JP4826398B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4826398B2
JP4826398B2 JP2006241633A JP2006241633A JP4826398B2 JP 4826398 B2 JP4826398 B2 JP 4826398B2 JP 2006241633 A JP2006241633 A JP 2006241633A JP 2006241633 A JP2006241633 A JP 2006241633A JP 4826398 B2 JP4826398 B2 JP 4826398B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
catalyst
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006241633A
Other languages
Japanese (ja)
Other versions
JP2008063994A (en
Inventor
孝彦 藤原
徳久 中川
直人 加藤
俊太郎 岡崎
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006241633A priority Critical patent/JP4826398B2/en
Priority to US12/439,902 priority patent/US20100218485A1/en
Priority to EP07825062A priority patent/EP2059665B1/en
Priority to PCT/IB2007/002558 priority patent/WO2008029256A2/en
Publication of JP2008063994A publication Critical patent/JP2008063994A/en
Application granted granted Critical
Publication of JP4826398B2 publication Critical patent/JP4826398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の空燃比制御装置に関し、特に、酸素吸蔵能力を有する触媒を排気通路に備える内燃機関において、触媒に流入する排気ガスの空燃比が理論空燃比になるように燃料噴射量を制御する空燃比制御装置に関する。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and in particular, in an internal combustion engine provided with a catalyst having oxygen storage capacity in an exhaust passage, the fuel injection amount is adjusted so that the air-fuel ratio of exhaust gas flowing into the catalyst becomes the stoichiometric air-fuel ratio. The present invention relates to an air-fuel ratio control device to be controlled.

従来、特許文献1に開示されているように、触媒の上流側に全域空燃比センサを配置し、触媒の下流側に酸素センサを配置し、これら2つのセンサの信号に基づいて空燃比を制御する空燃比制御装置が知られている。全域空燃比センサは空燃比に対してリニアな出力特性を示すセンサである。酸素センサはガス中の酸素濃度に応じた信号を出力するセンサであり、空燃比に対し理論空燃比を基準にして出力信号が反転する出力特性を有している。空燃比制御装置では、全域空燃比センサが出力する信号に基づき、触媒に流入する排気ガスの空燃比が理論空燃比になるよう燃料噴射量をフィードバック制御することが行われている。   Conventionally, as disclosed in Patent Document 1, a full-range air-fuel ratio sensor is arranged upstream of the catalyst, an oxygen sensor is arranged downstream of the catalyst, and the air-fuel ratio is controlled based on the signals of these two sensors. An air-fuel ratio control device is known. The full-range air-fuel ratio sensor is a sensor that exhibits linear output characteristics with respect to the air-fuel ratio. The oxygen sensor is a sensor that outputs a signal corresponding to the oxygen concentration in the gas, and has an output characteristic that the output signal is inverted with respect to the air-fuel ratio with respect to the stoichiometric air-fuel ratio. In the air-fuel ratio control device, the fuel injection amount is feedback-controlled so that the air-fuel ratio of the exhaust gas flowing into the catalyst becomes the stoichiometric air-fuel ratio based on a signal output from the global air-fuel ratio sensor.

また、全域空燃比センサの出力信号に基づくフィードバック制御(これをメインフィードバック制御という)と併せて、酸素センサが出力する信号を燃料噴射量に反映させる制御(これをサブフィードバック制御という)も行われている。サブフィードバック制御では、酸素センサが出力する信号と理論空燃比に対応する基準信号との偏差に基づき補正値が算出され、その補正値が全域空燃比センサの出力信号に反映される。この補正値は、触媒に流入する排気ガスの空燃比が理論空燃比に対してリーン/リッチの何れの側にずれているかを示している。これによれば、全域空燃比センサの出力信号にずれがある場合でも、そのずれを補正して現実の空燃比が理論空燃比に近付くように燃料噴射量を制御することができる。
特開平5−321721号公報 特開平10−246139号公報
In addition to feedback control based on the output signal of the entire air-fuel ratio sensor (this is called main feedback control), control for reflecting the signal output from the oxygen sensor in the fuel injection amount (this is called sub-feedback control) is also performed. ing. In the sub-feedback control, a correction value is calculated based on the deviation between the signal output from the oxygen sensor and the reference signal corresponding to the theoretical air-fuel ratio, and the correction value is reflected in the output signal of the global air-fuel ratio sensor. This correction value indicates which side of the air / fuel ratio of the exhaust gas flowing into the catalyst is lean / rich with respect to the stoichiometric air / fuel ratio. According to this, even when there is a deviation in the output signal of the entire area air-fuel ratio sensor, the deviation can be corrected and the fuel injection amount can be controlled so that the actual air-fuel ratio approaches the theoretical air-fuel ratio.
Japanese Patent Laid-Open No. 5-321721 Japanese Patent Laid-Open No. 10-246139

ところで、触媒は、その周囲雰囲気が理論空燃比近傍にあるときに最も効率的に排気ガスを浄化することができる。触媒にはその内部に酸素を吸蔵しておく酸素吸蔵能力(Oxygen Storage Capacity:OSC)がある。触媒に流入する排気ガスの空燃比がリーンのときには、触媒は気相中の酸素を取り込んで吸蔵し、逆に触媒に流入する排気ガスの空燃比がリッチのときには、触媒は自身が吸蔵している酸素を気相に放出する。流入する排気ガスの空燃比に応じて酸素を吸蔵或いは放出することにより、触媒は自身の周囲雰囲気を理論空燃比近傍に維持している。   By the way, the catalyst can purify the exhaust gas most efficiently when the surrounding atmosphere is in the vicinity of the theoretical air-fuel ratio. The catalyst has an oxygen storage capacity (OSC) in which oxygen is stored. When the air-fuel ratio of the exhaust gas flowing into the catalyst is lean, the catalyst takes in oxygen in the gas phase and stores it, and conversely, when the air-fuel ratio of the exhaust gas flowing into the catalyst is rich, the catalyst stores itself. Oxygen is released into the gas phase. The catalyst maintains its ambient atmosphere in the vicinity of the stoichiometric air-fuel ratio by storing or releasing oxygen in accordance with the air-fuel ratio of the inflowing exhaust gas.

触媒の酸素吸蔵能力は、排気ガスの浄化効率に大きく影響する。すなわち、酸素吸蔵能力が高ければ、排気ガスの空燃比が理論空燃比から大きくずれている場合や、大きな振幅で振動しているような場合でも酸素の吸蔵或いは放出が可能であり、触媒の周囲雰囲気を理論空燃比近傍に維持して排気ガスを浄化することができる。触媒の酸素吸蔵能力は、酸素の吸蔵/放出の繰り返しにより触媒貴金属を活性化させることで高く維持することができることが知られている。前述の燃料噴射量のフィードバック制御によれば、排気ガスの空燃比が理論空燃比を挟んで振動することにより、触媒に酸素の吸蔵/放出を繰り返させることができる。   The oxygen storage capacity of the catalyst greatly affects the exhaust gas purification efficiency. That is, if the oxygen storage capacity is high, oxygen can be stored or released even when the air-fuel ratio of the exhaust gas is greatly deviated from the stoichiometric air-fuel ratio or when it vibrates with a large amplitude. The exhaust gas can be purified while maintaining the atmosphere in the vicinity of the theoretical air-fuel ratio. It is known that the oxygen storage capacity of the catalyst can be maintained high by activating the catalyst noble metal through repeated oxygen storage / release. According to the above-described feedback control of the fuel injection amount, the air-fuel ratio of the exhaust gas oscillates across the stoichiometric air-fuel ratio, so that the catalyst can repeatedly store / release oxygen.

しかし、最近の研究の結果、触媒の酸素吸蔵能力の低下は、触媒自体の劣化の他、触媒に流入する排気ガスの空燃比が影響していることが判明した。具体的には、排気ガスの空燃比が理論空燃比を挟んで振動していたとしても、その振幅が小さい場合には触媒の酸素吸蔵能力は低下してしまうのである。   However, as a result of recent research, it has been found that the decrease in the oxygen storage capacity of the catalyst is influenced not only by the deterioration of the catalyst itself but also by the air-fuel ratio of the exhaust gas flowing into the catalyst. Specifically, even if the air-fuel ratio of the exhaust gas oscillates across the stoichiometric air-fuel ratio, the oxygen storage capacity of the catalyst is reduced when the amplitude is small.

図1は、触媒に流入する排気ガスの空燃比(A/F)と、触媒の吸蔵酸素量或いは放出酸素量との関係を示すグラフである。この図に示すように、空燃比が理論空燃比(ストイキ)よりもリッチ側に偏っているほど触媒の吸蔵酸素量は大きくなり、リーン側に偏っているほど触媒の放出酸素量は大きくなる。逆に言えば、空燃比が理論空燃比に近いほど触媒の吸蔵酸素量も放出酸素量も低下することになる。このため、空燃比の理論空燃比を挟んだ振動の振幅が小さい状態が続くと、酸素の吸蔵/放出が僅かな量でしか繰り返されなくなり、酸素吸蔵能力が低い状態で触媒が安定してしまう。   FIG. 1 is a graph showing the relationship between the air-fuel ratio (A / F) of exhaust gas flowing into the catalyst and the amount of oxygen stored or released from the catalyst. As shown in this figure, the occluded oxygen amount of the catalyst increases as the air-fuel ratio deviates to the rich side from the stoichiometric air-fuel ratio (stoichiometric), and the released oxygen amount of the catalyst increases as it deviates to the lean side. Conversely, the closer the air-fuel ratio is to the stoichiometric air-fuel ratio, the lower the amount of oxygen stored and the amount of released oxygen of the catalyst. For this reason, if the vibration amplitude across the theoretical air-fuel ratio of the air-fuel ratio continues to be small, oxygen storage / release is repeated only in a small amount, and the catalyst becomes stable with low oxygen storage capacity. .

上記の酸素吸蔵能力の低下は一時的なものであり、空燃比の振幅が再び大きくなることで触媒の酸素吸蔵能力も回復する。しかし、酸素吸蔵能力が十分に回復するまでには時間を要し、それまでの間は、触媒の浄化能力を超える分のエミッションが大気中に排出されてしまう。前述の全域空燃比センサと酸素センサとを用いた燃料噴射量のフィードバック制御によれば、排気ガスの空燃比を理論空燃比の近傍に維持することができる。しかし、その反面、触媒の酸素吸蔵能力は低下しているため、多少の空燃比の変動でも触媒からエミッションが排出されてしまう可能性がある。   The above-described decrease in the oxygen storage capacity is temporary, and the oxygen storage capacity of the catalyst is recovered by increasing the amplitude of the air-fuel ratio again. However, it takes time for the oxygen storage capacity to fully recover, and until then, emissions exceeding the purification capacity of the catalyst are discharged into the atmosphere. According to the feedback control of the fuel injection amount using the whole area air-fuel ratio sensor and the oxygen sensor, the air-fuel ratio of the exhaust gas can be maintained in the vicinity of the stoichiometric air-fuel ratio. However, on the other hand, since the oxygen storage capacity of the catalyst is reduced, there is a possibility that emissions may be discharged from the catalyst even if there is a slight change in the air-fuel ratio.

本発明は、上述のような課題を解決するためになされたもので、触媒の酸素吸蔵能力が低下する状況でのエミッションの排出を抑制できるようにした内燃機関の空燃比制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an air-fuel ratio control device for an internal combustion engine that can suppress emission of emissions in a situation where the oxygen storage capacity of the catalyst is reduced. With the goal.

第1の発明は、上記の目的を達成するため、酸素吸蔵能力を有する触媒を排気通路に備える内燃機関の空燃比制御装置であって、
前記触媒に流入する排気ガスの空燃比が理論空燃比を挟んで振動するように燃料噴射量を制御する燃料噴射量制御手段と、
前記触媒の酸素吸蔵能力の程度を推定する酸素吸蔵能力推定手段と、
前記触媒の酸素吸蔵能力が所定の基準能力よりも低下していると推定されるときに前記燃料噴射量制御手段による空燃比の振幅を縮小させる振幅縮小手段と、
を備えることを特徴としている。
In order to achieve the above object, a first invention is an air-fuel ratio control device for an internal combustion engine comprising a catalyst having an oxygen storage capacity in an exhaust passage,
Fuel injection amount control means for controlling the fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the catalyst oscillates across the theoretical air-fuel ratio;
Oxygen storage capacity estimation means for estimating the degree of oxygen storage capacity of the catalyst;
Amplitude reducing means for reducing the amplitude of the air-fuel ratio by the fuel injection amount control means when it is estimated that the oxygen storage capacity of the catalyst is lower than a predetermined reference capacity;
It is characterized by having.

第2の発明は、第1の発明において、
前記触媒を通過した排気ガスの酸素濃度に応じた信号を出力する酸素センサを含み、
前記酸素吸蔵能力推定手段は、前記酸素センサの出力信号の振幅が所定の基準値よりも小さくなったら、前記触媒の酸素吸蔵能力が前記基準能力よりも低下したと推定することを特徴としている。
According to a second invention, in the first invention,
An oxygen sensor that outputs a signal corresponding to the oxygen concentration of the exhaust gas that has passed through the catalyst;
The oxygen storage capacity estimation means estimates that the oxygen storage capacity of the catalyst is lower than the reference capacity when the amplitude of the output signal of the oxygen sensor becomes smaller than a predetermined reference value.

第3の発明は、第1の発明において、
前記触媒に流入する排気ガスの空燃比に応じた信号を出力する空燃比センサを含み、
前記酸素吸蔵能力推定手段は、前記空燃比センサの出力信号の振幅が所定の基準値よりも小さくなった状態が所定の基準期間を超えて継続したら、前記触媒の酸素吸蔵能力が前記基準能力よりも低下したと推定することを特徴としている。
According to a third invention, in the first invention,
An air-fuel ratio sensor that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing into the catalyst,
The oxygen storage capacity estimation means determines that the oxygen storage capacity of the catalyst is greater than the reference capacity when the state in which the amplitude of the output signal of the air-fuel ratio sensor is smaller than a predetermined reference value continues beyond a predetermined reference period. It is also characterized by the fact that it has also been reduced.

第4の発明は、第1乃至第3の何れか1つの発明において、
前記触媒に流入する排気ガスの空燃比に応じた信号を出力する空燃比センサを含み、
前記燃料噴射量制御手段は、前記空燃比センサの出力信号と理論空燃比との偏差に基づくフィードバック制御によって燃料噴射量を制御するように構成され、
前記振幅縮小手段は、前記フィードバック制御において前記空燃比センサの出力信号と理論空燃比との偏差を燃料噴射量に反映させる際のゲインの縮小、或いは、反映量の制限によって空燃比の振幅を縮小させるように構成されていることを特徴としている。
A fourth invention is any one of the first to third inventions,
An air-fuel ratio sensor that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing into the catalyst,
The fuel injection amount control means is configured to control the fuel injection amount by feedback control based on a deviation between the output signal of the air-fuel ratio sensor and the theoretical air-fuel ratio,
The amplitude reduction means reduces the amplitude of the air-fuel ratio by reducing the gain when the deviation between the output signal of the air-fuel ratio sensor and the theoretical air-fuel ratio is reflected in the fuel injection amount in the feedback control, or by limiting the reflection amount It is characterized by being comprised.

第5の発明は、第1乃至第4の何れか1つの発明において、
前記触媒に流入する排気ガスの空燃比に応じた信号を出力する空燃比センサと、
前記触媒を通過した排気ガスの酸素濃度に応じた信号を出力する酸素センサとを含み、
前記燃料噴射量制御手段は、前記空燃比センサの出力信号と理論空燃比との偏差に基づくフィードバック制御によって燃料噴射量を制御するとともに、前記酸素センサの出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させるように構成され、
前記振幅縮小手段は、前記酸素センサの出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させる際のゲインの縮小、或いは、反映量の制限によって空燃比の振幅を縮小させるように構成されていることを特徴としている。
According to a fifth invention, in any one of the first to fourth inventions,
An air-fuel ratio sensor that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing into the catalyst;
An oxygen sensor that outputs a signal corresponding to the oxygen concentration of the exhaust gas that has passed through the catalyst,
The fuel injection amount control means controls the fuel injection amount by feedback control based on a deviation between the output signal of the air-fuel ratio sensor and the stoichiometric air-fuel ratio, and a reference value corresponding to the output signal of the oxygen sensor and the stoichiometric air-fuel ratio. To reflect the deviation from the fuel injection amount,
The amplitude reduction means reduces the gain when reflecting the deviation between the output signal of the oxygen sensor and the reference value corresponding to the theoretical air-fuel ratio in the fuel injection amount, or reduces the amplitude of the air-fuel ratio by limiting the reflection amount It is characterized by being comprised.

第6の発明は、第1乃至第5の何れか1つの発明において、
燃料カット或いは燃料増量が実行されたときに前記振幅縮小手段による空燃比の振幅の縮小を解除する手段をさらに備えることを特徴としている。
A sixth invention is any one of the first to fifth inventions,
The apparatus further includes means for canceling the reduction in the amplitude of the air-fuel ratio by the amplitude reduction means when the fuel cut or the fuel increase is executed.

第7の発明は、第6の発明において、
前記振幅縮小手段による空燃比の振幅の縮小が所定の基準期間を超えて継続されるときに燃料カット或いは燃料増量の実行頻度を増大させる手段をさらに備えることを特徴としている。
A seventh invention is the sixth invention, wherein
The apparatus further comprises means for increasing the frequency of fuel cut or fuel increase when the amplitude reduction of the air-fuel ratio by the amplitude reduction means is continued beyond a predetermined reference period.

第8の発明は、第6の発明において、
前記振幅縮小手段による空燃比の振幅の縮小が開始されてからの吸入空気量の積算値が所定の基準値を超えたときに燃料カット或いは燃料増量の実行頻度を増大させる手段をさらに備えることを特徴としている。
In an eighth aspect based on the sixth aspect,
And means for increasing the frequency of fuel cut or fuel increase when the integrated value of the intake air amount after the amplitude reduction of the air-fuel ratio is started by the amplitude reduction means exceeds a predetermined reference value. It is a feature.

第1の発明によれば、触媒の酸素吸蔵能力が低下しているときには理論空燃比を挟んで振動する空燃比の振幅が縮小されるので、触媒に流入するガスの空燃比が触媒の放出可能な酸素量の範囲を超えてリッチ側にずれたり、或いは、触媒の吸蔵可能な酸素量の範囲を超えてリーン側にずれたりすることを防止でき、触媒からエミッションが排出されるのを抑制することができる。   According to the first invention, when the oxygen storage capacity of the catalyst is reduced, the amplitude of the air-fuel ratio that oscillates across the theoretical air-fuel ratio is reduced, so that the air-fuel ratio of the gas flowing into the catalyst can be released by the catalyst. Can be prevented from shifting to the rich side beyond the range of oxygen amount, or to the lean side beyond the range of oxygen amount that can be stored in the catalyst, suppressing emission of emissions from the catalyst. be able to.

第2の発明によれば、触媒の酸素吸蔵能力の程度を推定するのに触媒下流の酸素センサの出力信号を用いることで、触媒の酸素吸蔵能力の低下を正確に検出することができる。触媒に流入する排気ガスの空燃比が理論空燃比に近付き、その振動の振幅が小さい状態が継続すると、やがて触媒の酸素吸蔵能力は低下し、その結果、触媒の下流に配置される酸素センサの出力信号の振幅も低下するからである。   According to the second invention, it is possible to accurately detect the decrease in the oxygen storage capacity of the catalyst by using the output signal of the oxygen sensor downstream of the catalyst to estimate the degree of the oxygen storage capacity of the catalyst. If the air-fuel ratio of the exhaust gas flowing into the catalyst approaches the stoichiometric air-fuel ratio and the state of the vibration amplitude is small, the oxygen storage capacity of the catalyst eventually decreases, and as a result, the oxygen sensor disposed downstream of the catalyst This is because the amplitude of the output signal also decreases.

また、第3の発明によれば、触媒に流入する排気ガスの空燃比を空燃比センサで計測し、その出力信号に基づいて触媒の酸素吸蔵能力の程度を推定することで、触媒の酸素吸蔵能力の低下を正確に検出することができる。   According to the third aspect of the invention, the air-fuel ratio of the exhaust gas flowing into the catalyst is measured by the air-fuel ratio sensor, and the degree of oxygen storage capacity of the catalyst is estimated based on the output signal. It is possible to accurately detect a decrease in capacity.

第4の発明によれば、触媒上流の空燃比センサの出力信号と理論空燃比との偏差を燃料噴射量に反映させる際のゲインを縮小し、或いは、その反映量を制限することによって、触媒に流入する排気ガスの空燃比の振幅を効率良く縮小させることができる。   According to the fourth aspect of the present invention, the gain at the time of reflecting the deviation between the output signal of the air-fuel ratio sensor upstream of the catalyst and the theoretical air-fuel ratio in the fuel injection amount is reduced, or the reflection amount is limited, thereby reducing the catalyst. The amplitude of the air-fuel ratio of the exhaust gas flowing into the engine can be efficiently reduced.

第5の発明によれば、触媒下流の酸素センサの出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させる際のゲインを縮小し、或いは、その反映量を制限することによって、触媒に流入する排気ガスの空燃比の振幅を効率良く縮小させることができる。   According to the fifth aspect of the invention, the gain for reflecting the deviation between the output signal of the oxygen sensor downstream of the catalyst and the reference value corresponding to the theoretical air-fuel ratio in the fuel injection amount is reduced, or the reflection amount is limited. As a result, the air-fuel ratio amplitude of the exhaust gas flowing into the catalyst can be efficiently reduced.

第6の発明によれば、燃料カット或いは燃料増量の実行によって触媒の酸素吸蔵能力が回復されたときには、空燃比の振幅の縮小を解除することで、通常の空燃比制御に速やかに戻して触媒の酸素吸蔵能力を最大限に利用することができるようになる。   According to the sixth aspect of the present invention, when the oxygen storage capacity of the catalyst is recovered by executing the fuel cut or the fuel increase, the reduction in the amplitude of the air-fuel ratio is canceled to quickly return to the normal air-fuel ratio control and the catalyst. It will be possible to make maximum use of the oxygen storage capacity.

第7及び第8の発明によれば、燃料カット或いは燃料増量の実行頻度を増大させることで、触媒の酸素吸蔵能力を最大限に利用可能な通常の空燃比制御に早期に戻すことができる。   According to the seventh and eighth inventions, by increasing the execution frequency of fuel cut or fuel increase, it is possible to quickly return to normal air-fuel ratio control in which the oxygen storage capacity of the catalyst can be utilized to the maximum.

以下、図を参照して、本発明の実施の形態について説明する。
図2は本発明の実施の形態にかかる空燃比制御装置が組み込まれた内燃機関システムの全体構成を説明するための図である。図に示すように、内燃機関2には排気通路4が接続されている。排気通路4には排気ガス中の有害成分(NOx、CO、HC)を浄化するための触媒6、8が2段に配置されている。少なくとも上流側の触媒6は、酸素吸蔵能力を有する触媒である。上流側の触媒6は排気マニホールドに接近して配置され、下流側の触媒8は車両の床下に配置されている。触媒6の上流には全域空燃比センサ12が取り付けれ、触媒6の下流には酸素センサ14が取り付けられている。全域空燃比センサ12は空燃比に対してリニアな出力特性を示すセンサである。酸素センサ14はガス中の酸素濃度に応じた信号を出力するセンサであり、空燃比に対し理論空燃比を基準にして出力信号が反転する出力特性を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a diagram for explaining the overall configuration of the internal combustion engine system in which the air-fuel ratio control apparatus according to the embodiment of the present invention is incorporated. As shown in the figure, an exhaust passage 4 is connected to the internal combustion engine 2. In the exhaust passage 4, catalysts 6 and 8 for purifying harmful components (NOx, CO, HC) in the exhaust gas are arranged in two stages. At least the upstream catalyst 6 is a catalyst having an oxygen storage capacity. The upstream catalyst 6 is disposed close to the exhaust manifold, and the downstream catalyst 8 is disposed under the floor of the vehicle. A whole area air-fuel ratio sensor 12 is attached upstream of the catalyst 6, and an oxygen sensor 14 is attached downstream of the catalyst 6. The global air-fuel ratio sensor 12 is a sensor that exhibits output characteristics linear with respect to the air-fuel ratio. The oxygen sensor 14 is a sensor that outputs a signal corresponding to the oxygen concentration in the gas, and has an output characteristic that the output signal is inverted with respect to the air-fuel ratio with respect to the stoichiometric air-fuel ratio.

内燃機関システムには、システム全体の運転を総合制御する制御装置としてECU(Electronic Control Unit)10が設けられている。前述の全域空燃比センサ12と酸素センサ14はECU10に接続されている。ECU10は、全域空燃比センサ12及び酸素センサ14の出力信号に基づき、触媒6に流入する排気ガスの空燃比が理論空燃比になるよう燃料噴射量をフィードバック制御している。以下、このフィードバック制御を空燃比フィードバック制御という。   In the internal combustion engine system, an ECU (Electronic Control Unit) 10 is provided as a control device that comprehensively controls the operation of the entire system. The entire area air-fuel ratio sensor 12 and the oxygen sensor 14 are connected to the ECU 10. The ECU 10 feedback-controls the fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the catalyst 6 becomes the stoichiometric air-fuel ratio based on the output signals of the entire area air-fuel ratio sensor 12 and the oxygen sensor 14. Hereinafter, this feedback control is referred to as air-fuel ratio feedback control.

ECU10により実行される空燃比フィードバック制御は、メインフィードバック制御とサブフィードバック制御とからなる。メインフィードバック制御では、全域空燃比センサ12の出力信号と理論空燃比との偏差が燃料噴射量に反映される。サブフィードバック制御では、酸素センサ14の出力信号と理論空燃比に対応する基準値との偏差が燃料噴射量に反映される。全域空燃比センサ12と酸素センサ14とを用いた空燃比フィードバック制御は公知の手法であるので、本明細書ではその詳細な内容についての説明は省略する。   The air-fuel ratio feedback control executed by the ECU 10 includes main feedback control and sub feedback control. In the main feedback control, the deviation between the output signal of the global air-fuel ratio sensor 12 and the theoretical air-fuel ratio is reflected in the fuel injection amount. In the sub-feedback control, the deviation between the output signal of the oxygen sensor 14 and the reference value corresponding to the theoretical air-fuel ratio is reflected in the fuel injection amount. Since the air-fuel ratio feedback control using the global air-fuel ratio sensor 12 and the oxygen sensor 14 is a known technique, a detailed description thereof will be omitted in this specification.

空燃比フィードバック制御によれば、排気ガスの空燃比を理論空燃比の近傍に維持することができる。しかし、その反面、酸素の吸蔵/放出量が減少することで触媒6の酸素吸蔵能力が低下し、多少の空燃比の変動でも触媒6からエミッションが排出されてしまうという課題がある。そこで、ECU10は、空燃比フィードバック制御を実行中の所定条件下において、空燃比の振幅を積極的に縮小させるための制御(以下、振幅縮小制御という)を実行する。振幅縮小制御によって空燃比の振幅を積極的に縮小させることで、触媒6が吸蔵/放出可能な酸素量の範囲を超えて空燃比が変動することは防止される。   According to the air-fuel ratio feedback control, the air-fuel ratio of the exhaust gas can be maintained near the stoichiometric air-fuel ratio. On the other hand, however, there is a problem that the oxygen storage capacity of the catalyst 6 decreases due to a decrease in the amount of oxygen stored / released, and emissions are discharged from the catalyst 6 even if there is a slight change in the air-fuel ratio. Therefore, the ECU 10 executes control for actively reducing the amplitude of the air-fuel ratio (hereinafter referred to as amplitude reduction control) under a predetermined condition during execution of the air-fuel ratio feedback control. By actively reducing the amplitude of the air-fuel ratio by the amplitude reduction control, it is possible to prevent the air-fuel ratio from changing beyond the range of the amount of oxygen that can be stored / released by the catalyst 6.

以下、本実施の形態においてECU10により実行される振幅縮小制御の内容について説明する。振幅縮小制御は、図3のフローチャートに示す空燃比制御のルーチンの中で行われる。図3に示すルーチンの最初のステップS2では、空燃比フィードバック(F/B)制御の実行中か否か判定される。空燃比フィードバック制御の実行中でなければ、振幅縮小制御を実行することなく本ルーチンは終了となる。   Hereinafter, the content of the amplitude reduction control executed by the ECU 10 in the present embodiment will be described. The amplitude reduction control is performed in the air-fuel ratio control routine shown in the flowchart of FIG. In the first step S2 of the routine shown in FIG. 3, it is determined whether air-fuel ratio feedback (F / B) control is being executed. If the air-fuel ratio feedback control is not being executed, this routine ends without executing the amplitude reduction control.

空燃比フィードバック制御の実行中であれば、ステップS4の判定が行なわれる。ステップS4では、酸素センサ14の出力信号の振幅が所定の基準値以下か否か判定される。空燃比フィードバック制御によって触媒6に流入する排気ガスの空燃比が理論空燃比に近付き、その振動の振幅が小さい状態が継続すると、触媒6の放出可能な酸素量や吸蔵可能な酸素量は減少していく。その結果、触媒6を通過した排気ガス中の酸素濃度の変化は小さくなり、触媒6の下流に配置される酸素センサ14の出力信号の振幅は低下することになる。したがって、酸素センサ14の出力信号の振幅からは触媒6の酸素吸蔵能力の程度を推定することができ、前記の振幅を基準値と比較することで、触媒6の酸素吸蔵能力の低下を正確に検出することができる。   If air-fuel ratio feedback control is being executed, the determination in step S4 is performed. In step S4, it is determined whether the amplitude of the output signal of the oxygen sensor 14 is equal to or less than a predetermined reference value. When the air-fuel ratio of the exhaust gas flowing into the catalyst 6 approaches the stoichiometric air-fuel ratio by air-fuel ratio feedback control and the vibration amplitude continues to be small, the amount of oxygen that can be released and the amount of oxygen that can be stored by the catalyst 6 decreases. To go. As a result, the change in the oxygen concentration in the exhaust gas that has passed through the catalyst 6 becomes small, and the amplitude of the output signal of the oxygen sensor 14 disposed downstream of the catalyst 6 decreases. Therefore, the degree of the oxygen storage capacity of the catalyst 6 can be estimated from the amplitude of the output signal of the oxygen sensor 14, and the decrease in the oxygen storage capacity of the catalyst 6 can be accurately determined by comparing the amplitude with the reference value. Can be detected.

ステップS4の判定の結果、酸素センサ14の出力信号の振幅が基準値以下となった場合には、触媒6の酸素吸蔵能力が低下していると判断することができる。その場合、ステップS6において振幅縮小制御が実行される。なお、酸素センサ14の出力信号の振幅が基準値よりも大きい場合は、ステップS2の条件が不成立となるまで、或いは、ステップS4の条件が成立するまで、ステップS2及びS4の判定が繰り返し行われる。   As a result of the determination in step S4, when the amplitude of the output signal of the oxygen sensor 14 is below the reference value, it can be determined that the oxygen storage capacity of the catalyst 6 has decreased. In that case, amplitude reduction control is executed in step S6. When the amplitude of the output signal of the oxygen sensor 14 is larger than the reference value, the determinations in steps S2 and S4 are repeatedly performed until the condition in step S2 is not satisfied or until the condition in step S4 is satisfied. .

ステップS6の振幅縮小制御では、メインフィードバック制御において全域空燃比センサ12の出力信号と理論空燃比との偏差を燃料噴射量に反映させる際のゲイン(以下、メインF/B補正ゲインという)が縮小される。メインF/B補正ゲインは固定値であり、振幅縮小制御では1よりも小さい補正係数がメインF/B補正ゲインに乗算される。メインF/B補正ゲインを縮小することで、触媒6に流入する排気ガスの空燃比の振幅を効率良く縮小させることができる。   In the amplitude reduction control in step S6, a gain (hereinafter referred to as a main F / B correction gain) for reflecting the deviation between the output signal of the global air-fuel ratio sensor 12 and the theoretical air-fuel ratio in the fuel injection amount in the main feedback control is reduced. Is done. The main F / B correction gain is a fixed value. In the amplitude reduction control, the main F / B correction gain is multiplied by a correction coefficient smaller than 1. By reducing the main F / B correction gain, the amplitude of the air-fuel ratio of the exhaust gas flowing into the catalyst 6 can be efficiently reduced.

ステップS8では、空燃比フィードバック制御の継続中か否か判定される。空燃比フィードバック制御が中断されたときには、ステップS10、S12、S14の処理はスキップされてステップS16の処理が実行される。ステップS16では、振幅縮小制御が中止され、ステップS6で縮小されたメインF/B補正ゲインは通常値に戻される。   In step S8, it is determined whether the air-fuel ratio feedback control is continuing. When the air-fuel ratio feedback control is interrupted, the processes of steps S10, S12, and S14 are skipped and the process of step S16 is executed. In step S16, the amplitude reduction control is stopped, and the main F / B correction gain reduced in step S6 is returned to the normal value.

空燃比フィードバック制御が継続中の場合は、ステップS16の処理は燃料カット(F/C)が実行されることを条件として行なわれる。燃料カットが実行されることで、触媒6には酸素を多く含んだリーンガスが流入し、触媒6の酸素吸蔵能力は回復していく。触媒6の酸素吸蔵能力が回復すれば、多少の空燃比の変動は触媒6の酸素吸蔵能力によって吸収することができる。したがって、その場合には、触媒6の酸素吸蔵能力を最大限に利用することができるよう、振幅縮小制御は中止されてメインF/B補正ゲインは通常値に戻される。燃料カットが実行されたか否かは、ステップS14で判定される。ステップS14では、より詳しくは、燃料カットが所定時間連続して実行されたか否か判定される。前記の所定時間は、リーンガスの流入によって触媒6の酸素吸蔵能力が回復するのに十分な時間である。   When the air-fuel ratio feedback control is continuing, the process of step S16 is performed on condition that fuel cut (F / C) is executed. By executing the fuel cut, the lean gas containing a large amount of oxygen flows into the catalyst 6, and the oxygen storage capacity of the catalyst 6 is restored. If the oxygen storage capacity of the catalyst 6 is restored, a slight change in the air-fuel ratio can be absorbed by the oxygen storage capacity of the catalyst 6. Therefore, in this case, the amplitude reduction control is stopped and the main F / B correction gain is returned to the normal value so that the oxygen storage capacity of the catalyst 6 can be utilized to the maximum. It is determined in step S14 whether or not fuel cut has been executed. More specifically, in step S14, it is determined whether or not the fuel cut has been executed continuously for a predetermined time. The predetermined time is sufficient to restore the oxygen storage capacity of the catalyst 6 by the inflow of lean gas.

なお、空燃比フィードバック制御が継続中の場合、ステップS14の判定に先立ってステップS10の判定が行われる。ステップS10では、振幅縮小制御によってメインF/B補正ゲインが縮小されてからの経過時間が計測される。そして、前記の経過時間が所定の基準時間に達しているか否か判定される。   When the air-fuel ratio feedback control is continuing, the determination at step S10 is performed prior to the determination at step S14. In step S10, an elapsed time after the main F / B correction gain is reduced by the amplitude reduction control is measured. Then, it is determined whether or not the elapsed time has reached a predetermined reference time.

メインF/B補正ゲインが縮小されてからの経過時間が基準時間に達している場合は、ステップS12の処理が実行される。ステップS12では、燃料カットの実行条件が緩和され、また、燃料カットからの復帰条件が厳しくされることで、燃料カットの実行頻度や実行期間が増大される。燃料カットの実行頻度及び実行期間を増大させることにより、ステップS14の条件を早期に成立させることができる。ステップS14の条件を早期に成立させれば、その分、触媒6の酸素吸蔵能力を最大限に利用可能な通常の空燃比フィードバック制御に早期に戻すことができる。前記の経過時間が基準時間に達していない場合には、ステップS12の処理はスキップされてステップS14の判定が行なわれる。   If the elapsed time since the main F / B correction gain has been reduced has reached the reference time, the process of step S12 is executed. In step S12, the fuel cut execution condition is relaxed, and the condition for returning from the fuel cut is tightened, so that the frequency and execution period of the fuel cut are increased. By increasing the execution frequency and execution period of the fuel cut, the condition of step S14 can be established early. If the condition of step S14 is established at an early stage, it is possible to return to the normal air-fuel ratio feedback control that can make maximum use of the oxygen storage capacity of the catalyst 6 accordingly. If the elapsed time has not reached the reference time, the process of step S12 is skipped and the determination of step S14 is performed.

本実施の形態では、空燃比フィードバック制御とともに上記のルーチンによる空燃比制御が実行される。上記ルーチンによる空燃比制御によれば、触媒6の酸素吸蔵能力が低下しているときには、理論空燃比を挟んで振動する空燃比の振幅を積極的に縮小させることができる。これによれば、触媒6に流入するガスの空燃比が触媒の放出可能な酸素量の範囲を超えてリッチ側にずれたり、或いは、触媒6の吸蔵可能な酸素量の範囲を超えてリーン側にずれたりすることを防止でき、空燃比フィードバック制御時における触媒6からのエミッションの排出を抑制することができる。   In the present embodiment, the air-fuel ratio control by the above routine is executed together with the air-fuel ratio feedback control. According to the air-fuel ratio control by the above routine, when the oxygen storage capacity of the catalyst 6 is reduced, the amplitude of the air-fuel ratio that vibrates across the theoretical air-fuel ratio can be actively reduced. According to this, the air-fuel ratio of the gas flowing into the catalyst 6 shifts to the rich side exceeding the range of the oxygen amount that can be released by the catalyst, or exceeds the range of the oxygen amount that can be stored in the catalyst 6 to the lean side. And emission of emissions from the catalyst 6 at the time of air-fuel ratio feedback control can be suppressed.

なお、本実施の形態では、ECU10が空燃比フィードバック制御を実行することにより、第1の発明にかかる「燃料噴射量制御手段」が実現されている。また、ECU10が図3に示すルーチンのステップS4の処理を実行することにより、第1及び第2の発明にかかる「酸素吸蔵能力推定手段」が実現されている。また、ECU10がステップS6の処理を実行することにより、第1及び第4の発明にかかる「振幅縮小手段」が実現されている。   In the present embodiment, the “fuel injection amount control means” according to the first aspect of the present invention is realized by the ECU 10 executing the air-fuel ratio feedback control. Further, the “oxygen storage capacity estimating means” according to the first and second inventions is realized by the ECU 10 executing the process of step S4 of the routine shown in FIG. Further, the “amplitude reducing means” according to the first and fourth aspects of the present invention is realized by the ECU 10 executing the process of step S6.

また、本実施の形態では、ECU10がステップS14及びS16の処理を実行することにより、第6の発明にかかる「空燃比の振幅の縮小を解除する手段」が実現されている。また、ECU10がステップS10及びS12の処理を実行することにより、第7の発明にかかる「燃料カット或いは燃料増量の実行頻度を増大させる手段」が実現されている。   Further, in the present embodiment, the “means for canceling the reduction in the air-fuel ratio amplitude” according to the sixth aspect of the present invention is realized by the ECU 10 executing the processes of steps S14 and S16. Further, the “means for increasing the execution frequency of fuel cut or fuel increase” according to the seventh aspect of the present invention is realized by the ECU 10 executing the processes of steps S10 and S12.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the following modifications may be made.

振幅縮小制御では、サブフィードバック制御において酸素センサ14の出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させる際のゲイン(以下、サブF/B補正ゲインという)を縮小してもよい。これによれば、第1及び第5の発明にかかる「振幅縮小手段」が実現される。或いは、メインF/B補正ゲインとサブF/B補正ゲインをともに縮小してもよい。   In the amplitude reduction control, the gain (hereinafter referred to as sub F / B correction gain) for reflecting the deviation between the output signal of the oxygen sensor 14 and the reference value corresponding to the theoretical air / fuel ratio in the fuel injection amount in the sub feedback control is reduced. May be. According to this, the “amplitude reducing means” according to the first and fifth inventions is realized. Alternatively, both the main F / B correction gain and the sub F / B correction gain may be reduced.

また、振幅縮小制御では、メインフィードバック制御において全域空燃比センサ12の出力信号と理論空燃比との偏差を燃料噴射量に反映させる際の反映量に制限を設けるようにしてもよい。或いは、サブフィードバック制御において酸素センサ14の出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させる際の反映量に制限を設けるようにしてもよい。   In the amplitude reduction control, a limit may be provided for the amount of reflection when the deviation between the output signal of the entire area air-fuel ratio sensor 12 and the theoretical air-fuel ratio is reflected in the fuel injection amount in the main feedback control. Or you may make it provide a restriction | limiting in the reflection amount at the time of reflecting the deviation of the output signal of the oxygen sensor 14, and the reference value corresponding to a theoretical air fuel ratio in fuel injection amount in sub feedback control.

振幅縮小制御を中止する条件として、燃料カットが実行されたときの他、加速時等において燃料増量が実行されたときをOR条件として加えてもよい。燃料増量の実行時には、触媒6に流入する排気ガスの空燃比はリッチ化する。リッチな排気ガスが流入することで触媒6からの酸素の放出が促され、それにより触媒6の酸素吸蔵能力の回復が見込まれるからである。振幅縮小制御の開始から時間が経過した場合、燃料カットの実行頻度と併せて燃料増量の実行頻度も増大させるようにしてもよい。   As a condition for stopping the amplitude reduction control, a time when the fuel increase is executed at the time of acceleration or the like may be added as an OR condition in addition to when the fuel cut is executed. When the fuel increase is executed, the air-fuel ratio of the exhaust gas flowing into the catalyst 6 becomes rich. This is because the release of oxygen from the catalyst 6 is promoted by the flow of rich exhaust gas, and thereby the recovery of the oxygen storage capacity of the catalyst 6 is expected. When time elapses from the start of the amplitude reduction control, the fuel increase execution frequency may be increased together with the fuel cut execution frequency.

燃料カットや燃料増量の実行頻度を増大させるか否かは、振幅縮小制御が開始されてからの吸入空気量の積算値から判断してもよい。具体的には、吸入空気量の積算値が所定の基準値を超えたら、燃料カットや燃料増量の実行頻度を増大させるようにしてもよい。これによれば、第8の発明にかかる「燃料カット或いは燃料増量の実行頻度を増大させる手段」が実現される。   Whether to increase the execution frequency of fuel cut or fuel increase may be determined from the integrated value of the intake air amount after the amplitude reduction control is started. Specifically, when the integrated value of the intake air amount exceeds a predetermined reference value, the execution frequency of fuel cut or fuel increase may be increased. According to this, the “means for increasing the execution frequency of fuel cut or fuel increase” according to the eighth invention is realized.

また、触媒6の酸素吸蔵能力の程度は、全域空燃比センサ12の出力信号から推定することもできる。全域空燃比センサ12の出力信号は、触媒6に流入する排気ガスの空燃比を示している。したがって、その出力信号の振幅が小さくなった状態が継続している場合には、触媒6において酸素の吸蔵/放出が僅かな量でしか繰り返されておらず、触媒6の酸素吸蔵能力は低下していると予想することができる。この場合、全域空燃比センサ12の出力信号の振幅が所定の基準値よりも小さくなった状態が所定の基準期間を超えて継続したら、振幅縮小制御を実行して空燃比の振幅を積極的に縮小させればよい。これによれば、第1及び第3の発明にかかる「酸素吸蔵能力推定手段」が実現される。   Further, the degree of the oxygen storage capacity of the catalyst 6 can be estimated from the output signal of the global air-fuel ratio sensor 12. The output signal of the entire area air-fuel ratio sensor 12 indicates the air-fuel ratio of the exhaust gas flowing into the catalyst 6. Therefore, when the state in which the amplitude of the output signal becomes small continues, oxygen storage / release is repeated in the catalyst 6 only in a small amount, and the oxygen storage capacity of the catalyst 6 decreases. Can be expected. In this case, if the state in which the amplitude of the output signal of the global air-fuel ratio sensor 12 is smaller than the predetermined reference value continues beyond the predetermined reference period, the amplitude reduction control is executed to positively increase the air-fuel ratio amplitude. What is necessary is just to reduce. According to this, the “oxygen storage capacity estimating means” according to the first and third inventions is realized.

なお、触媒の上流に配置するセンサは、触媒に流入する排気ガスの空燃比に応じた信号を出力するセンサ(空燃比センサ)であればよく、全域空燃比センサには限定されない。上記実施の形態において触媒の下流に配置しているような酸素センサを空燃比センサとして用いることもできる。   The sensor disposed upstream of the catalyst may be any sensor (air-fuel ratio sensor) that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing into the catalyst, and is not limited to a global air-fuel ratio sensor. An oxygen sensor arranged downstream of the catalyst in the above embodiment can also be used as the air-fuel ratio sensor.

また、本発明は、触媒上流にのみ空燃比センサを備え触媒の下流には酸素センサを備えない内燃機関システム、つまり、メインフィードバック制御のみによる空燃比フィードバック制御を行う内燃機関システムにも適用することができる。その場合、触媒の酸素吸蔵能力の程度は、触媒上流に配置された空燃比センサの出力信号に基づいて推定することができる。   The present invention is also applicable to an internal combustion engine system that includes an air-fuel ratio sensor only upstream of the catalyst and no oxygen sensor downstream of the catalyst, that is, an internal combustion engine system that performs air-fuel ratio feedback control only by main feedback control. Can do. In that case, the degree of the oxygen storage capacity of the catalyst can be estimated based on the output signal of the air-fuel ratio sensor arranged upstream of the catalyst.

触媒に流入する排気ガスの空燃比と、触媒の吸蔵酸素量或いは放出酸素量との関係を示すグラフである。It is a graph which shows the relationship between the air fuel ratio of the exhaust gas which flows into a catalyst, and the amount of occluded oxygen of a catalyst, or the amount of released oxygen. 本発明の実施の形態としての空燃比制御装置が適用された内燃機関システムの構成を説明するための図である。It is a figure for demonstrating the structure of the internal combustion engine system to which the air fuel ratio control apparatus as embodiment of this invention was applied. 本発明の実施の形態において実行される空燃比制御のルーチンを示すフローチャートである。It is a flowchart which shows the routine of the air fuel ratio control performed in embodiment of this invention.

符号の説明Explanation of symbols

2 内燃機関
4 排気通路
6、8 触媒
10 ECU
12 全域空燃比センサ
14 酸素センサ
2 Internal combustion engine 4 Exhaust passage 6, 8 Catalyst 10 ECU
12 Global air-fuel ratio sensor 14 Oxygen sensor

Claims (6)

酸素吸蔵能力を有する触媒を排気通路に備える内燃機関の空燃比制御装置であって、
前記触媒に流入する排気ガスの空燃比が理論空燃比を挟んで振動するように燃料噴射量を制御する燃料噴射量制御手段と、
前記触媒の酸素吸蔵能力の程度を推定する酸素吸蔵能力推定手段と、
前記触媒の酸素吸蔵能力が所定の基準能力よりも低下していると推定されるときに前記燃料噴射量制御手段による空燃比の振幅を縮小させる振幅縮小手段と、
前記触媒に流入する排気ガスの空燃比に応じた信号を出力する空燃比センサとを備え、
前記酸素吸蔵能力推定手段は、前記空燃比センサの出力信号の振幅が所定の基準値よりも小さくなった状態が所定の基準期間を超えて継続したら、前記触媒の酸素吸蔵能力が前記基準能力よりも低下したと推定することを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio control apparatus for an internal combustion engine comprising a catalyst having an oxygen storage capacity in an exhaust passage,
Fuel injection amount control means for controlling the fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the catalyst oscillates across the theoretical air-fuel ratio;
Oxygen storage capacity estimation means for estimating the degree of oxygen storage capacity of the catalyst;
Amplitude reducing means for reducing the amplitude of the air-fuel ratio by the fuel injection amount control means when it is estimated that the oxygen storage capacity of the catalyst is lower than a predetermined reference capacity;
An air-fuel ratio sensor that outputs a signal corresponding to the air-fuel ratio of the exhaust gas flowing into the catalyst,
The oxygen storage capacity estimation means determines that the oxygen storage capacity of the catalyst is greater than the reference capacity when the state in which the amplitude of the output signal of the air-fuel ratio sensor is smaller than a predetermined reference value continues beyond a predetermined reference period. air-fuel ratio control apparatus for an internal combustion engine characterized in that it also be estimated to have decreased.
記燃料噴射量制御手段は、前記空燃比センサの出力信号と理論空燃比との偏差に基づくフィードバック制御によって燃料噴射量を制御するように構成され、
前記振幅縮小手段は、前記フィードバック制御において前記空燃比センサの出力信号と理論空燃比との偏差を燃料噴射量に反映させる際のゲインの縮小、或いは、反映量の制限によって空燃比の振幅を縮小させるように構成されていることを特徴とする請求項1記載の内燃機関の空燃比制御装置。
Before SL fuel injection amount control means is configured to control the amount of fuel injected by feedback control based on the deviation between the output signal and the stoichiometric air-fuel ratio of the air-fuel ratio sensor,
The amplitude reduction means reduces the amplitude of the air-fuel ratio by reducing the gain when the deviation between the output signal of the air-fuel ratio sensor and the theoretical air-fuel ratio is reflected in the fuel injection amount in the feedback control, or by limiting the reflection amount 2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein
記触媒を通過した排気ガスの酸素濃度に応じた信号を出力する酸素センサをさらに備え、
前記燃料噴射量制御手段は、前記空燃比センサの出力信号と理論空燃比との偏差に基づくフィードバック制御によって燃料噴射量を制御するとともに、前記酸素センサの出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させるように構成され、
前記振幅縮小手段は、前記酸素センサの出力信号と理論空燃比に対応する基準値との偏差を燃料噴射量に反映させる際のゲインの縮小、或いは、反映量の制限によって空燃比の振幅を縮小させるように構成されていることを特徴とする請求項1又は2記載の内燃機関の空燃比制御装置。
Further comprising an oxygen sensor which outputs a signal corresponding to the oxygen concentration of the exhaust gas passing through the pre-Symbol catalyst,
The fuel injection amount control means controls the fuel injection amount by feedback control based on a deviation between the output signal of the air-fuel ratio sensor and the stoichiometric air-fuel ratio, and a reference value corresponding to the output signal of the oxygen sensor and the stoichiometric air-fuel ratio. To reflect the deviation from the fuel injection amount,
The amplitude reduction means reduces the gain when reflecting the deviation between the output signal of the oxygen sensor and the reference value corresponding to the theoretical air-fuel ratio in the fuel injection amount, or reduces the amplitude of the air-fuel ratio by limiting the reflection amount The air-fuel ratio control apparatus for an internal combustion engine according to claim 1 or 2 , characterized in that
燃料カット或いは燃料増量が実行されたときに前記振幅縮小手段による空燃比の振幅の縮小を解除する手段をさらに備えることを特徴とする請求項1乃至3の何れか1項に記載の内燃機関の空燃比制御装置。 The internal combustion engine according to any one of claims 1 to 3, further comprising means for canceling the reduction of the amplitude of the air-fuel ratio by the amplitude reduction means when a fuel cut or a fuel increase is performed. Air-fuel ratio control device. 前記振幅縮小手段による空燃比の振幅の縮小が所定の基準期間を超えて継続されるときには、継続期間が前記基準期間を超える前に比較して燃料カット或いは燃料増量の実行頻度を増大させる手段をさらに備えることを特徴とする請求項4記載の内燃機関の空燃比制御装置。 When the reduction of the amplitude of the air-fuel ratio by the amplitude reduction means is continued beyond a predetermined reference period, the frequency of fuel cut or fuel increase is increased compared to before the continuation period exceeds the reference period . The air-fuel ratio control apparatus for an internal combustion engine according to claim 4 , further comprising means. 前記振幅縮小手段による空燃比の振幅の縮小が開始されてからの吸入空気量の積算値が所定の基準値を超えたときには、前記積算値が前記基準値を超える前に比較して燃料カット或いは燃料増量の実行頻度を増大させる手段をさらに備えることを特徴とする請求項4記載の内燃機関の空燃比制御装置。 When the integrated value of the intake air amount after the reduction of the amplitude of the air-fuel ratio by the amplitude reducing means exceeds a predetermined reference value, the fuel is compared with the value before the integrated value exceeds the reference value. 5. An air-fuel ratio control apparatus for an internal combustion engine according to claim 4 , further comprising means for increasing the execution frequency of cut or fuel increase.
JP2006241633A 2006-09-06 2006-09-06 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4826398B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006241633A JP4826398B2 (en) 2006-09-06 2006-09-06 Air-fuel ratio control device for internal combustion engine
US12/439,902 US20100218485A1 (en) 2006-09-06 2007-09-05 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
EP07825062A EP2059665B1 (en) 2006-09-06 2007-09-05 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
PCT/IB2007/002558 WO2008029256A2 (en) 2006-09-06 2007-09-05 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241633A JP4826398B2 (en) 2006-09-06 2006-09-06 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008063994A JP2008063994A (en) 2008-03-21
JP4826398B2 true JP4826398B2 (en) 2011-11-30

Family

ID=38961266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241633A Expired - Fee Related JP4826398B2 (en) 2006-09-06 2006-09-06 Air-fuel ratio control device for internal combustion engine

Country Status (4)

Country Link
US (1) US20100218485A1 (en)
EP (1) EP2059665B1 (en)
JP (1) JP4826398B2 (en)
WO (1) WO2008029256A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347866B2 (en) * 2009-09-29 2013-01-08 GM Global Technology Operations LLC Fuel control system and method for more accurate response to feedback from an exhaust system with an air/fuel equivalence ratio offset
CN102116190B (en) * 2009-12-30 2014-01-15 中国第一汽车集团公司 Novel ternary catalytic converter fault diagnosis method
JP5794788B2 (en) * 2011-02-16 2015-10-14 ダイハツ工業株式会社 Air-fuel ratio control device
US10570844B2 (en) * 2012-01-18 2020-02-25 Ford Global Technologies, Llc Air/fuel imbalance monitor
JP6107586B2 (en) * 2013-10-02 2017-04-05 トヨタ自動車株式会社 Control device for internal combustion engine
JP6268976B2 (en) * 2013-11-22 2018-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
KR20210088239A (en) * 2020-01-06 2021-07-14 현대자동차주식회사 System of controlling air fuel ratio for flex fuel vehicle using oxyzen storage amount of catalyst and method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745761B2 (en) * 1990-02-27 1998-04-28 株式会社デンソー Catalyst deterioration determination device for internal combustion engine
US5313791A (en) * 1991-06-28 1994-05-24 Ford Motor Company Method for detecting catalyst malfunctions
JP3135680B2 (en) 1992-05-19 2001-02-19 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP2869847B2 (en) * 1994-03-23 1999-03-10 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP3564847B2 (en) 1996-02-15 2004-09-15 日産自動車株式会社 Engine exhaust purification device
JP3500941B2 (en) * 1997-12-26 2004-02-23 日産自動車株式会社 Diagnostic device for exhaust gas purification device
JP4031887B2 (en) * 1999-06-10 2008-01-09 株式会社日立製作所 Engine air-fuel ratio control apparatus and method
JP4308396B2 (en) * 2000-02-14 2009-08-05 本田技研工業株式会社 Fuel supply control device for internal combustion engine
JP3528739B2 (en) * 2000-02-16 2004-05-24 日産自動車株式会社 Engine exhaust purification device
DE10045610A1 (en) * 2000-09-15 2002-04-18 Volkswagen Ag Method for controlling a NOx regeneration of a NOx storage catalytic converter
JP3524490B2 (en) * 2000-11-20 2004-05-10 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP3693942B2 (en) * 2001-09-03 2005-09-14 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
JP2003254129A (en) * 2002-02-28 2003-09-10 Nissan Motor Co Ltd Device for controlling exhaust gas

Also Published As

Publication number Publication date
WO2008029256A3 (en) 2008-05-22
US20100218485A1 (en) 2010-09-02
EP2059665B1 (en) 2012-08-15
EP2059665A2 (en) 2009-05-20
WO2008029256A2 (en) 2008-03-13
JP2008063994A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4020054B2 (en) Exhaust gas purification system for internal combustion engine
JP4826398B2 (en) Air-fuel ratio control device for internal combustion engine
US8671665B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4233490B2 (en) Control device for internal combustion engine
US10690073B2 (en) Exhaust purification system and catalyst regeneration method
JP4890209B2 (en) Exhaust gas purification device for internal combustion engine
JP2007239698A (en) Air-fuel ratio control device for internal combustion engine
JP2021055563A (en) Exhaust emission control apparatus for internal combustion engine, and vehicle
JP4938532B2 (en) Air-fuel ratio control device for internal combustion engine
JP5229400B2 (en) Control device for internal combustion engine
JP2009002170A (en) Air-fuel ratio control device for internal combustion engine
JP2005105871A (en) Catalyst control device and catalyst deterioration determining device for internal combustion engine
CN107407175B (en) Exhaust gas purification system and catalyst regeneration method
JP2002364428A (en) Catalyst deterioration decision device
JP2005140011A (en) Fuel injection control device for internal combustion engine
JP2005248760A (en) Reducing agent adding device
JP4211426B2 (en) Exhaust gas purification device for internal combustion engine
JP4276910B2 (en) Management method of NOx catalyst
JP7204426B2 (en) Fuel injection control device for internal combustion engine
JP2010242674A (en) Catalyst deterioration determination device
JP4665830B2 (en) Exhaust gas purification system for internal combustion engine
JP2010242688A (en) Exhaust emission control system for internal combustion engine
JP2017190685A (en) Exhaust emission control device for internal combustion engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP2005264751A (en) Air fuel ratio controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees