JP4825651B2 - Solid flooring heat treatment method and solid flooring - Google Patents

Solid flooring heat treatment method and solid flooring Download PDF

Info

Publication number
JP4825651B2
JP4825651B2 JP2006326182A JP2006326182A JP4825651B2 JP 4825651 B2 JP4825651 B2 JP 4825651B2 JP 2006326182 A JP2006326182 A JP 2006326182A JP 2006326182 A JP2006326182 A JP 2006326182A JP 4825651 B2 JP4825651 B2 JP 4825651B2
Authority
JP
Japan
Prior art keywords
solid
floor material
flooring
heating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006326182A
Other languages
Japanese (ja)
Other versions
JP2008137290A (en
Inventor
真 高橋
達史 宮田
聡子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidai Co Ltd
Original Assignee
Eidai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidai Co Ltd filed Critical Eidai Co Ltd
Priority to JP2006326182A priority Critical patent/JP4825651B2/en
Publication of JP2008137290A publication Critical patent/JP2008137290A/en
Application granted granted Critical
Publication of JP4825651B2 publication Critical patent/JP4825651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に床暖房用に用いられる無垢床材に対して寸法安定化処理を施すための熱処理方法と寸法安定化処理が施された無垢床材に関する。   The present invention relates to a heat treatment method for performing dimension stabilization processing on a solid floor material used for floor heating, and a solid floor material subjected to dimension stabilization processing.

自然木から製材した無垢材は、他の木質材料よりも残留応力を多く持っており、吸放湿による曲がりや狂いが大きく、建築用あるいは家具用材料などとして無垢材を使用したときに、無視できない狂いが発生する場合がある。床暖房で用いられる床材は繰り返しの温度変化を受け寸法変化が起きやすいことから、無垢床材を床暖房用の床材として用いることはあまり行われない。   Solid wood made from natural wood has more residual stress than other wood materials, and it is greatly bent and distorted due to moisture absorption and desorption. It is ignored when solid wood is used as a building or furniture material. Inability to go wrong may occur. Since floor materials used in floor heating tend to undergo dimensional changes due to repeated temperature changes, solid floor materials are rarely used as floor materials for floor heating.

木質材の寸法変化を抑制するための寸法安定化処理として、PEG処理のように木質材を薬剤中に浸漬する化学的処理や、木質材を加熱してミクロフィブリル(セルロース)とマトリックス(ヘミセルロース、リグニン)に熱化学的な変化(熱分解)を与える熱処理等が行われる。例えば、特許文献1には、熱盤間に木質材を密封状態で挟持し、該木質材をその状態で高周波加熱して、木質材中の水分を加圧水蒸気化させることで木質材の寸法安定化処理を行う熱処理方法が記載されている。特許文献2には、木質材を圧縮した状態で該木質材に高周波加熱処理を施すことにより寸法安定性を付与するようにした熱処理方法が記載されている。   As a dimensional stabilization process to suppress the dimensional change of the wood material, chemical treatment of immersing the wood material in the chemical like PEG treatment, or heating the wood material to microfibril (cellulose) and matrix (hemicellulose, The lignin is subjected to a heat treatment or the like which gives a thermochemical change (thermal decomposition). For example, in Patent Document 1, a wooden material is held in a sealed state between hot plates, the wooden material is heated at high frequency in that state, and moisture in the wooden material is pressurized and steamed to stabilize the size of the wooden material. A heat treatment method for performing the chemical treatment is described. Patent Document 2 describes a heat treatment method in which dimensional stability is imparted by performing high-frequency heat treatment on a wooden material in a compressed state.

特開平6−238615号公報JP-A-6-238615 特開2001−252909号公報Japanese Patent Laid-Open No. 2001-252909

既に提案されている熱処理方法によって、無垢材に対しても寸法安定性を付与することができる。しかし、特許文献1に記載の方法は被処理材を密封状態で保持しておくことが必要であり、処理装置が全体として幾分複雑となっている。特許文献2に記載の方法も、被処理材を圧縮状態に維持するための装置を必要し、やはり、処理装置が全体として複雑となっている。   Dimensional stability can be imparted even to a solid material by a heat treatment method that has already been proposed. However, the method described in Patent Document 1 requires that the material to be processed be held in a sealed state, and the processing apparatus is somewhat complicated as a whole. The method described in Patent Document 2 also requires an apparatus for maintaining the material to be processed in a compressed state, and the processing apparatus is complicated as a whole.

本発明は、上記のような事情に鑑みてなされたものであり、使用時に寸法変化が生じやすい床暖房用の無垢床材に対して、より簡単な装置でもって、寸法安定化処理を施すことのできる熱処理方法と、その方法により寸法安定化処理が施された無垢床材とを提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and applies a dimensional stabilization process to a solid flooring material for floor heating that is likely to undergo a dimensional change during use with a simpler apparatus. It is an object of the present invention to provide a heat treatment method that can be used, and a solid floor material that has been subjected to dimension stabilization treatment by the method.

本発明者らは、上記の課題を解決するために、多くの研究と実験とを行うことにより、無垢材に対して電磁波を照射していわゆる内部加熱を行い、無垢材の持つ残留応力を緩和する軟化処理行うことで、従来考えられていたように、熱処理の間、無垢床材を密封状態に維持するあるいは圧縮状態に維持することを行わなくても、所要の寸法安定性を付与することができるという新たな事実を知見した。同時に、無垢材は加熱により変色が生じるが、電磁波の強度と照射時間を制御することにより、無垢材の表層部に変色を生じさせることなく、所要の寸法安定化処理を終えることができることも知見した。   In order to solve the above problems, the present inventors have conducted a lot of research and experiments to irradiate solid wood with electromagnetic waves and so-called internal heating to relieve the residual stress of the solid wood. By performing the softening process, the required dimensional stability can be imparted without the need to maintain the solid flooring in a sealed state or in a compressed state during heat treatment, as previously thought. I discovered a new fact that I can. At the same time, solid materials are discolored by heating, but it is also found that by controlling the electromagnetic wave intensity and irradiation time, the required dimensional stabilization treatment can be completed without causing discoloration of the surface layer of the solid material. did.

本発明は、上記の知見を無垢床材の寸法安定化処理に適用したものであり、本発明による無垢床材の熱処理方法は、無垢床材に電磁波を照射して内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持することにより内層部のみを熱分解させて変色させ、それにより当該無垢床材の寸法安定化処理を行うことを特徴とする。   The present invention is based on the above knowledge applied to the dimensional stabilization treatment of a solid floor material, and the heat treatment method for a solid floor material according to the present invention irradiates the solid floor material with an electromagnetic wave to at least a part of the inner layer portion. By maintaining the temperature in the range of 170 ° C. to 250 ° C., only the inner layer portion is thermally decomposed and discolored, whereby the solid flooring is dimensionally stabilized.

本発明において、内層部の加熱温度が170℃未満の場合には、無垢材の軟化が充分でなく残留応力の緩和が進行しないことから、充分な寸法安定性が得られない場合があるので好ましくない。内層部の加熱温度が250℃を超える場合には、木材の熱分解が激しくなり強度低下を招くので好ましくない。   In the present invention, when the heating temperature of the inner layer part is less than 170 ° C., the solid material is not sufficiently softened and the relaxation of the residual stress does not proceed, so that sufficient dimensional stability may not be obtained. Absent. When the heating temperature of the inner layer portion exceeds 250 ° C., it is not preferable because the thermal decomposition of the wood becomes intense and the strength is reduced.

無垢床材に上記の熱処理を施すことにより、当該無垢床材に対して、無処理のものと比較して高い寸法安定性を付与することができると同時に、処理後の無垢床材の表層部の色調は、処理前の状態(すなわち、無垢床材が本来持っていた色調)がほぼそのまま維持される。そのために、本発明による熱処理方法が施された無垢床材は、温度変化の繰り返しにより吸放湿を繰り返しても寸法変化が起こりにくい床暖房用床材として効果的に用いられる。また、無垢材が持つ色調を無垢床材の表層部に維持することができるので、そのままで高い意匠性を呈することができる。さらに、表層部には軟化や分解を伴うような高温の熱処理が施されないので、表層部の曲げ強度はそのまま維持することができ、無垢床材全体の曲げ強度をほぼ処理前と同様の値に維持することができる。   By applying the above heat treatment to a solid floor material, it is possible to impart high dimensional stability to the solid floor material compared to the untreated one, and at the same time, the surface layer portion of the treated solid floor material. As for the color tone, the state before processing (that is, the color tone originally possessed by the solid flooring) is maintained almost as it is. Therefore, the solid flooring to which the heat treatment method according to the present invention has been applied is effectively used as a floor heating flooring that hardly undergoes a dimensional change even if moisture absorption and desorption is repeated due to repeated temperature changes. Moreover, since the color tone which a solid material has can be maintained in the surface layer part of a solid flooring, high designability can be exhibited as it is. Furthermore, since the surface layer portion is not subjected to high-temperature heat treatment that involves softening or decomposition, the bending strength of the surface layer portion can be maintained as it is, and the bending strength of the whole solid flooring is almost the same value as before the treatment. Can be maintained.

本発明の方法において、加熱温度を170℃〜250℃の範囲に維持する領域が無垢床材の中央部を含むことは好ましく、それにより、無垢床材全体にわたってより均一な寸法安定化処理が進行する。   In the method of the present invention, it is preferable that the region in which the heating temperature is maintained in the range of 170 ° C. to 250 ° C. includes the central portion of the solid floor material, whereby a more uniform dimensional stabilization process proceeds throughout the entire solid floor material. To do.

本発明において加熱源として電磁波を用いるのは、物質に電磁波を照射すると物質内部で熱エネルギーに変換されて、物質は内部加熱を起こし、その物質が開放空間に置かれている場合には、通常の場合、当該物質の内層部が表層部よりも高い温度に加熱されることによる。また、本発明において電磁波とは、従来から高周波加熱あるいはマイクロ波加熱などとして用いられている電磁波を総称しており、より具体的には、周波数が1〜300MHzの高周波、特に好ましくは、13.56MHz,27.12MHz、40.14MHzの高周波、さらには、300MHz〜300GHzのマイクロ波、より好ましくは2450MHzのマイクロ波が挙げられる。   In the present invention, an electromagnetic wave is used as a heating source. When a substance is irradiated with an electromagnetic wave, the substance is converted into heat energy inside the substance, the substance causes internal heating, and the substance is usually placed in an open space. In this case, the inner layer portion of the substance is heated to a temperature higher than that of the surface layer portion. In the present invention, the electromagnetic wave is a general term for electromagnetic waves conventionally used as high-frequency heating or microwave heating, and more specifically, a high frequency of 1 to 300 MHz, particularly preferably 13. Examples include a high frequency of 56 MHz, 27.12 MHz, 40.14 MHz, a microwave of 300 MHz to 300 GHz, more preferably a microwave of 2450 MHz.

前記したように、一般に木質材はミクロフィブリル(セルロース)とマトリックス(ヘミセルロース、リグニン)で構成されており、加熱により特にマトリックスに熱分解が起こり軟化する。材内部に乾燥や成長等での在留応力が残っている場合には、マトリックスが軟化した際に解放される。応力フリーな状態を保って養生すれば、材内部の残留応力が少ない材料ができ、環境が変化しても曲がり等の寸法変化が少なくなる。そのような軟化は、樹種によっても異なるが、通常、140℃程度を超えると開始する。   As described above, the wood material is generally composed of microfibrils (cellulose) and a matrix (hemicellulose, lignin), and heat decomposition causes the matrix to soften and soften. In the case where residual stress due to drying or growth remains in the material, it is released when the matrix is softened. If it is cured while maintaining a stress-free state, a material with less residual stress inside the material can be produced, and dimensional changes such as bending will be reduced even if the environment changes. Such softening varies depending on the tree species, but usually starts above about 140 ° C.

また、本発明者らの実験では、オークやビーチのような無垢材は、ほぼ170℃前後までに加熱されると変色が起こる。この変色も、多くの要因から引き起こされるが、セルロース主鎖の切断(熱分解現象)が起こり、その接合切断による重合度低下(軟化現象)と共に、水、一酸化炭素、二酸化炭素などを放出し、カルボニル、カルボキシル、ヒドロペルオキシドなどが生成されるようになって、目視的にも黒色化あるいは褐色化するといわれており、さらに260℃のような高い温度になると、酸化分解による炭化物中の炭素含有量が急に大きくなり、木炭生成の方向に転じて、強度が低下する。   In our experiments, solid wood such as oak and beach changes color when heated to around 170 ° C. Although this discoloration is also caused by many factors, the main chain of the cellulose is broken (thermal decomposition phenomenon), and water, carbon monoxide, carbon dioxide, etc. are released along with a decrease in the degree of polymerization (softening phenomenon) due to the bond cutting. , Carbonyl, carboxyl, hydroperoxide, etc. are generated, and it is said to be blackened or browned visually, and at higher temperatures such as 260 ° C, carbon content in carbides due to oxidative decomposition The amount suddenly increases and turns in the direction of charcoal production, reducing the strength.

図7aは、オークとビーチにおける動的熱機械測定値を10Hzの周波数で測定した結果であり、ビーチ材の重合度低下(軟化)は180℃付近から大きくなり、210〜230℃でピークとなっている。また、オーク材での重合度低下(軟化)は170℃付近から大きくなり、200〜220℃でピークとなっている。また、図7bは、オークとビーチにおける熱分解による重量変化を示しており、ビーチは240℃付近、オークは230℃付近から分解が激しくなることがわかる。本発明において、無垢床材の内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持することとしたのは、上記の理由によるものであり、この温度範囲に無垢床材を保持することにより、加熱された領域に変色が生じると共に、無垢床材に寸法安定性が付与される。   FIG. 7a shows the result of measurement of dynamic thermomechanical measurement values at oak and beach at a frequency of 10 Hz. The degree of polymerization (softening) of the beach material increases from around 180 ° C. and peaks at 210 to 230 ° C. ing. Moreover, the degree of polymerization reduction (softening) in oak increases from around 170 ° C. and peaks at 200 to 220 ° C. Moreover, FIG. 7 b shows the weight change due to thermal decomposition in oak and beach, and it can be seen that the decomposition of the beach starts at around 240 ° C. and the oak decomposes from around 230 ° C. In the present invention, the temperature of at least a part of the inner layer portion of the solid flooring is maintained in the range of 170 ° C. to 250 ° C. for the above reason, and the solid flooring is maintained in this temperature range. By doing so, discoloration occurs in the heated area and dimensional stability is imparted to the solid flooring.

内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持する時間は、照射する電磁波の強度、樹種や無垢床材の初期含水率などによって、変化する。維持時間が短いと十分な寸法安定性が得られず、長すぎると、前記のように、内層部が250℃を超える温度になって、炭化が進行し無垢床材の強度低下を引き起こす。従って、本発明においては、予備的実験を行いながら、表層部に変色が発生しない範囲で、より長い維持時間を設定することとなる。   The time for maintaining the temperature of at least a part of the inner layer portion in the range of 170 ° C. to 250 ° C. varies depending on the intensity of the electromagnetic wave to be irradiated, the initial species moisture content of the tree species, the solid flooring, and the like. If the maintenance time is short, sufficient dimensional stability cannot be obtained. If the maintenance time is too long, as described above, the temperature of the inner layer portion exceeds 250 ° C., and carbonization proceeds to cause a decrease in strength of the solid flooring. Therefore, in the present invention, a longer maintenance time is set in a range in which discoloration does not occur in the surface layer portion while performing a preliminary experiment.

本発明において、無垢床材に電磁波を照射して加熱処理するには、公知の電磁波加熱処理装置を適宜用いることができる。被処理材である無垢床材を外部加熱できるような熱盤を備えた電磁波加熱処理装置を用いることもできる。   In the present invention, in order to heat-treat a solid floor material by irradiating electromagnetic waves, a known electromagnetic wave heat treatment apparatus can be appropriately used. An electromagnetic wave heat treatment apparatus provided with a hot plate capable of externally heating a solid floor material to be treated can also be used.

本発明において「無垢床材の内層部」の言葉は、表層部を除いた当該無垢床材の内層部分のすべてを指すものとして用いている。また、「熱分解させて変色」の言葉は、従来木材の技術分野で用いられていると同じ意味で用いており、前記したように、加熱によりヘミセルロース、セルロース、リグニンなどに熱分解と軟化が生じ、熱分解の結果として発生する変色のすべてを指している。   In the present invention, the term “inner layer portion of the solid flooring” is used to indicate all the inner layer portions of the solid flooring excluding the surface layer. In addition, the term “thermally discolored by discoloration” is used in the same meaning as used in the technical field of wood, and as described above, heat decomposition and softening of hemicellulose, cellulose, lignin, etc. are caused by heating. It refers to all the discoloration that occurs and occurs as a result of thermal decomposition.

なお、熱盤などを用いて無垢床材を外部加熱する場合、無垢材は熱伝導率が低いために熱が内層部に伝わりにくく、厚みのある材の場合には、表層部と内層部とで温度差が生じやすい。外部加熱により内層部の少なくとも一部を170℃〜250℃の温度まで加熱して熱分解を生じさせると、表層部は通常それ以上の温度となりがちであり、表層部の炭化が進行してもろさが出てしまうと共に、変色も大きくなる。一方、外部加熱で熱分解による変色が生じない温度に表層部を加熱すると、内層部の加熱が進行しないために、十分な寸法安定性が得られない。そのような不都合を、本発明による熱処理方法では解決している。   In addition, when solid flooring is externally heated using a hot platen etc., the solid material has low thermal conductivity, so heat is not easily transmitted to the inner layer part.In the case of a thick material, the surface layer part and the inner layer part The temperature difference is likely to occur. When at least a part of the inner layer portion is heated to a temperature of 170 ° C. to 250 ° C. by external heating to cause thermal decomposition, the surface layer portion tends to become a temperature higher than that, and the carbonization of the surface layer portion may proceed. Will appear and the discoloration will increase. On the other hand, when the surface layer portion is heated to a temperature at which discoloration due to thermal decomposition does not occur due to external heating, heating of the inner layer portion does not proceed, so that sufficient dimensional stability cannot be obtained. Such inconvenience is solved by the heat treatment method according to the present invention.

本発明による無垢床材の熱処理方法において、電磁波を照射する前の工程として、無垢床材の表層部を100℃〜170℃の範囲で外部加熱する処理を行うようにしてもよい。外部加熱の方法は任意であるが、100℃〜170℃の温度に加熱した熱盤の間に被処理無垢床材を挟持して、熱盤からの熱により加熱することが実際的である。上下の熱盤の温度は同じであってもよく、異なっていてもよい。無垢床材の表層部を予め100℃〜170℃の温度に加熱しておくことにより、電磁波での加熱処理時間を短縮できると共に、表層部でのヘミセルロースの熱分解が進行して、無垢床材の寸法安定性はさらに向上する。しかし、その温度範囲では、表層部に変色は生じない。   In the method for heat treating a solid floor material according to the present invention, as a step before irradiating with electromagnetic waves, a surface layer portion of the solid floor material may be externally heated in a range of 100 ° C to 170 ° C. Although the method of external heating is arbitrary, it is practical to sandwich the solid floor material to be treated between hot plates heated to a temperature of 100 ° C. to 170 ° C. and to heat by the heat from the hot platen. The temperature of the upper and lower hot plates may be the same or different. By heating the surface layer portion of the solid floor material to a temperature of 100 ° C. to 170 ° C. in advance, the heat treatment time with the electromagnetic wave can be shortened, and the thermal decomposition of hemicellulose in the surface layer portion proceeds, and the solid floor material The dimensional stability of the is further improved. However, no discoloration occurs in the surface layer within that temperature range.

本発明による無垢床材の熱処理方法において、電磁波を照射する工程を、外部加熱により無垢床材の表層部を100℃〜170℃の範囲に維持した状態で行うようにしてもよい。この場合も、上下の熱盤の温度は同じであってもよく、異なっていてもよい。この処理は、被処理無垢床材を外部加熱できるような熱盤を備えた電磁波加熱処理装置を用いることにより、容易に行うことができる。この方法によっても、無垢床材の表層部が100℃〜170℃の温度に加熱されるので、ヘミセルロースの熱分解が進行して、無垢床材の寸法安定性はさらに向上する。しかし、その温度範囲では、表層部に変色は生じないので、処理後の無垢床材の意匠性が低下することはない。さらに、電磁波で発生する熱の放熱が抑えられるので、内層部をより均一に熱分解させることが可能となり、寸法安定性は一層向上する。   In the heat treatment method for a solid floor material according to the present invention, the step of irradiating electromagnetic waves may be performed in a state where the surface layer portion of the solid floor material is maintained in a range of 100 ° C. to 170 ° C. by external heating. Also in this case, the temperature of the upper and lower hot plates may be the same or different. This treatment can be easily performed by using an electromagnetic wave heat treatment apparatus provided with a hot plate capable of externally heating the solid floor material to be treated. Also by this method, since the surface layer part of the solid flooring is heated to a temperature of 100 ° C. to 170 ° C., the thermal decomposition of hemicellulose proceeds and the dimensional stability of the solid flooring is further improved. However, in the temperature range, no discoloration occurs in the surface layer portion, so that the design property of the treated solid flooring does not deteriorate. Furthermore, since heat radiation generated by electromagnetic waves is suppressed, the inner layer portion can be more uniformly thermally decomposed, and the dimensional stability is further improved.

本発明は、また、上記の熱処理方法で製造される無垢床材も開示する。すなわち、本発明による無垢床材は、基本的に、加熱による熱分解処理が進行して内層部の少なくとも一部が変色し、表層部には熱分解処理に起因する変色が生じていないことを特徴とする。より具体的には、熱分解処理が電磁波を照射することによって施されたことを特徴とする上記床暖房用の無垢床材あり、電磁波として高周波、特に13.56MHzの高周波を照射することによって熱分解処理が施されたことを特徴とする床暖房用の無垢床材である。   The present invention also discloses a solid flooring produced by the above heat treatment method. That is, the solid flooring according to the present invention basically has a thermal decomposition treatment by heating, and at least a part of the inner layer portion is discolored, and the surface layer portion is not discolored due to the thermal decomposition treatment. Features. More specifically, the solid flooring for floor heating is characterized in that the pyrolysis treatment is performed by irradiating with electromagnetic waves, and heat is generated by irradiating a high frequency as electromagnetic waves, particularly a high frequency of 13.56 MHz. Solid flooring for floor heating characterized by being subjected to decomposition treatment.

さらに本発明は、無垢床材に電磁波を照射して内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持することにより内層部の少なくとも一部を熱分解処理が進行して内層部の少なくとも一部が変色し、表層部には熱分解処理に起因する変色が生じていないことを特徴とする床暖房用の無垢床材をも開示する。   Furthermore, the present invention provides a method in which at least a part of the inner layer part undergoes thermal decomposition treatment by irradiating the solid floor material with electromagnetic waves to maintain the temperature of at least a part of the inner layer part in a range of 170 ° C. to 250 ° C. Also disclosed is a solid flooring for floor heating, characterized in that at least a part of the part is discolored and the surface layer part is not discolored due to thermal decomposition treatment.

上記方法の発明において説明したよう、本発明による無垢床材は、寸法安定性に優れると同時に、表層面は処理前の無垢床材の表層面と同じ色調を保持しており、高い意匠性が確保される。そのために、本発明による無垢床材は、特に床暖房用床材の基材として用いるのに好適となる。   As explained in the above method invention, the solid floor material according to the present invention is excellent in dimensional stability, and at the same time, the surface layer retains the same color tone as the surface layer surface of the solid floor material before treatment, and has high design properties. Secured. Therefore, the solid flooring according to the present invention is particularly suitable for use as a base material for flooring for floor heating.

本発明によれば、熱処理によってマトリックス(ヘミセルロース、リグニン)が軟化して残留応力が解放され、それにより寸法安定性が改善されながら、基材表面の色調をそのまま保持している無垢床材が得られる。本発明による無垢床材は床暖房用の床材として特に好適に用いられる。   According to the present invention, a solid floor material that retains the color tone of the substrate surface as it is while the residual stress is released by softening the matrix (hemicellulose, lignin) by heat treatment and thereby improving dimensional stability is obtained. It is done. The solid flooring according to the present invention is particularly preferably used as a flooring for floor heating.

以下、図面を参照しながら、本発明を実施の形態に基づき説明する。図1は熱処理前の無垢床材の一例を示しており、図2は熱処理工程を説明するための図である。また、図3は熱処理終了後の無垢床材を模式的に示している。図4は図3に示した無垢床材に実加工を施した状態の2つの例を示している。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 shows an example of a solid floor material before heat treatment, and FIG. 2 is a diagram for explaining the heat treatment step. Moreover, FIG. 3 has shown typically the solid flooring after heat processing completion | finish. FIG. 4 shows two examples of a state where the solid flooring shown in FIG. 3 is actually processed.

最初に、図1に示すように、例えばビーチ材からなる適宜の大きさの無垢床材10を用意する。図示の例では矩形状の無垢床材10となっているが、所要に電磁波を照射できる形状であれば、その形状は任意である。   First, as shown in FIG. 1, a solid floor material 10 of an appropriate size made of, for example, beach material is prepared. In the illustrated example, the solid floor material 10 has a rectangular shape, but the shape is arbitrary as long as the shape can irradiate electromagnetic waves as required.

次の工程で、無垢床材10に加熱処理を施す。図示の例では、上下の熱盤21,22を備えた電磁波加熱処理装置20を用いており、熱盤21,22には外部加熱源としてヒーター23,23が備えられる。熱盤21,22は図示しない高周波発生回路に接続していて、所要周波数の電磁波(高周波)を発生する一対の電極板としての機能も果たすようになっている。   In the next step, the solid flooring 10 is heated. In the illustrated example, an electromagnetic wave heat treatment apparatus 20 having upper and lower heating plates 21 and 22 is used, and the heating plates 21 and 22 are provided with heaters 23 and 23 as external heating sources. The heating plates 21 and 22 are connected to a high frequency generation circuit (not shown), and also function as a pair of electrode plates that generate electromagnetic waves (high frequency) of a required frequency.

ヒーター23により、熱盤21,22を例えば100℃〜170℃の温度に予熱しておき、下熱盤22の上に無垢床材10を置く。上熱盤21を下降して、図2bに示すように、無垢床材10に密着させ、一定時間、その状態に保持する。それにより、少なくとも無垢床材10の表層部分はほぼ100℃〜170℃の温度に予備加熱される。しかし、木材の熱伝導性は低く、中心部まで同じ温度には加熱されがたい。なお、この予備加熱工程は省略することができる。100℃〜170℃の温度に予備加熱された領域では、熱分解が進行するが、加熱温度が低いために、変色することはない。   The heating plates 21 and 22 are preheated to a temperature of, for example, 100 ° C. to 170 ° C. by the heater 23, and the solid flooring 10 is placed on the lower heating plate 22. The upper heating platen 21 is lowered and brought into close contact with the solid flooring 10 as shown in FIG. 2b, and kept in that state for a certain period of time. Thereby, at least the surface layer portion of the solid flooring 10 is preheated to a temperature of approximately 100 ° C. to 170 ° C. However, the thermal conductivity of wood is low and it is difficult to heat to the same temperature up to the center. This preheating step can be omitted. In the region preheated to a temperature of 100 ° C. to 170 ° C., the thermal decomposition proceeds, but since the heating temperature is low, the color does not change.

所要に無垢床材10を予備加熱した後、無垢床材10に例えば13.56MHzの高周波(電磁波)を照射する。照射している間、ヒーター23による外部加熱を継続して行ってもよく、外部加熱を停止してもよい。高周波の照射により、無垢床材10の内層部は次第に昇温していき、170℃〜250℃の範囲内の予め定めた温度となったときに、高周波の照射量を低減するか出力を低下させて、それ以上に昇温しないようにし、170℃〜250℃の温度範囲内の予め定めた温度に一定時間保持する。それにより、熱分解が進行すると共に、昇温した領域の変色も進行する。170℃〜250℃の温度範囲での熱分解によって、無垢床材10の寸法安定化処理が進行する。その間も、無垢床材10の表層部は100℃〜170℃の温度に維持されるので、変色することはない。無垢床材10の表層部に変色が生じる前に、電磁波の照射を停止する。電磁波の照射を停止する時点は、予め実験的に求めておく。   After the solid floor material 10 is preheated as necessary, the solid floor material 10 is irradiated with a high frequency (electromagnetic wave) of 13.56 MHz, for example. During irradiation, external heating by the heater 23 may be continued, or external heating may be stopped. Due to the high frequency irradiation, the inner layer portion of the solid flooring 10 gradually increases in temperature, and when the temperature reaches a predetermined temperature within the range of 170 ° C. to 250 ° C., the amount of high frequency irradiation is reduced or the output is reduced. Thus, the temperature is not further increased, and is maintained at a predetermined temperature within a temperature range of 170 ° C. to 250 ° C. for a certain period of time. As a result, thermal decomposition proceeds, and discoloration of the heated region also proceeds. The dimensional stabilization process of the solid flooring 10 proceeds by thermal decomposition in a temperature range of 170 ° C to 250 ° C. In the meantime, the surface layer portion of the solid flooring 10 is maintained at a temperature of 100 ° C. to 170 ° C., so that it does not change color. Before the discoloration occurs in the surface layer portion of the solid flooring 10, the irradiation of electromagnetic waves is stopped. The time point at which the irradiation of electromagnetic waves is stopped is obtained experimentally in advance.

上熱盤21を上昇させて、熱処理後の木質板10を取り出す。図3に示すように、熱処理後の無垢床材10の内層部は、図に斜線で示すように熱分解に起因して変色した領域12となっており、表層部は当初の無垢材の色調がそのまま残っている。後の実施例で示すように、このようにして熱処理された無垢床材は寸法安定性が大きく向上している。   The upper heating platen 21 is raised and the wood board 10 after heat treatment is taken out. As shown in FIG. 3, the inner layer portion of the solid floor material 10 after the heat treatment is a region 12 discolored due to thermal decomposition as indicated by the oblique lines in the figure, and the surface layer portion has the color tone of the original solid material. Remains. As shown in the following examples, the solid flooring thus heat-treated has greatly improved dimensional stability.

図4は、上記のようにして作られた無垢床材10の周囲に実加工を施した床材11を示している。この例で、無垢床材10の短手方向の木口面は切り落とされ、長辺側には雄実13と雌実14を形成されている。このような加工を施すことにより、周囲に熱分解により変色した部分(領域)12が現れるが、その部分は、床材11を床下地に敷き詰めるときに人の目に触れることはないので、不都合はない。また、表面には基材として用いて無垢材の表面の色調がそのまま残っているので、高い寸法安定性を備え、かつ高意匠性を備えた、特に床暖房用床材に適した無垢床材を得ることができる。   FIG. 4 shows a flooring 11 in which actual processing is performed around the solid flooring 10 made as described above. In this example, the end face of the solid flooring 10 is cut off, and a male fruit 13 and a female fruit 14 are formed on the long side. By performing such processing, a portion (region) 12 discolored due to thermal decomposition appears around, but this portion is inconvenient because it is not touched by human eyes when the flooring 11 is spread on the floor base. There is no. In addition, since the color tone of the surface of the solid material remains as it is as the base material, the solid floor material has high dimensional stability and high design characteristics, especially suitable for floor heating flooring. Can be obtained.

以下、実施例と比較例により本発明を説明する。
[実施例1]
試験体の無垢床材として、厚さ30mm×幅83mm×長さ1840mmのビーチ柾目材を用意し、それを厚さ方向で半割して厚さ12mm×幅83mm×長さ1840mmのペアの試験体とした。一方の試験体について、図2に示した形態のヒーターを持つ熱盤を備えた電磁波加熱処理装置を用いて、周波数13.56MHzの高周波(電磁波)を照射して熱処理を行った。光ファイバーセンサーにより無垢床材の中心部の温度を実際に測定した。
熱処理は、試験体を上下の熱盤温度を100℃にセットして熱盤間に試験体を挟持した後、ワット密度3.7W/cmで高周波を照射した。高周波15秒間照射、5秒間照射なしのサイクルを7分間に亘り繰り返した。中心部の最高到達温度は230℃であった。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Example 1]
As a solid floor material of the test body, a 30 mm thick, 83 mm wide, 1840 mm long beach grid material is prepared, and it is divided in the thickness direction to test a pair of 12 mm thick x 83 mm wide x 1840 mm long. The body. About one test body, it heat-processed by irradiating the high frequency (electromagnetic wave) with a frequency of 13.56 MHz using the electromagnetic wave heat processing apparatus provided with the heating board with the heater of the form shown in FIG. The temperature at the center of the solid floor was actually measured with an optical fiber sensor.
In the heat treatment, the upper and lower hot platen temperatures were set to 100 ° C. and the test piece was sandwiched between the hot plates, and then high frequency was irradiated at a watt density of 3.7 W / cm 2 . A cycle of high frequency 15 seconds irradiation, no 5 seconds irradiation was repeated for 7 minutes. The maximum temperature reached in the center was 230 ° C.

[実施例1−1]
熱処理後の無垢床材に対して、図4に示したような普通実加工を行い、それを温水パイプを備えた温水マットの上に敷き詰めて、実験用の温水暖房床構造を構築した。敷き詰めた無垢床材の表面は無垢材の地肌色がほぼそのまま現れていた。施工後、20℃65%RHの環境に1週間放置した後、温水マットへの80℃温水の通湯を1100時間連続した。1100時間通湯後における、隣接する無垢床材の長辺間の複数点における隙間変動量を次式により求め、その平均隙間変動量を算出したところ、0.50mmであった。
式:隙間変動量=1100時間通湯後の隙間量−通湯前の隙間量
[Example 1-1]
The actual floor processing as shown in FIG. 4 was performed on the solid floor material after the heat treatment, and it was spread on a hot water mat equipped with a hot water pipe to construct an experimental hot water heating floor structure. The surface of the solid flooring that was laid down was almost the same as the background color of solid wood. After the construction, it was left in an environment of 20 ° C. and 65% RH for 1 week, and then hot water passing through the hot water mat was continued for 1100 hours. When the gap fluctuation amount at a plurality of points between the long sides of adjacent solid floor materials after 1100 hours of hot water was passed through the following equation and the average gap fluctuation amount was calculated, it was 0.50 mm.
Formula: Clearance fluctuation amount = gap amount after 1100 hours of hot water-gap amount before hot water flow

[比較例1]
実施例1で用いたペアの試験体の他方の試験体を用い、熱処理を行うことなく、同じ無垢床材を加工した。それを用いて実施例1−1と同様に実験用の温水暖房床構造を構築した。施工後、温水マットへの80℃温水の通湯を1100時間連続した。1100時間通湯後における、隣接する無垢床材の長辺間の平均隙間変動量を実施例1−1と同様にして測定したところ、1.17mmであった。
[Comparative Example 1]
Using the other specimen of the pair of specimens used in Example 1, the same solid flooring was processed without heat treatment. An experimental hot water heating floor structure was constructed using the same as in Example 1-1. After construction, hot water passing through the hot water mat was continued for 1100 hours. It was 1.17 mm when the average gap | interval fluctuation | variation amount between the long sides of the adjacent solid flooring after passing hot water for 1100 hours was measured like Example 1-1.

[考察]
実施例1−1と比較例1とから、本発明による熱処理を施した無垢床材は未処理のものと比較して高い寸法安定性が得られていることがわかる。また、本発明による無垢床材の表面は無垢材の地肌色がほぼそのまま現れており、高い意匠性も得られる。
[Discussion]
From Example 1-1 and Comparative Example 1, it can be seen that the solid flooring subjected to the heat treatment according to the present invention has higher dimensional stability than the untreated one. In addition, the surface of the solid floor material according to the present invention has almost the same background color as that of the solid material, and high design properties can be obtained.

[実施例2]
実施例1で用いたペアの試験体の一方の試験体を用い、各試験体について、実施例1と同様に加熱処理を行った。ただし、無垢床材の中心部での最高到達温度が、220℃、205℃、190℃の3種類となるように高周波加熱を制御した。
熱処理後の各無垢床材に対して、図5に示す形状の実加工を施し、それを用いて、実施例1−1と同様に3種の実験用の温水暖房床構造を構築した。すべてにおいて、敷き詰めた無垢床材の表面は無垢材の地肌色がほぼそのまま現れていた。
施工後、20℃65%RHの環境に1週間放置した後、温水マットへの80℃温水の通湯を1100時間連続した。1100時間通湯後における、隣接する無垢床材の長辺間に形成される図5での斜め隙間hの変動量を、複数点において次式により測定し、その平均値を斜め隙間平均変動量として算出したところ、220℃処理の無垢床材で構築した温水暖房床構造での斜め隙間平均変動量は0.13mm、205℃処理の無垢床材で構築した温水暖房床構造での斜め隙間平均変動量は0.28mm、190℃処理の無垢床材で構築した温水暖房床構造での斜め隙間平均変動量は0.28mmであった。
斜め隙間変動量=1100時間通湯後の斜め隙間量−通湯前の斜め隙間量
[Example 2]
One of the paired test bodies used in Example 1 was used, and each test body was heat-treated in the same manner as in Example 1. However, the high-frequency heating was controlled so that the maximum reached temperature at the center of the solid flooring was three types of 220 ° C, 205 ° C, and 190 ° C.
Each solid floor material after the heat treatment was subjected to actual processing having the shape shown in FIG. 5, and three types of experimental hot water heating floor structures were constructed in the same manner as in Example 1-1. In all cases, the surface of the solid flooring that had been laid out had almost the same background color as that of the solid wood.
After the construction, it was left in an environment of 20 ° C. and 65% RH for 1 week, and then hot water passing through the hot water mat was continued for 1100 hours. The amount of fluctuation of the slant gap h in FIG. 5 formed between the long sides of adjacent solid floor materials after 1100 hours of hot water is measured by the following equation at a plurality of points, and the average value of the slant gap average fluctuation amount As a result, the average fluctuation amount of the slant gap in the warm water heating floor structure constructed with a solid floor material treated at 220 ° C. is 0.13 mm, and the mean slant gap in the warm water heating floor structure constructed with a solid floor material treated at 205 ° C. The variation amount was 0.28 mm, and the average variation amount of the slant gap was 0.28 mm in the warm water heating floor structure constructed with a solid floor material treated at 190 ° C.
Diagonal gap variation = slant gap after 1100 hours of hot water-diagonal gap before hot water

[考察]
実施例2での無垢床材は、いずれにおいても、比較例1における無処理の無垢床材での平均隙間変動量1.17mmよりも小さい値となっており、本発明による無垢床材では高い寸法安定性が得られていることが示される。
[Discussion]
The solid floor material in Example 2 has a value smaller than the average gap fluctuation amount of 1.17 mm in the untreated solid floor material in Comparative Example 1, and is high in the solid floor material according to the present invention. It is shown that dimensional stability is obtained.

[実施例3]
試験体の無垢床材として、厚さ30mm×幅83mm×長さ1840mmのビーチ柾目材を複数本用意し、それを厚さ方向で半割して厚さ12mm×幅83mm×長さ1840mmのペアの試験体とした。一方の試験体について、図2に示した形態のヒーターを持つ熱盤を備えた電磁波加熱処理装置を用い、100℃〜170℃の範囲で外部加熱する処理を300秒行った後、周波数13.56MHzの高周波(電磁波)を15秒間照射、15秒間照射なしのサイクルを5分間に亘り繰り返して熱処理を行った。光ファイバーセンサーにより無垢床材の中心部の温度を実際に測定したところ、最高到達温度は205℃であった。
[Example 3]
As a solid floor material of the test body, a plurality of 30 mm thick, 83 mm wide, and 1840 mm long beach grid materials are prepared and divided in the thickness direction into a pair of 12 mm thick x 83 mm wide x 1840 mm long. It was set as the test body. One test specimen was subjected to an external heating process in the range of 100 ° C. to 170 ° C. for 300 seconds using an electromagnetic wave heating apparatus equipped with a heating plate having the heater shown in FIG. A heat treatment was performed by repeating a cycle of irradiation with a high frequency (electromagnetic wave) of 56 MHz for 15 seconds and no irradiation for 15 seconds over 5 minutes. When the temperature at the center of the solid flooring was actually measured with an optical fiber sensor, the maximum temperature reached was 205 ° C.

熱処理済みの試験体の表面は無垢材の地肌色がほぼそのまま現れていた。熱処理済みの試験体を表1に記載した環境下に連続しておき、各時点での曲がりを次のようにして測定し、最大曲がり変動量を求めた。その結果を表1に示した。なお、表1での最大曲がり変動量は複数本の平均値である。   The surface of the heat-treated specimen had almost the same background color as that of the solid material. The heat-treated specimens were continuously placed in the environment described in Table 1, and the bending at each time point was measured as follows to determine the maximum bending fluctuation amount. The results are shown in Table 1. Note that the maximum bending fluctuation amount in Table 1 is an average value of a plurality of curves.

Figure 0004825651
a.曲がり量の測定:試験体の片側にガイドを当て、ガイドの材との間の隙間を測定して曲がり量とした。
b.曲がり変動量:20℃65%で2週間放置した平衡状態を基準とし、そこからどれだけ変化したかを曲がり変動量として次式により求めた。
曲がり変動量(mm)=各環境下での曲がり量(mm)−20℃65%平衡状態での曲がり量(mm)
Figure 0004825651
a. Measurement of bending amount: A guide was applied to one side of the test specimen, and the gap between the guide material was measured and used as the bending amount.
b. Bending fluctuation amount: Based on the equilibrium state left at 20 ° C. and 65% for 2 weeks as a reference, the amount of change from there was determined as the bending fluctuation amount by the following equation.
Bending fluctuation amount (mm) = Bending amount under each environment (mm)-Bending amount at 20 ° C 65% equilibrium (mm)

なお、曲がり量は、各材について複数点で測定し、また、両側面で測定した。そして、それぞれについて前記曲がり変動量を計算し、その最大値を表1に最大曲がり変動量(mm)として示した。   In addition, the amount of bending was measured at a plurality of points for each material and also measured on both sides. Then, the bending fluctuation amount was calculated for each, and the maximum value was shown in Table 1 as the maximum bending fluctuation amount (mm).

[比較例2]
実施例3で用いたペアの試験体の他方の試験体を用い、加熱処理を行うことなく、実施例3と同様にして最大曲がり変動量を測定した。その結果を表1に比較材として示した。
[Comparative Example 2]
Using the other test specimen of the pair of test specimens used in Example 3, the maximum bending fluctuation amount was measured in the same manner as in Example 3 without performing heat treatment. The results are shown in Table 1 as a comparative material.

[評価]
表1に示すように、本発明による熱処理を施した試験体(実施例材)は、放湿処理を行った後でも最大曲がり変動量の値は、比較材と比較して小さくなっており、寸法安定性に優れた材となっていることがわかる。
[Evaluation]
As shown in Table 1, the test body (Example material) subjected to the heat treatment according to the present invention has a smaller value of the maximum bending variation even after the moisture release treatment, compared to the comparative material, It can be seen that the material has excellent dimensional stability.

[実施例4]
実施例1と同様にして処理した熱処理後の無垢床材を20℃65%RHで調湿し、表2に示す環境下で段階的に放湿し、各環境下での含水率(%)の変化を測定した。その結果を表2に示した。
[Example 4]
The solid floor material after the heat treatment treated in the same manner as in Example 1 was conditioned at 20 ° C. and 65% RH, and gradually dehumidified in the environment shown in Table 2, and the moisture content (%) in each environment. The change of was measured. The results are shown in Table 2.

Figure 0004825651
Figure 0004825651

また、各時点での曲がり量を実施例3と同様にして測定し、最大曲がり変動量を計算した。その結果を、含水率の変化とともに図6のグラフに処理材として示した。なお、表2での含水率および図6での最大曲がり変動量は複数本の平均値である。   Further, the bending amount at each time point was measured in the same manner as in Example 3, and the maximum bending fluctuation amount was calculated. The result was shown as a processing material in the graph of FIG. 6 with the change of the moisture content. In addition, the moisture content in Table 2 and the maximum bending fluctuation amount in FIG. 6 are average values of a plurality.

[比較例3]
実施例4で用いたペアの試験体の他方の試験体を用いて、加熱処理を行うことなく、実施例4と同様にして最大曲がり変動量を測定した。その結果を上記表2に比較材として、および図6にブランクとして示した。
[Comparative Example 3]
Using the other test piece of the pair of test pieces used in Example 4, the maximum bending fluctuation amount was measured in the same manner as in Example 4 without performing heat treatment. The results are shown in Table 2 as a comparative material and in FIG. 6 as a blank.

[評価]
表2および図6に示すように、本発明による熱処理を施した試験体は、この実施例においても、放湿処理を行った後でも最大曲がり変動量の値は、比較材と比較して小さくなっており、寸法安定性に優れた材となっていることがわかる。
[Evaluation]
As shown in Table 2 and FIG. 6, the test piece subjected to the heat treatment according to the present invention has a smaller value of the maximum bending variation even after the moisture release treatment in this example as compared with the comparative material. It can be seen that the material has excellent dimensional stability.

熱処理前の無垢床材の一例を示す図。The figure which shows an example of the solid flooring before heat processing. 熱処理工程を説明するための図。The figure for demonstrating the heat processing process. 熱処理終了後の無垢床材を模式的に示す図。The figure which shows typically the solid flooring after heat processing completion. 図3に示した無垢床材に実加工を施した状態を示す図。The figure which shows the state which gave the actual process to the solid flooring shown in FIG. 実施例2での実の形状を示す図。The figure which shows the actual shape in Example 2. FIG. 実施例4および比較例3での含水率の変化と最大曲がり変動量を示すグラフ。The graph which shows the change of the moisture content in Example 4 and the comparative example 3, and the maximum bending fluctuation amount. 木材の熱に対する特性を説明するためのグラフ。The graph for demonstrating the characteristic with respect to the heat | fever of wood.

符号の説明Explanation of symbols

10…無垢床材、12…熱分解に起因して変色した領域、11b…床材、13…雄実、14…雌実、15…溝、20…電磁波加熱処理装置、21…上熱盤、22…下熱盤、23…ヒーター DESCRIPTION OF SYMBOLS 10 ... Solid floor material, 12 ... Area discolored due to thermal decomposition, 11b ... Floor material, 13 ... Male fruit, 14 ... Female fruit, 15 ... Groove, 20 ... Electromagnetic wave heat treatment apparatus, 21 ... Upper heating board, 22 ... Lower heating panel, 23 ... Heater

Claims (10)

無垢床材の熱処理方法であって、無垢床材に電磁波を照射して内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持することにより内層部の少なくとも一部を熱分解させて変色させ、それにより当該無垢床材の寸法安定化処理を行うことを特徴とする無垢床材の熱処理方法。   A heat treatment method for a solid floor material, in which at least a part of the inner layer part is thermally decomposed by irradiating the solid floor material with electromagnetic waves and maintaining a temperature of at least a part of the inner layer part in a range of 170 ° C. to 250 ° C. The solid flooring heat treatment method, wherein the solid flooring is subjected to dimensional stabilization treatment. 170℃〜250℃の範囲に維持する領域が無垢床材の中央部を含むことを特徴とする請求項1に記載の無垢床材の熱処理方法。   The heat treatment method for a solid floor material according to claim 1, wherein the region maintained in the range of 170 ° C to 250 ° C includes a central portion of the solid floor material. 電磁波を照射する前の工程として、無垢床材を100℃〜170℃の範囲で外部加熱する処理を行うことを特徴とする請求項1または2に記載の無垢床材の熱処理方法。   The method for heat-treating a solid floor material according to claim 1 or 2, wherein as a step before irradiating the electromagnetic wave, the solid floor material is externally heated in a range of 100 ° C to 170 ° C. 電磁波を照射する工程を、外部加熱により無垢床材の表層部を100℃〜170℃の範囲に維持した状態で行うことを特徴とする請求項1〜3のいずれかに記載の無垢床材の熱処理方法。   The solid floor material according to any one of claims 1 to 3, wherein the step of irradiating the electromagnetic wave is performed in a state where a surface layer portion of the solid floor material is maintained in a range of 100 ° C to 170 ° C by external heating. Heat treatment method. 電磁波として13.56MHzの高周波を用いることを特徴とする請求項1〜4のいずれかに記載の無垢床材の熱処理方法。   The heat treatment method for a solid flooring according to any one of claims 1 to 4, wherein a high frequency of 13.56 MHz is used as the electromagnetic wave. 加熱による熱分解処理が進行して内層部の少なくとも一部が変色し、表層部には熱分解処理に起因する変色が生じていないことを特徴とする床暖房用の無垢床材。   A solid flooring for floor heating, characterized in that at least a part of the inner layer portion is discolored as a result of thermal decomposition treatment by heating, and the surface layer portion is not discolored due to the thermal decomposition treatment. 請求項6に記載の床暖房用の無垢床材であって、電磁波を照射することによって熱分解処理が施されたことを特徴とする床暖房用の無垢床材。   A solid floor material for floor heating according to claim 6, wherein the floor material is pyrolyzed by irradiation with electromagnetic waves. 請求項7に記載の床暖房用の無垢床材であって、高周波を照射することによって熱分解処理が施されたことを特徴とする床暖房用の無垢床材。   The solid floor material for floor heating according to claim 7, wherein the floor material is subjected to thermal decomposition treatment by irradiation with high frequency. 請求項8に記載の床暖房用の無垢床材であって、13.56MHzの高周波を照射することによって熱分解処理が施されたことを特徴とする床暖房用の無垢床材。   The solid floor material for floor heating according to claim 8, wherein the floor material is pyrolyzed by irradiating a high frequency of 13.56 MHz. 無垢床材に電磁波を照射して内層部の少なくとも一部の温度を170℃〜250℃の範囲に維持することにより内層部の少なくとも一部で熱分解処理が進行して内層部の少なくとも一部が変色し、表層部には熱分解処理に起因する変色が生じていないことを特徴とする床暖房用の無垢床材。   By irradiating the solid floor material with electromagnetic waves and maintaining the temperature of at least a part of the inner layer part in a range of 170 ° C. to 250 ° C., the thermal decomposition process proceeds in at least a part of the inner layer part and at least a part of the inner layer part Solid flooring for floor heating, in which the color changes and the surface layer is not discolored due to thermal decomposition.
JP2006326182A 2006-12-01 2006-12-01 Solid flooring heat treatment method and solid flooring Active JP4825651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326182A JP4825651B2 (en) 2006-12-01 2006-12-01 Solid flooring heat treatment method and solid flooring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326182A JP4825651B2 (en) 2006-12-01 2006-12-01 Solid flooring heat treatment method and solid flooring

Publications (2)

Publication Number Publication Date
JP2008137290A JP2008137290A (en) 2008-06-19
JP4825651B2 true JP4825651B2 (en) 2011-11-30

Family

ID=39599260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326182A Active JP4825651B2 (en) 2006-12-01 2006-12-01 Solid flooring heat treatment method and solid flooring

Country Status (1)

Country Link
JP (1) JP4825651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107447B (en) * 2009-12-26 2013-07-24 浙江世友木业有限公司 Wood sectional material and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631137A (en) * 1986-06-20 1988-01-06 Fujitsu Ltd System for reporting incoming of evilminded call
JP3062368B2 (en) * 1993-02-18 2000-07-10 永大産業株式会社 Wood material heat treatment method
JP3107482B2 (en) * 1993-08-05 2000-11-06 永大産業株式会社 Wood material heat treatment method
JP3580514B2 (en) * 1996-09-03 2004-10-27 九州電力株式会社 Drying method to control cracking of cored pillars
JP2003103505A (en) * 2001-09-28 2003-04-09 Maruhon:Kk Plate material for floor heating
JP4010498B2 (en) * 2002-11-25 2007-11-21 忠 宮本 Preparation method of wood, and building, furniture, or acoustic equipment formed of wood produced by the method
JP4029427B2 (en) * 2003-02-17 2008-01-09 株式会社タダフサ Wood treatment method suitable for cooking utensils

Also Published As

Publication number Publication date
JP2008137290A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP3824862B2 (en) Method for increasing the permeability of wood
RU2285875C2 (en) Method for microwave wood working
CN108582377A (en) A kind of compressed wood of the wood compression-original position with the integrated method of autoclaving and its preparation
CN108638277A (en) A kind of novel wooden structures material and preparation method thereof with stability and durability
JP4825651B2 (en) Solid flooring heat treatment method and solid flooring
JP4485414B2 (en) Wood material heat treatment method and wood material
JP6803419B2 (en) Manufacturing method of composite uneven plate material by high frequency
RU2619241C1 (en) Method for manufacturing pectin-containing product from peeled sunflower seeds
RU2619385C1 (en) Method for producing pectin-containing product from flax grain
JP2008036954A (en) Manufacturing process of compressed single wood board
CN108673689A (en) A kind of unilateral side surface layer compressed wood and preparation method thereof
CN108638273A (en) A kind of unilateral side surface layer compressed wood and preparation method thereof
JP3113744B2 (en) Method for manufacturing consolidated wood
CN107351212A (en) A kind of method for drying wood
JP2008531332A (en) How to treat wood at high temperatures
KR20170021385A (en) A method for compressing wood improving dimensional stability
JPH0747511A (en) Method for heat treating wooden material
KR20170021386A (en) A method for bending processing wood improving dimensional stability
JP6913417B1 (en) Modified wood manufacturing method
KR100315942B1 (en) Method for fabricating granular bamboo charcoal
KR102219384B1 (en) Loess canvas manufacture method
JP2014104686A (en) Slice veneer and manufacturing method thereof
KR101195383B1 (en) Method for manufacturing high-temperature heat-treatment carbonized wood and pressurizing apparatus used in the method
JPH07241818A (en) Heat treatment of wooden material
JPH07171807A (en) Vegetable stock material, such as modified wood and modified bamboo, having strong fibrous tissue, production of the vegetable stock material, and use of the vegetable stock material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Ref document number: 4825651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3