JP4827502B2 - Rotary motion transmission device - Google Patents

Rotary motion transmission device Download PDF

Info

Publication number
JP4827502B2
JP4827502B2 JP2005336612A JP2005336612A JP4827502B2 JP 4827502 B2 JP4827502 B2 JP 4827502B2 JP 2005336612 A JP2005336612 A JP 2005336612A JP 2005336612 A JP2005336612 A JP 2005336612A JP 4827502 B2 JP4827502 B2 JP 4827502B2
Authority
JP
Japan
Prior art keywords
ring
shaped
support member
power transmission
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005336612A
Other languages
Japanese (ja)
Other versions
JP2007139140A (en
Inventor
久 渡邊
Original Assignee
久 渡邊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久 渡邊 filed Critical 久 渡邊
Priority to JP2005336612A priority Critical patent/JP4827502B2/en
Publication of JP2007139140A publication Critical patent/JP2007139140A/en
Application granted granted Critical
Publication of JP4827502B2 publication Critical patent/JP4827502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

この発明は、例えば、半導体製造に供される真空チャンバ内のマニピュレータ等に、真空チャンバ外部のモータから得られた回転運動を伝達する場合等に好適な回転運動伝達装置に関する。   The present invention relates to a rotational motion transmission device suitable for transmitting rotational motion obtained from a motor outside a vacuum chamber to, for example, a manipulator in a vacuum chamber used for semiconductor manufacturing.

半導体製造に供される真空チャンバ内のマニピュレータ等に、真空チャンバ外部のモータから得られた回転駆動力を伝達する場合等においては、大気側雰囲気と真空側雰囲気を隔てるチャンバ壁に貫通固定されて両雰囲気間を連通する筒状支持部材と、この筒状支持部材の内部に挿通されかつ筒状支持部材に内装された回転軸受けを介して支持された動力伝達軸と、筒状支持部材の内周面と動力伝達軸との隙間をシールするためのシール機構とを有する回転運動伝達装置が知られている(例えば、特許文献1参照)。
特開2004−63897号公報
When transmitting rotational driving force obtained from a motor outside the vacuum chamber to a manipulator or the like in a vacuum chamber used for semiconductor manufacturing, it is penetrated and fixed to the chamber wall that separates the atmosphere on the atmosphere side from the atmosphere on the vacuum side. A cylindrical support member that communicates between the two atmospheres; a power transmission shaft that is inserted into the cylindrical support member and supported by a rotary bearing that is built in the cylindrical support member; A rotary motion transmission device having a seal mechanism for sealing a gap between a peripheral surface and a power transmission shaft is known (for example, see Patent Document 1).
JP 2004-63897 A

しかしながら、特許文献1に記載の回転運動伝達装置にあっては、シール機構として、大気に向かって開く端を有する環状溝で形成されたシール部と、環状溝内に内装され回転軸に対して接圧するばね部とを有するものが採用されていたため、構造が複雑で製作組立に手間がかかり、コストアップが将来され、しかも付勢手段として複雑な螺旋構造等を有するばねが使用されていたため、シール部を回転軸の周囲に均一に接圧させることが難しく、シール性能が長続きしないと言った問題点があった。   However, in the rotational motion transmission device described in Patent Document 1, as a seal mechanism, a seal portion formed by an annular groove having an end that opens toward the atmosphere, and an interior of the annular groove with respect to the rotation shaft. Since a structure having a spring part to contact pressure was adopted, the structure was complicated and it took time and effort to manufacture and assemble, and the cost was increased in the future. There is a problem that it is difficult to uniformly contact the seal portion around the rotation shaft, and the sealing performance does not last long.

この発明は、上述の問題点に着目してなされたものであり、その目的とするところは、構造が比較的に簡単で廉価に製作することができ、しかもシール性能が長続きする回転運動伝達装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to provide a rotary motion transmission device that can be manufactured relatively inexpensively at a low cost and has a long sealing performance. Is to provide.

この発明は、上記の目的を達成するために、下記の構成を採用するものである。すなわち、本発明の回転運動伝達装置は、大気側雰囲気と真空側雰囲気等のように、気圧差の存在する2つの雰囲気を隔てる隔壁に貫通固定されて両雰囲気間を連通する筒状支持部材と、筒状支持部材の内部に挿通されかつ筒状支持部材に内装された回転軸受けを介して支持された動力伝達軸と、筒状支持部材の内周面と動力伝達軸との隙間をシールするためのシール機構とを有する。   In order to achieve the above object, the present invention adopts the following configuration. That is, the rotational motion transmission device of the present invention includes a cylindrical support member that is penetrated and fixed to a partition that separates two atmospheres having a difference in atmospheric pressure, such as an atmosphere on the air side and a vacuum side atmosphere, and communicates between the two atmospheres. The power transmission shaft that is inserted into the cylindrical support member and supported by the rotary bearing built in the cylindrical support member, and the gap between the inner peripheral surface of the cylindrical support member and the power transmission shaft are sealed. And a sealing mechanism.

そして、シール機構は、筒状支持部材の内部にあって、動力伝達軸の外周にフランジ状に突設されて動力伝達軸と一体に回転するリング状回転板と、リング状回転板と対向しかつその外周面を筒状支持部材の内周面に接して筒状支持部材の内部に保持されると共に、その中心孔には動力伝達軸が回転自在に挿通されるリング状静止板と、リング状静止板上の周方向等間隔の複数箇所を圧気を介して弾性的に押圧することにより、リング状静止板をリング状回転板へと圧接させる圧気式付勢部材と、を含んでおり、リング状回転板とリング状静止板との摺り合わせ面を介して両雰囲気間をシールする、ようになっている。   The seal mechanism is located inside the cylindrical support member, and protrudes in a flange shape on the outer periphery of the power transmission shaft so as to rotate integrally with the power transmission shaft, and is opposed to the ring-shaped rotation plate. And a ring-shaped stationary plate in which the outer peripheral surface is in contact with the inner peripheral surface of the cylindrical support member and is held inside the cylindrical support member, and a power transmission shaft is rotatably inserted in the center hole thereof, and a ring A pressure-type biasing member that presses the ring-shaped stationary plate to the ring-shaped rotating plate by elastically pressing a plurality of circumferentially equidistant locations on the shaped stationary plate via pressurized air, The two atmospheres are sealed through the sliding surfaces of the ring-shaped rotating plate and the ring-shaped stationary plate.

このような構成によれば、リング状回転板とリング状静止板との摺り合わせを介して両雰囲気間を回転運動を許容しつつシールすると言う基本構造を有することから、構造が簡単で組立も容易であって廉価に製作することができ、しかも圧気を介して付勢力を調整することで、摺り合わせ面の接圧力を自在に制御できるため、長期にわたってシール性能を維持することが容易となる。   According to such a configuration, the structure is simple and easy to assemble because it has a basic structure that seals between the two atmospheres while allowing rotational movement through the sliding of the ring-shaped rotating plate and the ring-shaped stationary plate. It is easy and inexpensive to manufacture, and by adjusting the biasing force via pressure, the contact pressure on the sliding surface can be controlled freely, making it easy to maintain sealing performance over a long period of time. .

また、リング状回転板とリング状静止板とのいずれか一方の対向面は、半径方向に沿って傾斜しかつ表面が平滑処理(ラップ処理等)されたテーパー面とすると共に、そのテーパー面を他方の部材の対向面に比べて摩耗しにくい硬質素材で形成すれば、他方の部材の対向面の摩耗が進むに連れて、摺り合わせ面の半径方向外方の周縁が半径方向外方へと移動乃至拡張して、摩耗していない平滑な表面が常に現れることとなり、その結果、一方の部材の平滑処理された対向面(テーパー面)と他方の部材の平滑な対向面とが摺り合わさせることにより、シール性能は長期にわたって維持されることとなる。   In addition, the opposing surface of either the ring-shaped rotating plate or the ring-shaped stationary plate is a tapered surface that is inclined along the radial direction and the surface is smoothed (such as lapping). If it is made of a hard material that is less likely to wear than the facing surface of the other member, the outer circumferential edge of the sliding surface will be radially outward as wear of the facing surface of the other member proceeds. As a result of movement or expansion, a smooth surface that is not worn always appears, and as a result, the smooth facing surface (tapered surface) of one member and the smooth facing surface of the other member slide together. As a result, the sealing performance is maintained over a long period of time.

さらに、テーパー面との対向面を、半径方向に沿って湾曲する湾曲面としておけば、テーパー面との摺り合わせ摩耗による粉塵の発生量が減少して、真空側への粉塵混入を効果的に軽減させることができる。   Furthermore, if the surface facing the taper surface is a curved surface that is curved along the radial direction, the amount of dust generated due to frictional wear with the taper surface is reduced, effectively preventing dust from entering the vacuum side. It can be reduced.

本発明の回転運動伝達装置によれば、圧気を介して周方向多点を均一に圧接されたリング状回転板とリング状静止板との摺り合わせを介して両雰囲気間をシールすると言う基本構造を有することから、シール性能が良好であることに加えて、構造が簡単で組立も容易であって廉価に製作することができ、しかも圧気を介して付勢力を調整することで、摺り合わせ面の接圧力を自在に制御できるため、長期にわたってシール性能を維持することが容易となる。   According to the rotational motion transmission device of the present invention, the basic structure is such that both atmospheres are sealed through the sliding of a ring-shaped rotating plate and a ring-shaped stationary plate that are uniformly pressed at multiple points in the circumferential direction via pressurized air. In addition to having good sealing performance, the structure is simple and easy to assemble, and can be manufactured at low cost. Therefore, it is easy to maintain the sealing performance over a long period of time.

以下に、この発明に係る回転運動伝達装置の好適な実施の一形態を添付図面を参照しながら詳細に説明する。   Hereinafter, a preferred embodiment of a rotational motion transmission device according to the present invention will be described in detail with reference to the accompanying drawings.

この実施形態に示される回転運動伝達装置1は、半導体の製造に供される真空チャンバに適用されたものである。周知のように、半導体の製造に供される真空チャンバ内は高真空に維持せねばならないことに加えて、外部からの磁気的並びに静電的影響からも遮断された状態に維持されねばならない。そのため、真空チャンバ内のマニピュレータ作動のためにモータを使用する場合にも、モータからの磁気的並びに電気的影響を考慮して、それらの駆動源となるモータ等はすべて真空チャンバの外部に置かれるのが通例である。そのため、真空チャンバ内のマニピュレータ等に、真空チャンバ外部のモータから得られた回転駆動力を伝達するために、本発明に係る回転運動伝達装置が採用される。   The rotational motion transmission device 1 shown in this embodiment is applied to a vacuum chamber used for semiconductor manufacturing. As is well known, the inside of a vacuum chamber used for semiconductor manufacturing must be maintained at a high vacuum, and must be kept from being shielded from external magnetic and electrostatic influences. For this reason, even when a motor is used to operate a manipulator in the vacuum chamber, all the motors and the like serving as the driving source are placed outside the vacuum chamber in consideration of the magnetic and electrical influences from the motor. It is customary. Therefore, in order to transmit the rotational driving force obtained from the motor outside the vacuum chamber to a manipulator or the like in the vacuum chamber, the rotational motion transmission device according to the present invention is employed.

本発明に係る回転運動伝達装置の断面図が図1に示されている。同図に示されるように、回転運動伝達装置1は、筒状支持部材3と、動力伝達軸4と、回転軸受け5と、リング状回転板6と、リング状静止板7と、圧気式付勢部材8とを備えている。なお、符号2で示されるものは、真空チャンバの容器壁である。   A cross-sectional view of a rotary motion transmission device according to the present invention is shown in FIG. As shown in the figure, the rotary motion transmitting device 1 includes a cylindrical support member 3, a power transmission shaft 4, a rotary bearing 5, a ring-shaped rotating plate 6, a ring-shaped stationary plate 7, and a pneumatic type attachment. And a biasing member 8. In addition, what is shown with the code | symbol 2 is a container wall of a vacuum chamber.

筒状支持部材3は、真空チャンバ内と大気中とを隔てる隔壁として機能する容器壁2に貫通固定されて両雰囲気間を連通する。筒状支持部材3と容器壁2との固定は、この例にあっては、筒状支持部材3のフランジ部3aに図示しないボルトを挿通して行われる。   The cylindrical support member 3 is penetrated and fixed to the container wall 2 that functions as a partition wall that separates the inside of the vacuum chamber from the atmosphere, and communicates between the two atmospheres. In this example, the cylindrical support member 3 and the container wall 2 are fixed by inserting a bolt (not shown) through the flange portion 3a of the cylindrical support member 3.

動力伝達軸4は、大気側の端部には図示しないモータの駆動軸が接続され、真空チャンバ内の端部には図示しないマニピュレータの操作軸が接続される。この動力伝達軸4は、筒状支持部材3の内部に挿通されかつ筒状支持部材3に内装された回転軸受け5を介して回転自在に支持される。   The power transmission shaft 4 is connected to a driving shaft of a motor (not shown) at an end portion on the atmosphere side, and an operation shaft of a manipulator (not shown) is connected to an end portion in the vacuum chamber. The power transmission shaft 4 is inserted into the cylindrical support member 3 and is rotatably supported via a rotary bearing 5 housed in the cylindrical support member 3.

筒状支持部材3の内周面と動力伝達軸4との隙間には、これをシールするためのシール機構が介在されている。図示のシール機構は、リング状回転板6と、リング状静止板7と、圧気式付勢部材8とを備えている。   A seal mechanism is provided in the gap between the inner peripheral surface of the cylindrical support member 3 and the power transmission shaft 4 to seal it. The illustrated sealing mechanism includes a ring-shaped rotating plate 6, a ring-shaped stationary plate 7, and a pressure type urging member 8.

リング状回転板6は、筒状支持部材3の内部にあって、動力伝達軸4の外周にフランジ状に突設されて動力伝達軸4と一体に回転する。図示の例では、リング状回転板6の材質としては、SUS系やAl系等の金属、又はセラミックが採用されている。動力伝達軸4とリング状回転板6との固定手段としては、圧入嵌合等の公知の結合手段を適宜に採用すればよい。   The ring-shaped rotating plate 6 is located inside the cylindrical support member 3, is projected in a flange shape on the outer periphery of the power transmission shaft 4, and rotates integrally with the power transmission shaft 4. In the illustrated example, the material of the ring-shaped rotating plate 6 is a metal such as SUS or Al, or ceramic. As a fixing means between the power transmission shaft 4 and the ring-shaped rotating plate 6, a known coupling means such as press fitting may be appropriately employed.

リング状静止板7は、リング状回転板6と対向しかつその外周面を筒状支持部材3の内周面に接して筒状支持部材3の内部に保持されると共に、その中心孔7bには動力伝達軸4が回転自在に挿通される。図示の例では、リング状静止板7の材質としては、樹脂(例えば、PET等の超高分子量ポリエチレン)が採用されている。リング状静止板7の外周面と筒状支持部材3の内周面との隙間には、図示しないが、Oリング等の公知のシール手段が介在されることが好ましい。   The ring-shaped stationary plate 7 faces the ring-shaped rotating plate 6 and is held inside the cylindrical support member 3 with its outer peripheral surface being in contact with the inner peripheral surface of the cylindrical support member 3, and in the central hole 7b. The power transmission shaft 4 is rotatably inserted. In the illustrated example, a resin (for example, ultrahigh molecular weight polyethylene such as PET) is employed as the material of the ring-shaped stationary plate 7. Although not shown, a known sealing means such as an O-ring is preferably interposed in the gap between the outer peripheral surface of the ring-shaped stationary plate 7 and the inner peripheral surface of the cylindrical support member 3.

圧気式付勢部材8は、金属製又は樹脂製のリング状ブロック体で構成され、リング状静止板7と対向する面には、円周に沿って等間隔に6個の超小型のエアシリンダ(市販のミニチュアシリンダ)9,9・・・が埋め込まれている。これらのエアシリンダ9,9・・・のそれぞれからは図示しない押圧子が出没自在に設けられており、これらの押圧子の先端によって、図2(a)に示されるように、リング状静止体7の円周上の6箇所の点c1〜c6が均一な力で押圧されるようになっている。これらのエアシリンダ9,9・・・は、エア通路10を介して共通の圧気源に接続されている。圧気源から各エアシリンダへ供給れる圧気の圧力は図示しない圧力調整器を介して調整可能とされている。したがって、この圧力調整器の操作で、エアシリンダによる押圧力を適切に制御できる。   The pneumatic urging member 8 is composed of a metal or resin ring-shaped block body, and has six ultra-small air cylinders at equal intervals along the circumference on the surface facing the ring-shaped stationary plate 7. (Commercially available miniature cylinders) 9, 9... Are embedded. Each of these air cylinders 9, 9... Is provided with a presser (not shown) so as to be able to protrude and retract, and as shown in FIG. The six points c1 to c6 on the circumference of 7 are pressed with a uniform force. These air cylinders 9 are connected to a common pressurized air source via an air passage 10. The pressure of the pressurized air supplied from the pressurized air source to each air cylinder can be adjusted via a pressure regulator (not shown). Therefore, the pressing force by the air cylinder can be appropriately controlled by operating this pressure regulator.

このように、圧気式付勢部材8は、リング状静止板7上の周方向等間隔の複数箇所c1〜c6を圧気を介して弾性的に押圧することにより、リング状静止板7をリング状回転板6へと均一な圧力で圧接させる機能を有している。これにより、リング状回転板6とリング状静止板7との摺り合わせ面を介して両雰囲気間が良好にシールされるように構成されている。   As described above, the pressure type urging member 8 elastically presses the circumferentially equidistant portions c1 to c6 on the ring-shaped stationary plate 7 via the pressure air, thereby causing the ring-shaped stationary plate 7 to be in a ring shape. It has a function of pressing the rotating plate 6 with a uniform pressure. Thereby, it is comprised so that both atmospheres may be sealed favorably through the sliding surface of the ring-shaped rotating plate 6 and the ring-shaped stationary plate 7.

リング状静止板7は、図2及び図3に示されるように、この例では、大径の基部71と小径の段部72とを有する。そして、小径の段部72の端面がリング状回転板6との対向面7a、すなわち摺り合わせ面とされている。この対向面7aは、表面が平滑処理されると共に、動力伝達軸4と垂直な面に対して平行になされている。一方、リング状回転板6のリング状静止板7との対向面6aは、半径方向に沿って傾斜しかつ表面が平滑処理(ラップ仕上げ)されたテーパー面とされている。   As shown in FIGS. 2 and 3, the ring-shaped stationary plate 7 includes a large-diameter base 71 and a small-diameter stepped portion 72 in this example. And the end surface of the step part 72 of small diameter is made into the opposing surface 7a with the ring-shaped rotating plate 6, ie, the sliding surface. The facing surface 7 a is subjected to a smoothing process and is parallel to a surface perpendicular to the power transmission shaft 4. On the other hand, the opposed surface 6a of the ring-shaped rotating plate 6 to the ring-shaped stationary plate 7 is a tapered surface that is inclined along the radial direction and the surface is smoothed (lapped).

先に説明したように、リング状回転板6の材質としては、SUS系やAl系の金属又はセラミックが採用されている一方、リング状静止板7の材質としては、PET等の樹脂が採用されている。そのため、リング状回転板6のテーパー面(対向面6a)はリング状静止板7の対向面7aに比べて摩耗しにくい硬度関係となっている。   As described above, the material of the ring-shaped rotating plate 6 is SUS-based or Al-based metal or ceramic, while the material of the ring-shaped stationary plate 7 is a resin such as PET. ing. Therefore, the tapered surface (opposing surface 6 a) of the ring-shaped rotating plate 6 has a hardness relationship that is less likely to be worn than the opposing surface 7 a of the ring-shaped stationary plate 7.

リング状静止板の摩耗と摺り合わせ面周縁の移動との関係を示す説明図が図3に示されている。同図に示されるように、図示しないモータの回転に連れて動力伝達軸4が回転すると、リング状回転板6側の対向面(テーパー面)6aとリング状静止板7側の対向面7aとが摺り合わされた回転状態となる。   An explanatory view showing the relationship between the wear of the ring-shaped stationary plate and the movement of the peripheral edge of the sliding surface is shown in FIG. As shown in the figure, when the power transmission shaft 4 rotates with the rotation of a motor (not shown), an opposing surface (tapered surface) 6a on the ring-shaped rotating plate 6 side and an opposing surface 7a on the ring-shaped stationary plate 7 side Will be in a rotating state where the two are rubbed together.

このとき、両者の摺り合わせ面においては、圧気式付勢部材8の作用で、円周に沿った各点において均一な接圧力となることに加えて、両対向面6a,7aはいずれも高度に平滑処理された面とされているため、両者は密に接して良好なシール性能が得られる。   At this time, both the facing surfaces 6a and 7a have high altitudes on the sliding surfaces of the both in addition to the contact pressure being uniform at each point along the circumference due to the action of the pneumatic biasing member 8. Since the surfaces are smoothed, the two come into close contact with each other to obtain good sealing performance.

当初、リング状回転板6とリング状静止板7とは、摺り合わせ面の周縁P1において円周に沿って接するが、時間の経過とと共に、接圧力と両者の材質とで定まる程度をもって摩耗が進行する。このとき、硬度の関係から、リング状回転板6側の対向面(テーパー面)6aは殆ど摩耗せずに維持されるのに対して、リング状静止板7側の対向面7aの方は摩耗が進行するため、摩耗の進行と共に、摺り合わせ面の周縁は、対向面(テーパー面)6aに沿ってP1からPxへと半径方向外方へと移動する。   Initially, the ring-shaped rotating plate 6 and the ring-shaped stationary plate 7 are in contact with each other along the circumference at the peripheral edge P1 of the sliding surface, but with the passage of time, wear is determined to a degree determined by the contact pressure and the materials of both. proceed. At this time, due to hardness, the facing surface (tapered surface) 6a on the ring-shaped rotating plate 6 side is maintained with little wear, whereas the facing surface 7a on the ring-shaped stationary plate 7 side is worn. Therefore, as the wear progresses, the periphery of the sliding surface moves radially outward from P1 to Px along the opposing surface (tapered surface) 6a.

なお、図ではテーパー面が6aから6a´へと移動しているように描かれているが、実際は、テーパー面6aの側は固定されていて、対向面7aの側の摩耗が進行するものであることは、当業者であれば容易に理解されるであろう。   In the drawing, the taper surface is depicted as moving from 6a to 6a ', but in actuality, the taper surface 6a side is fixed, and wear on the facing surface 7a side proceeds. That will be readily understood by those skilled in the art.

このとき、摺り合わせ面の新たな周縁Pxにおいては、常に、平滑処理された滑らかな表面層(対向面7a)が現れるため、対向面7aが段部72の端面の半径方向全幅に亘って摩耗するまでの間、両者は密に接して良好なシール性能が維持されることとなる。   At this time, since a smooth surface layer (opposing surface 7a) that has been smoothed always appears at the new peripheral edge Px of the rubbing surface, the opposing surface 7a is worn over the entire radial width of the end surface of the stepped portion 72. In the meantime, both are in close contact with each other and good sealing performance is maintained.

シール部の他の一例を示す断面図(その1)が図4に示されている。この例にあっては、リング状静止板7のリング状回転板6のテーパー面6aとの対向面7aは、半径方向に沿って湾曲する湾曲面とされている。より具体的には、この湾曲面は、曲率の小さな第1の湾曲面73と曲率の大きな第2の湾曲面74とから構成されている。さらに、小径段部72の外周にはリング状の切り込み溝75が形成されており、この切り込み溝75の作用により、湾曲部73,74には弾性が付与されている。   A cross-sectional view (part 1) showing another example of the seal portion is shown in FIG. In this example, the surface 7a facing the tapered surface 6a of the ring-shaped rotating plate 6 of the ring-shaped stationary plate 7 is a curved surface that is curved along the radial direction. More specifically, the curved surface includes a first curved surface 73 having a small curvature and a second curved surface 74 having a large curvature. Further, a ring-shaped cut groove 75 is formed on the outer periphery of the small diameter step portion 72, and the curved portions 73 and 74 are given elasticity by the action of the cut groove 75.

このような構成によれば、リング状回転板6のテーパー面6aとリング状静止板7の対向面7aとが圧接しつつ回転すると、湾曲部73,74は切り込み溝75の作用により適度に撓んで両者は密に点接触することにより、良好なシール性能が得られる。また、湾曲部73,74の摩耗に連れて、両者の接触点は半径方向内方へと徐々に移動しつつ、常に、平滑な表面との接触が維持されるため、シール性能は長期に亘り良好に維持される。加えて、シール作用に殆ど寄与しない第1の湾曲部73は曲率が小さいため、逃げ空間が確保されて摩耗による粉塵の発生が少ない一方、シール作用に寄与する第2の湾曲部74は曲率が大きいため、テーパー面6aと接しつつも摩耗による粉塵の発生が少ない。そのため、この例によれば、テーパー面との摺り合わせ摩耗による粉塵の発生量が減少して、真空側への粉塵混入を効果的に軽減させることができる。   According to such a configuration, when the tapered surface 6 a of the ring-shaped rotating plate 6 and the opposing surface 7 a of the ring-shaped stationary plate 7 rotate while being pressed against each other, the curved portions 73 and 74 are appropriately bent by the action of the cut groove 75. Thus, good sealing performance can be obtained by close point contact between the two. Further, as the curved portions 73 and 74 are worn, the contact points of both of them gradually move inward in the radial direction, and the contact with the smooth surface is always maintained. Maintained well. In addition, since the first curved portion 73 that hardly contributes to the sealing action has a small curvature, the escape space is secured and the generation of dust due to wear is small, while the second curved portion 74 contributing to the sealing action has a curvature. Due to the large size, the generation of dust due to wear is small while in contact with the tapered surface 6a. Therefore, according to this example, the amount of dust generated due to frictional wear with the tapered surface is reduced, and dust contamination on the vacuum side can be effectively reduced.

シール部の他の一例を示す断面図(その1)が図5に示されている。図4に示されるテーパー面6aは凸部となる形態を有するのに対して、図5に示されるテーパー面6aは凹部となる形態を有するものであり、テーパー面6aは凹凸いずれの形態としてもよい。そして、図4の例と同様にして、この例によっても、良好なシール性能が長期に亘り維持されると共に、摩耗による粉塵の発生が極力抑制される利点がある。なお、同図において、図4と同一構成部分については同符号を付して説明は省略する。   A cross-sectional view (part 1) showing another example of the seal portion is shown in FIG. The taper surface 6a shown in FIG. 4 has a form that becomes a convex portion, whereas the taper surface 6a shown in FIG. 5 has a form that becomes a concave portion, and the taper surface 6a can have any form of unevenness. Good. As in the example of FIG. 4, this example also has an advantage that good sealing performance is maintained for a long time and generation of dust due to wear is suppressed as much as possible. In the figure, the same components as those in FIG.

なお、以上の実施形態においては、リング状回転板6の対向面6aとリング状静止板7の側の対向面7aとのうちで、対向面6aの側をテーパー面としたが、逆に対向面7aの側をテーパー面とすることもできる。この場合には、上述した硬度の関係を得るために、リング状回転板6の素材として樹脂を使用し、リング状静止板7の素材を金属とすればよいであろう。   In the above-described embodiment, the opposing surface 6a side of the opposing surface 6a of the ring-shaped rotating plate 6 and the opposing surface 7a on the ring-shaped stationary plate 7 side is a tapered surface. The side of the surface 7a can be a tapered surface. In this case, in order to obtain the above-described hardness relationship, a resin may be used as the material of the ring-shaped rotating plate 6 and the material of the ring-shaped stationary plate 7 may be a metal.

本発明の回転運動伝達装置によれば、圧気を介して周方向多点を均一に圧接されたリング状回転板とリング状静止板との摺り合わせを介して両雰囲気間をシールすると言う基本構造を有することから、シール性能が良好であることに加えて、構造が簡単で組立も容易であって廉価に製作することができ、しかも圧気を介して付勢力を調整することで、摺り合わせ面の接圧力を自在に制御できるため、長期にわたってシール性能を維持することが容易となり、例えば、半導体製造に供される真空チャンバ等に好適なものとなる。   According to the rotational motion transmission device of the present invention, the basic structure is such that both atmospheres are sealed through the sliding of a ring-shaped rotating plate and a ring-shaped stationary plate that are uniformly pressed at multiple points in the circumferential direction via pressurized air. In addition to having good sealing performance, the structure is simple and easy to assemble, and can be manufactured at low cost. Since the contact pressure can be freely controlled, it is easy to maintain the sealing performance over a long period of time, and it is suitable for, for example, a vacuum chamber used for semiconductor manufacturing.

本発明に係る動力伝達装置の断面図である。It is sectional drawing of the power transmission device which concerns on this invention. リング状静止板の詳細説明図である。It is a detailed explanatory view of a ring-shaped stationary plate. リング状静止板の摩耗と摺り合わせ面周縁部の移動との関係を示す説明図である。It is explanatory drawing which shows the relationship between the abrasion of a ring-shaped stationary plate, and the movement of a sliding surface peripheral part. シール部の他の例を示す断面図(その1)である。It is sectional drawing (the 1) which shows the other example of a seal | sticker part. シール部の他の例を示す断面図(その2)である。It is sectional drawing (the 2) which shows the other example of a seal | sticker part.

符号の説明Explanation of symbols

1 動力伝達装置
2 真空チャンバの容器壁
3 筒状支持部材
3a 取付用フランジ
4 動力伝達軸
5 回転軸受け
6 リング状回転板
6a,6a´ 対向面(テーパー面)
7 リング状静止板
7a 対向面
7b 中心孔
8 圧気式付勢部材
9 エアシリンダ
10 エア通路
71 基部
72 段部
73 第1の湾曲部
74 第2の湾曲部
75 リング状切り込み溝
c1〜c6 エアシリンダのプランジャによる押圧位置
P1,Px 摺り合わせ面の周縁
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Vacuum chamber container wall 3 Cylindrical support member 3a Mounting flange 4 Power transmission shaft 5 Rotating bearing 6 Ring-shaped rotating plate 6a, 6a 'Opposing surface (tapered surface)
7 Ring-shaped stationary plate 7a Opposing surface 7b Center hole 8 Pneumatic pressure biasing member 9 Air cylinder 10 Air passage 71 Base 72 Step part 73 First curved part 74 Second curved part 75 Ring-shaped cut groove c1 to c6 Air cylinder Pressing position by plunger of P1, Px Periphery of sliding surface

Claims (1)

大気側雰囲気と真空側雰囲気等のように、気圧差の存在する2つの雰囲気を隔てる隔壁に貫通固定されて両雰囲気間を連通する筒状支持部材と、
前記筒状支持部材の内部に挿通されかつ前記筒状支持部材に内装された回転軸受けを介して支持された動力伝達軸と、
前記筒状支持部材の内周面と前記動力伝達軸との隙間をシールするためのシール機構とを有し、
前記シール機構が、
前記筒状支持部材の内部にあって、前記動力伝達軸の外周にフランジ状に突設されて前記動力伝達軸と一体に回転するリング状回転板と、
前記リング状回転板と対向しかつその外周面を前記筒状支持部材の内周面に接して前記筒状支持部材の内部に保持されると共に、その中心孔には前記動力伝達軸が回転自在に挿通されるリング状静止板と、
前記リング状静止板上の周方向等間隔の複数箇所を圧気を介して弾性的に押圧することにより、前記リング状静止板を前記リング状回転板へと圧接させる圧気式付勢部材と、を含み、
前記リング状回転板と前記リング状静止板とのいずれか一方の対向面は、半径方向に沿って傾斜しかつ表面が平滑処理されたテーパー面とされ、かつそのテーパー面は他方の部材の対向面に比べて摩耗しにくい硬質素材で形成され、
前記テーパー面との対向面は、半径方向に沿って相手方へと膨出しつつ湾曲する湾曲面とされ、前記湾曲面は、前記テーパー面に近い側に位置する曲率の小さな第1の湾曲面(73)と前記テーパー面から遠い側に位置する曲率の大きな第2の湾曲面(75)とを含み、かつ前記第1の湾曲面(73)の側の周側面には、第1の湾曲面(73)側から第2の湾曲面(75)側へと切り込まれたリング状の切り込み溝(75)が形成されており、
リング状回転板とリング状静止板との摺り合わせ面を介して両雰囲気間をシールする、ことを特徴とする回転運動伝達装置。
A cylindrical support member that penetrates and is fixed to a partition wall that separates two atmospheres where there is a difference in atmospheric pressure, such as an air atmosphere and a vacuum atmosphere, and communicates between the two atmospheres;
A power transmission shaft which is supported via a rotary bearing which is furnished in inserted through and the tubular support member to the inside of the tubular support member,
And a sealing mechanism for sealing the gap between the power transmission shaft and the inner peripheral surface of the tubular support member,
The sealing mechanism is
In the interior of the tubular support member, and the ring-shaped rotary plate which rotates integrally with the power transmission shaft projecting from the flange on the outer periphery of the power transmission shaft,
Is held to the ring-shaped rotary plate facing One only its outer peripheral surface in the interior of the tubular support member in contact with the inner circumferential surface of the tubular support member, said power transmission shaft is rotatably at its center hole A ring-shaped stationary plate inserted through,
By elastically pressing through the gas in the circumferential direction at equal intervals of a plurality of positions on the ring-shaped stationary plate, a gas urging expression member to the ring-shaped stationary plate is pressed against to the ring-shaped rotary plate, the Including
The facing surface of either the ring-shaped rotating plate or the ring-shaped stationary plate is a tapered surface that is inclined along the radial direction and has a smooth surface, and the tapered surface is the facing surface of the other member. Made of hard material that is less likely to wear than the surface,
The surface facing the tapered surface is a curved surface that is curved while bulging toward the other side along the radial direction, and the curved surface is a first curved surface with a small curvature located on the side close to the tapered surface ( 73) and a second curved surface (75) having a large curvature located on the side far from the tapered surface, and the first curved surface is provided on the peripheral side surface of the first curved surface (73). A ring-shaped cut groove (75) cut from the (73) side to the second curved surface (75) side is formed,
A rotary motion transmission device characterized by sealing between the two atmospheres via a sliding surface between a ring-shaped rotating plate and a ring-shaped stationary plate.
JP2005336612A 2005-11-22 2005-11-22 Rotary motion transmission device Expired - Fee Related JP4827502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336612A JP4827502B2 (en) 2005-11-22 2005-11-22 Rotary motion transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336612A JP4827502B2 (en) 2005-11-22 2005-11-22 Rotary motion transmission device

Publications (2)

Publication Number Publication Date
JP2007139140A JP2007139140A (en) 2007-06-07
JP4827502B2 true JP4827502B2 (en) 2011-11-30

Family

ID=38202261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336612A Expired - Fee Related JP4827502B2 (en) 2005-11-22 2005-11-22 Rotary motion transmission device

Country Status (1)

Country Link
JP (1) JP4827502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101467B2 (en) 2012-10-04 2017-03-22 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP6410622B2 (en) 2014-03-11 2018-10-24 東京エレクトロン株式会社 Plasma processing apparatus and film forming method
CN110273843A (en) * 2019-08-06 2019-09-24 亚太泵阀有限公司 A kind of submersible pump independence oil pocket sealing structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168067U (en) * 1983-04-27 1984-11-10 三菱電機株式会社 Mechanical seal device
JPH0686911B2 (en) * 1989-06-30 1994-11-02 株式会社東京興業貿易商会 End seal integrated shaft seal device
JP4439146B2 (en) * 2001-08-29 2010-03-24 メタウォーター株式会社 Rotary kiln seal structure
JP2004036897A (en) * 2003-09-09 2004-02-05 Ts Corporation Sealing mechanism for rotating shaft used for vacuum chamber

Also Published As

Publication number Publication date
JP2007139140A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4827502B2 (en) Rotary motion transmission device
US20070241511A1 (en) Compact mechanical seal
CN201963770U (en) Pneumatic shrinkage type drum brake
JP2007064459A (en) Sealing device
JP4724727B2 (en) mechanical seal
JP6409754B2 (en) fan
KR101748176B1 (en) Sealed rotational output unit and sealed motor assembly
JP4735801B2 (en) Sealing device
JP3912926B2 (en) Floating machine floating seal
KR20190124586A (en) Mechanical seal including advanced plate structure and cap structure
JP5533372B2 (en) Sealing structure
JP2013011301A (en) Disc brake
EP3627014B1 (en) Mechanical seal
JP2004332920A (en) Sealing structure and end-face seal
JP2020176673A (en) Seal structure and seal
JP2017053423A (en) mechanical seal
JP2017032076A (en) Shaft seal
JP2020183776A (en) Sealing device
JP2001090843A (en) Shaft sealing device
JP4564114B2 (en) Lip type seal
CN216618542U (en) Non-contact dynamic sealing structure
JPH0614141Y2 (en) Pump shaft sealing device
US20240200660A1 (en) Sealing device
JPH0628398Y2 (en) Stern tube shaft sealing device
JP2006300238A (en) Shaft sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees