JP4827061B2 - Method for producing cubic boron nitride - Google Patents

Method for producing cubic boron nitride Download PDF

Info

Publication number
JP4827061B2
JP4827061B2 JP2007062629A JP2007062629A JP4827061B2 JP 4827061 B2 JP4827061 B2 JP 4827061B2 JP 2007062629 A JP2007062629 A JP 2007062629A JP 2007062629 A JP2007062629 A JP 2007062629A JP 4827061 B2 JP4827061 B2 JP 4827061B2
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
plasma
potential
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007062629A
Other languages
Japanese (ja)
Other versions
JP2008222488A (en
Inventor
君元 堤井
精一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
National Institute for Materials Science
Original Assignee
Kyushu University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, National Institute for Materials Science filed Critical Kyushu University NUC
Priority to JP2007062629A priority Critical patent/JP4827061B2/en
Publication of JP2008222488A publication Critical patent/JP2008222488A/en
Application granted granted Critical
Publication of JP4827061B2 publication Critical patent/JP4827061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマ装置の反応容器内において、基体上に窒化ホウ素を堆積させることにより立方晶窒化ホウ素を製造する方法に関する。   The present invention relates to a method for producing cubic boron nitride by depositing boron nitride on a substrate in a reaction vessel of a plasma apparatus.

立法晶窒化ホウ素(c−BN)はダイヤモンドに極めて類似した諸性質を持つ物質であるが、天然には存在しない。ダイヤモンドと同等の優れた電気、光学、機械的特性に加え、ダイヤモンドと比べ、鉄系金属(Fe, Co, Ni, Cr)に対する低い反応性や、高温における耐酸化性、バンド幅がより大、pn型半導体どちらの作製も容易という利点を有する。これらの特性から、c−BNは工具や耐磨耗材料、光学材料、半導体材料、短波長用光電子材料等の有用な機能材料になりうる物質である。その結晶粒は既に工業的に超高圧装置を用いて数万気圧の高圧下で合成されているが、高圧法では形状のコントロールは難しく、特に膜状につくることは非常に困難であり、上記の機能材料としての応用のためには、低圧での合成法が必要である。   Trigonal boron nitride (c-BN) is a substance with properties very similar to diamond but does not exist in nature. In addition to the excellent electrical, optical and mechanical properties equivalent to diamond, compared to diamond, it has low reactivity to iron-based metals (Fe, Co, Ni, Cr), oxidation resistance at high temperatures, and greater bandwidth. Both pn-type semiconductors have the advantage of being easy to manufacture. From these characteristics, c-BN is a substance that can be a useful functional material such as tools, wear-resistant materials, optical materials, semiconductor materials, and short wavelength optoelectronic materials. The crystal grains have already been industrially synthesized under a high pressure of tens of thousands of atmospheres using an ultra-high pressure apparatus, but it is difficult to control the shape by the high pressure method, in particular, it is very difficult to make a film, For application as a functional material, a low-pressure synthesis method is required.

このため1気圧以下の圧力で気相から合成する試みも1970年代から行われてきた(非特許文献1,2)。それらの方法は、二種類に分類される。一つは、10Pa以下の低圧の反応容器内で、ホウ素を電子線加熱蒸着やスパッタリングで基板上に堆積させ、同時に窒素イオンおよびその他のイオンのイオン衝撃を用いる、活性化反応性蒸着法、バイアススパッタリング法、イオンビーム蒸着法等の物理蒸着法(PVD)である。   For this reason, attempts have been made since the 1970s to synthesize from the gas phase at a pressure of 1 atm or less (Non-Patent Documents 1 and 2). These methods are classified into two types. One is an activated reactive vapor deposition method, bias in which boron is deposited on a substrate by electron beam heating vapor deposition or sputtering in a low pressure reaction vessel of 10 Pa or less, and simultaneously using ion bombardment of nitrogen ions and other ions. Physical vapor deposition (PVD) such as sputtering and ion beam vapor deposition.

もう一種類は、プラズマ装置の容器内で気相化学種間または気相化学種と基体間の反応を利用する化学気相析出法(CVD)で、通常気体の分子種が原料として用いられる。ホウ素源としては、ジボラン、三塩化ホウ素等を、窒素源としてはアンモニア、窒素等を、またホウ素、窒素両方を含むものとして、アミノボラン、ボラジン等が用いられる。このCVD法でも、反応室圧力が10−1〜10Paの低圧で、気相をプラズマ状態にして負バイアスをかけた基体上にイオンを衝突させることにより、c-BNを得る方法である。 The other type is chemical vapor deposition (CVD), which uses a reaction between gas phase species or between a gas phase species and a substrate in a vessel of a plasma apparatus, and usually uses gaseous molecular species as a raw material. As the boron source, diborane, boron trichloride and the like are used. As the nitrogen source, ammonia, nitrogen and the like are used. As the boron source containing both boron and nitrogen, aminoborane, borazine and the like are used. This CVD method is also a method for obtaining c-BN by colliding ions on a negatively biased substrate with the reaction chamber pressure being as low as 10 −1 to 10 Pa and making the gas phase in a plasma state.

これらの従来のc−BN膜の作成法は、どの作製過程(物理的気相合成法(PVD)、化学的気相合成法(CVD))においても、放電プラズマ中での基体への負バイアス電圧印加、あるいはイオンビーム照射によって、およそ50〜1000eVの強いイオン衝撃を基体表面に加えることにより形成される。   These conventional c-BN films are produced by any method (physical vapor phase synthesis (PVD), chemical vapor phase synthesis (CVD)) in which negative bias is applied to the substrate in the discharge plasma. It is formed by applying a strong ion bombardment of about 50 to 1000 eV to the substrate surface by voltage application or ion beam irradiation.

本発明者の一人は1999年に、CVD法において、気相中にフッ素あるいはフッ素を含むガス種を導入することにより、従来の方法に比べ、格段に結晶性がよく、残留応力の少ない窒化ホウ素を合成する方法を開発した(特許文献1、非特許文献3)。この方法では、反応室圧力は10−1Pa〜10Paの広い圧力範囲を用いることができるが、この方法においても立方晶窒化ホウ素を作るためには、基板に75V〜450Vの負バイアスを用いることが必要であった。さらにフッ素を含むECRプラズマを用いてc−BNを作成した報告があるが(非特許文献4)、この場合も45〜80Vのイオン衝撃を用いている。
特開2001−302218(特願2000−348883) 特開平4−228572 P.B.Mirkarimi et al, Mater. Sci. Eng. R21(1997) 45:cBNについてのレビュー T. Yoshida, Diamond Relat. Mater. 5(1996) 501:cBN作成法についてのレビュー S. Matsumoto and W.J. Zhang, Jpn.J.Appl.Phys. 39(2000) L442:フッ素を使ってc−BNを作った最初の論文、−70〜−85Vのバイアスを使用 C.Y. Chan, W.J. Zhang et al, Diamond Relat.Mater. 12(2003) 1162:ECRプラズマでプラズマ電位を考慮すると−45〜−80Vのイオン衝撃 K. Teii, R. Yamao, T. Yamamura, S. Matsumoto, J.Appl.Phys. 101(2007) 033301:本発明の方法の一部
In 1999, one of the present inventors introduced boron or a gas species containing fluorine into the gas phase in the CVD method, thereby providing boron nitride with much better crystallinity and less residual stress than conventional methods. Has been developed (Patent Document 1, Non-Patent Document 3). In this method, a wide pressure range of 10 −1 Pa to 10 7 Pa can be used for the reaction chamber pressure, but also in this method, in order to produce cubic boron nitride, a negative bias of 75 V to 450 V is applied to the substrate. It was necessary to use it. Furthermore, although there is a report that c-BN was produced using ECR plasma containing fluorine (Non-patent Document 4), ion bombardment of 45 to 80 V is also used in this case.
JP 2001-302218 (Japanese Patent Application No. 2000-348883) JP-A-4-228572 P. B. Mirkarimi et al, Mater. Sci. Eng. R21 (1997) 45: Review about cBN T. Yoshida, Diamond Relat. Mater. 5 (1996) 501: Review of cBN preparation methods S. Matsumoto and W.M. J. et al. Zhang, Jpn. J. et al. Appl. Phys. 39 (2000) L442: First paper to make c-BN using fluorine, using a bias of -70 to -85V C. Y. Chan, W.H. J. et al. Zhang et al, Diamond Relat. Mater. 12 (2003) 1162: ion bombardment of −45 to −80 V in consideration of plasma potential in ECR plasma K. Teii, R.A. Yamao, T .; Yamamura, S .; Matsumoto, J. et al. Appl. Phys. 101 (2007) 033031: part of the method of the present invention

上記従来法では、イオン衝撃による運動量転化の影響等のため、得られたc−BN膜は、基体との密着性が悪い、結晶性が悪い、結晶サイズが小さい等の問題があり、cBN本来の特性が発揮できず、ハードコーティングや光電子デバイスへの応用が難しかった。
本発明は、このような問題を解決することができる立方晶窒化ホウ素の製造方法を提供することを課題とした。
In the above conventional method, due to the influence of momentum conversion due to ion bombardment, the obtained c-BN film has problems such as poor adhesion to the substrate, poor crystallinity, and small crystal size. Therefore, it was difficult to apply to hard coating and optoelectronic devices.
An object of the present invention is to provide a method for producing cubic boron nitride that can solve such problems.

上記課題を解決するために、本発明は以下のような構成を採用した。 In order to solve the above problems, the present invention employs the following configuration.

発明1の立方晶窒化ホウ素の製造方法は、フッ素あるいはフッ素を含むガス種を含む気相をプラズマによって活性化し、導電性の反応容器壁あるいは反応容器内に設置した参照電極に対し、基体の時間平均電位を同電位あるいは正にバイアスすることにより、立方晶窒化ホウ素を含む窒化ホウ素を堆積させることを特徴とする。この参照電極はアース電位に接地してもよIn the method for producing cubic boron nitride according to the first aspect of the present invention, the gas phase containing fluorine or a fluorine-containing gas species is activated by plasma, and the time of the substrate with respect to the conductive reaction vessel wall or the reference electrode installed in the reaction vessel is reduced. more an average potential to the potential or positively biased, and wherein the depositing the boron nitride containing the standing-cubic boron nitride. This reference electrode but it may also be grounded to the earth potential.

発明2は、発明1の立方晶窒化ホウ素の製造方法において、基体に印加する電圧として、直流電圧または直流+高周波を用いることを特徴とする。 Invention 2 is characterized in that, in the method for producing cubic boron nitride of Invention 1, a direct current voltage or direct current + high frequency is used as a voltage applied to the substrate.

発明3は、発明1又は2の立方晶窒化ホウ素の製造方法において、基体の時間平均電位をプラズマ電位と同電位あるいは正の電位にすることを特徴とする。 Invention 3 is characterized in that, in the method for producing cubic boron nitride of Invention 1 or 2, the time average potential of the substrate is set to the same potential as the plasma potential or a positive potential.

本発明では、上記の問題点を、極めて弱いイオン衝撃、あるいはイオン衝撃を全く用いない環境下でのc−BN膜作製法(本発明)を利用することにより解決できる。すなわち本発明では、フッ素を含む原料ガスと、高密度プラズマを用い、参照電極の電位に対して、基板に零あるいは正のバイアス電圧を印加すること、あるいは基体をフロート電位にすることにより、45eV以下の従来より低いイオン衝撃エネルギーにて、さらに0から3eV程度の極めて低いイオン衝撃エネルギーにおいても、c−BN膜の作製を可能とした。   In the present invention, the above-described problems can be solved by utilizing a c-BN film preparation method (the present invention) in an environment where extremely weak ion bombardment or no ion bombardment is used. That is, in the present invention, a source gas containing fluorine and high-density plasma are used, and a zero or positive bias voltage is applied to the substrate with respect to the potential of the reference electrode, or the substrate is made to have a float potential of 45 eV. The c-BN film can be produced with the following ion bombardment energy lower than that of the prior art, and also with a very low ion bombardment energy of about 0 to 3 eV.

基体に入射するイオンの衝撃エネルギーはプラズマ電位(通常参照電極電位に対し正)−基体バイアス電位に依存するため、通常の基体負バイアスではイオン衝撃エネルギーは両者の和となり大であるが、基体に0から正のバイアスを印加した場合は、イオン衝撃エネルギーはプラズマ電位による正の値から減少し0に近づく。これらの条件下でも、フッ素を含む気相種を用いる本発明の方法によればc−BNを作成できる(発明1)。 The impact energy of ions incident on the substrate depends on the plasma potential (usually positive with respect to the reference electrode potential) -substrate bias potential. from the case of applying a positive bias 0, the ion bombardment energy is closer rather to 0 decreases from a positive value by the plasma potential. Even under the conditions of these can create a c-BN according to the method of the present invention using a gas phase species containing fluorine (invention 1).

基体に正バイアスしても、一般的にはプラズマ電位も上昇するため、基体の電位はプラズマ電位に対しは負であるが、これを0または正にすることができイオン衝撃エネルギーをさらに減少できる。それは基体の表面積を参照電極の面積に比し小とすること、あるいは二次電子放出能が大きい基体を用いること、あるいは基体表面に正イオンが集積しやすい条件を選ぶことで達成される。面積比の場合は、バイアス電流値等プラズマの条件により異なるが、例えば7分の1以下、望ましくは100分の1以下を選ぶことで達成される。これらの場合も、フッ素を含む気相種を用いる本発明の方法によればc−BNを作成できる(発明3)。   Even if the substrate is positively biased, the plasma potential generally rises. Therefore, the potential of the substrate is negative with respect to the plasma potential, but it can be zero or positive, and ion bombardment energy can be further reduced. . This can be achieved by reducing the surface area of the substrate relative to the area of the reference electrode, using a substrate having a large secondary electron emission ability, or selecting conditions that facilitate positive ion accumulation on the substrate surface. The area ratio varies depending on the plasma conditions such as the bias current value, but is achieved by selecting, for example, 1/7 or less, preferably 1/100 or less. Also in these cases, c-BN can be prepared by the method of the present invention using a vapor phase species containing fluorine (Invention 3).

本発明は従来のc−BN低圧合成法では必須条件であった基板負バイアス印加あるいはイオンビーム照射が不要で、イオン衝撃が極端に下がったという点で画期的である。基体へのイオン衝撃が非常に小さい条件でc−BN膜の作成が可能であるため、結晶欠陥の発生の減少、二次核発生の減少、残留応力の低下し、従来技術よりも、基体との密着性、結晶性、結晶サイズ等の向上ができる。
c−BN膜の作成、応用の障害となっていた、イオン衝撃による悪影響が除かれ、c−BN膜の研究の発展、実用化の可能性の増大に大きく寄与すると思われる。
The present invention is epoch-making in that the substrate negative bias application or ion beam irradiation, which is an essential condition in the conventional c-BN low-pressure synthesis method, is unnecessary, and the ion bombardment is extremely reduced. Since the c-BN film can be formed under conditions where ion bombardment on the substrate is very small, the generation of crystal defects, the generation of secondary nuclei, the reduction of residual stress, The adhesion, crystallinity, crystal size, etc. can be improved.
The adverse effect of ion bombardment, which has been an obstacle to the creation and application of c-BN films, is eliminated, and it is thought that this will greatly contribute to the development of research on c-BN films and the possibility of practical application.

(プラズマの種類)
本発明の合成法において、用いるプラズマは非平衡プラズマでも、平衡(熱)プラズマでもいずれでもよく、また、プラズマ発生用電源は、直流、低周波交流、高周波、マイクロ波いずれでもよい。また、反応器への結合方法も容量結合、誘導結合、アンテナによる結合、共振器による結合、表面波励起等のいずれでもよい。ただし、プラズマ密度1010cm−3以上の高密度プラズマが望ましく、プラズマ密度1012cm−3以上の高密度プラズマがさらに望ましい。
(Plasma type)
In the synthesis method of the present invention, the plasma to be used may be either nonequilibrium plasma or equilibrium (thermal) plasma, and the power source for plasma generation may be any of direct current, low frequency alternating current, high frequency, and microwave. The coupling method to the reactor may be any of capacitive coupling, inductive coupling, antenna coupling, resonator coupling, surface wave excitation, and the like. However, high-density plasma with a plasma density of 10 10 cm −3 or more is desirable, and high-density plasma with a plasma density of 10 12 cm −3 or more is more desirable.

(原料)
本発明の合成法において、原料となるホウ素はホウ素を含むガス種からでも、あるいはホウ素を含む固体から蒸発、スパッター、あるいはガスによるエッチングで気相中にもたらしてもよい。ホウ素を含むガス種としては、ジボラン,デカボラン等のホウ素の水素化物、三塩化ホウ素,三フッ化ホウ素等のホウ素のハロゲン化物等のうちの一種または数種を同時に用いる。ホウ素を含む固体としては、固体ホウ素、B4C、窒化ホウ素焼結体、水素化ホウ素ナトリウム等の水素化ホウ素化合物、ホウフッ化アンモニウム等のホウフッ化物、トリエトキシボロン等の有機ホウ素化合物等が用いられる。
(material)
In the synthesis method of the present invention, boron as a raw material may be brought into the gas phase from a gas species containing boron or from a solid containing boron by evaporation, sputtering, or gas etching. As the gas species containing boron, one or several of boron hydrides such as diborane and decaborane, and boron halides such as boron trichloride and boron trifluoride are used at the same time. As the solid containing boron, solid boron, B 4 C, boron nitride sintered body, borohydride compound such as sodium borohydride, borofluoride such as ammonium borofluoride, organic boron compound such as triethoxyboron, etc. are used. It is done.

窒素源として窒素ガス、アンモニア, ヒドラジン等の窒素の水素化合物、三フッ化窒素等の窒素のフッ化物、等の窒素を含む化合物の一種または数種を同時に用いる。窒素とボロンを別々の化学種で与える代わりにアミンボラン,ボラジン, アミノボラン,ジメチルアミノボラン等の単一化学種で供給することもできる。   As the nitrogen source, one or several kinds of nitrogen-containing compounds such as nitrogen gas, ammonia, hydrazine and other nitrogen hydrides, nitrogen fluoride such as nitrogen trifluoride, and the like are used simultaneously. Instead of supplying nitrogen and boron as separate chemical species, a single chemical species such as amine borane, borazine, aminoborane, and dimethylaminoborane can also be supplied.

ホウ素源および窒素源のガスの間の反応を行わせ、窒化ホウ素を析出させるが、フッ素が必ず含まれるように選定する。上記原料ガス或いは固体原料中にフッ素が含まれない場合は、上記化合物以外に、フッ素ガス、フッ化水素、フッ化ハロゲン、希ガスのフッ化物等を加えるか、四フッ化メタン等の有機フッ素化合物、フッ化硫黄、フッ化ケイ素、フッ化隣、またはフッ化タングステン等のフッ素化合物または金属フッ化物の分解により得られるフッ素を加えることにより行うことができる。   A reaction between the boron source gas and the nitrogen source gas is performed to precipitate boron nitride, which is selected so that fluorine is always included. When fluorine is not contained in the source gas or solid source, in addition to the above compound, fluorine gas, hydrogen fluoride, halogen fluoride, rare gas fluoride or the like is added, or organic fluorine such as tetrafluoromethane The compound, sulfur fluoride, silicon fluoride, fluorine fluoride, or fluorine compound such as tungsten fluoride or fluorine obtained by decomposition of metal fluoride can be added.

さらに、アルゴン、ヘリウム等の不活性ガス、水素ガスをプラズマの制御、またはフッ素ガスの作用を制御する等の目的で、適宜加えることができる。これらの原料および添加ガスの最適流量はプラズマの種類、プラズマの発生方法、合成装置の大きさ、合成圧力等により大きく異なり、またその範囲はかなり広い。   Furthermore, an inert gas such as argon or helium, or hydrogen gas can be added as appropriate for the purpose of controlling plasma or controlling the action of fluorine gas. The optimum flow rates of these raw materials and additive gases vary greatly depending on the type of plasma, the plasma generation method, the size of the synthesis apparatus, the synthesis pressure, etc., and the range is quite wide.

(反応圧力)
本発明の合成法において、用いる気相の圧力は、10−6〜102気圧が用いられるが、反応速度、取り扱いの点で10−5〜1気圧が望ましい。
(Reaction pressure)
In the synthesis method of the present invention, a gas phase pressure of 10 −6 to 10 2 atm is used, and 10 −5 to 1 atm is desirable in terms of reaction rate and handling.

(基板、基盤、基体)
本発明の合成法において、窒化ホウ素を析出させる基体は、シリコン等の半導体、石英等の絶縁体、炭化タングステン等の半金属、モリブデン等の金属あるいは合金のいずれでも用いることができ、特に制限はない。
(Substrate, substrate, substrate)
In the synthesis method of the present invention, the substrate on which boron nitride is deposited can be any of a semiconductor such as silicon, an insulator such as quartz, a semimetal such as tungsten carbide, a metal such as molybdenum, or an alloy, and is not particularly limited. Absent.

(基体温度)
本発明の合成法においては、プラズマによる活性化を用いているため、室温から1400℃の広い範囲の基体温度を用いることができるが、特に結晶性の良いc−BNの合成のためには500〜1300℃の基板温度が望ましい。
(Substrate temperature)
In the synthesis method of the present invention, since activation by plasma is used, a substrate temperature in a wide range from room temperature to 1400 ° C. can be used. However, for the synthesis of c-BN having particularly good crystallinity, the substrate temperature is 500. A substrate temperature of ˜1300 ° C. is desirable.

図1に示す13.56MHzの高周波を用いる高周波誘導プラズマ装置において、シリコン基板1を基板ホルダー2上におき、反応室3を排気ポンプ5により10−4 Paまで排気後、ガス供給器7より、バルブ8を通して、He 20 sccm, N 1 sccm, H 5sccmを流し、高周波電源9からの1.5 kWの高周波をワークコイル10に供給し、プラズマを発生させる。バルブ8'を通して10%BF/He 30 sccmを流し、直流バイアス電源11により+30 Vの直流バイアスを基板ホルダー2を通して基板1にかけ、基板温度1000℃にて、20 Pa下の30分間の合成により、基板1上に窒化ホウ素膜が得られた。
この方法により得られた窒化ホウ素のX線回折図を図2に示す。図2においてc−BNの111,200,220,311反射が現れている。また、六方晶窒化ホウ素の002,乱層構造窒化ホウ素の001反射もみられるが、六方晶窒化ホウ素の100,101,004等の反射は強くない。
赤外吸収スペクトルを図3に示す。図3より1100 cm−1近傍にc−BNの残留線の吸収が強く現れており、また1360〜1400 cm−1近傍と800 cm−1近傍に六方晶窒化ホウ素および乱層構造窒化ホウ素および非晶質窒化ホウ素(3者を合わせてsp−BNと表現)による吸収が現れているが、c−BNの吸収ほど強くはない。これらより、得られた窒化ホウ素膜は、c−BNの優勢な窒化ホウ素膜であることがわかる。
In the high frequency induction plasma apparatus using a high frequency of 13.56 MHz shown in FIG. 1, the silicon substrate 1 is placed on the substrate holder 2, the reaction chamber 3 is exhausted to 10 −4 Pa by the exhaust pump 5, and then from the gas supplier 7. He 20 sccm, N 2 1 sccm, and H 2 5 sccm are passed through the valve 8, and a high frequency of 1.5 kW from the high frequency power supply 9 is supplied to the work coil 10 to generate plasma. 10% BF 3 / He 30 sccm is flowed through the valve 8 ′, a DC bias of +30 V is applied to the substrate 1 through the substrate holder 2 by the DC bias power supply 11, and synthesis is performed at a substrate temperature of 1000 ° C. for 30 minutes under 20 Pa. A boron nitride film was obtained on the substrate 1.
FIG. 2 shows an X-ray diffraction pattern of boron nitride obtained by this method. In FIG. 2, 111, 200, 220, and 311 reflections of c-BN appear. Further, although 001 reflection of hexagonal boron nitride 002 and disordered structure boron nitride is also observed, reflection of hexagonal boron nitride 100, 101, 004, etc. is not strong.
The infrared absorption spectrum is shown in FIG. From FIG. 3, the absorption of the residual line of c-BN appears strongly in the vicinity of 1100 cm −1, and hexagonal boron nitride and turbostratic boron nitride in the vicinity of 1360 to 1400 cm −1 and 800 cm −1 Absorption by crystalline boron nitride (represented by sp 2 -BN in all three) appears, but is not as strong as that of c-BN. From these, it can be seen that the obtained boron nitride film is a dominant boron nitride film of c-BN.

図1に示す装置において、He 80 sccm, N 10 sccm, H2 9 sccmを流し、高周波電源9からの1kWの高周波をワークコイル10に供給し、プラズマを発生させる。バルブ8’を通して10%BF/He16 sccmを流し、反応容器と参照電極と基板をアース電位にして、基板温度700℃にて、20Pa下の30分間の合成により、シリコン基板1上に窒化ホウ素膜が得られた。
図4はこの膜の赤外吸収スペクトルである。図4よりc−BNが含まれた窒化ホウ素が生成していることがわかる。
In the apparatus shown in FIG. 1, He 80 sccm, N 2 10 sccm, and H 2 9 sccm are flowed, and a high frequency of 1 kW from the high frequency power supply 9 is supplied to the work coil 10 to generate plasma. Boron nitride is formed on silicon substrate 1 by synthesizing 30% under 20 Pa at a substrate temperature of 700 ° C. by flowing 10% BF 3 / He16 sccm through valve 8 ′, setting the reaction vessel, the reference electrode, and the substrate to ground potential. A membrane was obtained.
FIG. 4 is an infrared absorption spectrum of this film. FIG. 4 shows that boron nitride containing c-BN is generated.

図1に示す装置において、He 80 sccm, N 10 sccm, H2 10 sccmを流し、高周波電源9からの1kWの高周波をワークコイル10に供給し、プラズマを発生させる。バルブ8’を通して10%BF/He18 sccmを流し、直流バイアス電源11により+100 Vの直流バイアスを基板ホルダー2を通して基板1にかけ、基板温度1000℃にて、40Pa下の20分間の合成により、シリコン基板1上に窒化ホウ素膜が得られた。
図5はこの膜の赤外吸収スペクトルである。図5よりc−BNが含まれた窒化ホウ素が生成していることがわかる。
この作成条件と同じ条件下でのプラズマのプラズマ電位をエミッシブプローブで測定したところ、+100Vと基板印加電圧と同じ値となり、基板入射イオンエネルギーはほぼ0eVであると推定される。
In the apparatus shown in FIG. 1, He 80 sccm, N 2 10 sccm, and H 2 10 sccm are flowed, and a high frequency of 1 kW from the high frequency power supply 9 is supplied to the work coil 10 to generate plasma. 10% BF 3 / He18 sccm is allowed to flow through the valve 8 ′, a DC bias of +100 V is applied to the substrate 1 through the substrate holder 2 by the DC bias power supply 11, and silicon is synthesized by synthesis for 20 minutes under 40 Pa at a substrate temperature of 1000 ° C. A boron nitride film was obtained on the substrate 1.
FIG. 5 is an infrared absorption spectrum of this film. FIG. 5 shows that boron nitride containing c-BN is generated.
When the plasma potential of the plasma under the same conditions as this creation condition was measured with an emissive probe, +100 V was the same as the substrate applied voltage, and the substrate incident ion energy was estimated to be approximately 0 eV.

イオン衝撃の少ない状態においてc−BNを作成することができるので、残留応力の減少と、基体との密着性の向上の可能性により、鉄族金属との低反応性を用いた、切削工具等への耐熱耐磨耗コーティングへの応用の可能性が大となった。機械加工の分野では鉄系材料がほとんどのため、広い領域での高精度加工と省力化が可能となる。また、c−BNの耐磨耗性、低摩擦性、耐熱性、耐酸化性、耐薬品性、他物質への低濡れ性等を利用した金型等への幅広いコーティングへ応用できる。さらに、結晶性の向上により、c−BNの広バンド幅、高キャリヤー移動度、高熱伝導度、耐熱性を利用した、高温高周波高パワー用半導体、短波長用光電デバイス、光学材料、電界電子放射用電極等への幅広い応用が期待され、電子機器、光学機器の固体素子化を通して、生活の利便性の向上と省エネルギー化に寄与する。   Since c-BN can be produced in a state with little ion bombardment, a cutting tool or the like using low reactivity with an iron group metal due to a decrease in residual stress and an improvement in adhesion to the substrate. The potential for application to heat-resistant and wear-resistant coatings has increased. Since most of the ferrous materials are used in the field of machining, high-precision machining and labor saving can be achieved over a wide area. In addition, it can be applied to a wide range of coatings on molds and the like utilizing the wear resistance, low friction, heat resistance, oxidation resistance, chemical resistance, and low wettability to other substances of c-BN. Further, by improving the crystallinity, the high-bandwidth, high carrier mobility, high thermal conductivity, and heat resistance of c-BN are utilized, high-temperature, high-frequency, high-power semiconductors, short-wavelength photoelectric devices, optical materials, field electron emission. A wide range of applications are expected, and it contributes to the improvement of the convenience of life and energy saving through the solidification of electronic and optical devices.

図1は、本発明のc−BNを含む膜の合成法において、高周波誘導プラズマを使用する装置の概略側面図である。FIG. 1 is a schematic side view of an apparatus using high-frequency induction plasma in the method for synthesizing a film containing c-BN of the present invention. 図2は、本発明の実施例1で得られた窒化ホウ素膜のCuKα線によるX線回折図である。FIG. 2 is an X-ray diffraction diagram by CuKα rays of the boron nitride film obtained in Example 1 of the present invention. 図3は、本発明の実施例1で得られた窒化ホウ素膜の赤外吸収スペクトル図である。FIG. 3 is an infrared absorption spectrum diagram of the boron nitride film obtained in Example 1 of the present invention. 図4は、本発明の実施例2で得られた窒化ホウ素膜の赤外吸収スペクトル図である。FIG. 4 is an infrared absorption spectrum diagram of the boron nitride film obtained in Example 2 of the present invention. 図5は、本発明の実施例3で得られた窒化ホウ素膜の赤外吸収スペクトル図である。FIG. 5 is an infrared absorption spectrum diagram of the boron nitride film obtained in Example 3 of the present invention.

符号の説明Explanation of symbols

1 基体
2 基体ホルダー
3 反応室
4 反応官
5 真空ポンプ
6 覗き窓
7 ガス供給器
8,8’バルブ
9 高周波電源
10 ワークコイル
11 バイアス電源
12 参照電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate holder 3 Reaction chamber 4 Reactor 5 Vacuum pump 6 Viewing window 7 Gas supply 8, 8 'valve 9 High frequency power supply 10 Work coil 11 Bias power supply 12 Reference electrode

Claims (3)

プラズマ装置の反応容器内において、基体上に窒化ホウ素を堆積させることにより立方晶窒化ホウ素を製造する方法であって、フッ素あるいはフッ素を含むガス種を含む気相をプラズマによって活性化し、反応容器壁あるいは反応容器内に設置した参照電極に対し、基体の時間平均電位を同電位あるいは正にバイアスすることにより、立方晶窒化ホウ素を含む窒化ホウ素を堆積させることを特徴とする立方晶窒化ホウ素の製造方法。 A method of producing cubic boron nitride by depositing boron nitride on a substrate in a reaction vessel of a plasma apparatus, wherein a gas phase containing fluorine or a gas species containing fluorine is activated by plasma, and the reaction vessel wall Alternatively to the reference electrode was placed in a reaction vessel, cubic boron nitride, characterized in that more to the time average the same potential or positive biasing of the potential of the substrate, depositing a boron nitride containing standing-cubic boron nitride Manufacturing method. 基体に印加する電圧として、直流電圧または直流+高周波を用いる請求項1に記載の立方晶窒化ホウ素の製造方法。   The method for producing cubic boron nitride according to claim 1, wherein a direct current voltage or a direct current + high frequency is used as a voltage applied to the substrate. 基体の時間平均電位をプラズマ電位と同電位あるいは正の電位にすることを特徴とする請求項1あるいは2に記載の立方晶窒化ホウ素の製造方法。   3. The method for producing cubic boron nitride according to claim 1, wherein the time average potential of the substrate is set to the same potential as the plasma potential or a positive potential.
JP2007062629A 2007-03-12 2007-03-12 Method for producing cubic boron nitride Expired - Fee Related JP4827061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062629A JP4827061B2 (en) 2007-03-12 2007-03-12 Method for producing cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062629A JP4827061B2 (en) 2007-03-12 2007-03-12 Method for producing cubic boron nitride

Publications (2)

Publication Number Publication Date
JP2008222488A JP2008222488A (en) 2008-09-25
JP4827061B2 true JP4827061B2 (en) 2011-11-30

Family

ID=39841532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062629A Expired - Fee Related JP4827061B2 (en) 2007-03-12 2007-03-12 Method for producing cubic boron nitride

Country Status (1)

Country Link
JP (1) JP4827061B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340676B2 (en) 2008-08-29 2013-11-13 三洋電機株式会社 Battery system
CN103026473A (en) * 2010-07-21 2013-04-03 东京毅力科创株式会社 Interlayer insulating layer formation method and semiconductor device
US10763103B2 (en) * 2015-03-31 2020-09-01 Versum Materials Us, Llc Boron-containing compounds, compositions, and methods for the deposition of a boron containing films
KR102123016B1 (en) * 2018-02-28 2020-06-16 한국에너지기술연구원 Deposition Coating Method of Boron Nitride by Vapor Reaction
KR20230114487A (en) 2022-01-25 2023-08-01 성균관대학교산학협력단 Cubic boron nitride thin film manufacturing method and structure comprising same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102827A (en) * 1985-10-29 1987-05-13 Natl Res Inst For Metals Production of metallic or ceramic fine grain
JPH0234787A (en) * 1988-07-22 1990-02-05 Semiconductor Energy Lab Co Ltd Laminated body having carbon-based coating film
JPH038705A (en) * 1989-06-02 1991-01-16 Mitsubishi Heavy Ind Ltd Production of boron nitride
JPH03174397A (en) * 1989-09-20 1991-07-29 Sumitomo Electric Ind Ltd Method and device for synthesizing rigid substance
JPH04228572A (en) * 1990-08-10 1992-08-18 Sumitomo Electric Ind Ltd Method for synthesizing hard boron nitride
JP2569423B2 (en) * 1993-12-15 1997-01-08 科学技術庁無機材質研究所長 Gas phase synthesis of boron nitride
JP3605634B2 (en) * 1999-12-27 2004-12-22 独立行政法人物質・材料研究機構 Vapor phase synthesis of cubic boron nitride
JP2005008988A (en) * 1999-12-27 2005-01-13 National Institute For Materials Science Cubic boron nitride film
JP5252675B2 (en) * 2006-06-15 2013-07-31 株式会社神戸製鋼所 Cubic boron nitride formation method and apparatus therefor

Also Published As

Publication number Publication date
JP2008222488A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
KR910001367B1 (en) Gaseous phase synthesized diamond film and method for synthesizing same
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
US5747118A (en) Plasma enhanced chemical transport process for forming diamond films
US7645513B2 (en) Cubic boron nitride/diamond composite layers
JP4827061B2 (en) Method for producing cubic boron nitride
JPWO2018128193A1 (en) Hexagonal boron nitride thin film and manufacturing method thereof
Liu et al. Morphology and structure of Ti-doped diamond films prepared by microwave plasma chemical vapor deposition
US6383465B1 (en) Cubic boron nitride and its gas phase synthesis method
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
Chng et al. Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors
Sharda et al. Hydrogen in chemical vapour deposited diamond films
Yamamoto et al. Synthesis of c-BN films by using a low-pressure inductively coupled BF3–He–N2–H2 plasma
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
TWI429779B (en) Method of diamond nucleation
JP2569423B2 (en) Gas phase synthesis of boron nitride
Montasser et al. A transparent boron-nitrogen thin film formed by plasma CVD out of the discharge region
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
JPS6395200A (en) Production of hard boron nitride film
JP2005008988A (en) Cubic boron nitride film
Ivandini et al. Preparation and characterization of polycrystalline chemical vapor deposited boron-doped diamond thin films
JP4480192B2 (en) Method for synthesizing high purity diamond
KR910001360B1 (en) Method for synthesizing diamondbulk material
Chang et al. CVD diamond growth
JPH01201098A (en) Synthesis of diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees