JP4826041B2 - Container inspection equipment - Google Patents

Container inspection equipment Download PDF

Info

Publication number
JP4826041B2
JP4826041B2 JP2001264089A JP2001264089A JP4826041B2 JP 4826041 B2 JP4826041 B2 JP 4826041B2 JP 2001264089 A JP2001264089 A JP 2001264089A JP 2001264089 A JP2001264089 A JP 2001264089A JP 4826041 B2 JP4826041 B2 JP 4826041B2
Authority
JP
Japan
Prior art keywords
pressure
container
inspection
filling amount
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001264089A
Other languages
Japanese (ja)
Other versions
JP2003075230A (en
Inventor
宮崎貴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2001264089A priority Critical patent/JP4826041B2/en
Publication of JP2003075230A publication Critical patent/JP2003075230A/en
Application granted granted Critical
Publication of JP4826041B2 publication Critical patent/JP4826041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、容器に充填した内容液の充填量や容器のリークの有無を検査するための容器の検査装置に関する。
【0002】
【従来の技術】
従来の容器の充填量検査は、内容液の液面高さを検出することが一般的である。
すなわち、容器に内容液を充填後、容器の搬送途中に光電管センサやレーザセンサ、超音波センサを設け、これらのセンサにより容器内の内容液が一定の高さに達しているか否かを判別して、内容液の充填量の良否を判定するようになっていた。
【0003】
【発明が解決しようとする課題】
しかし、従来の光電管センサやレーザセンサ、超音波センサでは、内容液の液面の高さが一定の高さ(一定の充填量)に達しているかのみを判定するだけであり、例えば、一定高さ(一定充填量)よりもかなりオーバーしていてもそれを判断することはできない。上限を判定するためには、新たに別のセンサを追加し、これらと組み合わせて判定する必要があった。
【0004】
また、光電管センサやレーザセンサを用いる場合、内容液の液面が搬送により波うち、実際の内容液の液面よりも盛り上がってしまうと、センサは液面を物理的に計測するため、実際は基準充填量に達していなくても、光電管センサやレーザセンサはその盛り上がり点を最高点と捉え、充填量に達していると誤った判断をする可能性がある。このような誤判断は、容器の断面積が小さいほど可能性は大きくなる傾向にある。
反対に、断面積の大きい(2Lのような)容器では、液面高さの面積が広くなるため、多少の液量のバラツキでは液面の高さはほとんど変化せず、微妙な内容液のバラツキを判別できなくなってしまう。
また、光電管センサやレーザセンサを用いた方法では、光が透過可能な容器でなければ対応できず、一方超音波センサを用いた方法では、容器の光透過性に影響はされないもののセンサが容器の充填口よりも広くなければ対応できないという容器についての制約もある。
【0005】
本発明は上記した従来技術の問題点を解決するためになされたもので、その目的とするところは、断面積の違いや液面の状態に拘わらず、内溶液の充填量を正確かつ簡単に検査することが可能な容器の検査装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の容器の検査装置にあっては、
容器の開口部に接離可能の検査ヘッドと、
一定圧の気体を蓄える蓄圧室を有し該蓄圧室に蓄えられた一定圧一定量の気体を前記検査ヘッドを通じて前記容器内に供給して加圧する容器加圧手段と、
前記容器加圧手段の蓄圧室に一定圧の気体を補給する圧力供給手段と、
容器加圧手段によって加圧された容器内の圧力を測定する圧力測定手段と、
前記容器加圧手段と圧力供給手段および検査ヘッド間の接続を選択的に切り換える電磁切換弁と、前記容器加圧手段による加圧後、前記圧力測定手段によって測定された容器内の圧力が基準範囲内の場合には充填量が適正、基準範囲外の場合には充填量が不適と判定し、さらに、加圧直後の圧力及び所定時間経過した後の圧力低下量が一定のしきい値内か否かを判断し、しきい値内であればリーク無し、しきい値を超えている場合にはリーク有りとするリークの判定を行う判定手段と、
を備えてなることを特徴とする。
【0007】
判定手段は、圧力測定手段による測定圧力のピーク値が基準範囲内か否かを判定する
【0008】
容器の外周を保持して加圧時の容器の膨張を押さえる容器固定治具を備えていることを特徴とする。
【0010】
【発明の実施の形態】
以下に本発明を図示の実施の形態に基づいて説明する。
図3は本発明の実施の形態1に係る容器の検査装置を示している。
この液量検査装置は、内容液が充填された容器10のノズル部11に接離可能の検査ヘッド1と、一定圧の気体としての空気圧を蓄える蓄圧室2を有しこの蓄圧室2に蓄えられた一定圧一定量の空気圧を検査ヘッド1を通じて容器10内に供給する容器加圧手段としての容器加圧機構3と、容器加圧機構3の蓄圧室2に一定圧の気体を補給する圧力供給手段としての圧力供給部4と、前記検査ヘッド1に接続される圧力測定手段としての圧力センサ5と、前記容器加圧機構3と圧力供給部4および検査ヘッド1間の接続を選択的に切り換える第1電磁切換弁6と、を備えている。
また、容器10が可撓性容器の場合に、加圧時の容器の膨張を押さえるために容器10の外周を保持して加圧時の膨張を押さえる容器固定治具7を備えている。
圧力センサ5はシーケンサ100に接続され、圧力センサ5によって測定された圧力数値がシーケンサ100に読み込まれる。シーケンサ100は、容器加圧機構3による容器加圧後、圧力センサ5から読み込まれた容器10内の圧力P1が基準範囲内の場合には充填量が適正、基準範囲外の場合には充填量が不適と判定する判定手段として機能する。
また、加圧完了直後の圧力P1及び所定時間T1経過した後の圧力低下量ΔPに基づいて、圧力低下量ΔPがしきい値ΔP0内であればリーク無し、しきい値を超えている場合にはあリーク有りとするリーク判定を行う。
すなわち、圧力センサ5は、一定時間、アナログ値として圧力データを取り込み、T1のタイミングでP1の値を検出し、さらに、このP1の高さを基準値にし、次いでP2の値を算出し、P1−P2でΔPを導き出す。
圧力センサ5は圧力値を電圧(ボルト)に変換するもので、シーケンサ100は充填量およびリークの判定を電圧で判定し、表示のみMPaで表示する機能を有する。たとえば、圧力センサ5が圧力を1〜5ボルトの範囲で計測する場合、シーケンサ100の表示は0〜1MPaの範囲で表示する。
【0011】
検査ヘッド1は内部に不図示の空気通路を有し、検査ヘッド1と第1電磁切換弁6間は加圧ライン8によって接続されている。
検査ヘッド1は、容器10のノズル部11上方に配置されており、ヘッド昇降シリンダ12によって上下方向に移動するようになっている。ヘッド昇降シリンダ12は、第2電磁切換弁13によって制御される。
【0012】
容器加圧機構3は、蓄圧室2を有する加圧シリンダ31と、この加圧シリンダ31を駆動するためのアクチュエータとしての駆動シリンダ32とを備えている。図3においては、加圧シリンダ31と駆動シリンダ32は互いに平行に配列されている。また、駆動シリンダの代わりに、加圧シリンダに連結されるカム、リンク、直動アクチュエータ(エアシリンダ、ボールネジ)等を適宜選択することができる。各シリンダのロッド31a,32aは連結部材33を介して互いに連結され、同一方向に同期して移動するようになっている。すなわち、駆動シリンダ32のロッド32aを押し出すと加圧シリンダ31のロッド31aも押し出されて蓄圧室2が拡張して空気圧が補給され、駆動シリンダ32のロッド32aをシリンダ内に戻すと、加圧シリンダ31のロッド31aもシリンダ内部に戻され、蓄圧室2が収縮して内部の空気圧が押し出される。
駆動シリンダ32は複動シリンダで、第3電磁切換弁14によって制御される。駆動シリンダ32には、ロッド32aのストロークを調整可能とするストッパ32dが設けられている。
【0013】
圧力供給部4は、圧力源40と、圧力源40に接続された第1,第2調圧弁41,42とを備え、第1調圧弁41によって第1定圧供給ライン43が一定圧に調圧され、第1および第2調圧弁41,42の2つの調圧弁によって第2定圧供給ライン44が一定圧に調圧されている。
【0014】
第1電磁切換弁6は3位置5ポート弁で、圧力供給部4の第2定圧供給ライン44と加圧シリンダ31の蓄圧室2間を連通し、かつ蓄圧室2と検査ヘッド1間を非連通とする圧力補給位置6Aと、すべてのポートを閉じる中立位置Nと、蓄圧室2と検査ヘッド1間を連通しかつ蓄圧室2と第2定圧供給ライン44間を非連通とする容器加圧位置6Bとの3位置に切り換え可能となっている。
第3電磁切換弁14も3位置5ポート弁で、駆動シリンダ32のロッド押し室32bと第1定圧供給ライン43間を連通しかつロッド戻し室32cと開放ポートとを連通するロッド押し位置14Aと、駆動シリンダ32のロッド戻し室32cと第1定圧供給ライン43間を連通しかつロッド押し室32bと開放ポート間を連通するロッド戻し位置14Bと、すべてのポートを閉じる中立位置Nとの3位置に切換可能となっている。
【0015】
この第3電磁切換弁14と駆動シリンダ32のロッド押し室32b間、第3電磁切換弁14とロッド戻し室32c間を結ぶ通路には速度調整用の絞り弁34a,34bが設けられている。
第2電磁切換弁13も3位置5ポート弁で、ヘッド昇降シリンダ12内のロッド押し室12bと第1定圧供給ライン43間を連通しかつロッド戻し室12cを開放ポートと連通するロッド押し位置13Aと、ロッド戻し室12cと第1定圧供給ライン43間を連通しかつロッド押し室12bと開放ポート間を連通する戻し位置13Bと、すべてのポートを閉じる中立位置Nとの3位置に切換可能となっている。
第2電磁切換弁13とヘッド昇降シリンダ12のロッド押し室12b間、第2電磁切換弁13とロッド戻し室12c間を結ぶ通路にも速度調整用の絞り弁15a,15bが設けられている。
これら第1,第2,第3電磁切換弁6,13,14は、上記シーケンサ100によって制御される。
シーケンサ100は、図4に示すように、所定の制御プログラムに基づいて、第1,第2,第3電磁切換弁6,13,14を制御すると共に、圧力センサ5からの測定情報を、メモリ101に格納された所定の判定プログラムに基づいてCPU102により圧力ピーク値を求めると共に、このピーク値が所定の基準範囲内にあるか否かを判定する。
【0016】
次に本発明の容器の検査装置の動作について、図5を参照して説明する。
加圧シリンダ31の蓄圧室2には、予め一定圧の空気圧P0が充填されており、加圧シリンダ31および駆動シリンダ32のロッド31a,32aは共に押し出されている(図3中二点鎖線位置)。
【0017】
まず、容器10がセットされる。
次いで、第2電磁切換弁13がロッド押し位置13Aに切り替わり、ヘッド昇降シリンダ12のロッド押し室12bに空気圧が流入してロッド12aが下方に押し出される。
このヘッド昇降シリンダ12のロッド12aによって検査ヘッド1が下降し、容器10のノズル部11に密接しシールされる。容器10には内容液が所定量充填されており、ノズル部11にはたとえば中栓等がセットされている。
【0018】
次に、第1,第3電磁切換弁6,14が切り替わる。
第1電磁切替弁6は容器加圧位置6Aに切り換わり、加圧シリンダ3の蓄圧室2と検査ヘッド1間が連通し、同時に、第3電磁切換弁14はロッド戻し位置14Bに切り換わり、駆動シリンダ32のロッド32aがシリンダ内に戻され、ロッド32aに連結された加圧シリンダ31のロッド3aがシリンダ内に戻されて、蓄圧室2内の空気圧が加圧ライン8,検査ヘッド1内の通路を通じて容器10内に供給される。
空気圧の供給開始から一定時間経過後(=エア供給完了時点)、第1,第2電磁切換弁3,14が中立位置Nに切り替わり、容器10のヘッドスペース10aが密封される。密封される範囲は、第1電磁切換弁3から検査ヘッド1間の加圧ライン8、および検査ヘッド1内の空気通路、および容器10のヘッドスペース10a内部全体であり、この範囲は容器10内の圧力と同一である。
【0019】
この容器10内の圧力が、圧力センサ5によって検出され、検出値がシーケンサ100に逐次読み込まれる。
すなわち、加圧シリンダ31のロッド31aの移動に伴って徐々にヘッドスペース10a内の圧力が増大し、駆動シリンダ32のロッド32aがストッパ32dに突き当たった時点でエア供給が完了し、この時点の圧力がピークとなる。この圧力が基準範囲内内にあるか否かが判定される。
図1は、容器の内容液充填量と圧力の関係を模式的に示したものである。
充填量の上限をm、下限をnとし、充填量が上限mの時の加圧時の圧力をPm、充填量が下限nの時の加圧時の圧力をPnとする。加圧時の圧力がPm〜Pnの間にあれば、液量が適正であると判定することができる。
【0020】
図1(A)は内容液の充填量が適正範囲(m〜n)の例で、図1(D)に示すように、ピーク圧力P1が基準範囲内(Pm〜Pn)となる。
図1(B)は容器内の液量が多過ぎる場合で、図1(D)に示すように、ピーク圧力P1′は基準範囲の上限Pnを越え、不適と判定される。
図1(C)は容器内の液量が過少の場合で、図1(D)に示すように、ピーク圧力P1″は基準範囲の下限Pmより小さくなり、不適と判定される。
【0021】
さらに、充填量判定時(T1)から一定時間経過後(T2の時点)、再度容器10内の圧力(P2)を計測し、ピーク値P1との差圧ΔPを求める。この求められた差圧Δ=P1−P2が一定のしきい値ΔP0内であるか否かを比較し、しきい値内であればリークは許容範囲内とし良品判定を行う。
一方、溶液の充填量が適正であっても、図2に示すように、差圧ΔP′がしきい値ΔP0を越えた場合には、容器がリークしているものとし不良判定を行う。
次に、第1電磁切換弁6が切り替わり、容器10内の圧力が、第1電磁切換弁6に接続された圧力逃がし弁9を通じて逃がされる。
また、第3電磁切換弁14がロッド押し位置14Bに切り替わり、駆動シリンダ32のロッド32aが押し出されると同時に加圧シリンダ31のロッド31aが押し出されて蓄圧室2内に第2定圧供給ライン44から、第1,第2調圧弁41,42によって調圧された一定圧P0の空気圧が充填される。
【0022】
次に、第3電磁切替弁13が切り替わり、ヘッド昇降シリンダ12のロッド12aが戻され、検査ヘッド1が容器10から離れて上昇し、容器10が取り出される。
そして、先に判定された内容液充填量とリークの判定結果から、充填量が適正で、かつリークが無い場合に良品と判定され、次工程に進む。
液量とリークの少なくとも一方が不良と判定されれば不良品と判定され、製品がラインから排出される。
【0023】
また、図6に示すように、排出された製品の不良要因(リーク,充填量不良)を表示することも可能である。
さらに、充填量不良の製品の中にも、たとえば本来は充填量が適正なのにリークが大きすぎてP1に達しないものが含まれている。このようなものについても、図7(A)に示すように、区別して表示可能である。ここで、P2が不良というのは、基本的には圧力低下量の不良を意味する。
この判定手順としては、たとえば、図7(B)に簡略化して示すように、P1が一定範囲内に無い場合についても、P2を読込み、ΔP(=P1−P2)が基準置以下かどうかのリークの判定を行うようにすればよい。
【0024】
【実施例】
充填量が14mlの目薬容器(中栓付き)を用意した。
そして、検査ヘッド1を下方に下げて容器10のノズル部11に密接させ、容器加圧機構3によって容器10内に、一定圧(0.5MPa)のエアを一定量吹き込み、容器10のヘッドスペース10aを加圧状態とした。
その後、圧力センサ5で容器10内の圧力を測定し、測定値をアナログ信号に変換し、エア吹き込み完了時点での値をピーク値(P1)としてシーケンサ100に読み込んだ。
そして、ピーク圧力P1が基準値(0.5Mpa±0.05Mpa)内であるかを判定基準として、充填量の判定を行った。
次いで、容器10の加圧状態を保ったまま、一定時間(t)経過後、更に容器10内の圧力(P2)を上記ピーク圧力P1を求めた時と同様にして求めた。
そして、差圧ΔPを求め、求めた値が一定の基準値(しきい値)以下であるかどうかを判定基準として、製品にエアリークがないかどうかの判定を行った。
【0025】
(結果)
上記検査試験において、内容液が0.2ml相違すると、圧力は10kpa程度変化することが判った。このことより、約0.2ml単位で内容液の量を計測できることが判った。
また、リーク検査においても、問題なく判定することができた。
【0027】
発明の効果
以上説明したように、本発明の容器の検査装置によれば、一定圧の気体を蓄える蓄圧室を有し容器内に一定量で一定圧の気体を供給する容器加圧手段と、容器加圧手段の蓄圧室に一定圧の気体を供給する圧力供給手段と、容器加圧手段によって加圧された容器内の圧力を測定する圧力測定手段と、を備えることにより、圧力を正確に供給することができ、内容液の充填量を正確に判定することができる。また、圧力測定手段からの測定情報に基づいて充填量の適否を判定する判定手段を設けることにより、内容液の充填量を自動的に判定することができる。また、判定手段によってリーク判定を行うようにしたので、充填量の判定とリークの判定を自動的に行うことができる。
また、圧力測定手段による測定圧力のピーク値が基準範囲内か否かを判定するようにしたので、スペースの容積のばらつきに正確に対応させることができる。
さらに、容器の外周を保持して加圧時の容器の膨張を押さえる容器固定治具を備えることにより、容器の膨張による圧力低下の影響を排除することができる。
【図面の簡単な説明】
【図1】図1(A)乃至(C)は本発明の実施の形態に係る容器の検査方法の原理図、同図(D)は(A)乃至(C)の圧力変化を示すグラフである。
【図2】図2は図1のリーク不良判定の圧力変化の一例を示すグラフである。
【図3】図3は本発明の実施の形態に係る液量検査装置の空気圧回路図である。
【図4】図4は図3の検査装置の制御ブロック図である。
【図5】図5は検査手順を示す図である。
【図6】図6は不良要因を表示するようにした検査手順を示す図である。
【図7】図7(A)は不良要因をさらに細かく表示する説明図、同図(B)は同図(A)の表示を行うための判定手順例を示す説明図である。
【符号の説明】
1 検査ヘッド、2 蓄圧室、
3 容器加圧機構(容器加圧手段)、31 加圧シリンダ、32 駆動シリンダ
31a,32a ロッド、32d ストッパ
4 圧力供給部(圧力供給手段)、
40 圧力源、
41,42 第1,第2調圧弁,43,44 第1,第2定圧供給ライン
5 圧力センサ(圧力測定手段)、
6 第1電磁切換弁、
6A 圧力補給位置、6B 容器加圧位置、N 中立位置
7 容器固定治具
10 容器,10a ヘッドスペース
11 ノズル部
12 ヘッド昇降シリンダ
12a,12b ロッド押し室,ロッド戻し室
13 第3電磁切換弁
14 第2電磁切換弁
100 シーケンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to inspection apparatus vessel for inspecting the presence or absence of leakage of the filling amount and containers of the content liquid filled in the container.
[0002]
[Prior art]
In a conventional container filling amount inspection, it is common to detect the level of the liquid content.
In other words, after filling the container with the content liquid, a photoelectric tube sensor, laser sensor, or ultrasonic sensor is provided in the middle of transporting the container, and these sensors determine whether or not the content liquid in the container has reached a certain height. Thus, the quality of the content liquid is determined to be good or bad.
[0003]
[Problems to be solved by the invention]
However, conventional photoelectric tube sensors, laser sensors, and ultrasonic sensors only determine whether the liquid level of the content liquid has reached a certain height (a certain filling amount). It cannot be judged even if it is significantly larger than (a constant filling amount). In order to determine the upper limit, it was necessary to add another sensor and determine it in combination with these.
[0004]
Also, when using a photoelectric tube sensor or laser sensor, if the liquid level of the liquid content rises due to conveyance and rises higher than the liquid level of the actual liquid content, the sensor physically measures the liquid level. Even if the filling amount has not been reached, the phototube sensor or the laser sensor may regard the rising point as the highest point and erroneously determine that the filling amount has been reached. Such misjudgment tends to be more likely as the cross-sectional area of the container is smaller.
On the other hand, in a container with a large cross-sectional area (such as 2L), the liquid level height is wide, so the liquid level height hardly changes with slight variations in the liquid level. Dispersion cannot be determined.
In addition, the method using the photoelectric tube sensor or the laser sensor can be used only if the container can transmit light. On the other hand, the method using the ultrasonic sensor does not affect the light transmittance of the container, but the sensor is not attached to the container. There is also a restriction on the container that cannot be accommodated unless it is wider than the filling port.
[0005]
The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to accurately and easily fill the filling amount of the inner solution regardless of the cross-sectional area difference or the liquid level. to provide an inspection device for containers which can be inspected.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the container inspection apparatus of the present invention,
An inspection head that can be moved toward and away from the opening of the container;
A container pressurizing means having a pressure accumulation chamber for storing a gas at a constant pressure, and supplying a constant pressure and a constant amount of gas stored in the pressure accumulation chamber into the container through the inspection head;
Pressure supply means for supplying a constant pressure gas to the pressure accumulating chamber of the container pressurizing means;
Pressure measuring means for measuring the pressure in the container pressurized by the container pressurizing means;
An electromagnetic switching valve for selectively switching the connection between the container pressurizing means, the pressure supply means and the inspection head; and the pressure in the container measured by the pressure measuring means after the pressurization by the container pressurizing means is within a reference range If it is within the range, it is determined that the filling amount is appropriate, and if it is outside the reference range, the filling amount is determined to be inappropriate. If the pressure immediately after pressurization and the pressure drop after a predetermined time have passed are within a certain threshold Determining means for determining whether there is no leak if it is within the threshold, and if there is a leak if the threshold is exceeded,
It is characterized by comprising.
[0007]
The determination means determines whether or not the peak value of the pressure measured by the pressure measurement means is within a reference range .
[0008]
A container fixing jig that holds the outer periphery of the container and suppresses the expansion of the container during pressurization is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on the illustrated embodiments.
FIG. 3 shows a container inspection apparatus according to Embodiment 1 of the present invention.
This liquid quantity inspection apparatus has an inspection head 1 that can be brought into contact with and separated from a nozzle portion 11 of a container 10 filled with a content liquid, and a pressure accumulating chamber 2 that stores air pressure as a constant pressure gas. A container pressurizing mechanism 3 serving as a container pressurizing means for supplying a constant amount of air pressure to the container 10 through the inspection head 1, and a pressure for supplying a constant pressure gas to the pressure accumulating chamber 2 of the container pressurizing mechanism 3 A pressure supply unit 4 as a supply unit, a pressure sensor 5 as a pressure measurement unit connected to the inspection head 1, and a connection between the container pressurizing mechanism 3, the pressure supply unit 4 and the inspection head 1 are selectively used. A first electromagnetic switching valve 6 for switching.
In addition, when the container 10 is a flexible container, a container fixing jig 7 that holds the outer periphery of the container 10 and suppresses expansion during pressurization is provided in order to suppress expansion of the container during pressurization.
The pressure sensor 5 is connected to the sequencer 100, and the pressure value measured by the pressure sensor 5 is read into the sequencer 100. After the container pressurization mechanism 3 pressurizes the sequencer 100, the filling amount is appropriate when the pressure P1 in the container 10 read from the pressure sensor 5 is within the reference range, and the filling amount when the pressure P1 is outside the reference range. Functions as a determination means for determining that is inappropriate.
Further, based on the pressure P1 immediately after the pressurization is completed and the pressure decrease amount ΔP after the predetermined time T1 has elapsed, if the pressure decrease amount ΔP is within the threshold value ΔP0, there is no leakage, and if the threshold value is exceeded. The leak is judged as leaking.
That is, the pressure sensor 5 takes in the pressure data as an analog value for a certain period of time, detects the value of P1 at the timing of T1, further uses the height of P1 as a reference value, and then calculates the value of P2, and P1 -P2 derives ΔP.
The pressure sensor 5 converts a pressure value into a voltage (volt), and the sequencer 100 has a function of determining a filling amount and a leak with a voltage and displaying only a display in MPa. For example, when the pressure sensor 5 measures the pressure in the range of 1 to 5 volts, the display of the sequencer 100 is displayed in the range of 0 to 1 MPa.
[0011]
The inspection head 1 has an air passage (not shown) inside, and the inspection head 1 and the first electromagnetic switching valve 6 are connected by a pressurization line 8.
The inspection head 1 is disposed above the nozzle portion 11 of the container 10 and is moved up and down by a head lifting cylinder 12. The head lifting cylinder 12 is controlled by a second electromagnetic switching valve 13.
[0012]
The container pressurizing mechanism 3 includes a pressurizing cylinder 31 having the pressure accumulating chamber 2 and a drive cylinder 32 as an actuator for driving the pressurizing cylinder 31. In FIG. 3, the pressurizing cylinder 31 and the drive cylinder 32 are arranged in parallel to each other. Further, instead of the drive cylinder, a cam, a link, a direct acting actuator (air cylinder, ball screw) or the like connected to the pressure cylinder can be appropriately selected. The rods 31a and 32a of each cylinder are connected to each other via a connecting member 33, and move in synchronization in the same direction. That is, when the rod 32a of the drive cylinder 32 is pushed out, the rod 31a of the pressure cylinder 31 is also pushed out, the pressure accumulating chamber 2 is expanded and the air pressure is replenished, and when the rod 32a of the drive cylinder 32 is returned into the cylinder, the pressure cylinder The rod 31a of 31 is also returned to the inside of the cylinder, the pressure accumulating chamber 2 is contracted, and the internal air pressure is pushed out.
The drive cylinder 32 is a double-acting cylinder and is controlled by the third electromagnetic switching valve 14. The drive cylinder 32 is provided with a stopper 32d that can adjust the stroke of the rod 32a.
[0013]
The pressure supply unit 4 includes a pressure source 40 and first and second pressure regulating valves 41 and 42 connected to the pressure source 40, and the first constant pressure supply line 43 is regulated to a constant pressure by the first pressure regulating valve 41. The second constant pressure supply line 44 is regulated to a constant pressure by the two pressure regulating valves, the first and second pressure regulating valves 41 and 42.
[0014]
The first electromagnetic switching valve 6 is a three-position five-port valve that communicates between the second constant pressure supply line 44 of the pressure supply unit 4 and the pressure accumulating chamber 2 of the pressurizing cylinder 31 and between the pressure accumulating chamber 2 and the inspection head 1. Pressure supply position 6A for communication, neutral position N for closing all ports, container pressurization that allows communication between the pressure accumulation chamber 2 and the inspection head 1 and communication between the pressure accumulation chamber 2 and the second constant pressure supply line 44 It is possible to switch to three positions with position 6B.
The third electromagnetic switching valve 14 is also a three-position five-port valve, and communicates between the rod push chamber 32b of the drive cylinder 32 and the first constant pressure supply line 43, and the rod push position 14A communicates between the rod return chamber 32c and the open port. Three positions: a rod return position 14B that communicates between the rod return chamber 32c of the drive cylinder 32 and the first constant pressure supply line 43 and communicates between the rod push chamber 32b and the open port, and a neutral position N that closes all the ports. Can be switched to.
[0015]
Throttle valves 34a and 34b for speed adjustment are provided in a passage connecting the third electromagnetic switching valve 14 and the rod push chamber 32b of the drive cylinder 32 and the third electromagnetic switching valve 14 and the rod return chamber 32c.
The second electromagnetic switching valve 13 is also a three-position five-port valve. The rod pushing position 13A communicates between the rod pushing chamber 12b in the head elevating cylinder 12 and the first constant pressure supply line 43 and communicates the rod return chamber 12c with the open port. The rod return chamber 12c and the first constant pressure supply line 43 communicate with each other and the rod push chamber 12b and the open port communicate with each other, and a return position 13B and a neutral position N that closes all the ports can be switched to three positions. It has become.
Throttle valves 15a and 15b for speed adjustment are also provided in a passage connecting the second electromagnetic switching valve 13 and the rod push chamber 12b of the head lifting cylinder 12 and the second electromagnetic switching valve 13 and the rod return chamber 12c.
These first, second and third electromagnetic switching valves 6, 13 and 14 are controlled by the sequencer 100.
As shown in FIG. 4, the sequencer 100 controls the first, second, and third electromagnetic switching valves 6, 13, and 14 based on a predetermined control program, and stores measurement information from the pressure sensor 5 in a memory. Based on a predetermined determination program stored in 101, the CPU 102 obtains a pressure peak value and determines whether or not this peak value is within a predetermined reference range.
[0016]
Next, the operation of the container inspection apparatus of the present invention will be described with reference to FIG.
The pressure accumulating chamber 2 of the pressurizing cylinder 31 is previously filled with a constant pressure of air pressure P0, and both the pressurizing cylinder 31 and the rods 31a and 32a of the drive cylinder 32 are pushed out (the position indicated by the two-dot chain line in FIG. 3). ).
[0017]
First, the container 10 is set.
Next, the second electromagnetic switching valve 13 is switched to the rod pushing position 13A, air pressure flows into the rod pushing chamber 12b of the head lifting cylinder 12, and the rod 12a is pushed downward.
The inspection head 1 is lowered by the rod 12a of the head raising / lowering cylinder 12, and is closely sealed to the nozzle portion 11 of the container 10. The container 10 is filled with a predetermined amount of content liquid, and an inner plug or the like is set in the nozzle portion 11.
[0018]
Next, the first and third electromagnetic switching valves 6 and 14 are switched.
The first electromagnetic switching valve 6 switches to the container pressurizing position 6A, the accumulator chamber 2 of the pressurizing cylinder 3 communicates with the inspection head 1, and at the same time, the third electromagnetic switching valve 14 switches to the rod return position 14B. The rod 32a of the drive cylinder 32 is returned into the cylinder, the rod 3a of the pressurizing cylinder 31 connected to the rod 32a is returned into the cylinder, and the air pressure in the pressure accumulating chamber 2 is increased in the pressurization line 8 and the inspection head 1. Is supplied into the container 10 through the passage.
After a certain time has elapsed from the start of air supply (= when air supply is completed), the first and second electromagnetic switching valves 3 and 14 are switched to the neutral position N, and the head space 10a of the container 10 is sealed. The sealed range includes the pressurization line 8 between the first electromagnetic switching valve 3 and the inspection head 1, the air passage in the inspection head 1, and the entire interior of the head space 10 a of the container 10. The pressure is the same.
[0019]
The pressure in the container 10 is detected by the pressure sensor 5, and the detected value is sequentially read into the sequencer 100.
That is, the pressure in the head space 10a gradually increases as the rod 31a of the pressurizing cylinder 31 moves, and the air supply is completed when the rod 32a of the drive cylinder 32 hits the stopper 32d. Becomes a peak. It is determined whether this pressure is within the reference range.
FIG. 1 schematically shows the relationship between the content liquid filling amount of the container and the pressure.
The upper limit of the filling amount is m, the lower limit is n, the pressure during pressurization when the filling amount is the upper limit m is Pm, and the pressure during pressurization when the filling amount is the lower limit n is Pn. If the pressure at the time of pressurization is between Pm and Pn, it can be determined that the liquid amount is appropriate.
[0020]
FIG. 1A is an example in which the filling amount of the content liquid is in an appropriate range (m to n), and the peak pressure P1 is within the reference range (Pm to Pn) as shown in FIG.
FIG. 1B shows a case where the amount of liquid in the container is too large. As shown in FIG. 1D, the peak pressure P1 ′ exceeds the upper limit Pn of the reference range and is determined to be inappropriate.
FIG. 1 (C) shows a case where the amount of liquid in the container is too small. As shown in FIG. 1 (D), the peak pressure P1 ″ is smaller than the lower limit Pm of the reference range, and is determined to be inappropriate.
[0021]
Further, after a fixed time has elapsed from the time of filling amount determination (T1) (at time T2), the pressure (P2) in the container 10 is measured again to obtain a differential pressure ΔP from the peak value P1. It is compared whether or not the obtained differential pressure Δ = P1−P2 is within a certain threshold value ΔP0, and if it is within the threshold value, the leak is within an allowable range and a non-defective product is determined.
On the other hand, even if the filling amount of the solution is appropriate, if the differential pressure ΔP ′ exceeds the threshold value ΔP0 as shown in FIG.
Next, the first electromagnetic switching valve 6 is switched, and the pressure in the container 10 is released through the pressure relief valve 9 connected to the first electromagnetic switching valve 6.
Further, the third electromagnetic switching valve 14 is switched to the rod pushing position 14B, the rod 32a of the drive cylinder 32 is pushed out, and at the same time the rod 31a of the pressurizing cylinder 31 is pushed out into the pressure accumulating chamber 2 from the second constant pressure supply line 44. The air pressure of the constant pressure P0 regulated by the first and second pressure regulating valves 41 and 42 is filled.
[0022]
Next, the third electromagnetic switching valve 13 is switched, the rod 12a of the head lifting cylinder 12 is returned, the inspection head 1 is lifted away from the container 10, and the container 10 is taken out.
Then, based on the content liquid filling amount and the leakage determination result determined earlier, when the filling amount is appropriate and there is no leakage, it is determined as a non-defective product, and the process proceeds to the next step.
If at least one of the liquid amount and the leak is determined to be defective, it is determined as a defective product, and the product is discharged from the line.
[0023]
Moreover, as shown in FIG. 6, it is also possible to display the failure factor (leakage, filling amount failure) of the discharged product.
Further, among the products with poor filling amount, for example, there are products that do not reach P1 because the leakage amount is too large although the filling amount is originally proper. Such a thing can also be distinguished and displayed as shown in FIG. Here, the failure of P2 basically means a failure of the pressure drop amount.
As this determination procedure, for example, as shown in a simplified manner in FIG. 7B, even when P1 is not within a certain range, P2 is read and whether ΔP (= P1−P2) is equal to or less than a reference position. What is necessary is just to perform the determination of a leak.
[0024]
【Example】
An eye drop container (with a stopper) with a filling amount of 14 ml was prepared.
Then, the inspection head 1 is lowered and brought into close contact with the nozzle portion 11 of the container 10, and a constant pressure (0.5 MPa) of air is blown into the container 10 by the container pressurizing mechanism 3. 10a was in a pressurized state.
Thereafter, the pressure in the container 10 was measured by the pressure sensor 5, the measured value was converted into an analog signal, and the value at the time when the air blowing was completed was read into the sequencer 100 as the peak value (P1).
Then, the filling amount was determined based on whether the peak pressure P1 is within the reference value (0.5 Mpa ± 0.05 Mpa).
Next, the pressure (P2) in the container 10 was further determined in the same manner as when the peak pressure P1 was determined after a predetermined time (t) while the pressurized state of the container 10 was maintained.
Then, the differential pressure ΔP was determined, and it was determined whether or not the product had an air leak based on whether or not the determined value was equal to or less than a certain reference value (threshold value).
[0025]
(result)
In the above inspection test, it was found that the pressure changed by about 10 kpa when the content liquid was 0.2 ml different. From this, it was found that the amount of the content liquid can be measured in units of about 0.2 ml.
Moreover, even in the leak inspection, it was possible to determine without any problem.
[0027]
[ Effect of the invention ]
As described above , according to the container inspection apparatus of the present invention , the container pressurizing means having a pressure accumulation chamber for storing a constant pressure gas and supplying a constant amount of gas into the container, and the container pressurization By supplying pressure supply means for supplying a constant pressure gas to the pressure accumulating chamber of the means and pressure measurement means for measuring the pressure in the container pressurized by the container pressurizing means, the pressure is accurately supplied And the filling amount of the content liquid can be accurately determined. Further, by providing determination means for determining the suitability of the filling amount based on the measurement information from the pressure measuring means, the filling amount of the content liquid can be automatically determined. Further, since the leak determination is performed by the determination unit, the determination of the filling amount and the determination of the leak can be automatically performed.
In addition , since it is determined whether or not the peak value of the pressure measured by the pressure measuring means is within the reference range, it is possible to accurately cope with variations in space volume.
Furthermore , by providing a container fixing jig that holds the outer periphery of the container and suppresses the expansion of the container during pressurization, the influence of a pressure drop due to the expansion of the container can be eliminated.
[Brief description of the drawings]
FIG. 1A to FIG. 1C are principle diagrams of a container inspection method according to an embodiment of the present invention, and FIG. 1D is a graph showing pressure changes in (A) to (C). is there.
FIG. 2 is a graph showing an example of a pressure change in the leak failure determination of FIG.
FIG. 3 is a pneumatic circuit diagram of the liquid amount inspection apparatus according to the embodiment of the present invention.
4 is a control block diagram of the inspection apparatus in FIG. 3;
FIG. 5 is a diagram showing an inspection procedure.
FIG. 6 is a diagram showing an inspection procedure in which a failure factor is displayed.
FIG. 7A is an explanatory diagram for displaying defect factors in more detail, and FIG. 7B is an explanatory diagram showing an example of a determination procedure for performing the display of FIG.
[Explanation of symbols]
1 inspection head, 2 accumulator,
3 container pressurization mechanism (container pressurization means), 31 pressurization cylinder, 32 drive cylinders 31a, 32a rod, 32d stopper 4 pressure supply part (pressure supply means),
40 pressure source,
41, 42 1st, 2nd pressure regulating valve, 43, 44 1st, 2nd constant pressure supply line 5 Pressure sensor (pressure measuring means),
6 first electromagnetic switching valve,
6A Pressure replenishment position, 6B Container pressurization position, N Neutral position 7 Container fixing jig 10 Container, 10a Head space 11 Nozzle part 12 Head lift cylinder 12a, 12b Rod push chamber, rod return chamber 13 Third electromagnetic switching valve 14 2 Solenoid switching valve 100 Sequencer

Claims (3)

容器の開口部に接離可能の検査ヘッドと、
一定圧の気体を蓄える蓄圧室を有し該蓄圧室に蓄えられた一定圧一定量の気体を前記検査ヘッドを通じて前記容器内に供給して加圧する容器加圧手段と、
前記容器加圧手段の蓄圧室に一定圧の気体を補給する圧力供給手段と、
容器加圧手段によって加圧された容器内の圧力を測定する圧力測定手段と、
前記容器加圧手段と圧力供給手段および検査ヘッド間の接続を選択的に切り換える電磁切換弁と、前記容器加圧手段による加圧後、前記圧力測定手段によって測定された容器内の圧力が基準範囲内の場合には充填量が適正、基準範囲外の場合には充填量が不適と判定し、さらに、加圧直後の圧力及び所定時間経過した後の圧力低下量が一定のしきい値内か否かを判断し、しきい値内であればリーク無し、しきい値を超えている場合にはリーク有りとするリークの判定を行う判定手段と、
を備えてなることを特徴とする容器の検査装置。
An inspection head that can be moved toward and away from the opening of the container;
A container pressurizing means having a pressure accumulation chamber for storing a gas at a constant pressure, and supplying a constant pressure and a constant amount of gas stored in the pressure accumulation chamber into the container through the inspection head;
Pressure supply means for supplying a constant pressure gas to the pressure accumulating chamber of the container pressurizing means;
Pressure measuring means for measuring the pressure in the container pressurized by the container pressurizing means;
An electromagnetic switching valve for selectively switching the connection between the container pressurizing means, the pressure supply means and the inspection head; and the pressure in the container measured by the pressure measuring means after the pressurization by the container pressurizing means is within a reference range If it is within the range, it is determined that the filling amount is appropriate, and if it is outside the reference range, the filling amount is determined to be inappropriate . Determining means for determining whether there is no leak if it is within the threshold, and if there is a leak if the threshold is exceeded,
A container inspection apparatus comprising:
判定手段は、圧力測定手段による測定圧力のピーク値が基準範囲内か否かを判定する請求項に記載の容器の検査装置。The container inspection apparatus according to claim 1 , wherein the determination unit determines whether or not a peak value of the pressure measured by the pressure measurement unit is within a reference range. 容器の外周を保持して加圧時の容器の膨張を押さえる容器固定治具を備えていることを特徴とする請求項1又は2に記載の容器の検査装置。Inspection device container of claim 1 or 2, characterized in that it comprises a container fixing jig holding the outer periphery of the container holding the expansion of the container during pressurization.
JP2001264089A 2001-08-31 2001-08-31 Container inspection equipment Expired - Lifetime JP4826041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264089A JP4826041B2 (en) 2001-08-31 2001-08-31 Container inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264089A JP4826041B2 (en) 2001-08-31 2001-08-31 Container inspection equipment

Publications (2)

Publication Number Publication Date
JP2003075230A JP2003075230A (en) 2003-03-12
JP4826041B2 true JP4826041B2 (en) 2011-11-30

Family

ID=19090748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264089A Expired - Lifetime JP4826041B2 (en) 2001-08-31 2001-08-31 Container inspection equipment

Country Status (1)

Country Link
JP (1) JP4826041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768896B2 (en) * 2011-11-30 2015-08-26 株式会社島津製作所 Headspace sample introduction device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128790A (en) * 1978-03-29 1979-10-05 Mitsutoyo Seisakusho Device for measuring leakage
JPS63108231A (en) * 1986-10-25 1988-05-13 Kajirou Watanabe Volume measuring instrument for in-tank liquid storage body
JPH02140620A (en) * 1988-11-21 1990-05-30 Masakatsu Onozuka Method and device for measuring volume
JPH09196804A (en) * 1996-01-19 1997-07-31 Toppan Printing Co Ltd Leak checker for paper container

Also Published As

Publication number Publication date
JP2003075230A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US5105654A (en) Method for inspecting leakage of sealed container
EP0380863A1 (en) Method and apparatus for detecting leaks in a sealed container
CA2556059C (en) Method and device for filling a container with a predetermined quantity of fluid, filling machine
US5540083A (en) Leakage measuring apparatus
JPH02242132A (en) Apparatus and method for inspecting container
JP4826041B2 (en) Container inspection equipment
EP0474931A1 (en) Automatic molten substance bagging method and system
JP4951328B2 (en) Engine oil leak test system and method
CN110823315B (en) Non-contact high-precision liquid level detection system and detection method thereof
US8151833B2 (en) Machine for testing container capacity
JP6653145B2 (en) Elastic body leakage measurement method and leakage measurement device
JPH09280990A (en) Method for testing leakage
JP3136945U (en) Pre-pressurizer for leak testing machine
JPH02142905A (en) Characteristics testing device for pressure reducing valve
JP3558259B2 (en) Leak inspection method for empty cans, etc.
US6014891A (en) On-line leak tested and container ends
JP4173255B2 (en) Air leak test device
JPH0562692B2 (en)
JPS61110010A (en) Container inspection apparatus
CN208902361U (en) A kind of bottle of liquor leakproofness leak tester of single-station
WO2023120621A1 (en) Valve seat inspection method and valve seat inspection device using image recognition camera
KR0132995Y1 (en) Vacuum level tester of vacuum insulator
JP3353442B2 (en) Leak inspection method and device
JP2000304644A (en) Leak inspection device for mold for cold confectionery manufacturing facility
JP3510688B2 (en) Micro flow measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term