JP4829268B2 - Manufacturing method of ceramic - Google Patents

Manufacturing method of ceramic Download PDF

Info

Publication number
JP4829268B2
JP4829268B2 JP2008100572A JP2008100572A JP4829268B2 JP 4829268 B2 JP4829268 B2 JP 4829268B2 JP 2008100572 A JP2008100572 A JP 2008100572A JP 2008100572 A JP2008100572 A JP 2008100572A JP 4829268 B2 JP4829268 B2 JP 4829268B2
Authority
JP
Japan
Prior art keywords
ceramic
partition plate
mold
firing chamber
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008100572A
Other languages
Japanese (ja)
Other versions
JP2009249248A (en
Inventor
桂 松原
和也 松井
雅寛 虎澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008100572A priority Critical patent/JP4829268B2/en
Publication of JP2009249248A publication Critical patent/JP2009249248A/en
Application granted granted Critical
Publication of JP4829268B2 publication Critical patent/JP4829268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、焼成室内を加圧しつつ加熱し、ホットプレスによりセラミックを製造するセラミックの製造方法に関する。   The present invention relates to a ceramic manufacturing method in which a firing chamber is heated while being pressurized and ceramic is manufactured by hot pressing.

従来から、例えばセラミックグロープラグ等を構成するためのセラミックを製造する方法として、焼成室内を加圧しつつ加熱するホットプレスによりセラミックを製造するセラミックの製造方法が知られている。   2. Description of the Related Art Conventionally, as a method for manufacturing a ceramic for forming a ceramic glow plug or the like, for example, a ceramic manufacturing method is known in which a ceramic is manufactured by hot pressing in which a firing chamber is heated while being pressurized.

上記のホットプレスにおける加熱方法としては、筒状のグラファイト製のモールド内に形成された焼成室を、グラファイト製のモールドの外側から抵抗加熱ヒータによって加熱する方法、或いは、グラファイト製のモールドの外側から高周波誘導加熱によって加熱する方法が一般的である。   As a heating method in the above hot press, a firing chamber formed in a cylindrical graphite mold is heated by a resistance heater from the outside of the graphite mold, or from the outside of the graphite mold. A method of heating by high frequency induction heating is common.

高周波誘導加熱は、グラファイト製のモールドの表層を加熱し、伝熱によりグラファイト製のモールド内の焼成室に配置した被焼成物を加熱する方法であり、抵抗加熱ヒータを用いた場合と比較すると、急速に昇温することが可能である。このような高周波誘導加熱を使用して急速に加熱した場合、温度の均一性が損なわれる可能性がある。このため、複数のヒータと複数の均熱板を複雑に組み合わせることにより、均一加熱できるようにする提案がなされている(例えば、特許文献1参照。)。
特開2003−96505号公報
High-frequency induction heating is a method of heating the surface layer of a graphite mold and heating an object to be fired placed in a baking chamber in the graphite mold by heat transfer, compared with the case of using a resistance heater, It is possible to raise the temperature rapidly. When heated rapidly using such high frequency induction heating, temperature uniformity can be compromised. For this reason, a proposal has been made to enable uniform heating by combining a plurality of heaters and a plurality of soaking plates in a complicated manner (see, for example, Patent Document 1).
JP 2003-96505 A

上記したとおり、従来のセラミックの製造方法では、複数のヒータと複数の均熱板を複雑に組み合わせて均一加熱する提案がなされている。しかしながら、この方法では、製造装置等が複雑化し、また被焼成物によって夫々の焼成条件を設定しなければならず、現実的には均一加熱することが困難であるという課題があった。このため、焼成室内の加熱状態が不均一になり、例えば、焼成室の中央部及び周縁部に配置されて製造された各セラミックの品質が不均一になるという課題があった。また、このような課題を解決する方法として、例えば、焼成室内の容積を小さくする方法があるが、この場合、一度に焼成できるセラミックの量が少なくなり、生産効率が低下してしまうという課題がある。   As described above, the conventional ceramic manufacturing method has been proposed to uniformly heat a plurality of heaters and a plurality of soaking plates in a complex combination. However, this method has a problem that the manufacturing apparatus is complicated and each baking condition has to be set depending on the object to be fired, so that it is difficult to perform uniform heating in practice. For this reason, the heating state in the firing chamber becomes non-uniform, and for example, there is a problem that the quality of each ceramic manufactured by being arranged in the central portion and the peripheral portion of the firing chamber becomes non-uniform. In addition, as a method of solving such a problem, for example, there is a method of reducing the volume in the firing chamber, but in this case, the amount of ceramic that can be fired at one time is reduced, and the production efficiency is lowered. is there.

本発明は、上記課題を解決するためになされたものである。本発明は、焼成室内の容積を確保しつつ焼成室内に配置された各被焼成物を均一に加熱することができ、製造時における焼成室内の位置に起因する品質ばらつきが少ないセラミックを効率良く製造することのできるセラミックの製造方法を提供することを目的とする。   The present invention has been made to solve the above problems. The present invention can uniformly heat each object to be fired disposed in the firing chamber while ensuring the volume in the firing chamber, and efficiently produces a ceramic with little quality variation due to the position in the firing chamber at the time of manufacture. It is an object of the present invention to provide a method for producing a ceramic that can be used.

本発明のセラミックの製造方法は、グラファイトによって筒状に形成されたモールド内に仕切り板により隔成された焼成室内を、当該モールドの外部から加熱するとともに加圧し、前記焼成室内でセラミックを焼成するセラミックの製造方法であって、前記仕切り板を、当該仕切り板の厚み方向の熱伝導率が、前記モールドの有する熱伝導率の50%以下である部材であって、当該仕切り板の厚み方向に2次元繊維が積層されたカーボン/カーボン複合材料から構成したことを特徴とする。 In the method for producing a ceramic according to the present invention, a firing chamber separated by a partition plate in a mold formed into a cylindrical shape by graphite is heated and pressurized from the outside of the mold, and the ceramic is fired in the firing chamber. A method for producing a ceramic, wherein the partition plate is a member having a thermal conductivity in the thickness direction of the partition plate that is 50% or less of the thermal conductivity of the mold, and in the thickness direction of the partition plate. It is characterized by comprising a carbon / carbon composite material in which two-dimensional fibers are laminated .

高周波誘導加熱等によってグラファイトにより筒状に形成されたモールドの外側から加熱してホットプレスを行った場合、高周波誘導加熱等によってモールドの表層部が加熱され、この熱が内部に伝熱されて焼成室内の各被焼成物が加熱される。この時、モールドの中に焼成室を隔成する仕切り板を、モールドと同様なグラファイト(等方性黒鉛)から構成すると、例えば、仕切り板の厚みを20mm程度として、焼成室の面積を例えば136.8mm×136.8mm程度とした場合、焼成室の中央部と周縁部とで、加熱状態が不均一となり、焼成された各セラミックのホットプレス時の焼成室内の配置位置による品質の差が大きくなる。そこで、仕切り板を等方性黒鉛から構成した場合には、仕切り板の厚みを50mm程度と厚くして、焼成室の面積を例えば76.8mm×76.8mm程度と小さくすれば、各被焼成物を略均一に加熱することができ、焼成室内の配置位置による品質の差が少ないセラミックを製造することができる。しかし、この場合、焼成室の容積が小さくなってしまい、生産効率が低下してしまう。   When hot pressing is performed by heating from the outside of a mold formed into a cylindrical shape with graphite by high frequency induction heating or the like, the surface layer portion of the mold is heated by high frequency induction heating or the like, and this heat is transferred to the inside and fired. Each object to be fired in the room is heated. At this time, if the partition plate that separates the firing chamber in the mold is made of graphite (isotropic graphite) similar to the mold, for example, the partition plate has a thickness of about 20 mm, and the area of the firing chamber is, for example, 136. When the thickness is about 8 mm × 136.8 mm, the heating state is non-uniform between the central portion and the peripheral portion of the firing chamber, and there is a large difference in quality depending on the position of the fired ceramic in the firing chamber during hot pressing. Become. Therefore, when the partition plate is made of isotropic graphite, the thickness of the partition plate is increased to about 50 mm, and the area of the firing chamber is reduced to, for example, about 76.8 mm × 76.8 mm. The object can be heated substantially uniformly, and a ceramic with little difference in quality depending on the arrangement position in the firing chamber can be produced. However, in this case, the volume of the firing chamber is reduced, and the production efficiency is reduced.

そこで、本発明のセラミックの製造方法では、モールドの中に焼成室を隔成する仕切り板を、当該仕切り板の厚み方向の熱伝導率が、モールドの有する熱伝導率の50%以下である部材から構成している。これによって、モールドの表層部から燃焼室内への伝熱に関しては、見かけ上、上記した等方性黒鉛から構成した仕切り板の厚みを厚くした場合と同様な効果を得ることができる。これによって、仕切り板の厚みを薄くして焼成室内の容積を確保しつつ、各被焼成物を均一に加熱することができ、焼成室内の位置に起因する品質ばらつきが少ないセラミックを効率良く製造することができる。   Therefore, in the ceramic manufacturing method of the present invention, the partition plate that separates the firing chamber in the mold is a member whose thermal conductivity in the thickness direction of the partition plate is 50% or less of the thermal conductivity of the mold. Consists of. As a result, with regard to heat transfer from the surface layer portion of the mold to the combustion chamber, it is possible to obtain the same effect as when the partition plate made of isotropic graphite is made thick. As a result, it is possible to uniformly heat each object to be fired while reducing the thickness of the partition plate and securing the volume in the firing chamber, and efficiently produce a ceramic with little quality variation due to the position in the firing chamber. be able to.

上記の本発明のセラミックの製造方法において、グラファイトから構成されたモールドの熱伝導率は70〜120W/m・K程度である。このため、仕切り板の厚み方向の熱伝導率は20W/m・K以下とすることが好ましく、5W/m・K以下とすることがさらに好ましい。この場合、仕切り板を構成する部材として、当該仕切り板の厚み方向に2次元繊維が積層されたカーボン/カーボン複合材料を好適に使用することができる。   In the above-described method for producing a ceramic according to the present invention, the thermal conductivity of a mold made of graphite is about 70 to 120 W / m · K. For this reason, the thermal conductivity in the thickness direction of the partition plate is preferably 20 W / m · K or less, and more preferably 5 W / m · K or less. In this case, a carbon / carbon composite material in which two-dimensional fibers are laminated in the thickness direction of the partition plate can be suitably used as a member constituting the partition plate.

本発明のセラミックの製造方法によれば、焼成室内の容積を確保しつつ各被焼成物を均一に加熱することができ、焼成室内の位置に起因する品質ばらつきが少ないセラミックを効率良く製造することのできるセラミックの製造方法を提供することができる。   According to the method for producing a ceramic of the present invention, it is possible to uniformly heat each object to be fired while ensuring the volume in the firing chamber, and efficiently produce a ceramic with little quality variation due to the position in the firing chamber. It is possible to provide a method for producing a ceramic that can be manufactured.

以下、本発明の実施形態について図面を参照して説明する。図1,2は、本発明の実施形態に係るセラミックの製造方法に使用するセラミックの製造装置の要部構成を示すもので、図1は横断面構成を示し、図2は縦断面構成を示している。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show the main configuration of a ceramic manufacturing apparatus used in the ceramic manufacturing method according to the embodiment of the present invention. FIG. 1 shows a cross-sectional configuration, and FIG. 2 shows a vertical cross-sectional configuration. ing.

図1、図2に示すように、本実施形態のセラミックの製造方法に使用する装置は、グラファイトによって円筒状に構成されたモールド1を具備している。このモールド1は、例えば、外径が400mm、内径が250mm程度の大きさとされている。また、モールド1の熱伝導率は、70〜120W/m・K程度、例えば116W/m・Kとされている。   As shown in FIGS. 1 and 2, the apparatus used in the ceramic manufacturing method of the present embodiment includes a mold 1 configured in a cylindrical shape with graphite. For example, the mold 1 has an outer diameter of 400 mm and an inner diameter of about 250 mm. The thermal conductivity of the mold 1 is about 70 to 120 W / m · K, for example, 116 W / m · K.

モールド1内の中央部分には、被焼成物が収容される矩形状の焼成室2が、4枚の平板状の仕切り板3によって隔成されている。4枚の仕切り板3は、図1に示すように、1枚の仕切り板3が、矩形状の焼成室2の1辺を構成するように仕切り板3の端部同士を当接させて配置されている。   In the center portion of the mold 1, a rectangular firing chamber 2 in which the object to be fired is accommodated is separated by four flat partition plates 3. As shown in FIG. 1, the four partition plates 3 are arranged with the end portions of the partition plate 3 in contact with each other so that one partition plate 3 forms one side of the rectangular baking chamber 2. Has been.

これらの仕切り板3は、その厚み方向の熱伝導率が、モールド1の熱伝導率の50%以下の部材により構成されており、本実施形態では、ピッチを含浸させた2次元繊維が仕切り板3の厚み方向に積層されたカーボン/カーボン複合材料から構成されている。このように、仕切り板3を、ピッチを含浸させた2次元繊維が仕切り板3の厚み方向に積層されたカーボン/カーボン複合材料から構成した場合、特に仕切り板3の厚み方向における熱伝導率を低く抑制することができる。この場合、仕切り板3の厚み方向の熱伝導率を、例えば、20W/m・K〜5W/m・K程度とすることができる。   These partition plates 3 are composed of members whose thermal conductivity in the thickness direction is 50% or less of the thermal conductivity of the mold 1, and in this embodiment, two-dimensional fibers impregnated with pitch are partitioned plates. 3 of carbon / carbon composite material laminated in the thickness direction. Thus, when the partition plate 3 is composed of a carbon / carbon composite material in which two-dimensional fibers impregnated with pitch are laminated in the thickness direction of the partition plate 3, the thermal conductivity in the thickness direction of the partition plate 3 is particularly high. It can be suppressed low. In this case, the thermal conductivity in the thickness direction of the partition plate 3 can be set to, for example, about 20 W / m · K to 5 W / m · K.

モールド1の内側と各仕切り板3の外側との間には、夫々かまぼこ状割り型4が介挿されている。これらのかまぼこ状割り型4は、モールド1と同様なグラファイト等の材料から構成されている。また、図2に示すように、焼成室2の上部及び下部には、ブロック状スペーサ5が設けられている。   Between the inner side of the mold 1 and the outer side of each partition plate 3, a semi-cylindrical split mold 4 is inserted. These kamaboko-shaped split molds 4 are made of a material such as graphite similar to that of the mold 1. As shown in FIG. 2, block-like spacers 5 are provided at the upper and lower portions of the baking chamber 2.

そして、上記した焼成室2内に各被焼成物を配置し、モールド1の外側から高周波誘導加熱等によって、間接時に焼成室2内の被焼成物を加熱するとともに、この被焼成物を加圧してセラミックを製造する。この時、仕切り板3の厚み方向の熱伝導率が、モールド1の熱伝導率の50%以下となっているので、モールド1の表層部から燃焼室2内への伝熱に関しては、見かけ上、前述した等方性黒鉛から構成した仕切り板であってその厚みを厚くした場合と同様な効果を得ることができる。これによって、仕切り板3の厚みを薄くして焼成室2内の容積を確保しつつ、各被焼成物を均一に加熱することができ、焼成室内の位置に起因する品質ばらつきが少ないセラミックを効率良く製造することができる。   And each to-be-baked material is arrange | positioned in the above-mentioned baking chamber 2, and while heating the to-be-baked material in the baking chamber 2 at the time of indirect by the high frequency induction heating etc. from the outside of this mold 1, this to-be-baked material is pressurized. To produce ceramic. At this time, the thermal conductivity in the thickness direction of the partition plate 3 is 50% or less of the thermal conductivity of the mold 1, so that the heat transfer from the surface layer portion of the mold 1 into the combustion chamber 2 is apparently apparent. The partition plate made of the above-mentioned isotropic graphite can achieve the same effect as when the thickness is increased. This makes it possible to uniformly heat each object to be fired while reducing the thickness of the partition plate 3 to secure the volume in the firing chamber 2, and to efficiently use ceramics with less quality variation due to the position in the firing chamber. Can be manufactured well.

実施例として、平均粒径0.9μm、比表面積7.5m2/g、α率97%の窒化珪素原料89質量部に対して、焼結助剤として酸化エルビウム粉末8質量部、酸化バナジウム粉末1質量部、酸化タングステン粉末2質量部の割合で配合した配合粉末を作製した。この配合粉末を、樹脂トロンメルで窒化珪素球石により、純水を分散媒として24時間粉砕混合した。混合された泥漿(スラリー)を、目開き25μmの篩通しを実施した後、噴霧乾燥して混合粉末を得た。 As an example, 8 parts by mass of erbium oxide powder, vanadium oxide powder as a sintering aid for 89 parts by mass of silicon nitride raw material having an average particle size of 0.9 μm, a specific surface area of 7.5 m 2 / g, and an α rate of 97% A blended powder blended at a ratio of 1 part by mass and 2 parts by mass of tungsten oxide powder was produced. This blended powder was pulverized and mixed for 24 hours with a resin trommel using silicon nitride spherulite using pure water as a dispersion medium. The mixed slurry (slurry) was passed through a sieve having an opening of 25 μm and then spray-dried to obtain a mixed powder.

この混合粉末を、図1、図2に示した焼成室2内に充填し、組み上げたモールド1等をホットプレス装置に充填し、窒素常圧下、圧力30MPa、温度1760℃で60分間焼成した。このようなセラミックの焼成を、上記した仕切り板3の種類を変えて、実施例1〜4、比較例1〜5について行った。この時使用した仕切り板3の種類、及び、焼成室の寸法及び面積を以下の表1に示す。   The mixed powder was filled in the firing chamber 2 shown in FIGS. 1 and 2, the assembled mold 1 and the like were filled in a hot press apparatus, and fired for 60 minutes at a pressure of 30 MPa and a temperature of 1760 ° C. under normal pressure of nitrogen. Such ceramic firing was performed for Examples 1 to 4 and Comparative Examples 1 to 5 by changing the kind of the partition plate 3 described above. Table 1 below shows the type of partition plate 3 used at this time and the dimensions and area of the firing chamber.

Figure 0004829268
Figure 0004829268

表1に示されるように、実施例1では、厚み20mm、密度1.6g/cm3、厚み方向の熱伝導率20W/m・Kのカーボン/カーボン複合材料を用い、実施例2では、厚み20mm、密度1.5g/cm3、厚み方向の熱伝導率5W/m・Kのカーボン/カーボン複合材料を用いた。また、実施例3では、厚み10mm、密度1.6g/cm3、厚み方向の熱伝導率20W/m・Kのカーボン/カーボン複合材料を用い、実施例4では、厚み10mm、密度1.5g/cm3、厚み方向の熱伝導率5W/m・Kのカーボン/カーボン複合材料を用いた。一方、比較例では、熱伝導率が102W/m・K又は70W/m・Kの等方性黒鉛を用いた。 As shown in Table 1, in Example 1, a carbon / carbon composite material having a thickness of 20 mm, a density of 1.6 g / cm 3 , and a thermal conductivity in the thickness direction of 20 W / m · K was used. A carbon / carbon composite material having a thickness of 20 mm, a density of 1.5 g / cm 3 , and a thermal conductivity in the thickness direction of 5 W / m · K was used. In Example 3, a carbon / carbon composite material having a thickness of 10 mm, a density of 1.6 g / cm 3 , and a thermal conductivity in the thickness direction of 20 W / m · K is used. In Example 4, a thickness of 10 mm and a density of 1.5 g are used. / cm 3, was used in the thickness direction of the thermal conductivity of 5W / m · K carbon / carbon composites. On the other hand, in the comparative example, isotropic graphite having a thermal conductivity of 102 W / m · K or 70 W / m · K was used.

次に、上記のようにして焼成した実施例1〜4、比較例1〜5のセラミックの評価を行った。この評価は、焼成室2の中央部と周縁部から、3×3×20mmの試験片を切り出し、それぞれホットプレス加圧軸に対して垂直な面のX線回折像を取得し、β化率を算出することにより行った。なお、β化率は、得られた回折チャートのピーク高さ(α(102)、α(201)、β(102)、β(201))から、下記の式によって算出した。
[β(102)+β(201)]/[α(102)+α(201)+β(102)+β(201)]
Next, the ceramics of Examples 1 to 4 and Comparative Examples 1 to 5 fired as described above were evaluated. In this evaluation, a 3 × 3 × 20 mm test piece was cut out from the central portion and the peripheral portion of the firing chamber 2, X-ray diffraction images of planes perpendicular to the hot press pressure axis were obtained, and the β conversion rate was obtained. This was done by calculating The β conversion rate was calculated from the peak height (α (102), α (201), β (102), β (201)) of the obtained diffraction chart by the following formula.
[Β (102) + β (201)] / [α (102) + α (201) + β (102) + β (201)]

上記の評価結果を以下の表2に示す。   The above evaluation results are shown in Table 2 below.

Figure 0004829268
Figure 0004829268

表2に示されるように、実施例1では、β化率の内外差が0.05、実施例2では、β化率の内外差が0.02、実施例3では、β化率の内外差が0.05、実施例4では、β化率の内外差が0.03となった。なお、実施例1と実施例2との比較、及び実施例3と実施例4との比較から明らかなように、仕切り板3の厚みが同一の場合、仕切り板3の厚み方向の熱伝導率が低い方が焼成室2の中央部のものと周縁部のものとの差(ばらつき)が小さくなった。このため、仕切り板3の厚み方向の熱伝導率は、20W/m・K以下程度とすることが好ましく、5W/m・K以下程度とすることがさらに好ましい。   As shown in Table 2, in Example 1, the inside / outside difference of the β conversion rate was 0.05, in Example 2, the internal / external difference of the β conversion rate was 0.02, and in Example 3, the internal / external difference of the β conversion rate was The difference was 0.05, and in Example 4, the difference in β ratio was 0.03. As is clear from the comparison between Example 1 and Example 2 and the comparison between Example 3 and Example 4, when the thickness of the partition plate 3 is the same, the thermal conductivity in the thickness direction of the partition plate 3. The lower the difference was, the smaller the difference (variation) between the central portion and the peripheral portion of the baking chamber 2 was. For this reason, the thermal conductivity in the thickness direction of the partition plate 3 is preferably about 20 W / m · K or less, and more preferably about 5 W / m · K or less.

一方、比較例1では、β化率の内外差が0.01となったが、この時の仕切り板3の厚みは50mmであり、焼成室2の面積が5898cm2であって、実施例1,2の場合の面積の1/3以下、実施例3,4の場合の面積の1/4以下であり、生産効率の低下が生じる。 On the other hand, in Comparative Example 1, the difference in β ratio was 0.01, but the thickness of the partition plate 3 at this time was 50 mm, the area of the firing chamber 2 was 5898 cm 2 , and Example 1 , 2 and 1/4 or less of the area in the case of Examples 3 and 4, and 1/4 or less of the area in the case of Examples 3 and 4, resulting in a decrease in production efficiency.

また、比較例2〜5では、β化率の内外差が0.08〜0.10であった。したがって、上記した実施例1〜4は、比較例2〜5に比べて焼成室2の中央部にて焼成されたものと周縁部にて焼成されたものとの差(ばらつき)が小さく良好であった。また、仕切り板3の材質として、上記したカーボン/カーボン複合材料を用いた場合、耐久性も等方性黒鉛を用いた場合より優れていた。   Further, in Comparative Examples 2 to 5, the difference in β ratio was 0.08 to 0.10. Therefore, the above-described Examples 1 to 4 are good in that the difference (variation) between those fired at the center portion of the firing chamber 2 and those fired at the peripheral portion is small as compared with Comparative Examples 2 to 5. there were. Further, when the above-described carbon / carbon composite material was used as the material of the partition plate 3, the durability was also superior to the case where isotropic graphite was used.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

本発明の実施形態に使用するセラミックの製造装置の横断面構成を示す図。The figure which shows the cross-sectional structure of the manufacturing apparatus of the ceramic used for embodiment of this invention. 図1のセラミックの製造装置の縦断面構成を示す図。The figure which shows the longitudinal cross-sectional structure of the manufacturing apparatus of the ceramic of FIG.

符号の説明Explanation of symbols

1……モールド、2……燃焼室、3……仕切り板、4…かまぼこ状割り型、5……ブロック状スペーサ。   DESCRIPTION OF SYMBOLS 1 ... Mold, 2 ... Combustion chamber, 3 ... Partition plate, 4 ... Kamaboko split type, 5 ... Block-shaped spacer.

Claims (3)

グラファイトによって筒状に形成されたモールド内に仕切り板により隔成された焼成室内を、当該モールドの外部から加熱するとともに加圧し、前記焼成室内でセラミックを焼成するセラミックの製造方法であって、
前記仕切り板を、当該仕切り板の厚み方向の熱伝導率が、前記モールドの有する熱伝導率の50%以下である部材であって、当該仕切り板の厚み方向に2次元繊維が積層されたカーボン/カーボン複合材料から構成したことを特徴とするセラミックの製造方法。
A method for producing a ceramic, in which a firing chamber separated by a partition plate in a mold formed into a cylindrical shape by graphite is heated and pressurized from the outside of the mold, and the ceramic is fired in the firing chamber,
The partition plate is a member whose thermal conductivity in the thickness direction of the partition plate is 50% or less of the thermal conductivity of the mold, and in which two-dimensional fibers are laminated in the thickness direction of the partition plate / A method for producing a ceramic, characterized by comprising a carbon composite material .
請求項1記載のセラミックの製造方法であって、
前記仕切り板の厚み方向の熱伝導率が20W/m・K以下であることを特徴とするセラミックの製造方法。
A method for producing a ceramic according to claim 1, comprising:
A method for producing a ceramic, wherein the partition plate has a thermal conductivity in the thickness direction of 20 W / m · K or less.
請求項2記載のセラミックの製造方法であって、
前記仕切り板の厚み方向の熱伝導率が5W/m・K以下であることを特徴とするセラミックの製造方法。
A method for producing a ceramic according to claim 2, comprising:
A method for producing a ceramic, wherein the partition plate has a thermal conductivity in the thickness direction of 5 W / m · K or less.
JP2008100572A 2008-04-08 2008-04-08 Manufacturing method of ceramic Expired - Fee Related JP4829268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100572A JP4829268B2 (en) 2008-04-08 2008-04-08 Manufacturing method of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100572A JP4829268B2 (en) 2008-04-08 2008-04-08 Manufacturing method of ceramic

Publications (2)

Publication Number Publication Date
JP2009249248A JP2009249248A (en) 2009-10-29
JP4829268B2 true JP4829268B2 (en) 2011-12-07

Family

ID=41310287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100572A Expired - Fee Related JP4829268B2 (en) 2008-04-08 2008-04-08 Manufacturing method of ceramic

Country Status (1)

Country Link
JP (1) JP4829268B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744482B2 (en) * 2010-11-10 2015-07-08 日本特殊陶業株式会社 Method for manufacturing ceramic heater element and method for manufacturing glow plug
JP5459716B2 (en) * 2010-11-10 2014-04-02 日本特殊陶業株式会社 Method for manufacturing ceramic sintered body and method for manufacturing glow plug
JP6405095B2 (en) * 2014-02-20 2018-10-17 日本特殊陶業株式会社 Ceramic heater manufacturing apparatus and ceramic heater manufacturing method
JP7049818B2 (en) * 2017-12-13 2022-04-07 東京エレクトロン株式会社 Film forming equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653615B2 (en) * 1986-11-25 1994-07-20 ティーディーケイ株式会社 Manufacturing method of ceramic material
JPH02147795A (en) * 1988-11-29 1990-06-06 Mitsubishi Heavy Ind Ltd Tail sill part filler injection method for shield excavator
JP3058180B2 (en) * 1990-02-27 2000-07-04 東洋炭素株式会社 Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
DE19747552C2 (en) * 1997-10-28 2000-12-21 Siemens Ag Device for hot pressing fluorescent ceramics

Also Published As

Publication number Publication date
JP2009249248A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
CN106478105B (en) A kind of method that multistep reaction sintering process prepares the thyrite of low residual silicon
JP4829268B2 (en) Manufacturing method of ceramic
US20110000336A1 (en) Highly heat-conductive composite material
KR101470046B1 (en) Ceramic heater and method for making the same
CN108290390A (en) The 3D printing of ceramic component
AU2009333674A1 (en) Sintered diamond heat exchanger apparatus
CN107573074A (en) A kind of method of RMI methods low temperature preparation stratiform SiC base shock resistance composite ceramic materials
CN109704772A (en) A kind of boron-carbide-based ceramic composite material and preparation method of original position toughening
CN104744048A (en) Preparation method of compact in-situ Si4N3-SiC composite material
CN104139572A (en) Preparation process of carbon/ceramic-graphite composite material and carbon/ceramic-graphite composite material prepared through preparation process
JPH11509616A (en) Carbon / carbon heat exchanger and method for producing the same
CN101798222A (en) Al2O3-Ni-C-B4C composite ceramic and preparation method thereof
CN107673761A (en) A kind of preparation method of big specification compact silicon carbide ceramic plate
CN111269015B (en) Densified mullite-corundum-SiC composite heat storage ceramic material for solar thermal power generation and preparation method thereof
JP2012246172A (en) Joined body of metal material and ceramics-carbon composite material, and method for producing the same
JP5459716B2 (en) Method for manufacturing ceramic sintered body and method for manufacturing glow plug
JP6680605B2 (en) Manufacturing method of baking container
CN109665847A (en) A kind of complete fine and close boron carbide ceramic composite and preparation method
JP2020040865A (en) Manufacturing method of ceramic member
JP5199151B2 (en) Ceramic fired body and manufacturing method thereof
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
JP4803651B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP6405095B2 (en) Ceramic heater manufacturing apparatus and ceramic heater manufacturing method
JP2005200239A (en) Highly heat-conductive graphite material and its production method
CN107277946A (en) A kind of refractory ceramics heating plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees