JP4828169B2 - Track centerline survey method - Google Patents

Track centerline survey method Download PDF

Info

Publication number
JP4828169B2
JP4828169B2 JP2005179196A JP2005179196A JP4828169B2 JP 4828169 B2 JP4828169 B2 JP 4828169B2 JP 2005179196 A JP2005179196 A JP 2005179196A JP 2005179196 A JP2005179196 A JP 2005179196A JP 4828169 B2 JP4828169 B2 JP 4828169B2
Authority
JP
Japan
Prior art keywords
line
curve
straight line
track
survey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005179196A
Other languages
Japanese (ja)
Other versions
JP2006349611A (en
Inventor
三昭 小林
達夫 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR East Consultants Co
Original Assignee
JR East Consultants Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR East Consultants Co filed Critical JR East Consultants Co
Priority to JP2005179196A priority Critical patent/JP4828169B2/en
Publication of JP2006349611A publication Critical patent/JP2006349611A/en
Application granted granted Critical
Publication of JP4828169B2 publication Critical patent/JP4828169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

本発明は、鉄道の軌道中心である線路中心線を測量する線路中心線測量方法に関する。   The present invention relates to a track centerline surveying method for surveying a track centerline that is the center of a railway track.

鉄道事業者は、営業線区について縮尺1/2500ないし縮尺1/500程度の線路平面図を作成して持っている。線路平面図は、工事竣工時に地上測量を行い作成することが多いが、最近は航空写真測量を行って作成したものも一部存在する。また、営業開始後に軌道変更などの工事を行った場合その都度線路平面図に変更を加える作業を行うことになる。既存の線路平面図は、所定区間毎に別々に作成されていて、作成した年代も区間によって異なっている。そのため、同一線区であっても測定方法(地上測量又は航空写真測量)やデータ形式(紙図又は電子化図)の異なる線路平面図が混在している。   The railway company creates and has a track plan of scale 1/2500 to scale 1/500 for the business line. The track plan is often created by ground surveys at the completion of construction, but recently some of them have been created by aerial photogrammetry. In addition, when construction work such as a track change is performed after the start of business, the work for changing the track plan is performed each time. The existing track plan is created separately for each predetermined section, and the created age differs depending on the section. Therefore, even in the same line section, track plan views with different measurement methods (ground survey or aerial photogrammetry) and data formats (paper diagram or electronic diagram) are mixed.

一方、一線区全体の線路平面図を電子化して使いたいといった要望がある。このような要望に応えるためには、紙図を電子化して電子データに変換すること、線区内の各線路平面図を繋ぎ合わせること、が必要になる。   On the other hand, there is a demand for digitizing and using the track plan of the entire section. In order to meet such a demand, it is necessary to digitize the paper diagram and convert it into electronic data, and to connect the plan views of each line in the line section.

紙図(線路平面図)をスキャナで読み込めば電子化することは可能であるが、平面直角座標系(例えば、世界測地系又は日本測地系に基づくもの)上に当該線路平面図が描かれていない場合は他区間の線路平面図と繋ぎ合わせるのは困難である。   It is possible to digitize by reading a paper map (track plan) with a scanner, but the track plan is drawn on a plane Cartesian coordinate system (for example, based on the world geodetic system or the Japanese geodetic system). If not, it is difficult to connect with the track plan of other sections.

そこで、線路平面図が平面直角座標系に対応して作成されていない区間については、線路閉鎖した上で地上測量を行うか又は航空写真測量を行って、平面直角座標系に対応した線路平面図を作成し直すことになる。
特開平7−334550号公報
Therefore, for sections where the track plan is not created corresponding to the plane Cartesian coordinate system, the track is closed and the ground survey or aerial photogrammetry is performed, and the track plan corresponding to the plane Cartesian coordinate system is used. Will be recreated.
JP 7-334550 A

しかしながら、営業開始後の線路を閉鎖しての地上測量は鉄道利用者に大きな影響を与えるので止むを得ない場合以外は避けるべきである。また、航空写真測量は地上測量に比べて費用が高く、広範な区間を対象とした場合には膨大な費用が発生する。   However, ground surveying after closing the track after the start of business has a major impact on railway users and should be avoided unless it is unavoidable. In addition, aerial photogrammetry is more expensive than ground survey, and enormous costs are incurred when targeting a wide section.

本発明は、以上のような実情に鑑みてなされたもので、線路を閉鎖する必要が無く、しかも航空写真測量に比べて大幅に安い費用で線区の広い範囲に亘って線路中心線を高精度に測量することができる線路中心線測量方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is not necessary to close the track, and the track center line can be increased over a wide range of line sections at a significantly lower cost than aerial photogrammetry. An object of the present invention is to provide a track centerline surveying method capable of accurately measuring.

本発明の第1の態様は、GPS測量機を搭載した列車で測量対象線区の線路上を走行しながら前記GPS測量機で位置情報を測定し、前記測量対象線区を複数回走行することにより複数の測量結果を取得する工程と、前記測量対象線区について取得した複数の測量結果を用いて線路中心線を推定する工程と、を具備し、前記線路中心線推定工程は、前記測量対象線区について取得した複数の測量結果から線路直線部に相当する範囲を特定し、線路直線部として特定された範囲毎に測定結果を統計解析して線路直線部を推定する工程と、隣り合う推定線路直線部の延長線が交差する箇所で当該交差部に適合した線路曲線部を推定する工程と、を具備したことを特徴とする線路中心線測量方法である。 The first aspect of the present invention is to measure position information with the GPS surveying instrument while traveling on the line of the survey target line section with a train equipped with a GPS surveying instrument, and travel the survey target line section a plurality of times. A step of obtaining a plurality of survey results, and a step of estimating a track center line using a plurality of survey results obtained for the survey target line section , wherein the track center line estimation step includes the survey target. Identifying the range corresponding to the line straight line from multiple survey results obtained for the line section, statistically analyzing the measurement results for each range identified as the line straight line, and estimating the line straight line and adjacent estimation And a step of estimating a line curve portion suitable for the intersecting portion at a location where the extension lines of the line straight portion intersect with each other .

このように構成された線路中心線測量方法によれば、GPS測量機を搭載した列車で測量対象線区の線路上を走行しながら前記GPS測量機で位置情報を測定するので、線路を閉鎖することなく多数の測定結果を得ることができ、GPS測量機の出力する測量結果に誤差が含まれていても、多数の測定結果から線路中心線を推定することにより測量精度を改善することができる。また、GPS測量機の測量結果が実在の線路中心の周りに帯状にばらついていても線路直線部については統計解析することにより高い精度で推定可能であり、推定された直線部の精度が高ければ該推定直線部の延長線が交差する箇所で当該交差部に適合した線路曲線部を推定することにより、線路曲線部の測量結果から統計解析して推定する場合に比べて、より高い精度を実現できる。 According to the track centerline surveying method configured in this way, the position information is measured by the GPS surveying instrument while traveling on the survey target line with the train equipped with the GPS surveying instrument, so the track is closed. A large number of measurement results can be obtained without any problem, and even if an error is included in the survey results output by the GPS surveying instrument, it is possible to improve the survey accuracy by estimating the track center line from the many measurement results. . In addition, even if the survey results of the GPS surveying instrument vary in a band around the actual track center, the straight line portion of the track can be estimated with high accuracy by statistical analysis, and if the accuracy of the estimated straight line portion is high Higher accuracy is achieved by estimating the line curve part that matches the intersection at the intersection of the extension line of the estimated straight line part, compared with the case of statistical analysis and estimation from the survey result of the line curve part. it can.

本発明の第の態様は、上記線路中心線測量方法において、前記線路曲線部を推定する工程は、測量対象線区の曲線部に関する軌道曲線表に基づいて、当該推定線路曲線部の曲線開始位置及び終了位置を示すキロ程、曲線半径を特定し、当該特定したキロ程及び曲線半径から決まる曲線部形状を当該交差部に合わせ込んで線路曲線部を決定するものとした。 According to a second aspect of the present invention, in the above-described track centerline surveying method, the step of estimating the track curve portion starts the curve of the estimated track curve portion based on a track curve table relating to the curve portion of the survey target line section. The radius of the curve indicating the position and the end position and the curve radius are specified, and the curved line shape determined from the specified distance of the kilometer and the curve radius is adjusted to the intersection to determine the line curve portion.

これにより、測量対象線区の曲線部に関する軌道曲線表のデータから得られる曲線部形状はGPS測量機の測量結果に比べて極めて高い精度である一方、統計解析で得られた線路直線部も終端及び始端を除けば高い精度であるので、曲線部形状を交差部に合わせ込んで決定した線路曲線部は非常に精度が高いものとなる。   As a result, the curve shape obtained from the data of the trajectory curve table relating to the curve portion of the survey line segment has extremely high accuracy compared to the survey result of the GPS surveying instrument, while the straight line portion obtained by statistical analysis is also terminated. Since the accuracy is high except for the start end, the line curve portion determined by matching the shape of the curve portion to the intersection is very accurate.

本発明の第の態様は、上記線路中心線測量方法において、前記線路直線部を推定する工程は、各測定結果の位置から推定直線におろした垂線の長さの平方和を最小化する手法で線路直線部を推定するものとした。 According to a third aspect of the present invention, in the line centerline surveying method, the step of estimating the line straight line section is a method of minimizing a sum of squares of the lengths of the perpendicular lines taken from the position of each measurement result on the estimated line. Thus, the line straight line portion is estimated.

これにより、GPS測量機の測量結果は実在の線路中心の周りに帯状にばらついたものが得られるが、X座標、Y座標ともに誤差を含むので、各測定結果の位置から推定直線におろした垂線の長さの平方和を最小化する手法を採用することで、より誤差の少ない推定が可能となる。   As a result, the survey result of the GPS surveying instrument is obtained in a band-like manner around the center of the actual track. However, since both the X coordinate and the Y coordinate include errors, the vertical line drawn on the estimated straight line from the position of each measurement result By adopting a method of minimizing the sum of squares of the lengths, estimation with less error becomes possible.

本発明によれば、線路を閉鎖する必要が無く、しかも航空写真測量に比べて大幅に安い費用で線区の広い範囲に亘って線路中心線を高精度に測量することができる線路中心線測量方法を提供できる。   According to the present invention, it is not necessary to close the track, and the track centerline surveying can measure the track centerline with high accuracy over a wide range of the line section at a significantly lower cost than the aerial photogrammetry. Can provide a method.

以下、本発明の一実施の形態について図面を参照しながら具体的に説明する。
図1に本実施の形態に係る線路中心線測量方法の概略を示す。図1に示すように、GPS測量機10を搭載した列車11を測量対象線区の軌道12上を繰り返し走行させて、走行中にGPS測量機10で一定時刻毎(例えば1秒間隔)に位置データを記録する。この得られた多数の位置データをコンピュータ13で統計解析して線路中心線を求め、平面直角座標系に線路中心線を描画して線路平面図14を作成する。
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
FIG. 1 shows an outline of a track centerline surveying method according to the present embodiment. As shown in FIG. 1, a train 11 equipped with a GPS surveying instrument 10 is repeatedly traveled on a track 12 of the survey target line section, and the GPS surveying instrument 10 is positioned at regular time intervals (for example, at intervals of 1 second) while traveling. Record the data. A large number of the obtained position data is statistically analyzed by the computer 13 to obtain the line center line, and the line center line is drawn on the plane rectangular coordinate system to create the line plan view 14.

図2は本実施の形態に係る線路中心線測量方法の工程図である。軌道走行GPS測量の工程(ST1)では、測量対象線区の線路を営業で走行している各列車11にGPS測量機10−1〜10−nを載せて一定時刻(例えば1秒)ごとに位置を測量する。1つの列車には、1つのGPS測量機が搭載されていれば良く、1回の走行において同一地点で多数の測定データを取得するのであれば複数のGPS測量機を搭載するようにしても良い。各GPS測量機10−1〜10−nは、複数のGPS衛星から電波で地球表面へ送信している各GPS衛星の位置及び時刻情報を受信してGPS測量機の位置情報(本例では世界測地系における経度情報及び緯度情報)を計算して出力する。GPS測量機10−1〜10−nに内蔵するレコーダに位置情報は逐次記憶される。   FIG. 2 is a process diagram of the track centerline surveying method according to the present embodiment. In the orbital traveling GPS surveying step (ST1), GPS surveying devices 10-1 to 10-n are placed on each train 11 that is traveling in the line of the survey target line section at regular intervals (for example, 1 second). Survey the position. One train is only required to be mounted on one train, and a plurality of GPS survey devices may be mounted if a large number of measurement data is acquired at the same point in one run. . Each GPS surveying instrument 10-1 to 10-n receives the position and time information of each GPS satellite transmitted to the earth's surface by radio waves from a plurality of GPS satellites and receives the position information of the GPS surveying instrument (in this example, the world Calculate and output longitude information and latitude information in the geodetic system. Position information is sequentially stored in a recorder built in the GPS surveying devices 10-1 to 10-n.

GPS測量には、精密な結果が得られる方法と粗い測定結果しか得られない方法がある。営業中の列車では大掛かりな装置を設置するのは種々の制約から困難な場合がある。今回は粗い測定方法を採用した。本実施の形態では、測定誤差が2m以下のGPS測量機を用いるものとするが、営業中の列車に搭載可能であるならば、さらに精度の高いGPS測量機を用いることもできる。営業列車は、同一軌道上を何度も走行するので、軌道上の各位置に関して多数の測量結果を得ることができ、統計解析することで精度を改善することができる。   There are two methods of GPS surveying: obtaining precise results and obtaining only coarse measurement results. It may be difficult to install a large-scale device on a train in operation due to various restrictions. This time, a rough measurement method was adopted. In this embodiment, a GPS surveying instrument having a measurement error of 2 m or less is used. However, if it can be mounted on a train in operation, a GPS surveying instrument with higher accuracy can be used. Since the business train runs many times on the same track, a large number of survey results can be obtained for each position on the track, and the accuracy can be improved by statistical analysis.

このように、軌道走行GPS測量工程(ST1)では、営業列車にGPS測量機10を搭載して測量するので、線路を閉鎖することなく測量できる利点がある。   In this way, in the track traveling GPS surveying step (ST1), the GPS surveying instrument 10 is mounted on the commercial train and surveying is performed, so that there is an advantage that surveying can be performed without closing the track.

次に、測量データ読込み工程(ST2)では、GPS測量に使用された各列車11から回収したGPS測量機10−1〜10−nより測量結果を読み出してコンピュータ13のメモリ15に格納する。この時点での測量結果は世界測地系に基づいた経度情報及び緯度情報である。   Next, in the survey data reading step (ST2), the survey results are read from the GPS survey instruments 10-1 to 10-n collected from the trains 11 used for the GPS survey and stored in the memory 15 of the computer 13. The survey results at this time are longitude information and latitude information based on the world geodetic system.

次に、平面直角座標系への展開工程(ST3)では、メモリ15に格納した測量結果を世界測地系に基づいた形式から平面直角座標系へ変換し、各測量結果を平面直角座標系にプロットする。平面直角座標系にプロットした測量結果をコンピュータ13のディスプレイ16に表示させる。   Next, in the expansion process (ST3) to the plane rectangular coordinate system, the survey results stored in the memory 15 are converted from the format based on the world geodetic system to the plane rectangular coordinate system, and each survey result is plotted in the plane rectangular coordinate system. To do. The survey result plotted in the plane rectangular coordinate system is displayed on the display 16 of the computer 13.

図3は平面直角座標系にプロットした測量結果を示す図である。測量結果が線路中心に沿って帯状に分布している。図4は実際の測定結果が推定線に対してどの程度分布しているかを示すヒストグラムである。線路中心に相当する推定線を任意に定め、その推定線に対して測定結果がどの程度分布するかを示している。同図に示すように、特異点データを除けば、測量結果は±2m以内に収まっていることが判る。これは使用したGPS測量機の精度とほぼ一致していることになる。   FIG. 3 is a diagram showing survey results plotted in a plane rectangular coordinate system. The survey results are distributed in a band along the center of the track. FIG. 4 is a histogram showing how the actual measurement results are distributed with respect to the estimated line. An estimated line corresponding to the center of the line is arbitrarily determined, and how much the measurement result is distributed with respect to the estimated line is shown. As shown in the figure, it can be seen that, except for the singular point data, the survey results are within ± 2 m. This almost coincides with the accuracy of the used GPS surveying instrument.

次に、直線部推定データの選択工程(ST4)では、ディスプレイ16に表示させた測量結果から線路の直線部であると推定される測量結果を選択する。線路直線部の推定に用いる測量結果に線路曲線部の測量結果が含まれると、線路直線部の測量精度が低下する。そこで、図5に示すように、ディスプレイ16に表示させた測量結果から線路直線部の測量結果であると予想される測量結果を直線部単位で選択する。図5に示す例では、D1,D2,D3の3つの予測線路直線部が抽出され、予測線路直線部D1,D2,D3毎にそこに含まれる測量結果が選択される。測量結果の選択方法は特に限定されないが、例えばディスプレイ16に表示させた状態で各予測線路直線部の範囲D1,D2,D3をマウス等のポインティングデバイスで指定することにより、指定された各予測線路直線部D1,D2,D3の範囲に含まれる測量結果を一括指定するようにしても良い。   Next, in the selection process (ST4) of the straight line portion estimation data, a survey result estimated to be a straight line portion of the track is selected from the survey result displayed on the display 16. If the survey result used for the estimation of the track straight line part includes the survey result of the track curve part, the survey accuracy of the track straight line part decreases. Therefore, as shown in FIG. 5, the survey result that is expected to be the survey result of the track straight line portion is selected for each straight line portion from the survey result displayed on the display 16. In the example shown in FIG. 5, three predicted line straight portions D1, D2, and D3 are extracted, and survey results included therein are selected for each predicted line straight portion D1, D2, and D3. The selection method of the survey result is not particularly limited. For example, by specifying the range D1, D2, and D3 of each predicted line straight portion with a pointing device such as a mouse while being displayed on the display 16, each specified predicted line is specified. The survey results included in the range of the straight line portions D1, D2, and D3 may be designated collectively.

ここで、予測線路直線部D1,D2,D3の抽出には測量対象線区について作成されている軌道曲線表を利用することができる。軌道曲線表には、測量対象線区に存在する軌道曲線に関する情報として個々の曲線部の始点と終点がキロ程の形式で登録されている。軌道曲線表において2つの曲線部が連続していなければ、ある曲線部と次の曲線部との間に必ず直線部が存在することになる。よって、線路直線部が存在する範囲は軌道曲線表から予測することができる。線路曲線部の半径が大きい場合、直線部と曲線部との判別が困難であるので、軌道曲線表から直線部を予測することは直線部の抽出漏れを防止する観点から好ましい。   Here, for the extraction of the predicted track straight line portions D1, D2, and D3, the track curve table created for the survey target line section can be used. In the track curve table, the start point and end point of each curve portion are registered in the form of kilometer as information on the track curve existing in the survey line. If two curve portions are not continuous in the trajectory curve table, a straight line portion always exists between a certain curve portion and the next curve portion. Therefore, the range in which the track straight line portion exists can be predicted from the track curve table. When the radius of the track curve portion is large, it is difficult to distinguish between the straight line portion and the curve portion. Therefore, it is preferable to predict the straight line portion from the track curve table from the viewpoint of preventing extraction of the straight line portion.

次に、直線部推定工程(ST5)では、予測線路直線部D1,D2,D3毎に選択された測量結果を統計解析して直線部を求める。一般に、一点をGPS測量機によって測量すると、真の点のまわりにばらつく多数の点が得られる。この場合は得られたデータの平均をとることで対象の点の座標値を推定でき、また、標準偏差などバラツキの程度を表す値も計算でき、推定値評価もできる。ところが、列車搭載のGPS測量機によって得られる座標値は線路中心線上のどの点を測定したものか特定することはできない。実際に列車搭載のGPS測量機で観測されたデータは、実在の線路中心線の周りに帯状にばらついたものが得られる。直線部に限って言えば、推定直線の両側にばらついた測定値となるため、統計的手法で直線回帰式を得ることができる。一般のX−Y座標系での直線回帰式では、測定点のX座標値は確かなものとしてY座標値の残差平方和を最小化する(あるいはその逆)が、GPS測量機によって得られる測定値にはX座標、Y座標ともに誤差を含むので、この方法は使えない。そこで、以下の手法を採用している。   Next, in the straight line portion estimation step (ST5), the survey result selected for each predicted line straight portion D1, D2, D3 is statistically analyzed to obtain a straight line portion. In general, when a point is measured by a GPS surveying instrument, a large number of points that vary around a true point are obtained. In this case, the coordinate value of the target point can be estimated by taking the average of the obtained data, and a value representing the degree of variation such as standard deviation can be calculated, and the estimated value can be evaluated. However, the coordinate value obtained by the GPS surveying instrument mounted on the train cannot specify which point on the track center line is measured. Data actually observed with a train-equipped GPS surveying instrument can be obtained in a striped manner around the actual line center line. As far as the straight line portion is concerned, since the measured values vary on both sides of the estimated straight line, a linear regression equation can be obtained by a statistical method. In a linear regression equation in a general XY coordinate system, the X coordinate value of the measurement point is assured and the residual sum of squares of the Y coordinate value is minimized (or vice versa), which is obtained by the GPS surveying instrument. Since the measurement value includes an error in both the X coordinate and the Y coordinate, this method cannot be used. Therefore, the following method is adopted.

図6に直線部を求めるための統計解析の一例を示す。各測定結果(黒四角マーク)から推定直線におろした垂線の長さの平方和が最小になる直線式を求める。   FIG. 6 shows an example of statistical analysis for obtaining the straight line portion. From each measurement result (black square mark), a linear equation that minimizes the sum of the squares of the lengths of the perpendiculars on the estimated straight line is obtained.

ここで、予測線路直線部D1,D2,D3の直線両端部の測定結果は曲線開始部との判断が困難であるので直線式の精度を上げるためには統計解析の対象から除外することが望ましい。直線式は直線部の線路中心線を表しており、直線部の終端及び始端位置は後述するST6−2の処理で高精度に特定することができる。   Here, since it is difficult to determine the measurement results of the straight line both ends of the predicted line straight portions D1, D2, and D3 as the curve start portion, it is desirable to exclude them from statistical analysis in order to increase the accuracy of the linear equation. . The straight line expression represents the line center line of the straight line portion, and the end and start position of the straight line portion can be specified with high accuracy by the process of ST6-2 described later.

この求めた直線式に基づいて線路の直線部(始点と終端とを有する線分)を仮決定し、当該直線線分に直線部番号を付して、始点、終点座標及び傾き情報を直線部番号と共に登録する。以後、同様の手順で予測線路直線部D2,D3についても直線式を求め、求めた直線式から直線部を仮決定し、直線部番号を付して、始点、終点座標及び傾き情報を直線部番号と共に登録する。   Based on the obtained linear formula, a straight line portion of the line (a line segment having a start point and an end point) is provisionally determined, a straight line number is assigned to the straight line segment, and the start point, end point coordinates, and inclination information are obtained as a straight line portion. Register with a number. Thereafter, the linear equation is also obtained for the predicted line straight portions D2 and D3 in the same procedure, the linear portion is provisionally determined from the obtained linear equation, the straight portion number is assigned, and the start point, end point coordinates, and inclination information are linear portions. Register with a number.

また、直線番号を付して登録した直線部をディスプレイ16に表示させる。図7に示すように、本例では測定対象線区に3つの直線部(第1直線部L1、第2直線部L2、第3直線部L3)が存在していたことになる。なお、現実の線区は、1線区に多数の直線部及び曲線部が存在するが、説明を判り易くするために単純なモデルの線区を例示している。   In addition, a straight line portion registered with a straight line number is displayed on the display 16. As shown in FIG. 7, in this example, there are three straight portions (first straight portion L1, second straight portion L2, and third straight portion L3) in the measurement target line section. In addition, although an actual line segment has a large number of straight line portions and curved line portions in one line segment, a simple model line segment is illustrated for easy understanding.

次に、曲線部推定工程(ST6−1)では、先に求めた第1直線部L1、第2直線部L2、第3直線部L3の各延長線の交差部に適合する曲線部を推定する。曲線部の推定には該当線区の軌道曲線表を用いることが望ましい。   Next, in the curve portion estimation step (ST6-1), a curve portion that matches the intersection of the extension lines of the first straight line portion L1, the second straight line portion L2, and the third straight line portion L3 obtained previously is estimated. . It is desirable to use the trajectory curve table of the corresponding line section for the estimation of the curved portion.

図8はある線区の実際の軌道曲線表の一部を抜き出して示す図である。同図に示すように、軌道曲線表には、各曲線部に関する、線名81、キロ程82、曲率半径83、方向84、曲線情報85、その他の項目が登録されている。また、軌道曲線表における曲線部の記載順位は当該線区での線区開始点から線区終了点にかけて出現する順番と一致している。すなわち、軌道曲線表から当該線区における各曲線部の順番も取得できることを意味している。   FIG. 8 is a diagram showing a part of an actual trajectory curve table extracted from a certain line section. As shown in the figure, in the trajectory curve table, a line name 81, a kilometer 82, a radius of curvature 83, a direction 84, curve information 85, and other items relating to each curved portion are registered. Moreover, the order of description of the curve portions in the trajectory curve table matches the order of appearance from the line segment start point to the line segment end point in the line segment. That is, it means that the order of each curve portion in the line segment can also be acquired from the trajectory curve table.

具体的に、図9に示す第1直線部L1と第2直線部L2との間に入る曲線部C1を軌道曲線表から選択する処理について説明する。図7に示すように第1直線部L1は測定対象線区における最初の直線部であり、第2直線部L2は2番目の直線部であるので、その間に入る曲線部C1は軌道曲線表における最初の曲線部となる。したがって、推定対象となる曲線部を挟む両側の直線部の直線番号から曲線部の順番を判断し、当該線区の軌道曲線表から上記判断した順番の曲線部を選択する。   Specifically, the process of selecting the curve portion C1 that falls between the first straight line portion L1 and the second straight line portion L2 shown in FIG. 9 from the trajectory curve table will be described. As shown in FIG. 7, the first straight line portion L1 is the first straight line portion in the measurement target line section, and the second straight line portion L2 is the second straight line portion. It becomes the first curve part. Therefore, the order of the curve portions is determined from the straight line numbers of the straight portions on both sides sandwiching the curve portion to be estimated, and the curve portions in the determined order are selected from the trajectory curve table of the line section.

このとき、曲線部の順番だけで該当曲線部を選択するのではなく、当該曲線部の基準点からの距離を示すキロ程82又は当該曲線部の曲がり方向を示す方向84を選択条件に入れることが選択ミスを防止する上で望ましい。キロ程82は当該線区における曲線部の基準点からの距離を示すので、既に確定している直線部及び曲線部を加算した距離と比較して許容範囲を超えてずれていれば、先に確定している直線部又は曲線部、又は今回選択した曲線部に誤りがあることになる。また、曲線部の曲がり方向84が両側の直線部の交差方向と逆であれば、先に確定している直線部又は曲線部、又は今回選択した曲線部の何れかに誤りがあることになる。   At this time, instead of selecting the corresponding curved portion only by the order of the curved portion, the kilometer 82 indicating the distance from the reference point of the curved portion or the direction 84 indicating the bending direction of the curved portion is included in the selection condition. Is desirable to prevent selection errors. Since the kilometer 82 indicates the distance from the reference point of the curved part in the line segment, if the deviation is beyond the allowable range compared to the distance obtained by adding the straight line part and the curved part already determined, There is an error in the fixed straight line portion or curved portion or the curved portion selected this time. Further, if the bending direction 84 of the curved portion is opposite to the intersecting direction of the straight portions on both sides, there is an error in either the previously determined straight portion or curved portion or the currently selected curved portion. .

次に、軌道曲線はめ込み工程(ST6−2)では、今回選択した曲線部に関する曲線半径83、方向84及び曲率情報85を軌道曲線表から取得する。曲率情報85のBTCは当該曲線部における曲線開始点の基準点からの距離を示し、ETCは当該曲線部における曲線終了点の基準点からの距離を示している。今、軌道曲線表から取得した曲線半径83=Rとすると、第1直線部L1と第2直線部L2との間に存在する曲線部は、半径=Rの円と同じ曲率を有し、かつ円弧長がETC−BTCの曲線形状となる。具体的には、第1直線部L1及び第2直線部L2からの双方の延長線が交差する交差部に対して半径=Rの内接円を定め、該内接円と第1直線部L1及び第2直線部L2(又はそれらの延長線)との交点を求め、この求めた一方の交点から他方の交点までの円弧部を求める曲線部とすることができる。   Next, in the orbit curve fitting step (ST6-2), the curve radius 83, the direction 84 and the curvature information 85 relating to the currently selected curve portion are acquired from the orbit curve table. BTC of the curvature information 85 indicates the distance from the reference point of the curve start point in the curve portion, and ETC indicates the distance from the reference point of the curve end point in the curve portion. Now, assuming that the curve radius 83 = R obtained from the trajectory curve table, the curved portion existing between the first straight line portion L1 and the second straight line portion L2 has the same curvature as the circle of radius = R, and The arc length is an ETC-BTC curve shape. Specifically, an inscribed circle of radius = R is defined for the intersection where the extended lines from the first straight line portion L1 and the second straight line portion L2 intersect, and the inscribed circle and the first straight line portion L1 are defined. And the intersection with 2nd straight line part L2 (or those extension lines) is calculated | required, It can be set as the curve part which calculates | requires the circular arc part from this calculated | required one intersection to the other intersection.

なお、曲線部の形状は、該曲線部における曲線開始点からの所定距離と曲線終了点までの所定距離は緩和曲線が入れられている。BCCは曲線開始点側の緩和曲線を形成する緩和曲線の頂点位置を示し、ECCは曲線終了点側の緩和曲線を形成する緩和曲線の頂点位置を示している。前記緩和曲線形状は正弦波カーブや三次放物線が使われている。したがって、曲線部の形状は、単純な円弧ではなく、2つの緩和曲線とその間に挟まれた一定曲率(半径=R)の円弧との組み合わせで構成されていることになる。よって、軌道曲線表から取得した半径(=R)と円弧長(=ETC−BTC)から決定した円弧部分の両端に、緩和曲線を所定距離だけ入れる修正を加える。緩和曲線の長さはBCC,ECCで決まる。   In addition, as for the shape of the curve part, the relaxation curve is put into the predetermined distance from the curve start point and the curve end point in the curve part. BCC indicates the vertex position of the relaxation curve forming the relaxation curve on the curve start point side, and ECC indicates the vertex position of the relaxation curve forming the relaxation curve on the curve end point side. As the relaxation curve shape, a sine wave curve or a cubic parabola is used. Therefore, the shape of the curved portion is not a simple arc but a combination of two relaxation curves and an arc having a constant curvature (radius = R) sandwiched between them. Therefore, a correction is made to put a relaxation curve by a predetermined distance at both ends of the arc portion determined from the radius (= R) and the arc length (= ETC-BTC) acquired from the trajectory curve table. The length of the relaxation curve is determined by BCC and ECC.

以上のようにして緩和曲線まで含んだ曲線部の形状及び長さを決定することができる。この緩和曲線まで含んだ形状及び長さを有する曲線部を円弧とし、半径を上記内接円と同じ半径=Rとした扇形形状を形成する。本例では、はめ込み操作の容易性から扇形形状とするが、少なくとも緩和曲線まで含んだ形状及び長さを有する曲線形状であれば、扇形形状に限定されない。   As described above, the shape and length of the curved portion including the relaxation curve can be determined. A curved portion having a shape and a length including the relaxation curve is an arc, and a sector shape is formed in which the radius is the same radius = R as the inscribed circle. In this example, the fan shape is used for ease of fitting operation, but the shape is not limited to the fan shape as long as it has a shape and length including at least the relaxation curve.

本実施の形態では、上記扇形形状を第1直線部L1と第2直線部L2との双方の延長線の交差部にはめ込むことにより、第1直線部L1及び第2直線部L2の終端又は始端を修正する。具体的には、図9に示すように、上記扇形形状の円弧部の一端(BTC)が第1直線部L1上に位置し、かつ扇形形状の一辺LL1が第1直線部L1と直角に当接し、同時に円弧部の他端(ETC)が第2直線部L2上に位置し、かつ扇形形状の一辺LL2が第2直線部L2と直角に当接するように、上記扇形形状を第1直線部L1と第2直線部L2との交差部にはめ込む。   In the present embodiment, by fitting the sector shape into the intersection of the extension lines of both the first straight line portion L1 and the second straight line portion L2, the terminal ends or the start ends of the first straight line portion L1 and the second straight line portion L2. To correct. Specifically, as shown in FIG. 9, one end (BTC) of the fan-shaped arc portion is positioned on the first straight portion L1, and one side LL1 of the fan-shaped portion is perpendicular to the first straight portion L1. At the same time, the other end (ETC) of the arc portion is located on the second straight line portion L2, and the fan-shaped one side LL2 is in contact with the second straight line portion L2 at a right angle so that the sector shape is the first straight portion. It fits into the intersection of L1 and the 2nd straight line part L2.

このとき、上記扇形形状の円弧部の一端(BTC)が上記ST5で仮決定した第1直線部L1の終端上に位置するとは限らない。そこで円弧部の一端(BTC)との交点位置を第1直線部L1の終端とする修正を行う。同様に、上記扇形形状の円弧部の他端(ETC)が上記ST5で仮決定した第2直線部L2の始端上に位置するとは限らないので、円弧部の他端(ETC)との交点位置を第2直線部L2の始端とする修正を行う。   At this time, one end (BTC) of the fan-shaped arc portion is not necessarily located on the terminal end of the first linear portion L1 provisionally determined in ST5. Therefore, correction is performed with the position of the intersection with one end (BTC) of the arc portion as the end of the first straight line portion L1. Similarly, since the other end (ETC) of the fan-shaped arc portion is not necessarily located on the start end of the second straight line portion L2 provisionally determined in ST5, the position of the intersection with the other end (ETC) of the arc portion Is corrected to be the starting end of the second straight line portion L2.

このようにして、第1直線部L1と第2直線部L2との間に存在する曲線部C1の平面直角座標系における位置情報が定まる。図7に示すように、曲線部C1を第1直線部L1と第2直線部L2との交差部にはめ込んで線路中心線を接続する。   In this way, the position information in the plane rectangular coordinate system of the curved line portion C1 existing between the first straight line portion L1 and the second straight line portion L2 is determined. As shown in FIG. 7, the line center line is connected by fitting the curved line portion C1 into the intersection of the first straight line portion L1 and the second straight line portion L2.

軌道曲線表のキロ程の値は、基準点から遠くなるのに伴い誤差が大きくなるが、曲線部における起点と終点との差及び半径は、曲線部の線路敷設時又は改修工事時に精度の高い地上測量に基づいて決められているので曲線部の円弧の長さはキロ程の誤差を含んでいない高精度の値である。また、ST5の直線部推定だけで第1直線部L1及び第2直線部L2の終端及び始点を特定することは困難であるが、第1直線部L1及び第2直線部L2の基準となる直線式は測量結果の選択により上記統計解析で高精度に求めることができる。したがって、軌道曲線表中の信頼性の高いデータから作成した上記扇形形状を、第1直線部L1と第2直線部L2との交差部にはめ込む手法で決定した曲線部C1及び第1直線部L1の終端である円弧開始位置(BTC)、第2直線部L2の始端である円弧終了位置(ETC)は、直線部並びに曲線部をGPS測量値だけを用いて統計解析した場合に比べて、誤差を大幅に抑えた信頼性の高い位置情報であると言える。   The value of kilometer in the track curve table increases as the distance from the reference point increases, but the difference and radius between the starting point and the ending point in the curved part is highly accurate when laying or renovating the curved line. Since it is determined based on ground surveying, the length of the arc of the curved portion is a highly accurate value that does not include an error of about a kilometer. Further, although it is difficult to specify the end and start points of the first straight line portion L1 and the second straight line portion L2 only by the straight line portion estimation in ST5, the straight line that serves as a reference for the first straight line portion L1 and the second straight line portion L2 The equation can be obtained with high accuracy by the above statistical analysis by selecting the survey result. Accordingly, the curved line portion C1 and the first straight line portion L1 determined by the method of fitting the fan-shaped shape created from the highly reliable data in the trajectory curve table into the intersection between the first straight line portion L1 and the second straight line portion L2. The arc start position (BTC) that is the end of the arc and the arc end position (ETC) that is the start of the second straight line portion L2 are errors compared to the case where the straight line portion and the curve portion are statistically analyzed using only GPS survey values. It can be said that the position information is highly reliable and greatly suppressed.

第2直線部L2と第3直線部L3との交差部についても、同様にして軌道曲線表中のデータから扇形形状を作成し、作成した扇形形状を第2直線部L2と第3直線部L3との交差部にはめ込んで曲線部C2並びに第2直線部L2の終端及び第3直線部L3の始端を決定する。   Similarly, at the intersection of the second straight line portion L2 and the third straight line portion L3, a sector shape is created from the data in the trajectory curve table, and the created sector shape is used as the second straight line portion L2 and the third straight line portion L3. And the curved line C2, the end of the second straight line L2, and the start of the third straight line L3 are determined.

次に、線路平面図データの格納工程ST7では、図7に示すように直線部L1〜L3と曲線部C1、C2を接続して、平面直角座標系に線路中心データが描画された線路平面図データを線路平面図格納部17に格納する。線路平面図格納部17は、コンピュータ13に付設された大容量記憶媒体であっても良いし、データ通信ネットワークを介して接続された大容量記憶装置であっても良い。また、測定対象線区全体の線路平面図データは非常に大きなデータ量となるが、測定対象線区を複数のブロックに分割し、線路平面図データをブロック単位で分割するのであれば、少なくとも1ブロック分の記憶容量を有する複数の記憶媒体に分割して格納することもできる。   Next, in the line plan view data storing step ST7, the line plan view in which the line center data is drawn in the plane rectangular coordinate system by connecting the straight line portions L1 to L3 and the curve portions C1 and C2 as shown in FIG. Data is stored in the track plan view storage unit 17. The track plan view storage unit 17 may be a mass storage medium attached to the computer 13, or may be a mass storage device connected via a data communication network. In addition, the line plan data of the entire measurement target line section has a very large amount of data. However, if the measurement target line section is divided into a plurality of blocks and the line plan view data is divided in units of blocks, at least one is required. It can also be divided and stored in a plurality of storage media having a storage capacity for blocks.

以上のように本実施の形態によれば、GPS測量機10−1〜10−nを複数の営業列車に搭載して測定対象線区を走行しながらGPS測量を行うので、線路を閉鎖することなく線路平面図作成のための測量を行うことができる利点がある。   As described above, according to the present embodiment, GPS surveying devices 10-1 to 10-n are mounted on a plurality of business trains, and GPS surveying is performed while traveling on the measurement target section, so the track is closed. There is also an advantage that surveying for creating a track plan can be performed.

また、同一線区を繰り返し走行する列車に搭載したGPS測量機10−1〜10−nで位置情報を測量するので、測定対象線区について多数の測定結果を取得することができ、直線部の直線式を求める際の統計解析の精度を上げることができる。   In addition, since the position information is measured by the GPS surveying devices 10-1 to 10-n mounted on the train that repeatedly travels in the same line section, a large number of measurement results can be acquired for the measurement target line section. It is possible to increase the accuracy of statistical analysis when obtaining a linear expression.

また、多数の測定値を用いた統計解析で求めた精度の高い直線式と、軌道曲線表中の信頼性の高いデータから作成した扇形形状とを組み合わせて曲線部を求めているので、統計解析では求めることの困難な曲線部を高精度に求めることができる。しかも、曲線部を求める過程で、統計解析だけでは精度維持が困難な直線部端部(始端及び終端)を特定できる。その結果、測定対象線区の全範囲に亘り、直線部L1〜L3及び曲線部C1、C2の全てについて、測量誤差が少なく十分に実用に耐え得る線路平面図データを簡易にかつ低コストで作成することができる。   In addition, since the curve part is obtained by combining a highly accurate linear equation obtained by statistical analysis using a large number of measured values and a fan shape created from highly reliable data in the trajectory curve table, statistical analysis is performed. Then, it is possible to obtain a curved portion that is difficult to obtain with high accuracy. In addition, in the process of obtaining the curved portion, it is possible to specify straight line end portions (start and end points) that are difficult to maintain with statistical analysis alone. As a result, over the entire range of the line to be measured, the line plan view data that can withstand practical use with few surveying errors can be created easily and at low cost for all of the straight portions L1 to L3 and the curved portions C1 and C2. can do.

なお、以上の説明ではGPS測量機を営業車両に搭載しているが、営業車両以外の車両に搭載しても線路を閉鎖することなく測量できる。   In the above description, the GPS surveying instrument is mounted on the business vehicle. However, even if the GPS surveying device is mounted on a vehicle other than the business vehicle, the survey can be performed without closing the track.

また、GPS測量機に無線機能を持たせて、センター側と無線交信して測量結果を逐次送信するようにしても良い。   Further, the GPS surveying instrument may be provided with a wireless function so that the survey result is sequentially transmitted by wireless communication with the center side.

本発明は上述した実施の形態及びその変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   The present invention is not limited to the above-described embodiment and modifications thereof, and various modifications can be made without departing from the spirit of the present invention.

本発明は、電子化された線路平面図データの作成に適用可能である。   The present invention is applicable to creation of digitized line plan data.

本発明の一実施の形態に係る線路中心線測量方法の概略図Schematic of track centerline surveying method according to one embodiment of the present invention 上記実施の形態に係る線路中心線測量方法の工程図Process drawing of track centerline surveying method according to above embodiment 平面直角座標系にプロットした測量結果を示す図Figure showing survey results plotted in a plane Cartesian coordinate system 実際の測定結果に基づいて作成した分布表を示す図Figure showing a distribution table created based on actual measurement results 測量結果から予測線路直線部を選択した状態を示す図The figure which shows the state which selected the prediction track straight line part from the survey result 直線部を求めるための統計解析の一例を示す図The figure which shows an example of the statistical analysis for calculating | requiring a straight part 求めた直線部及び曲線部から線路中心線を作成した状態を示す図The figure which shows the state which created the track center line from the calculated straight line part and curve part 軌道曲線表の一部を示す図Figure showing a part of the orbit curve table 曲線部の求め方を示す図Diagram showing how to find the curve

符号の説明Explanation of symbols

10 GPS測量機
11 車両
12 軌道
13 コンピュータ
14 線路平面図
15 メモリ
16 ディスプレイ
17 線路平面図格納部



10 GPS Surveyor 11 Vehicle 12 Track 13 Computer 14 Track Plan 15 Memory 16 Display 17 Track Plan Storage



Claims (3)

GPS測量機を搭載した列車で測量対象線区の線路上を走行しながら前記GPS測量機で位置情報を測定し、前記測量対象線区を複数回走行することにより複数の測量結果を取得する工程と、
前記測量対象線区について取得した複数の測量結果を用いて線路中心線を推定する工程と、を具備し
前記線路中心線推定工程は、
前記測量対象線区について取得した複数の測量結果から線路直線部に相当する範囲を特定し、線路直線部として特定された範囲毎に測定結果を統計解析して線路直線部を推定する工程と、
隣り合う推定線路直線部の延長線が交差する箇所で当該交差部に適合した線路曲線部を推定する工程と、を具備したことを特徴とする線路中心線測量方法。
A step of measuring position information with the GPS surveying instrument while traveling on a line of the survey target line section with a train equipped with a GPS surveying instrument, and acquiring a plurality of survey results by traveling the survey target line section a plurality of times. When,
A line center line is estimated using a plurality of survey results acquired for the survey target line section , and
The track center line estimation step includes:
Identifying a range corresponding to the line straight line portion from a plurality of survey results obtained for the survey target line section, and estimating the line straight line portion by statistically analyzing the measurement results for each range identified as the line straight line portion;
A line center line surveying method , comprising: a step of estimating a line curve portion adapted to the intersection at an intersection of adjacent extension lines of the estimated line straight portions .
前記線路曲線部を推定する工程は、測量対象線区の曲線部に関する軌道曲線表に基づいて、当該推定線路曲線部の曲線開始位置及び終了位置を示すキロ程、曲線半径を特定し、当該特定したキロ程及び曲線半径から決まる曲線部形状を当該交差部に合わせ込んで線路曲線部を決定することを特徴とする請求項記載の線路中心線測量方法。 The step of estimating the track curve portion specifies the curve radius and the curve radius indicating the curve start position and the end position of the estimated track curve portion based on the trajectory curve table regarding the curve portion of the survey target line section, and line centerline surveying method according to claim 1, characterized in that the kilometrage and determined from the curve radius curved section shape determines the line curved portion crowded fit the intersection. 前記線路直線部を推定する工程は、各測定結果の位置から推定直線におろした垂線の長さの平方和を最小化する手法で線路直線部を推定することを特徴とする請求項又は請求項記載の線路中心線測量方法。 The step of estimating the line straight portion, claim 1 or claim, characterized in that estimating the line straight portion in a manner that minimizes the sum of squares of the length of the perpendicular line drawn to the estimated straight line from the position of the measurement results Item 2. A line centerline surveying method according to item 2 .
JP2005179196A 2005-06-20 2005-06-20 Track centerline survey method Active JP4828169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179196A JP4828169B2 (en) 2005-06-20 2005-06-20 Track centerline survey method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179196A JP4828169B2 (en) 2005-06-20 2005-06-20 Track centerline survey method

Publications (2)

Publication Number Publication Date
JP2006349611A JP2006349611A (en) 2006-12-28
JP4828169B2 true JP4828169B2 (en) 2011-11-30

Family

ID=37645620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179196A Active JP4828169B2 (en) 2005-06-20 2005-06-20 Track centerline survey method

Country Status (1)

Country Link
JP (1) JP4828169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184436B2 (en) * 2009-05-14 2013-04-17 三菱プレシジョン株式会社 Method and apparatus for generating 3D road centerline data
CN111199064B (en) * 2019-11-22 2023-04-28 中煤科工集团武汉设计研究院有限公司 Subway track surface three-dimensional center line generation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753833B2 (en) * 1997-03-27 2006-03-08 アジア航測株式会社 Road linear automatic surveying equipment
JP3816018B2 (en) * 2002-03-28 2006-08-30 財団法人鉄道総合技術研究所 Train own vehicle position detection method and train own vehicle position detection system
JP3810781B2 (en) * 2004-08-31 2006-08-16 有限会社高萩自工 Track rail maintenance system and track rail maintenance method

Also Published As

Publication number Publication date
JP2006349611A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US7516041B2 (en) System and method for identifying road features
JP2004325777A (en) Road information system of on-vehicle navigation and road information measurement method therefor, road surface altitude value measurement system, and navigation using the same system
CN102435197A (en) MBR (Master Boot Record)-based GPS (Global Position System) track map matching method
JP2011511954A (en) Method and apparatus for combining a first section from a first digital map database and a second section from a second digital map database
Ben-Arieh et al. Geometric modeling of highways using global positioning system data and B-spline approximation
Berk et al. Accurate area determination in the cadaster: Case study of Slovenia
US20100235020A1 (en) Database For Efficient Storage of Track Geometry and Feature Locations
JP4828169B2 (en) Track centerline survey method
CN109937342A (en) For positioning the methods, devices and systems of mobile object
US6473690B1 (en) Three-dimensional space curve comparison using spatial angle variance metric and applications thereof
US8126934B2 (en) Updating track databases after track maintenance
CN105717517B (en) A kind of vehicle-mounted big dipper multi-mode GNSS high accuracy roads basis collecting method
Johnson Plane and geodetic surveying
KR100529511B1 (en) Method for producing digital map by road boundary measuring and constituting geographic information system using the same
US8244456B2 (en) Validation of track databases
JP7384762B2 (en) Kilo weight imparting device and kilo weight imparting method
Rasdorf et al. Transportation distance measurement data quality
CN109918462A (en) A kind of processing method of GIS-Geographic Information System
JP4627007B2 (en) Map correction information selection device, map correction information selection method, and map correction information selection program
Tao et al. Digital track map generation for safety-critical railway applications
CN110647591A (en) Method and device for testing vector map
CN107907116A (en) One kind plans accurate Urban Planning System
KR100545925B1 (en) Method of surveying structural facilities along road by using vehicle with gps receiver and laser measuring instrument
KR100450401B1 (en) Fabricating Method of a Digital Map Using a Transmitting-receiving Antenna and GPS
CN115183794A (en) GNSS-based railway track measurement method, system, device and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250