JP4828447B2 - Frequency modulator - Google Patents

Frequency modulator Download PDF

Info

Publication number
JP4828447B2
JP4828447B2 JP2007028853A JP2007028853A JP4828447B2 JP 4828447 B2 JP4828447 B2 JP 4828447B2 JP 2007028853 A JP2007028853 A JP 2007028853A JP 2007028853 A JP2007028853 A JP 2007028853A JP 4828447 B2 JP4828447 B2 JP 4828447B2
Authority
JP
Japan
Prior art keywords
light
light source
frequency
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007028853A
Other languages
Japanese (ja)
Other versions
JP2008193639A (en
Inventor
直彦 結城
尚生 吉永
邦彦 森
信之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007028853A priority Critical patent/JP4828447B2/en
Publication of JP2008193639A publication Critical patent/JP2008193639A/en
Application granted granted Critical
Publication of JP4828447B2 publication Critical patent/JP4828447B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ヘテロダイン型の周波数変調器に関する。   The present invention relates to an optical heterodyne type frequency modulator.

変調度の大きい広帯域の被変調信号を得るため、光ヘテロダイン法を用いた周波数変調器が開示されている(例えば、非特許文献1参照。)このヘテロダイン法を用いた周波数変調器では、直接変調によって光周波数変調された第1の半導体レーザ出力と局部発信用の第2の半導体レーザの出力とを合波した出力を受光素子で検波して被変調信号を得る。   In order to obtain a broadband modulated signal having a large modulation degree, a frequency modulator using an optical heterodyne method is disclosed (for example, see Non-Patent Document 1). In a frequency modulator using this heterodyne method, direct modulation is disclosed. A modulated signal is obtained by detecting an output obtained by combining the output of the first semiconductor laser optically modulated by the output of the second semiconductor laser for local transmission with a light receiving element.

図5は、光ヘテロダイン型周波数変調器の従来例である。電気入力端子100に供給される電気入力信号で周波数変調された光を出力する第1の光源101と、局部発振光を出力する第2の光源102と、第1の光源101の出力光と第2の光源102の出力光を合波する光結合器103と、光結合器103で合波された光を光電変換して被変調信号を出力する光検波器104と、光検波器104の出力する被変調信号を外部に出力する出力端子105と、から構成される。   FIG. 5 shows a conventional example of an optical heterodyne type frequency modulator. A first light source 101 that outputs light frequency-modulated by an electric input signal supplied to the electric input terminal 100, a second light source 102 that outputs local oscillation light, output light from the first light source 101, and first light An optical coupler 103 that combines the output lights of the two light sources 102, an optical detector 104 that photoelectrically converts the light combined by the optical coupler 103 and outputs a modulated signal, and an output of the optical detector 104 And an output terminal 105 for outputting a modulated signal to be output to the outside.

図6は、第1の光源の出力光の時間波形の一例を示すグラフであり、(a)は振幅成分、(b)は周波数成分を示す。第1の光源101からの出力光は、周波数変調するので周波数成分が時間変動している。又、第1の光源101からの出力光は、電気入力信号の電圧又は電流の時間変化によって、振幅成分も時間変動している。図7は、光検波器から出力する被変調信号の周波数スペクトラムの一例である。被変調信号の周波数スペクトラムには、図6(a)で説明した振幅成分の時間変化による周波数変調成分110のほかに、図6(b)で説明した周波数成分の時間変化による振幅変調成分111が低周波数領域に現れる。この振幅変調成分111は、被変調信号を復調する際の信号品質の劣化の原因となる。   FIG. 6 is a graph showing an example of the time waveform of the output light of the first light source, where (a) shows the amplitude component and (b) shows the frequency component. Since the output light from the first light source 101 is frequency-modulated, the frequency component fluctuates with time. In addition, the amplitude component of the output light from the first light source 101 also fluctuates with time due to the time change of the voltage or current of the electric input signal. FIG. 7 is an example of the frequency spectrum of the modulated signal output from the optical detector. In the frequency spectrum of the modulated signal, in addition to the frequency modulation component 110 due to the time change of the amplitude component described with reference to FIG. 6A, the amplitude modulation component 111 due to the time change of the frequency component described with reference to FIG. Appears in the low frequency region. The amplitude modulation component 111 causes deterioration of signal quality when demodulating the modulated signal.

振幅変調成分を抑圧する方法として、第1の光源に入力する電気入力信号と逆相の信号を第2の光源に入力する方法が開示されている(例えば、特許文献1参照。)この方式は、入力端子に供給された電気信号を、180°分配器で振幅及び周波数が等しく位相だけが180°反転した第1及び第2の信号に分配して出力し、第1の信号は第1の光源に入力され、第2の信号は第2の光源に入力されるようになっている。光源はそれぞれ発光素子を備えており、これらの発光素子は、それぞれ入力された信号によって変調される。第1の光源及び第2の光源からの出力光が光結合器で合波された後、受光素子で検波されて被変調信号が出力される。第1の光源及び第2の光源からの出力光が光結合器で合波される際に振幅変調成分が相殺され、振幅変調成分が抑圧される。   As a method for suppressing the amplitude modulation component, a method is disclosed in which a signal having a phase opposite to that of the electrical input signal input to the first light source is input to the second light source (see, for example, Patent Document 1). The electric signal supplied to the input terminal is divided and output by the 180 ° distributor to the first and second signals having the same amplitude and frequency and the phase being inverted by 180 °, and the first signal is the first signal. The second signal is input to the light source, and the second signal is input to the second light source. Each light source includes a light emitting element, and each light emitting element is modulated by an input signal. After the output light from the first light source and the second light source is combined by the optical coupler, it is detected by the light receiving element and the modulated signal is output. When the output light from the first light source and the second light source is combined by the optical coupler, the amplitude modulation component is canceled and the amplitude modulation component is suppressed.

上記の振幅変調成分を抑圧する方法では、第1の光源と第2の光源の位相がずれると振幅変調成分を相殺させることができないという問題がある。特に、第1の光源及び第2の光源の特性は、温度や注入電流の変化で敏感に変化し、さらに経年変化によっても変化するので、振幅変調成分が残存してしまうという問題があった。
柴田宣、菊島浩二、桜井尚也、渡辺隆市「FM一括変換方式を用いた光映像分配システム」電子情報通信学会論文誌B、Vol.J83−B、No.7、pp.948−959、2000年7月 特開平11−112433号公報
In the method of suppressing the amplitude modulation component, there is a problem that the amplitude modulation component cannot be canceled if the phase of the first light source and the second light source is shifted. In particular, the characteristics of the first light source and the second light source change sensitively due to changes in temperature and injection current, and also change due to secular change, so that there is a problem that an amplitude modulation component remains.
Nobu Shibata, Koji Kikushima, Naoya Sakurai, Takashi Watanabe “Optical Video Distribution System Using FM Batch Conversion”, IEICE Transactions B, Vol. J83-B, no. 7, pp. 948-959, July 2000 Japanese Patent Laid-Open No. 11-112433

本発明は、振幅変調成分の極めて少ない周波数変調器の提供を目的とする。   It is an object of the present invention to provide a frequency modulator with extremely small amplitude modulation components.

上記目的を達成するため、本発明は、第1の光源の出力光と第2の光源の出力光とを光結合器で合波して光電変換することで被変調信号を出力する光ヘテロダイン型周波数変調器において、第1の光源の後段に振幅変調成分を相殺させる光強度変調器を設けたことを特徴とする。   In order to achieve the above object, the present invention provides an optical heterodyne type that outputs a modulated signal by combining the output light of the first light source and the output light of the second light source with an optical coupler and performing photoelectric conversion. In the frequency modulator, a light intensity modulator for canceling the amplitude modulation component is provided at the subsequent stage of the first light source.

具体的には、本発明に係る周波数変調器は、電気入力信号が入力される入力端子と、前記入力端子に入力される電気入力信号によって直接変調され、当該直接変調によって光周波数の変化した光周波数変調光を出力する第1の光源と、前記第1の光源の出力する光周波数変調光を、前記入力端子に入力される電気入力信号に基づいて、前記光周波数変調光に含まれる前記電気入力信号による振幅変調成分を相殺させる強度変調信号で強度変調して出力する光強度変調器と、前記第1の光源の出力する光周波数変調光に合波するための局部発振光を出力する第2の光源と、前記光強度変調器の出力する光周波数変調光と前記第2の光源の出力する局部発振光とを合波する光結合器と、前記光結合器の合波した合波光を光電変換して被変調信号を出力する光検波器と、を備え、前記第1の光源から前記光結合器までの光路が、前記第1の光源の出力する光周波数変調光の偏波を保ち、前記第2の光源から前記光結合器までの光路が、前記第2の光源の出力する局部発振光の偏波を保つことを特徴とする。 Specifically, the frequency modulator according to the present invention includes an input terminal to which an electrical input signal is input, and light that is directly modulated by the electrical input signal that is input to the input terminal and whose optical frequency is changed by the direct modulation. A first light source that outputs frequency-modulated light and an optical frequency-modulated light that is output from the first light source are included in the optical frequency-modulated light based on an electrical input signal that is input to the input terminal. An optical intensity modulator that outputs an intensity-modulated signal that cancels an amplitude modulation component caused by an input signal, and a local oscillation light that is combined with the optical frequency-modulated light that is output from the first light source. 2 light sources, an optical coupler that combines the optical frequency modulated light output from the light intensity modulator and the local oscillation light output from the second light source, and the combined light from the optical coupler. Photoelectrically convert the modulated signal Comprising an optical detector for force, wherein the optical path from the first light source to said optical coupler, keeping the polarization of the output optical frequency modulated light of said first light source, the from the second light source The optical path to the optical coupler is characterized in that the polarization of the local oscillation light output from the second light source is maintained .

光周波数変調光に含まれる振幅変調成分は入力端子に入力される電気入力信号による振幅成分である。このため、光強度変調器が入力端子に入力される電気入力信号に応じた強度変調信号で強度変調することで、第1の光源及び第2の光源の特性の変化の影響を受けずに振幅変調成分を相殺させることができる。振幅変調成分を安定して抑圧できるので、振幅変調成分の極めて少ない周波数変調器の提供が可能となる。
また、周波数変調光及び局部発振光の偏波を保つことで、周波数変調光及び局部発振光を同一の偏光で光結合器に入射させることができる。これにより、安定した出力信号を得ることができる。
The amplitude modulation component included in the optical frequency modulation light is an amplitude component due to an electric input signal input to the input terminal. For this reason, the light intensity modulator modulates the intensity with an intensity modulation signal corresponding to the electrical input signal input to the input terminal, so that the amplitude is not affected by the change in the characteristics of the first light source and the second light source. The modulation component can be canceled out. Since the amplitude modulation component can be stably suppressed, it is possible to provide a frequency modulator having a very small amplitude modulation component.
Further, by maintaining the polarization of the frequency-modulated light and the local oscillation light, the frequency-modulated light and the local oscillation light can be incident on the optical coupler with the same polarization. Thereby, a stable output signal can be obtained.

本発明に係る周波数変調器では、前記第1の光源の出力する光周波数変調光と前記第2の光源の出力する局部発振光との周波数差を一定に制御する周波数差制御部を備えることが好ましい。第1の光源と第2の光源の周波数差を一定に保つことで、被変調信号のキャリア周波数を安定化させることができる。これにより、各光源の温度や経年による特性変化を補償して、被変調信号に含まれる振幅変調成分をより効果的に抑圧させることができる。   The frequency modulator according to the present invention includes a frequency difference control unit that controls a frequency difference between the optical frequency modulated light output from the first light source and the local oscillation light output from the second light source to be constant. preferable. By keeping the frequency difference between the first light source and the second light source constant, the carrier frequency of the modulated signal can be stabilized. As a result, it is possible to more effectively suppress the amplitude modulation component included in the modulated signal by compensating for the characteristic change due to the temperature and aging of each light source.

本発明に係る周波数変調器では、前記光結合器の合波した合波光を光電変換した信号から、前記光周波数変調光に含まれる前記電気入力信号による振幅変調成分を抽出する振幅変調成分抽出器と、前記振幅変調成分抽出器の抽出する信号出力がゼロに近づくように前記強度変調信号の信号強度を増減する光強度変調器制御回路と、をさらに備えることが好ましい。光強度変調器の強度変調する強度変調信号のレベルを制御し、フィードバック効果により第1の光源からの振幅変調成分を効率よく抑圧することができる。   In the frequency modulator according to the present invention, an amplitude modulation component extractor that extracts an amplitude modulation component by the electric input signal included in the optical frequency modulation light from a signal obtained by photoelectrically converting the combined light combined by the optical coupler. And a light intensity modulator control circuit that increases or decreases the signal intensity of the intensity modulation signal so that the signal output extracted by the amplitude modulation component extractor approaches zero. By controlling the level of the intensity modulation signal for intensity modulation of the light intensity modulator, the amplitude modulation component from the first light source can be efficiently suppressed by the feedback effect.

本発明に係る周波数変調器では、前記第2の光源の出力する局部変調光の強度を調節する光強度調節手段を、前記第2の光源と前記光結合器の間にさらに備えることが好ましい。光強度調節手段をさらに備えることで、第2の光源への注入電流の制御によらずに、光結合器に入力する局部発振光の強度を調節することができる。これにより、被変調信号を高効率で得ることができる。   In the frequency modulator according to the present invention, it is preferable that light intensity adjusting means for adjusting the intensity of the locally modulated light output from the second light source is further provided between the second light source and the optical coupler. By further including the light intensity adjusting means, the intensity of the local oscillation light input to the optical coupler can be adjusted without controlling the injection current to the second light source. Thereby, a modulated signal can be obtained with high efficiency.

本発明により、第1の光源及び第2の光源の特性の変化の影響を受けずに振幅変調成分を相殺させることができる。このため、振幅変調成分を安定して抑圧できるので、振幅変調成分の極めて少ない周波数変調器の提供が可能となる。   According to the present invention, it is possible to cancel the amplitude modulation component without being affected by the change in the characteristics of the first light source and the second light source. For this reason, since the amplitude modulation component can be stably suppressed, it is possible to provide a frequency modulator having an extremely small amplitude modulation component.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
(実施形態1)
図1は、実施形態1に係る周波数変調器の構成図である。周波数変調器91は、入力端子10と、分配器16と、変調用の第1の光源11と、光強度変調器17と、局部発振用の第2の光源12と、光結合器13と、光検波器14と、出力端子15と、を備える。入力端子10は、外部から電気入力信号が入力され、電気入力信号を分配器16に出力する。分配器16は、電気入力信号が入力され、電気入力信号を第1の光源11と光強度変調器17とに出力する。第1の光源11は、電気入力信号が入力され、光周波数変調した光周波数変調光を光強度変調器17に出力する。光強度変調器17は、光周波数変調光と電気入力信号が入力され、強度変調した光周波数変調光を光結合器13に出力する。第2の光源12は、局部発振光を光結合器13に出力する。光結合器13は、光周波数変調光と局部発振光とが入力され、合波光を光検波器14に出力する。光検波器14は、合波光が入力され、被変調信号を出力端子15に出力する。出力端子15は、被変調信号が入力され、被変調信号を外部に出力する。
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
(Embodiment 1)
FIG. 1 is a configuration diagram of a frequency modulator according to the first embodiment. The frequency modulator 91 includes an input terminal 10, a distributor 16, a first light source 11 for modulation, a light intensity modulator 17, a second light source 12 for local oscillation, an optical coupler 13, An optical detector 14 and an output terminal 15 are provided. The input terminal 10 receives an electrical input signal from the outside and outputs the electrical input signal to the distributor 16. The distributor 16 receives an electrical input signal and outputs the electrical input signal to the first light source 11 and the light intensity modulator 17. The first light source 11 receives an electrical input signal and outputs optical frequency modulated light that has been optical frequency modulated to the light intensity modulator 17. The optical intensity modulator 17 receives the optical frequency modulated light and the electrical input signal, and outputs the optical frequency modulated light subjected to the intensity modulation to the optical coupler 13. The second light source 12 outputs the local oscillation light to the optical coupler 13. The optical coupler 13 receives the optical frequency modulated light and the local oscillation light, and outputs the combined light to the optical detector 14. The optical detector 14 receives the combined light and outputs the modulated signal to the output terminal 15. The output terminal 15 receives the modulated signal and outputs the modulated signal to the outside.

入力端子10に入力された電気入力信号は、分配器16で2つの電気入力信号に分配される。一方の電気入力信号は第1の光源11に入力され、光周波数変調される。他方の電気入力信号は光強度変調器17に入力され、第1の光源11で周波数変調された光周波数変調光を光強度変調する強度変調信号となる。2つの電気入力信号は、入力端子10に入力された電気入力信号と波形が同一の信号か、又は、入力端子10に入力された電気入力信号と波形が同一で位相が反転している信号であることが好ましい。   The electric input signal input to the input terminal 10 is distributed by the distributor 16 into two electric input signals. One electrical input signal is input to the first light source 11 and optical frequency modulated. The other electric input signal is input to the light intensity modulator 17 and becomes an intensity modulation signal for modulating the light intensity of the optical frequency modulated light frequency-modulated by the first light source 11. The two electric input signals are signals having the same waveform as that of the electric input signal input to the input terminal 10 or signals having the same waveform and inverted phases as those of the electric input signal input to the input terminal 10. Preferably there is.

入力端子10は、電気入力信号が入力される。入力端子10は、周波数変調器91の外部から周波数変調器91内に電気入力信号を入力するための端子である。第1の光源11が分布帰還型(DFB)レーザであれば、電気入力信号は、例えば、第1の光源11への注入電流を、変調する光周波数に応じて変化させた信号である。   The input terminal 10 receives an electrical input signal. The input terminal 10 is a terminal for inputting an electric input signal into the frequency modulator 91 from the outside of the frequency modulator 91. If the first light source 11 is a distributed feedback (DFB) laser, the electric input signal is, for example, a signal obtained by changing the injection current to the first light source 11 according to the optical frequency to be modulated.

分配器16は、電気入力信号を、2つに分配する。ここで、2つの電気入力信号の位相は、同一又は反転のいずれであってもよいが、光強度変調器17で振幅変調成分を相殺させることのできる位相が好ましい。分配器16が強度変調信号を発生させることで、光強度変調器17及び周波数変調器91の構成を簡単にすることができる。例えば、光強度変調器17が入力信号の増減に対して光出力の強度が同符号で増減する場合には、分配器16が第1の光源11を直接変調する電気入力信号と逆位相の強度変調信号を光強度変調器17に対して出力することが好ましい。一方、光強度変調器17が入力信号の増減に対して光出力の強度が逆符号で増減する場合には、分配器16は、位相が等しい信号を生成することが好ましい。   The distributor 16 distributes the electric input signal into two. Here, the phases of the two electrical input signals may be the same or inverted, but a phase that can cancel the amplitude modulation component by the light intensity modulator 17 is preferable. Since the distributor 16 generates an intensity modulation signal, the configuration of the light intensity modulator 17 and the frequency modulator 91 can be simplified. For example, when the light intensity modulator 17 increases or decreases the light output intensity with the same sign with respect to the increase or decrease of the input signal, the distributor 16 has an intensity that is opposite in phase to the electrical input signal that directly modulates the first light source 11. It is preferable to output the modulation signal to the light intensity modulator 17. On the other hand, when the light intensity modulator 17 increases or decreases the intensity of the optical output with the opposite sign with respect to the increase or decrease of the input signal, the distributor 16 preferably generates signals having the same phase.

第1の光源11は、入力端子10に入力される電気入力信号によって直接変調され、当該直接変調によって光周波数の変化した光周波数変調光を出力する。第1の光源11は、例えば、半導体レーザである。ここで、半導体レーザから出力する光周波数は、高周波領域では、入力信号の増減に対して同符号で増減する。又、半導体レーザの出力光の強度も、入力信号の増減に対して同符号で増減する。   The first light source 11 is directly modulated by an electrical input signal input to the input terminal 10 and outputs optical frequency modulated light whose optical frequency is changed by the direct modulation. The first light source 11 is, for example, a semiconductor laser. Here, in the high frequency region, the optical frequency output from the semiconductor laser increases and decreases with the same sign as the input signal increases and decreases. Also, the intensity of the output light of the semiconductor laser increases and decreases with the same sign with respect to the increase and decrease of the input signal.

光強度変調器17は、第1の光源11の出力する光周波数変調光を、入力端子10に入力される電気入力信号に基づいて、光周波数変調光に含まれる電気入力信号による振幅変調成分を相殺させる強度変調信号で強度変調して出力する。例えば、分配器16の出力する電気入力信号に基づいて強度変調信号を生成し、当該強度変調信号で光周波数変調光を強度変調する。光周波数変調光に含まれる電気入力信号による振幅変調成分は、入力端子10に入力される電気入力信号の強度変化によって発生する。このため、光強度変調器17は、入力端子10に入力される電気入力信号を取得し、電気入力信号の強度変化に応じた強度変調信号で光周波数変調光を強度変調することで、光周波数変調光に含まれる電気入力信号による振幅変調成分を相殺させることができる。   The light intensity modulator 17 converts the optical frequency modulated light output from the first light source 11 into an amplitude modulation component based on the electrical input signal included in the optical frequency modulated light based on the electrical input signal input to the input terminal 10. The intensity is modulated with an intensity modulation signal to be canceled and output. For example, an intensity modulation signal is generated based on the electrical input signal output from the distributor 16, and the intensity of the optical frequency modulation light is modulated with the intensity modulation signal. The amplitude modulation component by the electric input signal included in the optical frequency modulation light is generated by a change in the intensity of the electric input signal input to the input terminal 10. For this reason, the optical intensity modulator 17 acquires the electrical input signal input to the input terminal 10 and modulates the intensity of the optical frequency modulated light with the intensity modulation signal corresponding to the intensity change of the electrical input signal. It is possible to cancel the amplitude modulation component due to the electric input signal included in the modulated light.

強度変調信号は、例えば、電気入力信号と波形が同一の信号である。又は、強度変調信号は、電気入力信号と波形が同一である信号の位相を反転させた信号である。電気入力信号の強度変化と対応している同一の波形又は位相のみ反転させた波形で強度変調することで、光周波数変調光に含まれる電気入力信号による振幅変調成分を厳密に相殺させることができる。強度変調信号の位相は、光強度変調器17の入出力特性に応じて決める。例えば、光強度変調器17が入力信号の増減に対して出力光の強度が同符号で増減する場合は、強度変調信号は、電気入力信号と波形が同一である信号の位相を反転させた信号である。又、光強度変調器17が入力信号の増減に対して出力光の強度が逆符号で増減する場合は、強度変調信号は、電気入力信号と波形が同一の信号である。   The intensity modulation signal is, for example, a signal having the same waveform as the electric input signal. Alternatively, the intensity modulation signal is a signal obtained by inverting the phase of a signal having the same waveform as the electric input signal. By intensity modulation with the same waveform corresponding to the intensity change of the electrical input signal or with a waveform that is inverted only in phase, the amplitude modulation component due to the electrical input signal contained in the optical frequency modulated light can be canceled exactly. . The phase of the intensity modulation signal is determined according to the input / output characteristics of the light intensity modulator 17. For example, when the light intensity modulator 17 increases or decreases the intensity of the output light with the same sign as the input signal increases or decreases, the intensity modulated signal is a signal obtained by inverting the phase of a signal having the same waveform as the electrical input signal. It is. Further, when the light intensity modulator 17 increases or decreases the intensity of the output light with the opposite sign with respect to the increase or decrease of the input signal, the intensity modulation signal is a signal having the same waveform as the electrical input signal.

図2は、周波数スペクトラムの一例であり、(a)は光強度変調器に強度変調信号を入力しなかった場合の被変調信号の周波数スペクトラムを示し、(b)は光強度変調器に強度変調信号を入力した場合の被変調信号の周波数スペクトラムを示す。図2(a)に示す被変調信号の周波数スペクトラムでは、第1の光源が光周波数変調された周波数変調成分110だけでなく、第1の光源を変調した電気入力信号による振幅変調成分111が現れる。光強度変調器は、第1の光源の出力する光周波数変調光を、強度変調信号によって強度変調することで振幅変調成分111を抑圧する。例えば、光強度変調器が振幅変調成分を相殺するために必要な強度変調信号の位相又は信号強度やこれらのバイアスが予め求められる場合は、求められた位相又は信号強度に変換したり、位相又は信号強度をシフトさせるための機能を、分配器及び光強度変調器の少なくともいずれかに持たせたり、分配器から光強度変調器までの間に当該機能を有する構成を設けたりする。さらに、強度変調信号は、振幅変調成分111をゼロにすることの可能な信号強度であることが好ましい。例えば、後述する光強度変調制御部を設ける。又、そのための構成を、分配器及び光強度変調器の少なくともいずれかに持たせる。図2(b)に、光強度変調器に強度変調信号を入力した場合の被変調信号の周波数変調成分110と振幅変調成分111を示す。強度変調信号によって被変調信号に含まれる振幅変調成分が相殺されるため、電気入力信号による振幅変調成分111を抑圧することができる。   FIG. 2 shows an example of a frequency spectrum, where (a) shows the frequency spectrum of the modulated signal when no intensity modulation signal is input to the light intensity modulator, and (b) shows the intensity modulation by the light intensity modulator. The frequency spectrum of the modulated signal when a signal is input is shown. In the frequency spectrum of the modulated signal shown in FIG. 2A, not only the frequency modulation component 110 obtained by optical frequency modulation of the first light source but also the amplitude modulation component 111 generated by the electric input signal obtained by modulating the first light source appears. . The light intensity modulator suppresses the amplitude modulation component 111 by intensity-modulating the optical frequency modulated light output from the first light source with an intensity modulation signal. For example, when the phase or signal intensity of the intensity modulation signal necessary for the light intensity modulator to cancel out the amplitude modulation component or the bias thereof is obtained in advance, it is converted into the obtained phase or signal intensity, A function for shifting the signal intensity is provided in at least one of the distributor and the light intensity modulator, or a configuration having the function is provided between the distributor and the light intensity modulator. Furthermore, the intensity modulation signal is preferably a signal intensity that can make the amplitude modulation component 111 zero. For example, a light intensity modulation control unit described later is provided. Further, at least one of the distributor and the light intensity modulator is provided with a configuration for that purpose. FIG. 2B shows the frequency modulation component 110 and the amplitude modulation component 111 of the modulated signal when the intensity modulation signal is input to the light intensity modulator. Since the amplitude modulation component included in the modulated signal is canceled by the intensity modulation signal, the amplitude modulation component 111 due to the electric input signal can be suppressed.

第2の光源12は、第1の光源11の出力する光周波数変調光に合波するため局部発振光を出力する。光結合器13は、光強度変調器17の出力する光周波数変調光と第2の光源12の出力する局部発振光とを合波する。光検波器14は、光結合器13の合波する合波光を光電変換して被変調信号を出力する。   The second light source 12 outputs local oscillation light to be combined with the optical frequency modulated light output from the first light source 11. The optical coupler 13 combines the optical frequency modulated light output from the light intensity modulator 17 and the local oscillation light output from the second light source 12. The optical detector 14 photoelectrically converts the combined light combined by the optical coupler 13 and outputs a modulated signal.

ここで、第1の光源11から光結合器13までの間の光導波路と部品と、第2の光源12から光結合器13までの間の光導波路と部品と、を偏波保持型のものを用いていることが好ましい。伝搬光の偏波を安定化して、第1の光源11の出力する周波数変調光と、第2の光源12の出力する局部発振光と、が同一の偏光で光結合器13に入射されるようにしておく。通常の光ファイバで導波された場合は偏波が一致していないため安定した出力信号を得ることは困難であったが、偏波保持ファイバなどの偏波保持のための部品を用いることで、安定した出力信号を得ることができる。偏波保持のための部品については、例えば、技術情報協会「次世代超高速光通信技術」第5.6節偏波保持部品に記載されている。   Here, the optical waveguide and components between the first light source 11 and the optical coupler 13 and the optical waveguide and components between the second light source 12 and the optical coupler 13 are of the polarization maintaining type. Is preferably used. The polarization of the propagating light is stabilized so that the frequency-modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 are incident on the optical coupler 13 with the same polarization. Keep it. When guided by a normal optical fiber, it was difficult to obtain a stable output signal because the polarizations did not match. However, by using a polarization maintaining component such as a polarization maintaining fiber, A stable output signal can be obtained. The components for maintaining the polarization are described in, for example, the polarization maintaining component in Section 5.6 of the “Next Generation Ultra High-Speed Optical Communication Technology” of the Technical Information Association.

さらに、周波数変調器91は、周波数差制御部81を備えることが好ましい。周波数差制御部81は、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光との周波数差が一定になるように制御する。第1の光源11及び第2の光源12がフリーランの状態では、第1の光源11及び第2の光源12の出力光の出力強度と変調度を初期値と同じ値に維持することはできない。しかし、周波数差制御部81が第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光との周波数差を一定に保つので、第1の光源11及び第2の光源12の経年変化や温度変化に伴った特性の変動の補償を行うことができる。第1の光源11と第2の光源12の周波数差を一定にすることができるので、周波数変調光と局部発振光の位相を一致させ、被変調信号のキャリア周波数を安定化させることができる。被変調信号が安定して発生するので、振幅変調成分の信号強度をより効果的に抑圧することができる。   Furthermore, the frequency modulator 91 preferably includes a frequency difference control unit 81. The frequency difference control unit 81 controls the frequency difference between the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 to be constant. When the first light source 11 and the second light source 12 are in a free-run state, the output intensity and the modulation degree of the output light of the first light source 11 and the second light source 12 cannot be maintained at the same values as the initial values. . However, since the frequency difference control unit 81 keeps the frequency difference between the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12, the first light source 11 and the second light source 11. Thus, it is possible to compensate for fluctuations in characteristics associated with changes over time and temperature of the light source 12. Since the frequency difference between the first light source 11 and the second light source 12 can be made constant, the phase of the frequency-modulated light and the local oscillation light can be matched, and the carrier frequency of the modulated signal can be stabilized. Since the modulated signal is generated stably, the signal intensity of the amplitude modulation component can be more effectively suppressed.

周波数差制御部81は、例えば、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光とが光結合器13に入力して得られるビート信号を検出する光検波器26と、光検波器26の検出したビート信号を分周するプリスケーラ21と、予め定められた基準周波数を発振する基準周波数発振器23と、基準周波数発振器23の発振する基準周波数の波形とプリスケーラ21の出力するビート信号の分周波形との位相差を検出する位相比較器22と、位相比較器22の検出した位相差に対応して第2の光源12の周波数を変化させる制御回路24と、を備える。   For example, the frequency difference control unit 81 detects a beat signal obtained by inputting the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 to the optical coupler 13. An optical detector 26, a prescaler 21 that divides the beat signal detected by the optical detector 26, a reference frequency oscillator 23 that oscillates a predetermined reference frequency, and a waveform of the reference frequency that the reference frequency oscillator 23 oscillates. A phase comparator 22 that detects a phase difference from the divided waveform of the beat signal output from the prescaler 21, and a control circuit 24 that changes the frequency of the second light source 12 in accordance with the phase difference detected by the phase comparator 22. And comprising.

光検波器26は、例えば合波光を光電変換するフォトデテクタである。基準周波数発振器23の発振する基準周波数は、光検波器26がビート信号を検出する場合、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光との初期状態での周波数差である。プリスケーラ21及び位相比較器22を備えることで、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光との周波数差を検出し、第1の光源11及び第2の光源12の初期状態からの相対的な特性のずれを検出することができる。相対的な特性のずれを検出することで、第1の光源11及び第2の光源12の特性が変化した場合でも、光検波器14が安定して被変調信号を出力することができる。また、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光との周波数差を検出するために、基準周波数発振器23、プリスケーラ21及び位相比較器22を用いることで、周波数を計測する構成に比べて周波数差制御部81の応答速度を高くすることができる。制御回路24は、例えば、光検波器26の検出するビート信号の周波数と基準周波数との差がゼロになるように第2の光源12の周波数を変化させる。制御回路24は、第2の光源12の周波数を変化させるために、第2の光源12の温度や駆動電流を変化させる。なお、周波数差制御部81は、第1の光源11の出力する光周波数変調光と第2の光源12の出力する局部発振光とを取得して、これらの周波数差を検出する構成としてもよい。   The optical detector 26 is, for example, a photodetector that photoelectrically converts combined light. The reference frequency oscillated by the reference frequency oscillator 23 is an initial value between the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 when the optical detector 26 detects a beat signal. It is the frequency difference in the state. By providing the prescaler 21 and the phase comparator 22, the frequency difference between the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 is detected. The relative characteristic deviation from the initial state of the second light source 12 can be detected. By detecting the relative characteristic shift, even when the characteristics of the first light source 11 and the second light source 12 change, the optical detector 14 can stably output the modulated signal. Further, in order to detect the frequency difference between the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12, a reference frequency oscillator 23, a prescaler 21 and a phase comparator 22 are used. Thus, the response speed of the frequency difference control unit 81 can be increased as compared with the configuration for measuring the frequency. For example, the control circuit 24 changes the frequency of the second light source 12 so that the difference between the frequency of the beat signal detected by the optical detector 26 and the reference frequency becomes zero. The control circuit 24 changes the temperature and driving current of the second light source 12 in order to change the frequency of the second light source 12. The frequency difference control unit 81 may be configured to acquire the optical frequency modulated light output from the first light source 11 and the local oscillation light output from the second light source 12 and detect these frequency differences. .

さらに、光強度変調器17に振幅変調成分をより効果的に抑圧させるため、周波数変調器91は、光強度変調制御部82を備えることが好ましい。強度変調制御部82は、例えば、光検出器18と、振幅変調成分抽出器19と、光強度変調器制御回路20と、を備える。光検出器18は、光結合器13の合波する合波光を光電変換する。例えばフォトデテクタである。振幅変調成分抽出器19は、光検出器18の光電変換した信号から、第1の光源11の出力する光周波数変調光に含まれる電気入力信号による振幅変調成分を抽出する。例えば、図2(b)に示すような被変調信号から、周波数変調成分110よりも低い周波数帯域を透過させる低域透過フィルタにより、振幅変調成分111を抽出する。光強度変調器制御回路20は、振幅変調成分抽出器19の抽出する信号出力がゼロに近づくように光強度変調器17の強度変調信号の信号強度を増減する。光強度変調器制御回路20は、例えば、自動利得制御回路である。   Furthermore, in order to more effectively suppress the amplitude modulation component in the light intensity modulator 17, the frequency modulator 91 preferably includes a light intensity modulation control unit 82. The intensity modulation control unit 82 includes, for example, a photodetector 18, an amplitude modulation component extractor 19, and a light intensity modulator control circuit 20. The photodetector 18 photoelectrically converts the combined light combined by the optical coupler 13. For example, a photo detector. The amplitude modulation component extractor 19 extracts an amplitude modulation component based on an electrical input signal included in the optical frequency modulated light output from the first light source 11 from the photoelectrically converted signal of the photodetector 18. For example, the amplitude modulation component 111 is extracted from the modulated signal as shown in FIG. 2B by a low-pass filter that transmits a frequency band lower than the frequency modulation component 110. The light intensity modulator control circuit 20 increases or decreases the signal intensity of the intensity modulation signal of the light intensity modulator 17 so that the signal output extracted by the amplitude modulation component extractor 19 approaches zero. The light intensity modulator control circuit 20 is, for example, an automatic gain control circuit.

光強度変調制御部82は、光結合器13の合波する合波光の一部を光検出器18で電気信号に変換後、振幅変調成分抽出器19で振幅変調成分を抽出して、抽出した振幅変調成分で光強度変調器制御回路20の利得を制御することで、光強度変調器17の強度変調する強度変調信号のレベルを制御し、フィードバック効果により第1の光源11からの振幅変調成分を効率よく低減できる。図3は、光検波器から出力する被変調信号の一例を示すグラフであり、(a)は振幅成分の時間波形、(b)は周波数成分の時間波形、(c)は周波数スペクトラムを示す。フィードバック効果により振幅変調成分を抑圧しているので、図3(a)に示すように振幅成分の時間変化をなくし、図3(b)に示すように周波数成分の時間変化のみを残し、図3(c)に示すように周波数変調成分のみが周波数スペクトラムに現れる被変調信号を生成させることができる。   The light intensity modulation control unit 82 converts a part of the combined light combined by the optical coupler 13 into an electric signal by the photodetector 18, and then extracts and extracts the amplitude modulation component by the amplitude modulation component extractor 19. By controlling the gain of the light intensity modulator control circuit 20 with the amplitude modulation component, the level of the intensity modulation signal for intensity modulation of the light intensity modulator 17 is controlled, and the amplitude modulation component from the first light source 11 is obtained by the feedback effect. Can be reduced efficiently. FIG. 3 is a graph showing an example of the modulated signal output from the optical detector, where (a) shows the time waveform of the amplitude component, (b) shows the time waveform of the frequency component, and (c) shows the frequency spectrum. Since the amplitude modulation component is suppressed by the feedback effect, the time component of the amplitude component is eliminated as shown in FIG. 3A, and only the time component of the frequency component is left as shown in FIG. As shown in (c), it is possible to generate a modulated signal in which only the frequency modulation component appears in the frequency spectrum.

なお、周波数変調器91が、周波数差制御部81及び光強度変調制御部82を備えれば、周波数差制御部81が第1の光源11と第2の光源12の周波数を安定化するので、温度や経年変化を補償した効果的な振幅変調成分の抑圧が可能となる。さらに、第1の光源11から光結合器13までの間の光導波路と部品と、第2の光源12から光結合器13までの間の光導波路と部品と、を偏波保持型のものを用いれば、安定した品質の良好な被変調信号の出力が得られる。   If the frequency modulator 91 includes the frequency difference control unit 81 and the light intensity modulation control unit 82, the frequency difference control unit 81 stabilizes the frequencies of the first light source 11 and the second light source 12, so that It is possible to effectively suppress amplitude modulation components that compensate for temperature and aging. Further, a polarization maintaining type optical waveguide and components between the first light source 11 and the optical coupler 13 and an optical waveguide and components between the second light source 12 and the optical coupler 13 are used. If used, a stable modulated signal output with good quality can be obtained.

(実施形態2)
図4は、実施形態2に係る周波数変調器の構成図である。図4に示す周波数変調器92は、図1で説明した第2の光源12の出力する局部変調光の強度を調節する光強度調節手段25を、第2の光源12と光結合器13の間にさらに備える。光強度調節手段25は、例えば、光を減衰させる光減衰器である。光強度調節手段25をさらに備えることで、第1の光源11の出力する光周波数変調光の強度に対する第2の光源12の出力する局部発振光の強度を最適化することができる。第2の光源12のへの注入電流を制御することによっても局部発振光の出力強度を制御できるが、注入電流を変化させると変調特性や平均光周波数も同時に変動するため、注入電流によらない制御が好ましい。光強度調節手段25によって局部発振光の強度を最適化することで、第2の光源12の特性を変動させることなく、を安定化した状態で、質のよい被変調信号を効率よく得ることができる。なお、上記実施形態では光強度調節手段25として光減衰器を用いたが、光増幅器あるいは光増幅器と光減衰器の組み合わせを用いても構わない。
(Embodiment 2)
FIG. 4 is a configuration diagram of a frequency modulator according to the second embodiment. The frequency modulator 92 shown in FIG. 4 includes a light intensity adjusting unit 25 that adjusts the intensity of the locally modulated light output from the second light source 12 described with reference to FIG. 1 and between the second light source 12 and the optical coupler 13. Further prepare for. The light intensity adjusting means 25 is, for example, an optical attenuator that attenuates light. By further including the light intensity adjusting means 25, the intensity of the local oscillation light output from the second light source 12 with respect to the intensity of the optical frequency modulated light output from the first light source 11 can be optimized. The output intensity of the local oscillation light can also be controlled by controlling the injection current to the second light source 12, but if the injection current is changed, the modulation characteristics and the average optical frequency also fluctuate simultaneously, so that it does not depend on the injection current. Control is preferred. By optimizing the intensity of the local oscillation light by the light intensity adjusting means 25, it is possible to efficiently obtain a high-quality modulated signal in a stable state without changing the characteristics of the second light source 12. it can. In the above embodiment, an optical attenuator is used as the light intensity adjusting means 25. However, an optical amplifier or a combination of an optical amplifier and an optical attenuator may be used.

なお、実施形態1及び実施形態2では、光検波器14、26及び光検出器18を独立した光検波器として説明したが、これに限定するものではない。例えば、光検波器14、26及び光検出器18のうち、いずれか2つを1つの光検波器で兼ねても構わない。さらに、光検波器14、26及び光検出器18のすべてを1つの光検波器で兼ねても構わない。   In the first and second embodiments, the light detectors 14 and 26 and the light detector 18 are described as independent light detectors, but the present invention is not limited to this. For example, any two of the light detectors 14 and 26 and the light detector 18 may be combined with one light detector. Furthermore, all of the photodetectors 14, 26 and the photodetector 18 may be combined with one optical detector.

本発明は、振幅変調成分を抑圧した品質のよい被変調信号を出力するので、光伝送システムにおいて品質のよいFM信号で光強度変調した信号光を伝送することができる。   Since the present invention outputs a modulated signal with high quality in which the amplitude modulation component is suppressed, it is possible to transmit signal light whose optical intensity is modulated with a high quality FM signal in an optical transmission system.

実施形態1に係る周波数変調器の構成図である。1 is a configuration diagram of a frequency modulator according to Embodiment 1. FIG. 周波数スペクトラムの一例であり、(a)は光強度変調器に強度変調信号を入力しなかった場合の被変調信号の周波数スペクトラムを示し、(b)は光強度変調器に強度変調信号を入力した場合の被変調信号の周波数スペクトラムを示す。It is an example of a frequency spectrum, (a) shows the frequency spectrum of the modulated signal when no intensity modulation signal is inputted to the light intensity modulator, and (b) shows the intensity modulation signal inputted to the light intensity modulator. Shows the frequency spectrum of the modulated signal. 光検波器から出力する被変調信号の一例を示すグラフであり、(a)は振幅成分の時間波形、(b)は周波数成分の時間波形、(c)は周波数スペクトラムを示す。It is a graph which shows an example of the modulated signal output from an optical detector, (a) is a time waveform of an amplitude component, (b) is a time waveform of a frequency component, (c) shows a frequency spectrum. 実施形態2に係る周波数変調器の構成図である。6 is a configuration diagram of a frequency modulator according to Embodiment 2. FIG. 光ヘテロダイン型周波数変調器の従来例である。It is a conventional example of an optical heterodyne type frequency modulator. 第1の光源の出力光の時間波形の一例を示すグラフであり、(a)は振幅成分、(b)は周波数成分を示す。It is a graph which shows an example of the time waveform of the output light of a 1st light source, (a) shows an amplitude component and (b) shows a frequency component. 光検波器から出力する被変調信号の周波数スペクトラムの一例である。It is an example of the frequency spectrum of the modulated signal output from an optical detector.

符号の説明Explanation of symbols

10、100 入力端子
11、101 第1の光源
12、102 第2の光源
13、103 光結合器
14、104 光検波器
15、105 出力端子
16 分配器
17 光強度変調器
18 光検出器
19 振幅変調成分抽出器
20 光強度変調器制御回路
21 プリスケーラ
22 位相比較器
23 基準周波数発振器
24 制御回路
25 光強度調節手段
26 光検波器
81 周波数差制御部
82 光強度変調制御部
91、92 周波数変調器
110 被変調信号の周波数スペクトラムにおける周波数変調成分
111 被変調信号の周波数スペクトラムにおける振幅変調成分
DESCRIPTION OF SYMBOLS 10,100 Input terminal 11,101 1st light source 12,102 2nd light source 13,103 Optical coupler 14,104 Photodetector 15,105 Output terminal 16 Divider 17 Optical intensity modulator 18 Optical detector 19 Amplitude Modulation component extractor 20 Light intensity modulator control circuit 21 Prescaler 22 Phase comparator 23 Reference frequency oscillator 24 Control circuit 25 Light intensity adjusting means 26 Optical detector 81 Frequency difference control unit 82 Light intensity modulation control unit 91, 92 Frequency modulator 110 Frequency modulation component in frequency spectrum of modulated signal 111 Amplitude modulation component in frequency spectrum of modulated signal

Claims (4)

電気入力信号が入力される入力端子と、
前記入力端子に入力される電気入力信号によって直接変調され、当該直接変調によって光周波数の変化した光周波数変調光を出力する第1の光源と、
前記第1の光源の出力する光周波数変調光を、前記入力端子に入力される電気入力信号に基づいて、前記光周波数変調光に含まれる前記電気入力信号による振幅変調成分を相殺させる強度変調信号で強度変調して出力する光強度変調器と、
前記第1の光源の出力する光周波数変調光に合波するための局部発振光を出力する第2の光源と、
前記光強度変調器の出力する光周波数変調光と前記第2の光源の出力する局部発振光とを合波する光結合器と、
前記光結合器の合波した合波光を光電変換して被変調信号を出力する光検波器と、
を備え
前記第1の光源から前記光結合器までの光路が、前記第1の光源の出力する光周波数変調光の偏波を保ち、
前記第2の光源から前記光結合器までの光路が、前記第2の光源の出力する局部発振光の偏波を保つことを特徴とする
周波数変調器。
An input terminal to which an electrical input signal is input;
A first light source that is directly modulated by an electrical input signal input to the input terminal and outputs optical frequency modulated light having an optical frequency changed by the direct modulation;
An intensity-modulated signal for canceling the amplitude-modulated component due to the electrical input signal contained in the optical frequency-modulated light, based on the electrical input signal input to the input terminal, from the optical frequency-modulated light output from the first light source A light intensity modulator that outputs an intensity modulated signal at
A second light source for outputting local oscillation light for multiplexing with the optical frequency modulated light output from the first light source;
An optical coupler for combining the optical frequency modulated light output from the light intensity modulator and the local oscillation light output from the second light source;
An optical detector that photoelectrically converts the combined light combined by the optical coupler and outputs a modulated signal;
Equipped with a,
The optical path from the first light source to the optical coupler maintains the polarization of the optical frequency modulated light output from the first light source,
The frequency modulator , wherein an optical path from the second light source to the optical coupler maintains a polarization of the local oscillation light output from the second light source .
前記第1の光源の出力する光周波数変調光と前記第2の光源の出力する局部発振光との周波数差を一定に制御する周波数差制御部をさらに備えることを特徴とする請求項1に記載の周波数変調器。   The frequency difference control part which controls further the frequency difference of the optical frequency modulation light which the said 1st light source outputs, and the local oscillation light which the said 2nd light source outputs, It is characterized by the above-mentioned. Frequency modulator. 前記光結合器の合波した合波光を光電変換した信号から、前記光周波数変調光に含まれる前記電気入力信号による振幅変調成分を抽出する振幅変調成分抽出器と、
前記振幅変調成分抽出器の抽出する信号出力がゼロに近づくように前記強度変調信号の信号強度を増減する光強度変調器制御回路と、
をさらに備えることを特徴とする請求項1又は2に記載の周波数変調器。
An amplitude modulation component extractor for extracting an amplitude modulation component by the electric input signal included in the optical frequency modulation light from a signal obtained by photoelectrically converting the combined light combined by the optical coupler;
A light intensity modulator control circuit that increases or decreases the signal intensity of the intensity modulation signal so that the signal output extracted by the amplitude modulation component extractor approaches zero;
Frequency modulator according to claim 1 or 2, further comprising a.
前記第2の光源の出力する局部変調光の強度を調節する光強度調節手段を、前記第2の光源と前記光結合器の間にさらに備えることを特徴とする請求項1からのいずれかに記載の周波数変調器。 A light intensity adjusting means for adjusting the intensity of the local modulated light output from the second light source, any one of claims 1 to 3, further comprising between said optical coupler and the second light source A frequency modulator according to 1.
JP2007028853A 2007-02-08 2007-02-08 Frequency modulator Expired - Fee Related JP4828447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028853A JP4828447B2 (en) 2007-02-08 2007-02-08 Frequency modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028853A JP4828447B2 (en) 2007-02-08 2007-02-08 Frequency modulator

Publications (2)

Publication Number Publication Date
JP2008193639A JP2008193639A (en) 2008-08-21
JP4828447B2 true JP4828447B2 (en) 2011-11-30

Family

ID=39753263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028853A Expired - Fee Related JP4828447B2 (en) 2007-02-08 2007-02-08 Frequency modulator

Country Status (1)

Country Link
JP (1) JP4828447B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3120473B1 (en) * 2014-03-20 2021-04-07 Ariel-University Research and Development Company Ltd. Method and system for controlling phase of a signal
JP2018078521A (en) * 2016-11-11 2018-05-17 日本電信電話株式会社 Optical transmitter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514288A (en) * 1991-07-02 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion compensating system
JPH1013352A (en) * 1996-06-25 1998-01-16 Hitachi Cable Ltd Method for modulating wide-band phase and frequency and its device
JPH1174847A (en) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd Fm modulator

Also Published As

Publication number Publication date
JP2008193639A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US7092643B2 (en) Optical transmission apparatus and bias voltage control method for the optical modulator
US6389046B1 (en) Method to sense laser array power and wavelength and reduce drift for wavelength selection and stabilization
US6594070B2 (en) Optical communication system, optical receiver and wavelength converter
JP5006978B1 (en) Compensation method, optical modulation system, and optical demodulation system
JP5669674B2 (en) Drive control device for semiconductor optical modulator
US6211996B1 (en) Angle modulator
US20020005971A1 (en) Radio-frequency transmitter with function of distortion compensation
JP2006251804A (en) Electrooptical delay line frequency discriminator
US6738187B2 (en) Semiconductor optical amplifiers using wavelength locked loop tuning and equalization
JP6604580B2 (en) Frequency stabilized laser
US6819877B1 (en) Optical links
JP4828447B2 (en) Frequency modulator
US6178026B1 (en) Analog optical transmission apparatus
JP4889951B2 (en) Optical frequency stabilizer
JP2001133824A (en) Angle modulation device
WO2021016966A1 (en) Multi-wavelength light source and optical chip
JP2005091517A (en) Method for controlling bias voltage of optical modulation element and stabilization optical modulator
JP2007158251A (en) Wavelength stabilization apparatus and wavelength stabilization method
WO2022215261A1 (en) Optical amplification device
JPH0653590A (en) Method for stabilizing optical fsk frequency displacement amount
JPH10148801A (en) Optical modulation device by external modulation system
JP2001298416A (en) Optical amplifier system
WO2023144868A1 (en) Optical pulse generation device and generation method
US20240120996A1 (en) Optical transmitter and bias control method
JP4564517B2 (en) FM modulation type optical transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees