき,前述の原水の電気伝導率の測定を所定時間毎に複数回行い,ここで測定された電気伝導率の平均値を,供給水の電気伝導率Sとして前記処理能力減少値ALOSSを算出するように構成する。
1. Configuration for improving the accuracy of the processing capacity remaining value A REST In addition to the basic configuration, in order to make the remaining value to be evaluated more accurate, when the raw water is introduced into the deionizer 45, The above-described measurement of the electric conductivity of the raw water is performed a plurality of times every predetermined time, and the treatment capacity reduction value A LOSS is calculated by using the average value of the electric conductivity measured here as the electric conductivity S of the feed water. Configure.

これにより,電気伝導率が安定しない供給水を処理対象とした場合であっても,評価の際の誤差を低減させることができる。   Thereby, even if it is a case where the supply water whose electrical conductivity is not stabilized is made into a treating object, the error at the time of evaluation can be reduced.

2.処理能力残存値ARESTの更新
一例として,前述した水循環式コンプレッサでは,定期的に循環系に対する供給水の導入を行う等,純水器に対する原水の通過が間欠的に行われるため,給水が行われる毎に処理能力残存値ARESTを更新する必要がある。
2. Renewal of processing capacity remaining value A REST As an example, in the above-mentioned water circulation type compressor, water supply is performed because the raw water is intermittently passed through the pure water device, such as periodically introducing the supply water to the circulation system. It is necessary to update the remaining processing capacity value A REST every time it is read.

具体的には,供給水の導入が行われる各回毎に,供給水の通過量を計測し,第1回から最新回迄の処理能力減少値を合算して総処理能力値より減算する。   Specifically, every time feed water is introduced, the amount of feed water passing is measured, and the processing capacity decrease values from the first to the latest are added together and subtracted from the total processing capacity value.

3.見込み残存純水採取量の算出
この構成は,純水器の残存処理能力値ARESTによって,さらにどの程度の純水採取が可能であるかを判定するものであり,
見込み残存純水採取量=処理能力の残存値AREST/原水の電気伝導率
によって算出する。
3. Calculation of expected remaining pure water sampling amount This configuration is to determine how much pure water can be collected based on the remaining processing capacity value A REST of the water purifier.
Expected residual pure water sampling amount = residual value of processing capacity A REST / calculated by electric conductivity of raw water.

4.見込み残存使用回数
この構成は,純水器が設けられている例えば水循環式コンプレッサにおいて,一回分の給水量が予め決まっている場合において,純水器の残存処理能力値においてあと何回,給水を行うことができるかの見込み回数を算定するものであり,
見込み残存使用回数=見込み残存純水採取量/1回分の供給水導入量
によって算出する。
4). Expected remaining usage count This configuration is used in the case where, for example, in a water circulation type compressor equipped with a pure water device, when the amount of water supply for one time is determined in advance, the remaining water treatment capacity value of the pure water device is used several times. To calculate the expected number of times it can be done,
Estimated remaining number of uses = Expected remaining pure water sampling amount / feed water introduction amount for one time.

5.見込み残存運転時間の算出
この構成は,純水器が設けられている例えば水循環式コンプレッサにおいて,供給水の一回分の給水量が予め決まっていると共に,次回の給水までの時間が,例えば運転時間等によって予め決定されている場合において,純水器の残存処理能力値に対し,あと何時間,純水器を使用できるかを算出するものであり,
見込み残存運転時間=見込み残存使用回数×水の交換迄の時間
によって算出する。
5). Calculation of expected remaining operation time In this configuration, for example, in a water circulation type compressor provided with a deionizer, the water supply amount for one supply water is determined in advance, and the time until the next water supply is, for example, the operation time. The number of hours that the water purifier can be used with respect to the remaining capacity of the water purifier is calculated.
Estimated remaining operation time = estimated remaining use count × time until water exchange.

〔装置構成〕
次に,上記方法を実現するための本発明の評価装置の構成例について,以下説明する。
〔Device configuration〕
Next, a configuration example of the evaluation apparatus of the present invention for realizing the above method will be described below.

なお,以下の実施形態にあっては,本発明の評価装置を,水循環式コンプレッサに設けた純水器の残存処理能力の評価に使用するものとして説明するが,本発明の評価装置は,純水の供給が必要とされる各種用途,機器等に使用される純水器の残存処理能力の評価に対し広く全般に使用可能であり,本発明の用途は実施形態に示した例に限定されない。   In the following embodiments, the evaluation device of the present invention will be described as being used for evaluating the remaining treatment capacity of a deionizer provided in a water circulation compressor. It can be used widely and generally for the evaluation of the remaining treatment capacity of pure water devices used in various applications and devices that require water supply, and the application of the present invention is not limited to the examples shown in the embodiments. .

1.水循環式コンプレッサの全体構成
図2において,1は,水循環式コンプレッサであり,この水循環式コンプレッサは,循環水と共に圧縮空気を圧縮する圧縮機本体10を備えると共に,この圧縮機本体10の吐出口11に吐出回路31を介して連通され,圧縮機本体10より循環水との気液混合流体として吐出された圧縮空気を導入するセパレータレシーバタンク20を備えている。
1. 2 is a water circulation compressor. The water circulation compressor includes a compressor body 10 for compressing compressed air together with circulating water, and a discharge port 11 of the compressor body 10. And a separator receiver tank 20 for introducing compressed air discharged from the compressor body 10 as a gas-liquid mixed fluid with circulating water.

また,このセパレータレシーバタンク20には,セパレータレシーバタンク20内で圧縮空気と分離された循環水を,前記圧縮機本体10の給水口12に導入するリターン回路32が設けられ,これにより,圧縮機本体10とセパレータレシーバタンク20間に,循環水の循環系が形成されている。   Further, the separator receiver tank 20 is provided with a return circuit 32 for introducing the circulating water separated from the compressed air in the separator receiver tank 20 into the water supply port 12 of the compressor main body 10. A circulating system for circulating water is formed between the main body 10 and the separator receiver tank 20.

なお,図2において,リターン回路32中に示す符号41はラジエータ,符号42は水フィルタであり,前記セパレータレシーバタンク20内の循環水を冷却すると共に,濾過して,圧縮機本体10の給水口12に導入する。   In FIG. 2, reference numeral 41 shown in the return circuit 32 is a radiator, and reference numeral 42 is a water filter, which cools and circulates the circulating water in the separator receiver tank 20 and supplies it to the water supply port of the compressor body 10. 12 is introduced.

以上のように構成された水循環式コンプレッサ1では,前記循環系に対する循環水の補充,交換を行うために,外部給水源からの供給水を,前記循環水の循環系に導入するための給水回路50(51,52,53)が設けられている。   In the water circulation type compressor 1 configured as described above, a water supply circuit for introducing supply water from an external water supply source into the circulation system of the circulation water in order to replenish and replace the circulation water to the circulation system. 50 (51, 52, 53) are provided.

この給水回路50は,本実施形態にあっては,上水道等の外部給水源に開閉弁43を介して連通された導入部51と,この導入部51から分岐した2つの回路52,53により構成されており,分岐した一方を圧縮機本体10の吸気側に連通して補水用の給水回路52と成すと共に,他方をセパレータレシーバタンク20に連通して,タンク用給水回路53とした。   In the present embodiment, the water supply circuit 50 includes an introduction part 51 communicated with an external water supply source such as a water supply via an on-off valve 43 and two circuits 52 and 53 branched from the introduction part 51. One of the branches is connected to the intake side of the compressor body 10 to form a water supply circuit 52 for replenishing water, and the other is connected to the separator receiver tank 20 to form a tank water supply circuit 53.

そして,前述の外部給水源から分岐点迄の給水回路(導入部51)に,上流側から水フィルタ44,純水器45の順で配置し,また,前記補水用給水回路52と,前記交換用給水回路53には,それぞれ前記回路を開閉する電磁開閉弁46,47を設けた。   Then, in the water supply circuit (introduction section 51) from the external water supply source to the branch point, the water filter 44 and the deionizer 45 are arranged in this order from the upstream side. The water supply circuit 53 is provided with electromagnetic on-off valves 46 and 47 for opening and closing the circuits.

なお,図2中,48は,前記交換用給水回路53に設けた逆止弁であり,セパレータレシーバタンク20内の圧力によって循環水が逆流及び圧縮空気が流出することを防止する。   In FIG. 2, reference numeral 48 denotes a check valve provided in the replacement water supply circuit 53, which prevents circulating water from flowing back and compressed air from flowing out due to the pressure in the separator receiver tank 20.

また,33は排水回路であり,電磁開閉弁49によって排水回路33を開くことで,セパレータレシーバタンク20内の循環水を排出可能に構成されている。   Reference numeral 33 denotes a drain circuit, which is configured to be able to drain the circulating water in the separator receiver tank 20 by opening the drain circuit 33 by an electromagnetic on-off valve 49.

以上のように構成された水循環式コンプレッサ1において,タンク用給水回路53は,セパレータレシーバタンク20内に直接循環水を供給する際に使用され,一例として,コンプレッサ1の始動スイッチをONにしたとき,セパレータレシーバタンク20内の水位が所定のレベル以下であると,電磁開閉弁47がタンク用給水回路53を開き,外部給水源からの供給水が,水フィルタ44によって濾過されると共に,純水器45を通過して純水化されて,セパレータレシーバタンク20内に導入される。   In the water circulation compressor 1 configured as described above, the tank water supply circuit 53 is used when supplying the circulating water directly into the separator receiver tank 20, and as an example, when the start switch of the compressor 1 is turned ON. When the water level in the separator receiver tank 20 is below a predetermined level, the electromagnetic on-off valve 47 opens the tank water supply circuit 53, and the water supplied from the external water supply source is filtered by the water filter 44 and purified water. After passing through the vessel 45, the water is purified and introduced into the separator receiver tank 20.

また,補水用給水回路52は,コンプレッサ1の作動時,圧縮機本体10を介して前記循環系内に給水するための回路であり,例えばコンプレッサ1の所定時間運転の運転により,循環系内の循環水を交換等する際に使用される。例えば,コンプレッサ1が所定時間運転されると,電磁開閉弁49が排水回路33を開き,循環系内の循環水を所定量排出した後,排水回路33を閉じる。その後,電磁開閉弁46が開いて補水用給水回路52を介して純水器45を通過した純水が圧縮機本体10を介して循環系内に導入され,この動作を数回繰り返すことにより,循環系内の循環水を純水に近付ける。   The replenishment water supply circuit 52 is a circuit for supplying water into the circulation system via the compressor body 10 when the compressor 1 is in operation. For example, when the compressor 1 is operated for a predetermined time, Used when changing circulating water. For example, when the compressor 1 is operated for a predetermined time, the electromagnetic on-off valve 49 opens the drain circuit 33, discharges a predetermined amount of circulating water in the circulation system, and then closes the drain circuit 33. Thereafter, the electromagnetic on / off valve 46 is opened, and pure water that has passed through the deionizer 45 through the water supply circuit 52 for replenishing water is introduced into the circulation system through the compressor body 10, and this operation is repeated several times. Bring the circulating water in the circulation system closer to pure water.

2.残存能力評価装置の構成
以上のように構成された水循環式コンプレッサにおいて,本発明の評価装置は,図3に示すように,給水回路50の導入部51に設けられた前記純水器45の一次側において原水(供給水)の電気伝導率を測定する電気伝導率測定手段61と,前記純水器45を通過した原水量を計測する計量手段62と,前記電気伝導率測定手段61によって測定された電気伝導率と,計量手段62によって計測された原水量に基づいて,純水器45の残存処理能力を算定する算定手段70,及び,前記算定手段70による算定結果に従って,純水器45の残存処理能力を表示する,液晶表示盤等の表示手段80を備えている。
2. Configuration of Residual Capacity Evaluation Device In the water circulation compressor configured as described above, the evaluation device of the present invention is the primary water purifier 45 provided in the introduction part 51 of the water supply circuit 50 as shown in FIG. The electrical conductivity measuring means 61 for measuring the electrical conductivity of the raw water (feed water) on the side, the measuring means 62 for measuring the amount of raw water that has passed through the deionizer 45, and the electrical conductivity measuring means 61 On the basis of the electrical conductivity and the amount of raw water measured by the metering means 62, the calculating means 70 for calculating the remaining treatment capacity of the deionizer 45, and the calculation result by the calculating means 70, Display means 80 such as a liquid crystal display panel for displaying the remaining processing capacity is provided.

(1)電気伝導率測定手段
前述の電気伝導率測定手段61としては,既知の電気伝導率計を使用することができ,また,電気伝導率は,抵抗率の逆数であることから,前記電気伝導率計に代えて抵抗計を設け,これにより供給水の電気伝導率(抵抗率)を測定するものとしてもよい。
(1) Electrical conductivity measurement means As the electrical conductivity measurement means 61 described above, a known electrical conductivity meter can be used, and the electrical conductivity is the reciprocal of the resistivity. Instead of the conductivity meter, a resistance meter may be provided to measure the electrical conductivity (resistivity) of the supplied water.

(2)原水通過量の計測手段
また,純水器45を通過した原水量を計測する計量手段62としては,前記供給水の流量を測定可能であれば如何なる構成を採用しても良く,図示の実施形態にあっては,純水器45の二次側において前記給水回路50に流量計を設け,この流量計によって純水器を通過した供給水の流量を計測するように構成している。
(2) Raw water passing amount measuring means As the measuring means 62 for measuring the raw water amount that has passed through the deionizer 45, any configuration may be adopted as long as the flow rate of the supplied water can be measured. In this embodiment, a flow meter is provided in the water supply circuit 50 on the secondary side of the deionizer 45, and the flow rate of the feed water that has passed through the deionizer is measured by this flow meter. .

もっとも,図3に示した実施形態に限定されず,前記流量計は純水器45の一次側に設けても良く,また,例えばセパレータレシーバタンク20内にレベルスイッチを設け(図2参照),これを計量手段62としても良く,給水回路50を介して循環系内に供給水が導入されることによる循環水の増加分を,このレベルスイッチである計量手段62により検出・計測するように構成しても良い。   However, the present invention is not limited to the embodiment shown in FIG. 3, and the flow meter may be provided on the primary side of the deionizer 45, and for example, a level switch is provided in the separator receiver tank 20 (see FIG. 2). This may be used as the metering means 62, and the increase in the circulating water due to the supply water being introduced into the circulation system via the water supply circuit 50 is detected and measured by the metering means 62 that is this level switch. You may do it.

(3)算定手段
前述の算定手段70は,電気伝導率測定手段61,及び計量手段62より,電気信号として受信した電気伝導率S及び原水通過量Lに基づいて,予め設定されたプログラムに従った演算処理を行うことにより,純水器45の残存処理能力を数値(残存処理能力値AREST)として算出すると共に,算出結果を後述する表示装置80に表示させる処理装置であり,例えば電子制御装置によって実現されるものである。
(3) Calculation means The calculation means 70 described above follows a preset program based on the electrical conductivity S and raw water passage amount L received as electrical signals from the electrical conductivity measuring means 61 and the measuring means 62. Is a processing device that calculates the remaining processing capacity of the deionizer 45 as a numerical value (residual processing capacity value A REST ) and displays the calculation result on a display device 80 to be described later. It is realized by the device.

この算定手段70は,予め設定されたプログラムの実行により,以下の各処理を行う各手段が実現される(図4参照)。   The calculation means 70 realizes each means for performing the following processes by executing a preset program (see FIG. 4).

なお,前述の算定手段70には,初期設定として,例えば純水器45の仕様書等に基づいて,該純水器45の標準純水採取量(L),及びこの標準純水採取量の算定基準となった原水(標準水)の電気伝導率(μS/cm)を入力し,これを記憶させておく。   In the above-described calculation means 70, as an initial setting, for example, based on the specifications of the deionizer 45, the standard pure water collection amount (L) of the deionizer 45, and the standard pure water collection amount Enter the electrical conductivity (μS / cm) of the raw water (standard water) that is the calculation standard, and store it.

また,水循環式コンプレッサ1の前記循環水の循環系に対する供給水の一回分の給水量が予め決まっている場合には,この一回分の給水量(L)が記憶されると共に,このような原水の導入を,水循環式コンプレッサの所定の運転時間毎に行うように構成されている場合には,この導入迄の運転時間(h)を,図示せざる操作キーや,タッチパネル等の操作によって入力し,算定手段70の記憶手段に記憶させておく。   In addition, when the water supply amount for one supply water to the circulating system of the circulating water compressor 1 is determined in advance, the water supply amount (L) for this one time is stored and such raw water is stored. When the water circulation compressor is configured to be introduced at predetermined operating times, the operating time (h) until the introduction is input by operating an operation key (not shown) or a touch panel. , Stored in the storage means of the calculation means 70.

図4において,電気伝導率測定手段61によって測定された,純水器45の一次側における原水の電気伝導率は,電気信号として算定手段70に入力され,平均値算出手段によって電気伝導率の平均値が算出される。   In FIG. 4, the electric conductivity of the raw water on the primary side of the deionizer 45 measured by the electric conductivity measuring means 61 is input to the calculating means 70 as an electric signal, and the average electric conductivity is averaged by the average value calculating means. A value is calculated.

この平均値算出手段は,各回毎の原水の導入中,タイマに予め設定された所定時間(Δt)毎に電気伝導率を受信すると共に,受信した各電気伝導率を一時記憶し,受信した電気伝導率の平均値を算出する。   This average value calculation means receives the electrical conductivity at every predetermined time (Δt) preset in the timer during the introduction of the raw water every time, and temporarily stores each received electrical conductivity, The average value of conductivity is calculated.

このようにして算出された電気伝導率の平均値は,処理能力減少値算出手段により,前述の計量手段62によって計測された,純水器を通過した原水量(L)と積算されて,純水器の処理能力減少値ALOSSが算出される。 The average value of the electrical conductivity calculated in this way is integrated with the amount of raw water (L) measured by the measuring means 62 and passed through the water purifier by the processing capacity decrease value calculating means. A water processing capacity reduction value A LOSS is calculated.

なお,この処理能力減少値算出手段は,前記純水器に対する原水の通過が行われる毎に前記原水の電気伝導率と通過量の測定を行って,各回毎に前記処理能力の減少値を算出する。   The processing capacity decrease value calculation means measures the electrical conductivity and the passing amount of the raw water every time the raw water passes through the deionizer, and calculates the processing capacity decrease value each time. To do.

このようにして,算出された処理能力減少値ALOSSは,処理能力残存値算出手段によって,前記初期設定により設定された該純水器の標準純水採取量と標準水の電気伝導率との積として求められた総処理能力値AALLから減算され,純水器の残存処理能力が数値(残存処理能力値AREST)として算出される。 In this way, the calculated processing capacity decrease value A LOSS is calculated by the processing capacity remaining value calculation means between the standard pure water sampling amount of the pure water apparatus and the electric conductivity of the standard water set by the initial setting. The remaining processing capacity of the pure water device is calculated as a numerical value (residual processing capacity value A REST ) by subtracting from the total processing capacity value A ALL obtained as a product.

なお,純水器45に対する原水の導入が,二回目以降である場合には,各回毎に算出した処理能力減少値を合算して,前記総処理能力値AALLより減算する。 In addition, when the introduction of the raw water into the deionizer 45 is after the second time, the processing capacity decrease values calculated for each time are added together and subtracted from the total processing capacity value A ALL .

このようにして算出された残存処理能力値ARESTに基づいて,見込み残存純水採取量算出手段は,次式,
見込み残存純水採取量=残存処理能力値AREST/原水の電気伝導率
に基づき,純水器45によって以後採取可能な純水の見込み量を,見込み残存純水採取量として算出して,後述する表示手段80に表示させる。
Based on the remaining processing capacity value A REST calculated in this way, the expected remaining pure water sampling amount calculating means is represented by the following equation:
Expected remaining pure water sampling amount = residual processing capacity value A REST / Estimated amount of pure water that can be collected thereafter by the deionizer 45 based on the electrical conductivity of the raw water is calculated as the expected remaining pure water sampling amount. Display on the display means 80.

また,前述した初期設定において,1回の供給水の導入量が設定されている場合には,見込み残存使用回数算出手段は,次式,
見込み残存使用回数=見込み純水採取量/1回分の供給水量
に基づき,見込み残存使用回数を算出して,後述する表示手段に表示させる。
In addition, in the above-described initial setting, when the introduction amount of one supply water is set, the expected remaining usage number calculating means is expressed by the following equation:
Expected remaining usage count = expected pure water sampling amount / based on the amount of supplied water, the expected remaining usage count is calculated and displayed on the display means described later.

さらに,前述した初期設定において,コンプレッサの一定の運転時間毎に,一定量の供給水の導入を行う場合には,見込み運転時間算出手段は,次式,
見込み残存運転時間=見込み残存使用回数×供給水導入迄の運転時間
に基づき,見込み残存運転時間を算出して,後述する表示手段に表示させる。
Furthermore, in the above-described initial setting, when a certain amount of supply water is introduced every certain operation time of the compressor, the expected operation time calculating means is given by the following equation:
Estimated remaining operating time = estimated remaining usage count × operating time until introduction of feed water is calculated, and the expected remaining operating time is calculated and displayed on the display means described later.

(4)表示手段
以上のようにして,算定手段70によって算定された純水器45の残存処理能力は,表示手段80に送信されて表示される。
(4) Display means As described above, the remaining treatment capacity of the deionizer 45 calculated by the calculation means 70 is transmitted to the display means 80 and displayed.

この表示手段80としては,例えば直線上に複数のLEDを並べる等して,総処理能力値AALLに対する残存処理能力値ARESTの比率に応じて点灯させるLED数を増加又は減少させることにより表示する等,単純な構成としても良いが,本実施形態にあっては,一例として図5に示すように,前記算定手段70によって算定された,見込み残存純水採取量,見込み残存使用回数,見込み残存運転時間の全てを表示可能とし,各表示項目に対応した表示箇所を設けた構成とした。 The display means 80 is displayed by increasing or decreasing the number of LEDs to be lit according to the ratio of the remaining processing capacity value A REST to the total processing capacity value A ALL by arranging a plurality of LEDs on a straight line, for example. However, in this embodiment, as shown in FIG. 5, as an example, as shown in FIG. 5, the expected remaining pure water sampling amount, the expected remaining number of uses, the expected All remaining operating hours can be displayed, and a display location corresponding to each display item is provided.

本実施形態にあっては,コンプレッサの各種設定,表示等を行わせるために設けたタッチパネル上に,これらの数値を表示可能としたものであり,画面上に表示された案内に従ってタッチパネル上の所定の位置に触れることで,純水器45の残存処理能力に関する各種の数値が表示されるように構成した。   In the present embodiment, these numerical values can be displayed on a touch panel provided for performing various settings, display, and the like of the compressor, and predetermined values on the touch panel are displayed according to the guidance displayed on the screen. By touching the position, various numerical values relating to the remaining treatment capacity of the deionizer 45 are displayed.

このような表示手段80を設けることにより,オペレータは純水器自体,又は純水器のイオン交換樹脂カートリッジの交換時期を正確に予測することが可能である。   By providing such display means 80, the operator can accurately predict the replacement time of the pure water device itself or the ion exchange resin cartridge of the pure water device.

前述した本発明の方法によって,水循環式コンプレッサに設けた純水器の残存処理能力の判定を行った例について以下に示す。   An example in which the remaining treatment capacity of the pure water device provided in the water circulation compressor is determined by the method of the present invention described above will be described below.

1.純水器
純水器として,電気伝導率が200(μ/cm)の水を標準水としたとき,1(μ/cm)以下の純水を2000(L)採取可能なものを使用した。
1. Pure water device A pure water device that can collect 2000 (L) of pure water of 1 (μ / cm) or less when water with an electric conductivity of 200 (μ / cm) is used as standard water.

従って,純水器の総処理能力値AALLは,
総処理能力値AALL= 200(μ/cm)×2000(L) = 400000
である。
Therefore, the total processing capacity value A ALL of the pure water device is
Total processing capacity value A ALL = 200 (μ / cm) x 2000 (L) = 400000
It is.

2.コンプレッサの設定
上記純水器を設けた水循環式コンプレッサは,コンプレッサ100(h)運転毎に,循環水を交換するように設定されたもので,1回の循環水の交換に際して導入する供給水量は,26.8(L)である。
2. Compressor setting The water circulation type compressor equipped with the above deionizer is set so that the circulating water is exchanged every time the compressor 100 (h) is operated. , 26.8 (L).

3.判定方法
以上,本発明の方法により,前記水循環式コンプレッサに設けられた純水器を判定対象とし,使用と共に減少する残存処理能力を数値として求めた結果を次表に示す。
3. Determination Method The following table shows the results obtained by using the method of the present invention to determine the remaining treatment capacity that decreases with use of the pure water device provided in the water circulation compressor as a determination target.

Figure 0004829636
Figure 0004829636

処理対象水(原水)の電気伝導率−純水採取量の相関グラフ。Correlation graph of electrical conductivity of treated water (raw water) -pure water sampling amount. 水循環式コンプレッサの全体構成図。The whole block diagram of a water circulation type compressor. 残存処理能力評価装置の概略構成図。The schematic block diagram of a residual processing capacity evaluation apparatus. 算定手段の機能ブロック図。The functional block diagram of a calculation means. 表示手段における表示例を示す説明図。Explanatory drawing which shows the example of a display in a display means. 純水採取量−純水電気伝導率相関グラフ。Pure water sampling amount-pure water electrical conductivity correlation graph.

符号の説明Explanation of symbols

1 水循環式コンプレッサ
10 圧縮機本体
11 吐出口
12 給水口
20 セパレータレシーバタンク
31 吐出回路
32 リターン回路
33 排水回路
41 ラジエータ
42,44 水フィルタ
43 開閉弁
45 純水器
46,47,49 電磁開閉弁
48 逆止弁
50 給水回路
51 導入部(給水回路50の)
52 補充用給水回路
53 交換用給水回路
61 電気伝導率測定手段(電気伝導率計)
62 計量手段
70 算定手段
80 表示手段
DESCRIPTION OF SYMBOLS 1 Water circulation type compressor 10 Compressor body 11 Discharge port 12 Water supply port 20 Separator receiver tank 31 Discharge circuit 32 Return circuit 33 Drain circuit 41 Radiator 42, 44 Water filter 43 On-off valve 45 Pure water device 46, 47, 49 Electromagnetic on-off valve 48 Check valve 50 Water supply circuit 51 Introduction part (of water supply circuit 50)
52 Water supply circuit for replenishment 53 Water supply circuit for replacement 61 Electric conductivity measuring means (electric conductivity meter)
62 Measuring means 70 Calculation means 80 Display means

Claims (3)

循環水と共に圧縮空気を圧縮する圧縮機本体を備えると共に,前記圧縮機本体の吐出口に吐出回路を介して連通され,前記圧縮機本体より循環水との気液混合流体として吐出された圧縮空気を導入するセパレータレシーバタンクを備え,該セパレータレシーバタンク内で圧縮空気と分離された循環水を前記圧縮機本体の給水口に導入するリターン回路を設け,前記圧縮機本体と前記セパレータレシーバタンク間に循環水の循環系を形成した水循環式コンプレッサにおいて,
前記循環系に対する循環水の補充,交換を行うために,外部給水源からの供給水を,純水器を介して前記循環水の循環系に導入するための給水回路と,前記セパレータレシーバタンク内の循環水を排出可能に構成されている排水回路とを備え,
前記純水器の一次側において,原水の電気伝導率を測定する電気伝導率測定手段と,
前記純水器に対する前記原水の通過量を計測する計量手段と,
前記電気伝導率測定手段により測定された電気伝導率と,前記計手段により計測された原水の通過量に基づいて,前記純水器の残存処理能力を算定する算定手段と,
前記算定手段による算定の結果を表示する表示手段を備え,
前記算定手段が,
所定の電気伝導率を有する水を標準水とし,この標準水を処理対象としたときの前記純水器における総純水採取量と前記標準水の電気伝導率とを記憶する記憶手段を有すると共に,
前記原水の導入時,前記電気伝導率測定手段及び前記計量手段により測定された前記原水の電気伝導率と通過量との積を処理能力減少値として算出する処理能力減少値算出手段と,
前記総純水採取量と標準水の電気伝導率の積を前記純水器の総処理能力値とし,該総処理能力値から前記処理能力減少値を減算して,前記純水器の処理能力残存値を算出する,処理能力残存値算出手段を有し,前記処理能力残存値を前記原水の電気伝導率で除して見込み残存純水採取量を算出する,見込み残存純水採取量算出手段を備え,
前記純水器に対する原水の通過を定量ずつ行い,前記算定手段に,各回毎に得られた前記見込み残存純水採取量を,1回分の原水の通過量で除して見込み残存使用回数を算出する,見込み残存使用回数算出手段を設け,
前記純水器に対する原水の通過をコンプレッサの一定運転時間毎に行い,前記算定手段に,前記見込み残存処理回数と前記一定運転時間とを積算して見込み残存使用時間を算出する,見込み残存使用時間算出手段を設け,
前記表示手段に前記見込み残存使用時間算出手段で算出した見込み残存使用時間を表示することを特徴とするイオン交換型純水器の残存処理能力評価装置を備えた水循環式コンプレッサ
Compressed air having a compressor body that compresses compressed air together with circulating water, communicated with a discharge port of the compressor body via a discharge circuit, and discharged from the compressor body as a gas-liquid mixed fluid with circulating water A separator receiver tank is provided, and a return circuit is provided for introducing the circulating water separated from the compressed air in the separator receiver tank into a water supply port of the compressor body, and is provided between the compressor body and the separator receiver tank. In a water circulation compressor that forms a circulation system of circulating water,
A water supply circuit for introducing water supplied from an external water supply source into the circulation system of the circulation water via a deionizer to replenish and replace the circulation water in the circulation system, and in the separator receiver tank A drainage circuit configured to discharge the circulating water of
In the primary side of the pure water device, the electric conductivity measuring means for measuring the electrical conductivity of the raw water,
A measuring means for measuring a passing amount of the raw water with respect to the pure water device;
And electric conductivity measured by the electric conductivity measuring means, a calculating means on the basis of the passage of the raw water that is measured by the weighing means, calculating the remaining capacity of the pure water device,
Display means for displaying the result of calculation by the calculation means;
The calculating means is
Water having a predetermined electrical conductivity is standard water, and storage means for storing the total amount of pure water collected in the pure water device and the electrical conductivity of the standard water when the standard water is treated. ,
A processing capacity decrease value calculating means for calculating, as a processing capacity decrease value, a product of the electrical conductivity of the raw water measured by the electrical conductivity measuring means and the metering means and a passing amount when the raw water is introduced;
The product of the total pure water sampling amount and the electric conductivity of standard water is used as the total processing capacity value of the pure water device, and the processing capacity reduction value is subtracted from the total processing capacity value to obtain the processing capacity of the pure water device. calculating a residual value, have a capacity remaining value calculation means calculates the estimated residual pure water collection amount by dividing the capacity remaining value in the electric conductivity of the raw water, estimated remaining pure water collection amount calculating means With
Quantitative passage of raw water to the water purifier is performed, and the estimated remaining usage count is calculated by dividing the estimated remaining pure water sampling amount obtained each time by the amount of raw water passed for each time. Establishing the expected remaining usage count calculation means,
Expected remaining usage time is calculated by performing the passage of raw water to the deionizer every fixed operation time of the compressor, and calculating the expected remaining usage time by adding the expected remaining treatment count and the constant operation time to the calculating means. Provide a calculation means,
A water circulation type compressor equipped with a remaining capacity evaluation device for an ion-exchange-type water purifier , wherein the expected remaining usage time calculated by the expected remaining usage time calculation means is displayed on the display means .
前記処理能力減少値算出手段が,前記純水器に対する原水の通過が行われる毎に前記原水の電気伝導率と通過量の測定を行って,各回毎に前記処理能力減少値を算出すると共に,
前記処理能力残存値算出手段が,第1回から最新回までの原水の通過による処理能力減少値を合算して,前記総処理能力値より減算することを特徴とする請求項記載のイオン交換型純水器の残存処理能力評価装置を備えた水循環式コンプレッサ
The processing capacity decrease value calculating means measures the electrical conductivity and the passing amount of the raw water every time the raw water passes through the deionizer, calculates the processing capacity decrease value each time, and
2. The ion exchange according to claim 1, wherein the processing capacity remaining value calculating means adds up the processing capacity decrease values due to the passage of raw water from the first time to the latest time, and subtracts the total processing capacity value from the total processing capacity value. A water circulation type compressor equipped with a device for evaluating the remaining treatment capacity of a water purifier.
前記算定手段が,前記原水の通過時における前記電気伝導率測定手段による測定結果を定時毎に取得して,平均値を算出する平均値算出手段を備えると共に,
前記処理能力減少値算出手段が,前記平均値算出手段が算出した前記電気伝導率の平均値に基づいて前記処理能力の減少値を算出することを特徴とする請求項1又は2記載のイオン交換型純水器の残存処理能力評価装置を備えた水循環式コンプレッサ
The calculating means includes an average value calculating means for obtaining a measurement result by the electric conductivity measuring means at the time of passage of the raw water every time and calculating an average value,
3. The ion exchange according to claim 1, wherein the processing capacity decrease value calculation unit calculates the decrease value of the processing capacity based on the average value of the electrical conductivity calculated by the average value calculation unit. A water circulation type compressor equipped with a device for evaluating the remaining treatment capacity of a water purifier.
JP2006041297A 2006-02-17 2006-02-17 Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers Active JP4829636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041297A JP4829636B2 (en) 2006-02-17 2006-02-17 Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041297A JP4829636B2 (en) 2006-02-17 2006-02-17 Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers

Publications (2)

Publication Number Publication Date
JP2007216173A JP2007216173A (en) 2007-08-30
JP4829636B2 true JP4829636B2 (en) 2011-12-07

Family

ID=38493984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041297A Active JP4829636B2 (en) 2006-02-17 2006-02-17 Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers

Country Status (1)

Country Link
JP (1) JP4829636B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201100175D0 (en) 2011-01-07 2011-02-23 Veolia Water Solutions & Tech Wastewater treatment apparatus and method
GB201101329D0 (en) * 2011-01-26 2011-03-09 Veolia Water Solutions & Tech Monitoring method
RU2643554C2 (en) 2013-12-17 2018-02-02 Юдо Вассерауфберайтунг Гмбх Dilution regulation with determination of raw water rigidity in conductivity of soft and mixed water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131340A (en) * 1978-03-31 1979-10-12 Mitsubishi Chem Ind Ltd Water treatment device
JPS6026688B2 (en) * 1980-05-14 1985-06-25 新田ベルト株式会社 Manufacturing method for bubble-free belts and sheets
JPH03181384A (en) * 1989-12-12 1991-08-07 Tonen Corp Resin regenerating system for pure water producing apparatus
JPH09271770A (en) * 1996-04-09 1997-10-21 Japan Organo Co Ltd Cartridge demineralizer
JP3065302B1 (en) * 1999-01-12 2000-07-17 北越工業株式会社 Circulating water circulation method and circulation device for water circulation type compressor

Also Published As

Publication number Publication date
JP2007216173A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
KR101837249B1 (en) Wire electric discharge machine having estimation function for filter replacement timing
US8758627B2 (en) Twin tank water treatment method
JP4829636B2 (en) Water circulation type compressor equipped with an evaluation device for residual treatment capacity of ion-exchanged deionizers
CN102131583A (en) Interruption of measured variable analyses in automatic water softening system when defined operating situations are present
CN101888979A (en) Method for operating a water softening system having two calibration characteristics and associated water softening system
KR101997846B1 (en) Ammonia removal system and method using membrane contactor
EP2870472B1 (en) Method and apparatus for determining the temporary hardness of water
KR20160117292A (en) Substrate processing apparatus and substrate processing method
CN102381799A (en) Reverse osmosis device
TW201427904A (en) Processing data obtained by operating a liquid treatment system
CN113811513B (en) On-line water hardness sensor and water softener control system
JP4771825B2 (en) Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor
CN105747874B (en) Method for displaying residual quantity of mineral substances in drinking water supply device
EP2952481A1 (en) Method and system for monitoring the operation of a liquid treatment apparatus including a replaceable liquid treatment cartridge
KR101928816B1 (en) Cooling Water Control System And Control Method Of Cooling Water
KR101163881B1 (en) Apparatus for testing filter performance using metering pump and method for testing filter performance using the same
CN212025476U (en) Gold potassium cyanide electrolysis production control system
US9134264B2 (en) Monitoring method
JP4533727B2 (en) Automatic electrolyzed water supply device
CN102815774B (en) The treatment process of industrial water drainage and treatment unit
JP3646541B2 (en) Hypochlorous acid concentration control method in electrolyzed water supply device
EP2108004B1 (en) Water supply system and method
GB2270395A (en) Water purification system
JP7395851B2 (en) diagnostic equipment
JP2004319568A (en) Liquid chemical device, etching device, and method of managing concentration of etchant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250