JP4822603B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4822603B2
JP4822603B2 JP2001096553A JP2001096553A JP4822603B2 JP 4822603 B2 JP4822603 B2 JP 4822603B2 JP 2001096553 A JP2001096553 A JP 2001096553A JP 2001096553 A JP2001096553 A JP 2001096553A JP 4822603 B2 JP4822603 B2 JP 4822603B2
Authority
JP
Japan
Prior art keywords
active material
slurry
negative electrode
positive electrode
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001096553A
Other languages
Japanese (ja)
Other versions
JP2002298922A (en
Inventor
良浩 小路
康文 高橋
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001096553A priority Critical patent/JP4822603B2/en
Publication of JP2002298922A publication Critical patent/JP2002298922A/en
Application granted granted Critical
Publication of JP4822603B2 publication Critical patent/JP4822603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを備えた非水電解質二次電池の製造方法に関する。
【0002】
【従来の技術】
近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウム−コバルト複合酸化物(LiCoO2)、リチウム−ニッケル複合酸化物(LiNiO2)、リチウム−マンガン複合酸化物(LiMn24)等のリチウムイオンを吸蔵・放出することが可能なリチウム含有遷移金属複合酸化物あるいは二酸化マンガン(MnO2)などを正極活物質とし、リチウム金属、リチウム合金あるいはリチウムイオンを吸蔵・放出できる炭素材料などを負極活物質とする非水電解質二次電池が注目され、炭素材料を負極活物質とする非水電解質二次電池が実用化されるようになった。
【0003】
ところで、この種の非水電解質二次電池に用いられる正極板あるいは負極板においては、集電体となる金属箔に流動性がある活物質スラリーを塗布した後、乾燥させ、乾燥後に所定の充填密度になるように圧縮して製造するようにしている。この場合、活物質スラリーの塗布時には表面状態をできるだけ均一にして、活物質の充填密度にバラツキが生じないように活物質スラリーを塗布して製造するのが一般的であった。
【0004】
【発明が解決しようとする課題】
しかしながら、活物質の充填密度にバラツキが生じないように活物質スラリーを塗布して各極板を製造する場合、極板の高容量化を図るために活物質の充填密度を高くすると、負荷特性などの電池特性が低下するという問題を生じた。これは、活物質の充填密度が高くなると電解液の浸透性が低下するために、リチウムイオンの出入りがし難くなって負荷特性などの電池特性が低下するためである。
【0005】
ところで、活物質の充填密度が内部よりも表面部の方が大きくなるようにするとともに表面部の一部を欠き落として、極板の表面部に凹凸を形成して吸液性に優れた極板とすることが、特開昭59−23460号公報に提案されている。
しかしながら、特開昭59−23460号公報に提案された極板においては、極板全体の活物質の充填密度が高密度でないため、高容量の極板が得られないという問題があった。
【0006】
そこで、本発明は上記問題点を解消するためになされたものであって、活物質の充填密度を高くしても電池特性が悪化しない極板を得て、高率放電特性などの電池特性が向上した非水電解質二次電池の製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の非水電解質二次電池の製造方法は、負極活物質あるいは正極活物質を含有する活物質スラリーに空気を導入しながら該活物質スラリーを撹拌して、該活物質スラリーに気泡を導入する気泡導入工程と、気泡が導入された活物質スラリーを集電体に塗布するスラリー塗布工程と、スラリー塗布工程により塗布された活物質スラリー層を乾燥させる乾燥工程と、乾燥工程により乾燥された活物質スラリー層を圧延して気泡を弾けさせて気泡痕を出現させる圧延工程とを備え、気泡がある部分の活物質の充填密度は気泡がない部分の活物質の充填密度よりも低密度である低密度部分を形成させるようにしたことを特徴とする。ここで、気泡痕は空気が存在していた分だけ活物質の存在量が少ない低密度部分となる。この結果、活物質の充填密度が低い低密度部分が点在する極板を容易に得ることが可能となる。この場合、活物質スラリーの撹拌時間を変化させるようにすると、低密度部分の表面積率を容易に変化させることができる。さらに、活物質スラリーの撹拌速度を変化させることにより、低密度部分の直径を容易に変化させることが可能となる。
【0008】
この場合、低密度部分の表面積率が1.0%未満で少なすぎると、活物質中への電解液の浸透性(含液性)が低下し、低密度部分の表面積率が5.0%よりも多くなると、充填される活物質量が低下するとともに、この低密度部分にリチウムが析出するようになって放電容量が極端に低下するようになる。このため、極板の全表面積に対する低密度部分の表面積率は1.0%以上で5.0%以下にする必要がある。また、低密度部分を点在させることで、活物質中への電解液の浸透性(含液性)が向上するため、活物質を高密度に充填することが可能となる。このため、負極においては1.7g/cm3以上の高充填密度の負極板を使用でき、また正極においては3.4g/cm3以上の高充填密度の正極板を使用できるようになる。この結果、高容量の非水電解質二次電池を得ることが可能となる。
【0009】
そして、このような低密度部分は活物質スラリー中に存在していた気泡がはじけることにより形成されるものであるため、その平面形状は略円形状となる。そして、低密度部分の表面積率が同じであっても、この略円形状の平均直径が0.2mmより小さくなりすぎると内部抵抗が上昇して高率放電特性が低下し、8.0mmより大きくなりすぎると極板全体での反応性が低下して高率放電特性が低下する。このため、低密度部分の平均直径は0.2mm以上で8.0mm以下にするのが望ましい。
【0010】
この場合、平均直径が0.5mmよりも小さくなると、極板表面全体に微少な凹凸が形成されて極板表面が粗くなった状態となって、内部抵抗が上昇して高率放電特性が低下する。一方、平均直径が2.0mmよりも大きくなると、極板表面全体に凹凸が形成されにくくなって連続して平滑な部分が多くなるが、反面、電解液の含液性(浸透性)の向上に寄与する低密度部分が偏在するようになるため、極板全体での反応性が低下して高率放電特性が低下する。このことから、低密度部分の平均直径は0.5mm以上で2.0mm以下にするのがさらに望ましいということができる。
【0013】
【発明の実施の形態】
ついで、本発明の実施の形態を以下に説明する。
1.第1実施形態
(1)極板製造装置
本発明の極板を製造するための主要な極板製造装置は、図1に示されるスラリー撹拌装置10と、図2に示されるスラリー塗布装置20とから構成される。
スラリー撹拌装置10は、充填されたスラリー15を収容する撹拌槽11と、この撹拌槽11内に充填されたスラリー15を撹拌する撹拌羽根13を下端部に備えるとともに、撹拌槽11に対して回転可能に撹拌槽11内の中心部に装着された撹拌軸12と、撹拌槽11の下部に配設されて撹拌槽11内に充填されたスラリー15に空気を吐出する空気ノズル14とから構成される。
【0014】
一方、スラリー塗布装置20は、スラリー15(27)を集電体16(28)に塗布するスラリー充填槽21と、塗布されたスラリー15(27)を所定の塗布量になるように調整する塗布量調整治具22と、スラリー15(27)が塗布された集電体16(28)を所定の速度で移動させる一対の送りローラ23,24と、集電体16(28)を保持する保持ローラ25,26とから構成される。なお、塗布されたスラリー15(27)の塗布量の調整は、集電体16(28)と塗布量調整治具22の隙間を調整することにより行う。
【0015】
(2)負極の作製
まず、天然黒鉛(Lc値が1000Åで、d002値が3.356Åで、平均粒径が20μmのもの)よりなる負極活物質と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分が48質量%)を水に分散させた後、増粘剤であるカルボキシメチルセルロース(CMC)を添加して負極活物質スラリー15を調製した。この場合、乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3:2となるように調製した。ついで、得られた負極活物質スラリー15をスラリー撹拌装置10のスラリー撹拌槽11に充填した後、空気ノズル14からスラリー1kgに対して毎分50mlの空気を吐出させて、スラリー15中に空気を送り込むとともに、撹拌軸12を1000rpmの回転速度で所定の時間だけ回転させた。
【0016】
これにより、撹拌羽根13は回転し、スラリー撹拌槽11に充填された負極活物質スラリー15は送り込まれた空気とともに撹拌されて、負極活物質スラリー15に多数の気泡が発生することとなる。ここで、撹拌時間を5分間にして撹拌したものをスラリーa1とし、10分間にして撹拌したものをスラリーa2とし、20分間にして撹拌したものをスラリーa3とした。また、気泡を送り込まないものをスラリーx1とし、撹拌時間を1分間にして撹拌したものをスラリーx2とし、40分間にして撹拌したものをスラリーx3とした。
【0017】
このようにして作製した各負極活物質スラリー15(a1,a2,a3,x1,x2,x3)をスラリー塗布装置20のスラリー充填槽21に充填した後、一対の送りローラ23,24により送り出された負極集電体(例えば、銅箔)16の片面に、スラリー充填槽21に充填された負極活物質スラリー15(a1,a2,a3,x1,x2,x3)をそれぞれ塗布し、塗布量調整治具22を通過させて所定量のスラリーを塗布した。
【0018】
ついで、スラリー層を乾燥させた後、このスラリー塗布装置20の前方に配設された別のスラリー塗布装置(図示せず)を通過させて、スラリーが塗布されていない負極集電体16の他面にも同様にスラリーを塗布し、乾燥させた。その後、乾燥負極板をロールプレス機により圧延して、片面当たりの活物質層の厚みが50μm、充填密度が1.7g/cm3の負極板をそれぞれ作製した後、所定寸法に切断して負極30(a1,a2,a3,x1,x2,x3)とした。
【0019】
ここで、負極30(a1,a2,a3,x1,x2,x3)を観察すると、図3(a)に示すように、ロールプレス機による圧延で気泡が弾けて形成されたクレータ状の気泡痕32が高密度充填部(充填密度が1.7g/cm3)31のあちこちに点在していた。この場合、気泡痕32は高密度充填部31よりも薄い色合いとなるので、高密度充填部31と気泡痕32との識別は目視により可能である。この気泡痕32の直径を測定してその平均直径を求めると、0.5mm以上で2.0mm以下であることが明らかとなった。
【0020】
そして、気泡痕32の部分の活物質層を欠き落として質量を測定し、気泡痕32の直径と活物質層の厚さとから充填密度を求めると、その充填密度は1.2g/cm3で低密度であった。また、各気泡痕32の表面積を測定し、この測定結果に基づいて気泡痕32の全表面積を算出した後、各負極a1,a2,a3,x1,x2,x3の全表面積に対する割合(面積割合:面積率)を求めると下記の表1に示すような結果となった。なお、負極x1は気泡を送り込まないスラリーを使用したため、気泡痕32はなかった。
【0021】
【表1】

Figure 0004822603
【0022】
(3)正極の作製
一方、正極活物質としての平均粒径が5μmのLiCoO2粉末と、導電剤としての人造黒鉛粉末とを、質量比で9:1となるように混合して正極合剤を調製した。この正極合剤と、ポリビニリデンフルオライド(PVdF)よりなる結着剤をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に5質量%溶解した結着剤溶液とを、固形分の質量比で95:5になるように混合、混練して正極活物質スラリー27を調製した。
【0023】
この正極活物質スラリー27をスラリー塗布装置20のスラリー充填槽21に充填した後、一対の送りローラ23,24により送り出された正極集電体(例えば、アルミニウム箔あるいはアルミニウム合金箔)28の片面に、スラリー充填槽21に充填された正極活物質スラリー27を塗布し、塗布量調整治具22を通過させて所定量のスラリーを塗布した。ついで、スラリー層を乾燥させた後、このスラリー塗布装置20の前方に配設された別のスラリー塗布装置(図示せず)を通過させて、スラリーが塗布されていない正極集電体28の他面にも同様にスラリーを塗布し、乾燥させた。その後、乾燥正極板をロールプレス機により圧延して、片面当たりの活物質層の厚みが50μm、充填密度が3.4g/cm3の正極板を作製した後、所定寸法に切断して正極とした。
【0024】
(4)非水電解液二次電池の作製
ついで、上述のようにして作製した負極a1,a2,a3,x1,x2,x3と正極とを、有機溶媒との反応性が低く、かつ微多孔のポリオレフィン系樹脂からなるセパレータを間にして重ね合わせた後、巻き取り機により渦巻状に卷回して電極群とした。この後、この電極群を外装缶の開口部より挿入し、電極群の負極より延出する負極集電タブを外装缶の内底部に抵抗溶接した後、電極群の正極より延出する正極集電タブを封口体の底部に溶接した。ついで、外装缶内に非水電解液(エチレンカーボネート(EC)とジエチルカーボネート(DEC)を等体積比で混合した溶媒に、六フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解した溶液)をそれぞれ注入した。
【0025】
この後、外装缶の開口部を封口体で液密に封口して、非水電解質二次電池A1,A2,A3,X1,X2,X3をそれぞれ作製した。なお、このようにして作製した各非水電解質二次電池A1(負極a1を用いたもの)、A2(負極a2を用いたもの)、A3(負極a3を用いたもの)、X1(負極x1を用いたもの)、X2(負極x2を用いたもの)、X3(負極x3を用いたもの)の容量は600mAhであった。
【0026】
(5)非水電解液二次電池の負荷特性試験
ついで、上述のように作製した各電池A1,A2,A3,X1,X2,X3をそれぞれ、室温(約25℃)で、600mA(1ItmA)の定電流で電池電圧が4.10Vになるまで充電し、ついで、4.10Vの定電圧で電流値が10mAになるまで充電した。この後、600mA(1ItmA)の放電電流で電池電圧が2.75Vになるまで放電させて、放電時間から1It放電時の放電容量を求めると、下記の表2に示すような結果となった。
また、これらの各電池A1,A2,A3,X1,X2,X3を上記と同様な条件で充電した後、1200mA(2ItmA)の放電電流で電池電圧が2.75Vになるまで放電させて、放電時間から2It放電時の放電容量を求めた。
ついで、求めた1It放電時の放電容量に対する2It放電時の放電容量の比率を放電容量比(放電容量比=2It放電時の放電容量/1It放電時の放電容量)として求めると、下記の表2に示すような結果となった。
【0027】
【表2】
Figure 0004822603
【0028】
上記表2の結果から明らかなように、気泡を送り込まないスラリーを使用して気泡痕32が生じなかった負極板x1を用いた電池X1および気泡痕32の面積割合が0.5%の負極板x2を用いた電池X2においては、1It放電時容量は600(mAh)で良好であるが放電容量比が75%、85%と低下していることが分かる。一方、気泡痕32の面積割合が7%の負極板x3を用いた電池X3においては、放電容量比は99で良好であるが1It放電時容量は510(mAh)と低下していることが分かる。これらに対して、気泡痕32の面積割合を1.0〜5.0%にした負極板a1〜a3を用いた電池A1〜A3においては、1It放電時容量および放電容量比が共に良好であることが分かる。
【0029】
ここで、各電池を充電状態で分解したところ、気泡痕32の面積割合が7%の負極板x3を用いた電池X3においては、気泡痕32を中心にしてリチウムの析出が多く見られ、他の電池にリチウムの析出は見あたらなかった。これにより電池X3においては放電容量が極端に低下したと考えられる。
また、気泡痕32の面積割合が0%および0.5%と気泡痕32の発生を少なくした負極板x1,x2においては、気泡痕32の面積割合が少なすぎるために電解液の浸透性(含液性)が低下して放電容量比が低下したと考えられる。
これらに対して、気泡痕32の面積割合を1.0〜5.0%にした負極板a1〜a3においては、電解液の浸透性(含液性)が向上したために、1It放電時容量および放電容量比が共に向上したと考えられる。
以上のことから、負極板の全表面積に対する気泡痕(低充填密度部)32の面積割合は1.0%以上で5.0%以下にする必要がある。
【0030】
(6)気泡痕の直径の検討
上述と同様に、負極活物質スラリー15を調製し、これをスラリー撹拌装置10のスラリー撹拌槽11に充填した後、空気ノズル14から空気を吐出(この場合、得られた負極の全表面積に対して、気泡痕の全表面積が3.0%になるよう空気の吐出量を調整している)させて、スラリー15中に空気を送り込むとともに、撹拌軸12を所定の回転速度で10分間だけ回転させた。ここで、撹拌速度を2000rpmにして撹拌したものをスラリーa4とし、1500rpmにして撹拌したものをスラリーa5とし、1000rpmにして撹拌したものをスラリーa6とし、500rpmにして撹拌したものをスラリーa7とし、300rpmにして撹拌したものをスラリーa8とし、200rpmにして撹拌したものをスラリーa9とした。
【0031】
これらの各負極活物質スラリー15(a4,a5,a6,a7,a8,a9)をスラリー塗布装置20のスラリー充填槽21に充填した後、上述と同様に負極集電体16の両面にスラリーをそれぞれ塗布し、乾燥させた後、所定の厚みに圧延し、活物質の充填密度が1.7g/cm3の負極板をそれぞれ作製した後、所定寸法に切断して負極30(a4,a5,a6,a7,a8,a9)とした。
ここで、気泡痕32の部分の活物質層を欠き落として充填密度を測定すると、その充填密度は1.2g/cm3で低密度であった。また、上述と同様に、負極30(a4,a5,a6,a7,a8,a9)を観察して、気泡痕32の直径を測定すると、下記の表3に示すような結果となった。
【0032】
【表3】
Figure 0004822603
【0033】
ついで、上述のようにして作製した負極30(a4,a5,a6,a7,a8,a9)と正極とを用いて、上述と同様に非水電解質二次電池A4(負極a4を用いたもの),A5(負極a5を用いたもの),A6(負極a6を用いたもの),A7(負極a7を用いたもの),A8(負極a8を用いたもの),A9(負極a9を用いたもの)をそれぞれ作製した後、上述と同様に負荷特性試験を行って、1It放電時の放電容量を求めるとともに、2It放電時の放電容量を求め、It放電時の放電容量に対する2It放電時の放電容量の比率を放電容量比(放電容量比=2It放電時の放電容量/1It放電時の放電容量)として求めると、下記の表4に示すような結果となった。
【0034】
【表4】
Figure 0004822603
【0035】
上記表4の結果から明らかなように、気泡痕32の直径の大きさによらず放電容量比は無気泡痕のものに比べて高い値を示していることが分かる。また、気泡痕32が存在しても、負極a4のように直径が小さすぎても、負極a8,a9のように直径が大きすぎても放電容量比は低下することが分かる。
これは、気泡痕32の面積割合が同じであっても、気泡痕32の直径が小さすぎると、負極板表面全体に微少な凹凸が形成されて負極板の表面状態が粗くなり、これにより内部抵抗が上昇して放電容量比が低下したと考えられる。
一方、気泡痕32の直径が大きくなりすぎると、負極板表面全体に凹凸が形成されにくくなって連続して平滑な部分が多くなるが、反面、電解液の含液性(浸透性)の向上に寄与する気泡痕32が偏在するため、負極板表面全体での反応性が低下して放電容量比が低下したと考えられる。
これらに対して、気泡痕32の直径を0.5〜2.0mmにした負極板a4〜a7においては、電解液の浸透性(含液性)と負極板表面全体の粗さが適度に調和して、放電容量比が向上したと考えられる。
以上のことから、負極の気泡痕(低充填密度部)32の直径は0.5mm以上で2.0mm以下にするのが望ましいということができる。
【0036】
2.第2実施形態
上述した第1実施形態においては、負極活物質スラリーに気泡を導入して、負極に低密度部分を形成させた場合の特性の変化について検討したが、以下では、正極活物質スラリーに気泡を導入して、正極に低密度部分を形成させた場合の特性の変化について検討する。
【0037】
(1)正極の作製
まず、正極活物質としての平均粒径が5μmのLiCoO2粉末と、導電剤としての人造黒鉛粉末とを、質量比で9:1となるように混合して正極合剤を調製した。この正極合剤と、ポリビニリデンフルオライド(PVdF)よりなる結着剤をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に5質量%溶解した結着剤溶液とを、固形分の質量比で95:5になるように混合、混練して正極活物質スラリー27を調製した。ついで、得られた正極活物質スラリー27をスラリー撹拌装置10のスラリー撹拌槽11に充填した後、空気ノズル14からスラリー1kgに対して毎分50mlの空気を吐出させて、スラリー27中に空気を送り込むとともに、撹拌軸12を1000rpmの回転速度で所定の時間だけ回転させた。
【0038】
これにより、撹拌羽根13は回転し、スラリー撹拌槽11に充填された正極活物質スラリー27は送り込まれた空気とともに撹拌されて、正極活物質スラリー27に多数の気泡が発生することとなる。ここで、撹拌時間を5分間にして撹拌したものをスラリーb1とし、10分間にして撹拌したものをスラリーb2とし、20分間にして撹拌したものをスラリーb3とした。また、気泡を送り込まないものをスラリーy1とし、撹拌時間を1分間にして撹拌したものをスラリーy2とし、40分間にして撹拌したものをスラリーy3とした。
【0039】
このようにして作製した各正極活物質スラリー27(b1,b2,b3,y1,y2,y3)をスラリー塗布装置20のスラリー充填槽21に充填した後、一対の送りローラ23,24により送り出された正極集電体(例えば、アルミニウム箔あるいはアルミニウム合金箔)28の片面に、スラリー充填槽21に充填された正極活物質スラリー27(b1,b2,b3,y1,y2,y3)をそれぞれ塗布し、塗布量調整治具22を通過させて所定量のスラリーを塗布した。
【0040】
ついで、スラリー層を乾燥させた後、このスラリー塗布装置20の前方に配設された別のスラリー塗布装置(図示せず)を通過させて、スラリーが塗布されていない正極集電体28の他面にも同様にスラリーを塗布し、乾燥させた。その後、乾燥正極板をロールプレス機により圧延して、片面当たりの活物質層の厚みが50μm、充填密度が3.4g/cm3の正極板をそれぞれ作製した後、所定寸法に切断して正極40(b1,b2,b3,y1,y2,y3)とした。
【0041】
ここで、正極40(b1,b2,b3,y1,y2,y3)を観察すると、図3(b)に示すように、ロールプレス機による圧延で気泡が弾けて形成されたクレータ状の気泡痕42が高密度充填部(充填密度が3.4g/cm3)41のあちこちに点在していた。この場合、気泡痕42は高密度充填部41よりも薄い色合となるので、高密度充填部41と気泡痕42との識別は目視により可能である。この気泡痕42の直径を測定してその平均直径を求めると、0.5mm以上で2.0mm以下であることが明らかとなった。
【0042】
そして、気泡痕42の部分の活物質層を欠き落として質量を測定し、気泡痕42の直径と活物質層の厚さから充填密度を求めると、その充填密度は3.0g/cm3で低密度であった。また、各気泡痕42の表面積を測定し、この測定結果に基づいて気泡痕42の全表面積を算出した後、各正極b1,b2,b3,y1,y2,y3の全表面積に対する割合(面積割合:面積率)を求めると下記の表5に示すような結果となった。なお、正極y1は気泡を送り込まないスラリーを使用したため、気泡痕42はなかった。
【0043】
【表5】
Figure 0004822603
【0044】
(2)負極の作製
一方、天然黒鉛(Lc値が1000Åで、d002値が3.356Åで、平均粒径が20μmのもの)よりなる負極活物質と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分が48質量%)を水に分散させた後、増粘剤であるカルボキシメチルセルロース(CMC)を添加して負極活物質スラリー15を調製した。この場合、乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3:2となるように調製した。
【0045】
このようにして作製した負極活物質スラリー15をスラリー塗布装置20のスラリー充填槽21に充填した後、一対の送りローラ23,24により送り出された負極集電体(例えば、銅箔)16の片面に、スラリー充填槽21に充填された負極活物質スラリー15をそれぞれ塗布し、塗布量調整治具22を通過させて所定量のスラリーを塗布した。ついで、スラリー層を乾燥させた後、このスラリー塗布装置20の前方に配設された別のスラリー塗布装置(図示せず)を通過させて、スラリーが塗布されていない負極集電体16の他面にも同様にスラリーを塗布し、乾燥させた。その後、乾燥負極板をロールプレス機により圧延して、片面当たりの活物質層の厚みが50μm、充填密度が1.7g/cm3の負極板をそれぞれ作製した後、所定寸法に切断して負極とした。
【0046】
(3)非水電解液二次電池の作製
ついで、上述のようにして作製した正極b1,b2,b3,y1,y2,y3と負極とを用いて、上述と同様に非水電解質二次電池B1,B2,B3,Y1,Y2,Y3をそれぞれ作製した。なお、このようにして作製した各非水電解質二次電池B1(正極b1を用いたもの)、B2(正極b2を用いたもの)、B3(正極b3を用いたもの)、Y1(正極y1を用いたもの)、Y2(正極y2を用いたもの)、Y3(正極y3を用いたもの)の容量は600mAhであった。この後、上述と同様に負荷特性試験を行って、1It放電時の放電容量を求めるとともに、2It放電時の放電容量を求め、It放電時の放電容量に対する2It放電時の放電容量の比率を放電容量比(放電容量比=2It放電時の放電容量/1It放電時の放電容量)として求めると、下記の表6に示すような結果となった。
【0047】
【表6】
Figure 0004822603
【0048】
上記表6の結果から明らかなように、気泡を送り込まないスラリーを使用して気泡痕42が生じなかった正極板y1を用いた電池Y1および気泡痕42の面積割合が0.5%の負極板y2を用いた電池Y2においては、1It放電時容量は600(mAh)で良好であるが放電容量比が75%、85%と低下していることが分かる。一方、気泡痕42の面積割合が7%の負極板y3を用いた電池Y3においては、放電容量比は99で良好であるが1It放電時容量は510(mAh)と低下していることが分かる。これらに対して、気泡痕42の面積割合を1.0〜5.0%にした負極板b1〜b3を用いた電池B1〜B3においては、1It放電時容量および放電容量比が共に良好であることが分かる。
【0049】
これは、気泡痕42の面積割合が7%の負極板y3を用いた電池Y3においては、気泡痕42の面積割合が大きいために活物質の充填量が低下して放電容量が極端に低下したと考えられる。
また、気泡痕42の面積割合が0%および0.5%と気泡痕42の発生を少なくした負極板y1,y2においては、気泡痕42の面積割合が少なすぎるために電解液の浸透性(含液性)が低下して放電容量比が低下したと考えられる。
これらに対して、気泡痕42の面積割合を1.0〜5.0%にした負極板b1〜b3においては、電解液の浸透性(含液性)が向上したために、1It放電時容量および放電容量比が共に向上したと考えられる。
以上のことから、正極板の全表面積に対する気泡痕(低充填密度部)42の面積割合は1.0%以上で5.0%以下にする必要がある。
【0050】
(4)気泡痕の直径の検討
上述と同様に、正極活物質スラリー27を調製し、これをスラリー撹拌装置10のスラリー撹拌槽11に充填した後、空気ノズル14から空気を吐出(この場合、得られた負極の全表面積に対して、気泡痕の全表面積が3.0%になるよう空気の吐出量を調整している)させて、スラリー15中に空気を送り込むとともに、撹拌軸12を所定の回転速度で10分間だけ回転させた。ここで、撹拌速度を2000rpmにして撹拌したものをスラリーb4とし、1500rpmにして撹拌したものをスラリーb5とし、1000rpmにして撹拌したものをスラリーb6とし、500rpmにして撹拌したものをスラリーb7とし、300rpmにして撹拌したものをスラリーb8とし、200rpmにして撹拌したものをスラリーb9とした。
【0051】
これらの各正極活物質スラリー27(b4,b5,b6,b7,b8,b9)をスラリー塗布装置20のスラリー充填槽21に充填した後、上述と同様に正極集電体28の両面にスラリー層をそれぞれ塗布し、乾燥させた後、所定の厚みに圧延し、活物質の充填密度が3.4g/cm3の正極板をそれぞれ作製した後、所定寸法に切断して正極40(b4,b5,b6,b7,b8,b9)とした。
ここで、気泡痕42の部分の活物質層を欠き落として充填密度を測定すると、その充填密度は3.0g/cm3で低密度であった。また、上述と同様に、正極40(b4,b5,b6,b7,b8,b9)を観察して、気泡痕42の直径を測定すると、下記の表7に示すような結果となった。
【0052】
【表7】
Figure 0004822603
【0053】
ついで、上述のようにして作製した正極40(b4,b5,b6,b7,b8,b9)と負極とを用いて、上述と同様に非水電解質二次電池B4(正極b4を用いたもの),B5(正極b5を用いたもの),B6(正極b6を用いたもの),B7(正極b7を用いたもの),B8(正極b8を用いたもの),B9(正極b9を用いたもの)をそれぞれ作製した後、上述と同様に負荷特性試験を行って、1It放電時の放電容量を求めるとともに、2It放電時の放電容量を求め、It放電時の放電容量に対する2It放電時の放電容量の比率を放電容量比(放電容量比=2It放電時の放電容量/1It放電時の放電容量)として求めると、下記の表8に示すような結果となった。
【0054】
【表8】
Figure 0004822603
【0055】
上記表8の結果から明らかなように、気泡痕42の直径の大きさによらず放電容量比は無気泡痕のものに比べて高い値を示していることが分かる。また、気泡痕42が存在しても、正極b4のように直径が小さすぎても、正極b8,b9のように直径が大きすぎても放電容量比は低下することが分かる。
これは、気泡痕42の面積割合が同じであっても、気泡痕42の直径が小さすぎると、正極板表面全体に微少な凹凸が形成されて正極板の表面状態が粗くなり、これにより内部抵抗が上昇して放電容量比が低下する。
一方、気泡痕42の直径が大きくなりすぎると、正極板表面全体に凹凸が形成されにくくなって連続して平滑な部分が多くなるが、反面、電解液の含液性(浸透性)の向上に寄与する気泡痕42が偏在するため、正極板表面全体での反応性が低下して放電容量比が低下する。
これらに対して、気泡痕42の直径を0.5〜2.0mmにした正極板b4〜b7においては、電解液の浸透性(含液性)と正極板表面全体の粗さが適度に調和して、放電容量比が向上したと考えられる。
以上のことから、正極の気泡痕(低充填密度部)42の平均直径は0.5mm以上で2.0mm以下にするのが望ましいということができる。
【0056】
上述したように、本発明においては、負極と正極の少なくとも一方に活物質の充填密度が低い低密度部分(気泡痕)が点在するとともに、この低密度部分の表面積率は正極あるいは負極の全表面積に対して1%以上で5%以下になるようにして、活物質の充填密度が低い低密度部分を点在させているので、活物質が高密度に充填されていても、低密度部分を通して電解液が活物質中に浸透するようになるため、活物質の利用率が向上して放電容量および高率放電特性が向上する。
【0057】
なお、上述した実施の形態においては、気泡痕32を形成させた負極30と、気泡痕を形成させない正極とを用いて非水電解質二次電池を作製する例、あるいは気泡痕42を形成させた正極40と、気泡痕を形成させない負極とを用いて非水電解質二次電池を作製する例について説明したが、本発明はこれに限らず、気泡痕32を形成させた負極30と気泡痕42を形成させた正極40とを用いて非水電解質二次電池を作製するようにしても良い。この場合、負極および正極を共に高充填密度にすることが可能となるので、さらに、高容量で負荷特性に優れた非水電解質二次電池が得られるようになる。
【0058】
なお、上述した実施の形態においては、電解液に用いる混合溶媒としてエチレンカーボネート(EC)にジエチルカーボネート(DEC)を混合したものを用いた例について説明したが、上述したエチレンカーボネート(EC)にジエチルカーボネート(DEC)を混合したもの以外に、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ブチレンカーボネート(BC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1、3−オキサゾリジン−2−オン、γ−ブチロラクトン(GBL)ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジエトキシエタン(DEE)、1,2−ジメトキシ工タン(DME)、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体、2成分および3成分などの混合溶媒を用いてもよい。
【0059】
また、これらの溶媒に溶解される溶質としては、LiPF6以外に、LiBF4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiOSO2(CF23CF3、LiClO4等を用いてもよい。さらに、ポリマー電解質、ポリマーに非水電解液を含浸させたようなゲル状電解質、固体電解質なども使用できる。
また、上述した実施の形態においては、正極活物質にコバルト酸リチウムを用いた例について説明したが、コバルト酸リチウム以外に、ニッケル酸リチウム、マンガン酸リチウム等のリチウム含有遷移金属複合酸化物あるいは二酸化マンガン(MnO2)、五酸化バナジウム、五酸化ニオブなどの金属酸化物、二硫化チタン、二硫化モリブデンなどの金属カルコゲン化物等も使用できる。
【0060】
また、上述した実施の形態においては、負極活物質として天然黒鉛を用いた例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・放出し得るカーボン系材料、例えば、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体、非晶質酸化物等の公知のものを用いてもよい。また、リチウム、リチウムを主体とする合金を負極に用いるときには、正極に本発明を適用できるのは勿論である。
また、負極に添加される増粘剤としては、上述した実施の形態においては、カルボキシメチルセルロース(CMC)を用いる例について説明したが、CMC以外の増粘剤としては、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等を使用することができる。
【0061】
また、正、負極に添加される結着剤としては、上述した実施の形態においては、正極にポリフッ化ビニリデン(PVdF)、負極にスチレン−ブタジエンゴム(共重合体)を用いる例について説明したが、正極にスチレン−ブタジエンゴム(共重合体)、負極にポリフッ化ビニリデン(PVdF)を用いてもよい。さらに、それら以外の結着剤としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、等のエチレン性不飽和カルボン酸エステル、さらに、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸を使用することができる。
【図面の簡単な説明】
【図1】 本発明の電池の製造に用いられるスラリー撹拌装置の一例を模式的に示す図である。
【図2】 本発明の電池の製造に用いられるスラリー塗布装置の一例を模式的に示す図である。
【図3】 本発明により製造された極板を模式的に示す図であり、図3(a)は負極板の一例を示し、図3(b)は正極板の一例を示している。
【符号の説明】
10…スラリー撹拌装置、11…撹拌槽、12…撹拌軸、13…撹拌羽根、14…空気ノズル、15…スラリー、20…スラリー塗布装置、21…スラリー充填槽、22…塗布量調整治具、23,24…送りローラ、25,26…保持ローラ30…負極板、31…高密度充填部、32…気泡痕(低密度充填部)、40…正極板、41…高密度充填部、42…気泡痕(低密度充填部)[0001]
BACKGROUND OF THE INVENTION
The present invention includes a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, a positive electrode containing a positive electrode active material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte. Non-aqueous electrolyte secondary battery Manufacturing method About.
[0002]
[Prior art]
In recent years, lithium-cobalt composite oxide (LiCoO) has been used as a battery for portable electronic / communication equipment such as small video cameras, mobile phones, and notebook computers. 2 ), Lithium-nickel composite oxide (LiNiO) 2 ), Lithium-manganese composite oxide (LiMn) 2 O Four Lithium-containing transition metal composite oxide or manganese dioxide (MnO) capable of occluding and releasing lithium ions such as 2 ) And the like as a positive electrode active material, and a non-aqueous electrolyte secondary battery using a lithium metal, a lithium alloy, or a carbon material capable of occluding and releasing lithium ions as a negative electrode active material has attracted attention. A non-aqueous electrolyte using a carbon material as a negative electrode active material Electrolyte secondary batteries have come into practical use.
[0003]
By the way, in the positive electrode plate or the negative electrode plate used in this type of non-aqueous electrolyte secondary battery, a fluid active material slurry is applied to a metal foil serving as a current collector, and then dried. It is compressed and manufactured so as to have a density. In this case, the active material slurry is generally manufactured by applying the active material slurry so that the surface state is made as uniform as possible and the packing density of the active material does not vary.
[0004]
[Problems to be solved by the invention]
However, when manufacturing each electrode plate by applying an active material slurry so that the packing density of the active material does not vary, if the packing density of the active material is increased to increase the capacity of the electrode plate, the load characteristics As a result, the battery characteristics deteriorated. This is because when the packing density of the active material is increased, the permeability of the electrolytic solution is reduced, so that it is difficult for lithium ions to enter and exit, and battery characteristics such as load characteristics are reduced.
[0005]
By the way, the active material has a packing density that is greater on the surface than on the inside and a part of the surface is cut off to form irregularities on the surface of the electrode plate, which has excellent liquid absorption. Japanese Unexamined Patent Publication No. 59-23460 proposes a plate.
However, the electrode plate proposed in Japanese Patent Application Laid-Open No. 59-23460 has a problem that a high-capacity electrode plate cannot be obtained because the packing density of the active material in the entire electrode plate is not high.
[0006]
Therefore, the present invention has been made to solve the above-described problems, and an electrode plate that does not deteriorate the battery characteristics even when the packing density of the active material is increased is obtained, and the battery characteristics such as the high rate discharge characteristics are obtained. Improved non-aqueous electrolyte secondary battery Manufacturing method Is intended to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the non-aqueous electrolyte secondary battery manufacturing method of the present invention is applied to a negative electrode active material or an active material slurry containing a positive electrode active material. The active material slurry is stirred while introducing air, and the active material slurry is stirred. A bubble introduction step for introducing bubbles, and a slurry application step for applying an active material slurry with bubbles introduced to a current collector And a drying step of drying the active material slurry layer applied by the slurry application step, a rolling step of rolling the active material slurry layer dried by the drying step to repel bubbles and causing bubble marks to appear. With air bubbles Scar The packing density of the active material where there is a bubble Scar Lower density than the packing density of the active material where there is no The low density part which is is characterized by being formed. here, The bubble scar is a low-density portion in which the amount of active material is small as much as air is present. As a result, it is possible to easily obtain an electrode plate dotted with low density portions having a low active material packing density. in this case Alive When the stirring time of the material slurry is changed, the surface area ratio of the low density portion can be easily changed. Further, by changing the stirring speed of the active material slurry, the diameter of the low density portion can be easily changed.
[0008]
In this case, if the surface area ratio of the low density portion is less than 1.0% and too small, the permeability (liquid content) of the electrolyte into the active material is lowered, and the surface area ratio of the low density portion is 5.0%. If the amount is larger than that, the amount of the active material to be filled is decreased, and lithium is deposited in the low density portion, so that the discharge capacity is extremely decreased. For this reason, the surface area ratio of the low density part with respect to the total surface area of an electrode plate needs to be 1.0% or more and 5.0% or less. In addition, by interspersing the low density portion, the permeability (liquid containing property) of the electrolytic solution into the active material is improved, so that the active material can be filled with high density. For this reason, 1.7 g / cm in the negative electrode Three The negative electrode plate having the above high packing density can be used, and in the positive electrode, 3.4 g / cm. Three The positive electrode plate having the above high packing density can be used. As a result, a high-capacity nonaqueous electrolyte secondary battery can be obtained.
[0009]
And since such a low density part is formed when the bubble which existed in the active material slurry repels, the planar shape becomes a substantially circular shape. And even if the surface area ratio of the low density portion is the same, if the average diameter of the substantially circular shape becomes too smaller than 0.2 mm, the internal resistance rises and the high rate discharge characteristic deteriorates, and is larger than 8.0 mm. When it becomes too much, the reactivity in the whole electrode plate will fall and a high rate discharge characteristic will fall. For this reason, it is desirable that the average diameter of the low density portion is 0.2 mm or more and 8.0 mm or less.
[0010]
In this case, if the average diameter is smaller than 0.5 mm, a minute unevenness is formed on the entire surface of the electrode plate, and the electrode plate surface becomes rough, the internal resistance increases and the high rate discharge characteristic decreases. To do. On the other hand, when the average diameter is larger than 2.0 mm, unevenness is hardly formed on the entire surface of the electrode plate, and the number of continuously smooth portions increases, but on the other hand, the liquid content (permeability) of the electrolyte is improved. Therefore, the low density portion contributing to the above becomes unevenly distributed, so that the reactivity of the whole electrode plate is lowered and the high rate discharge characteristic is lowered. From this, it can be said that the average diameter of the low density portion is more preferably 0.5 mm or more and 2.0 mm or less.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described below.
1. First embodiment
(1) Electrode plate manufacturing equipment
The main electrode plate manufacturing apparatus for manufacturing the electrode plate of the present invention is composed of a slurry stirring device 10 shown in FIG. 1 and a slurry applying device 20 shown in FIG.
The slurry agitating device 10 includes a stirring tank 11 that contains the filled slurry 15 and a stirring blade 13 that stirs the slurry 15 filled in the stirring tank 11 at the lower end, and rotates with respect to the stirring tank 11. The stirring shaft 12 is mounted at the center of the stirring tank 11 and the air nozzle 14 is disposed below the stirring tank 11 and discharges air to the slurry 15 filled in the stirring tank 11. The
[0014]
On the other hand, the slurry application device 20 applies a slurry filling tank 21 for applying the slurry 15 (27) to the current collector 16 (28), and an application for adjusting the applied slurry 15 (27) to a predetermined application amount. An amount adjusting jig 22, a pair of feed rollers 23 and 24 for moving the current collector 16 (28) coated with the slurry 15 (27) at a predetermined speed, and a holder for holding the current collector 16 (28). And rollers 25 and 26. The application amount of the applied slurry 15 (27) is adjusted by adjusting the gap between the current collector 16 (28) and the application amount adjustment jig 22.
[0015]
(2) Production of negative electrode
First, natural graphite (Lc value is 1000%, d 002 A negative active material comprising a value of 3.356 mm and an average particle size of 20 μm) and a dispersion of styrene-butadiene rubber (SBR) (solid content of 48% by mass) are dispersed in water and then thickened. The negative electrode active material slurry 15 was prepared by adding carboxymethylcellulose (CMC) as an agent. In this case, the solid mass composition ratio after drying was adjusted to be graphite: SBR: CMC = 100: 3: 2. Next, after the obtained negative electrode active material slurry 15 is filled in the slurry agitation tank 11 of the slurry agitation device 10, 50 ml of air is discharged from the air nozzle 14 to 1 kg of the slurry to make air into the slurry 15. At the same time, the stirring shaft 12 was rotated at a rotational speed of 1000 rpm for a predetermined time.
[0016]
As a result, the stirring blade 13 rotates, and the negative electrode active material slurry 15 filled in the slurry stirring tank 11 is stirred together with the fed air, and a large number of bubbles are generated in the negative electrode active material slurry 15. Here, what was stirred for 5 minutes was the slurry a1, what was stirred for 10 minutes was slurry a2, and what was stirred for 20 minutes was slurry a3. Further, a slurry that did not feed bubbles was designated as slurry x1, a slurry that was stirred for 1 minute was stirred as slurry x2, and a slurry that was stirred for 40 minutes was designated as slurry x3.
[0017]
Each negative electrode active material slurry 15 (a1, a2, a3, x1, x2, x3) produced in this way is filled in the slurry filling tank 21 of the slurry coating device 20, and then fed out by a pair of feed rollers 23, 24. The negative electrode active material slurry 15 (a1, a2, a3, x1, x2, x3) filled in the slurry filling tank 21 is applied to one side of the negative electrode current collector (for example, copper foil) 16 to adjust the coating amount. A predetermined amount of slurry was applied through the jig 22.
[0018]
Next, after the slurry layer is dried, the slurry layer is passed through another slurry coating device (not shown) disposed in front of the slurry coating device 20, and the other of the negative electrode current collector 16 to which the slurry is not coated. Similarly, the slurry was applied to the surface and dried. Thereafter, the dried negative electrode plate is rolled by a roll press, and the thickness of the active material layer per side is 50 μm and the packing density is 1.7 g / cm. Three Each of the negative electrode plates was prepared, and then cut into predetermined dimensions to form negative electrodes 30 (a1, a2, a3, x1, x2, x3).
[0019]
Here, when observing the negative electrode 30 (a1, a2, a3, x1, x2, x3), as shown in FIG. 3A, crater-like bubble traces formed by blowing bubbles by rolling with a roll press machine 32 is a high-density filling part (filling density is 1.7 g / cm Three ) It was scattered all over 31. In this case, since the bubble scar 32 has a lighter hue than the high-density filling portion 31, the high-density filling portion 31 and the bubble scar 32 can be visually identified. When the diameter of the bubble scar 32 was measured and the average diameter was determined, it was revealed that it was 0.5 mm or more and 2.0 mm or less.
[0020]
Then, the mass is measured by removing the active material layer at the bubble scar 32, and the packing density is determined from the diameter of the bubble scar 32 and the thickness of the active material layer. The packing density is 1.2 g / cm. Three It was low density. Moreover, after measuring the surface area of each bubble trace 32 and calculating the total surface area of the bubble trace 32 based on this measurement result, the ratio (area ratio) of each negative electrode a1, a2, a3, x1, x2, x3 to the total surface area : Area ratio) was obtained as shown in Table 1 below. In addition, since the negative electrode x1 used the slurry which does not send a bubble, there was no bubble trace 32. FIG.
[0021]
[Table 1]
Figure 0004822603
[0022]
(3) Fabrication of positive electrode
On the other hand, LiCoO having an average particle size of 5 μm as a positive electrode active material 2 The positive electrode mixture was prepared by mixing the powder and artificial graphite powder as a conductive agent so that the mass ratio was 9: 1. The positive electrode material mixture and a binder solution obtained by dissolving 5% by mass of a binder made of polyvinylidene fluoride (PVdF) in an organic solvent made of N-methyl-2-pyrrolidone (NMP) are used as a solid mass. The positive electrode active material slurry 27 was prepared by mixing and kneading so that the ratio was 95: 5.
[0023]
After the positive electrode active material slurry 27 is filled in the slurry filling tank 21 of the slurry application device 20, the positive electrode current collector (for example, aluminum foil or aluminum alloy foil) 28 fed out by the pair of feed rollers 23 and 24 is disposed on one side. Then, the positive electrode active material slurry 27 filled in the slurry filling tank 21 was applied, and a predetermined amount of slurry was applied through the coating amount adjusting jig 22. Next, after the slurry layer is dried, the slurry layer is passed through another slurry coating device (not shown) disposed in front of the slurry coating device 20, and the positive electrode current collector 28 to which no slurry is coated is applied. Similarly, the slurry was applied to the surface and dried. Thereafter, the dried positive electrode plate is rolled by a roll press, and the thickness of the active material layer per side is 50 μm, and the packing density is 3.4 g / cm. Three After producing a positive electrode plate, the positive electrode plate was cut to a predetermined size to obtain a positive electrode.
[0024]
(4) Production of non-aqueous electrolyte secondary battery
Next, the negative electrodes a1, a2, a3, x1, x2, and x3 prepared as described above and the positive electrode are stacked with a separator made of a microporous polyolefin resin having low reactivity with an organic solvent. After combining, it was wound in a spiral shape by a winder to form an electrode group. After that, this electrode group is inserted from the opening of the outer can, and a negative electrode current collecting tab extending from the negative electrode of the electrode group is resistance-welded to the inner bottom of the outer can, and then the positive electrode collector extending from the positive electrode of the electrode group. The electric tab was welded to the bottom of the sealing body. Next, a non-aqueous electrolyte (ethylene carbonate (EC) and diethyl carbonate (DEC) mixed in an equal volume ratio in the outer can is mixed with lithium hexafluorophosphate (LiPF). 6 ) Was dissolved in 1 mol / liter.
[0025]
Then, the opening part of the exterior can was sealed liquid-tightly with the sealing body, and nonaqueous electrolyte secondary battery A1, A2, A3, X1, X2, X3 was produced, respectively. Each non-aqueous electrolyte secondary battery A1 (using the negative electrode a1), A2 (using the negative electrode a2), A3 (using the negative electrode a3), X1 (using the negative electrode x1) Used), X2 (using negative electrode x2), and X3 (using negative electrode x3) had a capacity of 600 mAh.
[0026]
(5) Non-aqueous electrolyte secondary battery load characteristics test
Next, the batteries A1, A2, A3, X1, X2, and X3 produced as described above were charged at room temperature (about 25 ° C.) with a constant current of 600 mA (1 ItmA) until the battery voltage reached 4.10 V, respectively. Then, the battery was charged at a constant voltage of 4.10 V until the current value reached 10 mA. Thereafter, the battery was discharged at a discharge current of 600 mA (1 ItmA) until the battery voltage reached 2.75 V, and the discharge capacity at the time of 1 It discharge was determined from the discharge time. The results shown in Table 2 below were obtained.
In addition, after charging each of these batteries A1, A2, A3, X1, X2, and X3 under the same conditions as described above, the batteries were discharged at a discharge current of 1200 mA (2 ItmA) until the battery voltage reached 2.75 V, and discharged. The discharge capacity at the time of 2 It discharge was calculated | required from time.
Next, the ratio of the discharge capacity at the time of 2 It discharge to the discharge capacity at the time of 1 It discharge was calculated as a discharge capacity ratio (discharge capacity ratio = 2 discharge capacity at the time of 1 It discharge / discharge capacity at the time of 1 It discharge). The result was as shown in.
[0027]
[Table 2]
Figure 0004822603
[0028]
As is clear from the results of Table 2 above, the negative electrode plate 1 using the negative electrode plate x1 in which the bubble marks 32 were not generated using the slurry that did not send the bubbles and the area ratio of the bubble marks 32 was 0.5%. In the battery X2 using x2, the 1It discharge capacity is good at 600 (mAh), but the discharge capacity ratio is reduced to 75% and 85%. On the other hand, in the battery X3 using the negative electrode plate x3 in which the area ratio of the bubble scar 32 is 7%, the discharge capacity ratio is good at 99, but the capacity at 1 It discharge is reduced to 510 (mAh). . On the other hand, in the batteries A1 to A3 using the negative plates a1 to a3 in which the area ratio of the bubble marks 32 is 1.0 to 5.0%, both the 1 It discharge capacity and the discharge capacity ratio are good. I understand that.
[0029]
Here, when each battery was disassembled in a charged state, in the battery X3 using the negative electrode plate x3 in which the area ratio of the bubble trace 32 was 7%, a large amount of lithium deposition was observed around the bubble trace 32. No lithium deposition was found in the batteries. As a result, it is considered that the discharge capacity of the battery X3 was extremely reduced.
In addition, in the negative electrode plates x1 and x2, in which the area ratio of the bubble marks 32 is 0% and 0.5% and the generation of the bubble marks 32 is reduced, the area ratio of the bubble marks 32 is too small, so that the electrolyte permeability ( It is considered that the discharge capacity ratio was reduced due to a decrease in liquid content.
On the other hand, in the negative electrode plates a1 to a3 in which the area ratio of the bubble marks 32 was 1.0 to 5.0%, the permeability (liquid containing property) of the electrolyte was improved. Both discharge capacity ratios are considered to have improved.
From the above, the area ratio of the bubble trace (low filling density part) 32 to the total surface area of the negative electrode plate needs to be 1.0% or more and 5.0% or less.
[0030]
(6) Examination of diameter of bubble mark
Similarly to the above, after preparing the negative electrode active material slurry 15 and filling it in the slurry agitation tank 11 of the slurry agitator 10, air is discharged from the air nozzle 14 (in this case, relative to the total surface area of the obtained negative electrode). The air discharge amount is adjusted so that the total surface area of the bubble marks is 3.0%), and air is fed into the slurry 15 and the stirring shaft 12 is rotated at a predetermined rotational speed for 10 minutes. I let you. Here, what was stirred at a stirring speed of 2000 rpm was slurry a4, what was stirred at 1500 rpm was slurry a5, what was stirred at 1000 rpm was slurry a6, what was stirred at 500 rpm was slurry a7, What was stirred at 300 rpm was designated as slurry a8, and what was stirred at 200 rpm was designated as slurry a9.
[0031]
After each of these negative electrode active material slurries 15 (a4, a5, a6, a7, a8, a9) is filled in the slurry filling tank 21 of the slurry coating device 20, the slurry is applied to both surfaces of the negative electrode current collector 16 in the same manner as described above. Each is coated and dried, then rolled to a predetermined thickness, and the packing density of the active material is 1.7 g / cm. Three Each negative electrode plate was prepared, and then cut into predetermined dimensions to form negative electrodes 30 (a4, a5, a6, a7, a8, a9).
Here, when the packing density is measured by cutting off the active material layer of the bubble scar 32, the packing density is 1.2 g / cm. Three It was low density. Similarly to the above, when the negative electrode 30 (a4, a5, a6, a7, a8, a9) was observed and the diameter of the bubble scar 32 was measured, the results shown in Table 3 below were obtained.
[0032]
[Table 3]
Figure 0004822603
[0033]
Then, using the negative electrode 30 (a4, a5, a6, a7, a8, a9) produced as described above and the positive electrode, the nonaqueous electrolyte secondary battery A4 (using the negative electrode a4) was used in the same manner as described above. , A5 (using negative electrode a5), A6 (using negative electrode a6), A7 (using negative electrode a7), A8 (using negative electrode a8), A9 (using negative electrode a9) Then, the load characteristic test is performed in the same manner as described above to determine the discharge capacity at the time of 1 It discharge, the discharge capacity at the time of 2 It discharge, and the discharge capacity at the time of 2 It discharge relative to the discharge capacity at the time of It discharge. When the ratio was determined as the discharge capacity ratio (discharge capacity ratio = 2 discharge capacity at the time of 1 It discharge / discharge capacity at the time of 1 It discharge), the results shown in Table 4 below were obtained.
[0034]
[Table 4]
Figure 0004822603
[0035]
As is clear from the results in Table 4 above, it can be seen that the discharge capacity ratio shows a higher value than that of the bubble-free trace regardless of the diameter of the bubble trace 32. It can also be seen that the discharge capacity ratio decreases even if the bubble scar 32 is present, the diameter is too small as in the negative electrode a4, or the diameter is too large as in the negative electrodes a8 and a9.
This is because even if the area ratio of the bubble trace 32 is the same, if the diameter of the bubble trace 32 is too small, fine irregularities are formed on the entire surface of the negative electrode plate, and the surface state of the negative electrode plate becomes rough. It is considered that the resistance increased and the discharge capacity ratio decreased.
On the other hand, if the diameter of the bubble scar 32 becomes too large, irregularities are hardly formed on the entire surface of the negative electrode plate, and the number of continuously smooth portions increases, but on the other hand, the liquid content (permeability) of the electrolyte is improved. It is considered that the bubble scar 32 contributing to the uneven distribution is uneven, so that the reactivity on the entire surface of the negative electrode plate is lowered and the discharge capacity ratio is lowered.
On the other hand, in the negative electrode plates a4 to a7 in which the diameter of the bubble scar 32 is 0.5 to 2.0 mm, the permeability of the electrolytic solution (liquid content) and the roughness of the entire surface of the negative electrode plate are moderately matched. Thus, the discharge capacity ratio is considered to have improved.
From the above, it can be said that the diameter of the bubble scar (low filling density part) 32 of the negative electrode is desirably 0.5 mm or more and 2.0 mm or less.
[0036]
2. Second embodiment
In the first embodiment described above, changes in characteristics were examined when air bubbles were introduced into the negative electrode active material slurry to form a low density portion in the negative electrode, but in the following, air bubbles were introduced into the positive electrode active material slurry. Thus, a change in characteristics when a low density portion is formed on the positive electrode will be examined.
[0037]
(1) Fabrication of positive electrode
First, LiCoO having an average particle size of 5 μm as a positive electrode active material 2 The positive electrode mixture was prepared by mixing the powder and artificial graphite powder as a conductive agent so that the mass ratio was 9: 1. The positive electrode material mixture and a binder solution obtained by dissolving 5% by mass of a binder made of polyvinylidene fluoride (PVdF) in an organic solvent made of N-methyl-2-pyrrolidone (NMP) are used as a solid mass. The positive electrode active material slurry 27 was prepared by mixing and kneading so that the ratio was 95: 5. Next, after the obtained positive electrode active material slurry 27 is filled in the slurry agitation tank 11 of the slurry agitation apparatus 10, 50 ml of air is discharged from the air nozzle 14 to 1 kg of the slurry to make air into the slurry 27. At the same time, the stirring shaft 12 was rotated at a rotational speed of 1000 rpm for a predetermined time.
[0038]
As a result, the stirring blade 13 rotates, and the positive electrode active material slurry 27 filled in the slurry agitation tank 11 is stirred together with the fed air, and a large number of bubbles are generated in the positive electrode active material slurry 27. Here, what was stirred for 5 minutes was the slurry b1, what was stirred for 10 minutes was slurry b2, and what was stirred for 20 minutes was slurry b3. Further, the slurry y1 was not fed with bubbles, the slurry agitated for 1 minute and the slurry y2, and the slurry stirred for 40 minutes as the slurry y3.
[0039]
Each positive electrode active material slurry 27 (b1, b2, b3, y1, y2, y3) produced in this way is filled in the slurry filling tank 21 of the slurry coating device 20, and then sent out by a pair of feed rollers 23, 24. The positive electrode active material slurry 27 (b1, b2, b3, y1, y2, y3) filled in the slurry filling tank 21 was applied to one side of the positive electrode current collector (for example, aluminum foil or aluminum alloy foil) 28, respectively. Then, a predetermined amount of slurry was applied through the coating amount adjusting jig 22.
[0040]
Next, after the slurry layer is dried, the slurry layer is passed through another slurry coating device (not shown) disposed in front of the slurry coating device 20, and the positive electrode current collector 28 to which no slurry is coated is applied. Similarly, the slurry was applied to the surface and dried. Thereafter, the dried positive electrode plate is rolled by a roll press, and the thickness of the active material layer per side is 50 μm, and the packing density is 3.4 g / cm. Three Each positive electrode plate was prepared, and then cut into predetermined dimensions to form positive electrodes 40 (b1, b2, b3, y1, y2, y3).
[0041]
Here, when observing the positive electrode 40 (b1, b2, b3, y1, y2, y3), as shown in FIG. 3 (b), crater-like bubble traces formed by blowing bubbles by rolling with a roll press machine 42 is a high density filling portion (filling density is 3.4 g / cm Three ) It was scattered all over 41. In this case, since the bubble scar 42 has a lighter color than the high-density filling portion 41, the high-density filling portion 41 and the bubble scar 42 can be visually identified. When the diameter of the bubble scar 42 was measured and the average diameter was determined, it was revealed that it was 0.5 mm or more and 2.0 mm or less.
[0042]
Then, the mass of the active material layer is measured by removing the active material layer in the portion of the bubble scar 42, and when the filling density is determined from the diameter of the bubble scar 42 and the thickness of the active material layer, the packing density is 3.0 g / cm. Three It was low density. Further, after measuring the surface area of each bubble mark 42 and calculating the total surface area of the bubble mark 42 based on the measurement result, the ratio (area ratio) of each positive electrode b1, b2, b3, y1, y2, y3 to the total surface area : Area ratio) was obtained as shown in Table 5 below. In addition, since the positive electrode y1 used the slurry which does not send a bubble, there was no bubble trace 42. FIG.
[0043]
[Table 5]
Figure 0004822603
[0044]
(2) Production of negative electrode
On the other hand, natural graphite (Lc value is 1000%, d 002 A negative active material comprising a value of 3.356 mm and an average particle size of 20 μm) and a dispersion of styrene-butadiene rubber (SBR) (solid content of 48% by mass) are dispersed in water and then thickened. The negative electrode active material slurry 15 was prepared by adding carboxymethylcellulose (CMC) as an agent. In this case, the solid mass composition ratio after drying was adjusted to be graphite: SBR: CMC = 100: 3: 2.
[0045]
After filling the thus prepared negative electrode active material slurry 15 into the slurry filling tank 21 of the slurry application device 20, one side of the negative electrode current collector (for example, copper foil) 16 fed out by the pair of feed rollers 23, 24. Each of the negative electrode active material slurries 15 filled in the slurry filling tank 21 was applied, and the slurry was applied through a coating amount adjusting jig 22 to apply a predetermined amount of slurry. Next, after the slurry layer is dried, the slurry layer is passed through another slurry coating device (not shown) disposed in front of the slurry coating device 20, and the other of the negative electrode current collector 16 to which the slurry is not coated. Similarly, the slurry was applied to the surface and dried. Thereafter, the dried negative electrode plate is rolled by a roll press, and the thickness of the active material layer per side is 50 μm and the packing density is 1.7 g / cm. Three Each negative electrode plate was prepared, and then cut into a predetermined size to obtain a negative electrode.
[0046]
(3) Production of non-aqueous electrolyte secondary battery
Next, using the positive electrodes b1, b2, b3, y1, y2, y3 and the negative electrode produced as described above, the nonaqueous electrolyte secondary batteries B1, B2, B3, Y1, Y2, Y3 are formed in the same manner as described above. Each was produced. Each non-aqueous electrolyte secondary battery B1 (using positive electrode b1), B2 (using positive electrode b2), B3 (using positive electrode b3), Y1 (positive electrode y1) was prepared as described above. Used), Y2 (using positive electrode y2), and Y3 (using positive electrode y3) had a capacity of 600 mAh. Thereafter, a load characteristic test is performed in the same manner as described above to determine the discharge capacity at the time of 1 It discharge, the discharge capacity at the time of 2 It discharge, and the ratio of the discharge capacity at the time of 2 It discharge to the discharge capacity at the time of It discharge. When calculated as a capacity ratio (discharge capacity ratio = 2 discharge capacity at the time of 1 It discharge / discharge capacity at the time of 1 It discharge), the results shown in Table 6 below were obtained.
[0047]
[Table 6]
Figure 0004822603
[0048]
As is clear from the results of Table 6 above, the battery Y1 using the positive electrode plate y1 in which the bubble marks 42 were not generated using the slurry that did not send the bubbles, and the negative electrode plate having the area ratio of the bubble marks 42 of 0.5% In the battery Y2 using y2, the capacity during 1 It discharge is good at 600 (mAh), but the discharge capacity ratio is reduced to 75% and 85%. On the other hand, in the battery Y3 using the negative electrode plate y3 in which the area ratio of the bubble marks 42 is 7%, the discharge capacity ratio is 99, which is good, but the 1It discharge capacity is reduced to 510 (mAh). . On the other hand, in the batteries B1 to B3 using the negative plates b1 to b3 in which the area ratio of the bubble marks 42 is 1.0 to 5.0%, both the 1 It discharge capacity and the discharge capacity ratio are good. I understand that.
[0049]
This is because in the battery Y3 using the negative electrode plate y3 in which the area ratio of the bubble marks 42 is 7%, the area ratio of the bubble marks 42 is large, so the filling amount of the active material is decreased and the discharge capacity is extremely decreased. it is conceivable that.
In addition, in the negative electrode plates y1 and y2 in which the area ratio of the bubble marks 42 is 0% and 0.5% and the generation of the bubble marks 42 is reduced, the area ratio of the bubble marks 42 is too small, so that the electrolyte permeability ( It is considered that the discharge capacity ratio was reduced due to a decrease in liquid content.
On the other hand, in the negative electrode plates b1 to b3 in which the area ratio of the bubble marks 42 was 1.0 to 5.0%, the permeability of the electrolytic solution (liquid content) was improved. Both discharge capacity ratios are considered to have improved.
From the above, it is necessary that the area ratio of the bubble trace (low filling density portion) 42 to the total surface area of the positive electrode plate is 1.0% or more and 5.0% or less.
[0050]
(4) Examination of bubble mark diameter
Similarly to the above, after preparing the positive electrode active material slurry 27 and filling it in the slurry agitation tank 11 of the slurry agitator 10, air is discharged from the air nozzle 14 (in this case, relative to the total surface area of the obtained negative electrode). The air discharge amount is adjusted so that the total surface area of the bubble marks is 3.0%), and air is fed into the slurry 15 and the stirring shaft 12 is rotated at a predetermined rotational speed for 10 minutes. I let you. Here, what was stirred at a stirring speed of 2000 rpm was slurry b4, what was stirred at 1500 rpm was slurry b5, what was stirred at 1000 rpm was slurry b6, what was stirred at 500 rpm was slurry b7, What was stirred at 300 rpm was slurry b8, and what was stirred at 200 rpm was slurry b9.
[0051]
After filling each of these positive electrode active material slurries 27 (b4, b5, b6, b7, b8, b9) into the slurry filling tank 21 of the slurry coating device 20, the slurry layers are formed on both surfaces of the positive electrode current collector 28 as described above. Each is coated and dried, and then rolled to a predetermined thickness, so that the packing density of the active material is 3.4 g / cm. Three Each positive electrode plate was prepared, and then cut into predetermined dimensions to form positive electrodes 40 (b4, b5, b6, b7, b8, b9).
Here, when the packing density is measured by cutting off the active material layer in the bubble scar 42, the packing density is 3.0 g / cm. Three It was low density. Similarly to the above, when the positive electrode 40 (b4, b5, b6, b7, b8, b9) was observed and the diameter of the bubble mark 42 was measured, the results shown in Table 7 below were obtained.
[0052]
[Table 7]
Figure 0004822603
[0053]
Next, using the positive electrode 40 (b4, b5, b6, b7, b8, b9) and the negative electrode produced as described above, the nonaqueous electrolyte secondary battery B4 (using the positive electrode b4) was used in the same manner as described above. , B5 (using positive electrode b5), B6 (using positive electrode b6), B7 (using positive electrode b7), B8 (using positive electrode b8), B9 (using positive electrode b9) Then, the load characteristic test is performed in the same manner as described above to determine the discharge capacity at the time of 1 It discharge, the discharge capacity at the time of 2 It discharge, and the discharge capacity at the time of 2 It discharge relative to the discharge capacity at the time of It discharge. When the ratio was determined as the discharge capacity ratio (discharge capacity ratio = 2 discharge capacity at the time of 1 It discharge / discharge capacity at the time of 1 It discharge), the results shown in Table 8 below were obtained.
[0054]
[Table 8]
Figure 0004822603
[0055]
As is apparent from the results of Table 8 above, it can be seen that the discharge capacity ratio shows a higher value than that of the bubble-free trace regardless of the diameter of the bubble trace 42. It can also be seen that the discharge capacity ratio decreases even if the bubble scar 42 is present, the diameter is too small as in the positive electrode b4, or the diameter is too large as in the positive electrodes b8 and b9.
This is because even if the area ratio of the bubble trace 42 is the same, if the diameter of the bubble trace 42 is too small, minute irregularities are formed on the entire surface of the positive electrode plate, and the surface state of the positive electrode plate becomes rough. The resistance increases and the discharge capacity ratio decreases.
On the other hand, if the diameter of the bubble mark 42 becomes too large, irregularities are hardly formed on the entire surface of the positive electrode plate, and the number of continuously smooth portions increases, but on the other hand, the liquid content (permeability) of the electrolyte is improved. Since the bubble traces 42 that contribute to the uneven distribution are present, the reactivity on the entire surface of the positive electrode plate is lowered and the discharge capacity ratio is lowered.
On the other hand, in the positive electrode plates b4 to b7 in which the diameter of the bubble mark 42 is 0.5 to 2.0 mm, the permeability of the electrolytic solution (liquid content) and the roughness of the entire surface of the positive electrode plate are appropriately matched. Thus, the discharge capacity ratio is considered to have improved.
From the above, it can be said that it is desirable that the average diameter of the bubble scar (low filling density portion) 42 of the positive electrode is 0.5 mm or more and 2.0 mm or less.
[0056]
As described above, in the present invention, at least one of the negative electrode and the positive electrode is dotted with low density portions (bubble marks) having a low packing density of the active material, and the surface area ratio of the low density portion is the total area of the positive electrode or the negative electrode. Since the surface area is 1% or more and 5% or less, the low density portion having a low active material filling density is scattered, so even if the active material is filled with a high density, the low density portion Since the electrolyte solution penetrates into the active material through the active material, the utilization factor of the active material is improved, and the discharge capacity and the high rate discharge characteristics are improved.
[0057]
In the above-described embodiment, an example in which a nonaqueous electrolyte secondary battery is manufactured using the negative electrode 30 in which the bubble mark 32 is formed and the positive electrode in which the bubble mark is not formed, or the bubble mark 42 is formed. Although the example which produces a nonaqueous electrolyte secondary battery using the positive electrode 40 and the negative electrode which does not form a bubble trace was demonstrated, this invention is not limited to this, The negative electrode 30 in which the bubble trace 32 was formed, and the bubble trace 42 A non-aqueous electrolyte secondary battery may be manufactured using the positive electrode 40 on which is formed. In this case, since both the negative electrode and the positive electrode can have a high packing density, a non-aqueous electrolyte secondary battery having a high capacity and excellent load characteristics can be obtained.
[0058]
In the above-described embodiment, an example in which ethylene carbonate (EC) is mixed with diethyl carbonate (DEC) as the mixed solvent used in the electrolytic solution has been described. However, the above-described ethylene carbonate (EC) is mixed with diethyl. In addition to carbonate (DEC) mixed, propylene carbonate (PC), vinylene carbonate (VC), butylene carbonate (BC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl -1,3-oxazolidine-2-one, γ-butyrolactone (GBL) dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipro Simple substances such as dicarbonate, 1,2-diethoxyethane (DEE), 1,2-dimethoxytechtane (DME), tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, and the like; A mixed solvent such as a three component may be used.
[0059]
Moreover, as a solute dissolved in these solvents, LiPF 6 In addition to LiBF Four , LiCF Three SO Three , LiAsF 6 , LiN (CF Three SO 2 ) 2 , LiOSO 2 (CF 2 ) Three CF Three LiClO Four Etc. may be used. Furthermore, a polymer electrolyte, a gel electrolyte in which a polymer is impregnated with a non-aqueous electrolyte, a solid electrolyte, and the like can also be used.
In the above-described embodiment, the example in which lithium cobaltate is used as the positive electrode active material has been described. In addition to lithium cobaltate, lithium-containing transition metal composite oxides such as lithium nickelate and lithium manganate, or dioxide dioxide Manganese (MnO 2 ), Metal oxides such as vanadium pentoxide and niobium pentoxide, metal chalcogenides such as titanium disulfide and molybdenum disulfide, and the like can also be used.
[0060]
In the embodiment described above, an example in which natural graphite is used as the negative electrode active material has been described. However, in addition to natural graphite, a carbon-based material capable of occluding and releasing lithium ions, such as carbon black, coke, and glass. Known carbon or carbon fiber, or a fired body or amorphous oxide thereof may be used. In addition, when lithium or a lithium-based alloy is used for the negative electrode, the present invention can of course be applied to the positive electrode.
In addition, as the thickener added to the negative electrode, in the above-described embodiment, the example using carboxymethylcellulose (CMC) has been described, but as the thickener other than CMC, methylcellulose, hydroxymethylcellulose, ethylcellulose, Polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, and the like can be used.
[0061]
In addition, as the binder added to the positive and negative electrodes, in the above-described embodiment, an example in which polyvinylidene fluoride (PVdF) is used for the positive electrode and styrene-butadiene rubber (copolymer) is used for the negative electrode has been described. Further, styrene-butadiene rubber (copolymer) may be used for the positive electrode, and polyvinylidene fluoride (PVdF) may be used for the negative electrode. Furthermore, as other binders, ethylenically unsaturated carboxylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylate, hydroxyethyl (meth) acrylate, etc. Furthermore, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid can be used.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a slurry agitation apparatus used for manufacturing a battery of the present invention.
FIG. 2 is a diagram schematically showing an example of a slurry coating apparatus used for manufacturing the battery of the present invention.
3A and 3B are diagrams schematically showing an electrode plate manufactured according to the present invention. FIG. 3A shows an example of a negative electrode plate, and FIG. 3B shows an example of a positive electrode plate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Slurry stirring apparatus, 11 ... Stirring tank, 12 ... Stirring shaft, 13 ... Stirring blade, 14 ... Air nozzle, 15 ... Slurry, 20 ... Slurry coating apparatus, 21 ... Slurry filling tank, 22 ... Coating amount adjusting jig, 23, 24 ... feed roller, 25,26 ... holding roller 30 ... negative electrode plate, 31 ... high density filling portion, 32 ... bubble scar (low density filling portion), 40 ... positive electrode plate, 41 ... high density filling portion, 42 ... Bubble trace (low density filling part)

Claims (6)

リチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを備えた非水電解質二次電池の製造方法であって、
前記負極活物質あるいは前記正極活物質を含有する活物質スラリーに空気を導入しながら該活物質スラリーを撹拌して、該活物質スラリーに気泡を導入する気泡導入工程と、
前記気泡が導入された活物質スラリーを集電体に塗布するスラリー塗布工程と、
前記スラリー塗布工程により塗布された前記活物質スラリー層を乾燥させる乾燥工程と、
前記乾燥工程により乾燥された前記活物質スラリー層を圧延して前記気泡を弾けさせて気泡痕を出現させる圧延工程とを備え、
前記気泡がある部分の活物質の充填密度は気泡がない部分の活物質の充填密度よりも低密度である低密度部分を形成させるようにしたことを特徴とする非水電解質二次電池の製造方法。
A non-aqueous electrolyte comprising a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, a positive electrode containing a positive electrode active material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte A method for manufacturing a secondary battery, comprising:
A bubble introducing step of introducing bubbles into the active material slurry by stirring the active material slurry while introducing air into the negative electrode active material or the active material slurry containing the positive electrode active material;
A slurry application step of applying the active material slurry into which the bubbles have been introduced to a current collector ;
A drying step of drying the active material slurry layer applied by the slurry application step;
Rolling the active material slurry layer dried by the drying step to repel the bubbles and causing bubble marks to appear , and
Packing density non-aqueous electrolyte secondary battery characterized in that so as to form a low-density portion which is a lower density than the packing density of the active material in no bubble marks portions of the active material of a portion of said bubble marks Manufacturing method.
前記気泡導入工程において、前記活物質スラリーの撹拌時間を変化させることにより、前記低密度部分の表面積率を変化させるようにしたことを特徴とする請求項1に記載の非水電解質二次電池の製造方法。  2. The nonaqueous electrolyte secondary battery according to claim 1, wherein in the bubble introduction step, the surface area ratio of the low density portion is changed by changing a stirring time of the active material slurry. Production method. 前記気泡導入工程において、前記活物質スラリーの撹拌速度を変化させることにより、前記低密度部分の平均直径を変化させるようにしたことを特徴とする請求項1に記載の非水電解質二次電池の製造方法。  2. The nonaqueous electrolyte secondary battery according to claim 1, wherein, in the bubble introduction step, an average diameter of the low density portion is changed by changing a stirring speed of the active material slurry. Production method. 前記負極の前記低密度部分を除く充填密度は1.7g/cm以上か、あるいは前記正極の前記低密度部分を除く充填密度は3.4g/cm以上のいずれか一方あるいは両方であることを特徴とする請求項1に記載の非水電解質二次電池の製造方法The packing density excluding the low density portion of the negative electrode is 1.7 g / cm 3 or more, or the packing density of the positive electrode excluding the low density portion is 3.4 g / cm 3 or more. The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1 characterized by these. 前記正極と前記負極の少なくとも一方に点在する前記低密度部分の平面形状は略円形状であって、この略円形状の低密度部分の平均直径は0.2mm以上で8.0mm以下であることを特徴とする請求項1に記載の非水電解質二次電池の製造方法The planar shape of the low density portion scattered in at least one of the positive electrode and the negative electrode is substantially circular, and the average diameter of the substantially circular low density portion is 0.2 mm or more and 8.0 mm or less. The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1 characterized by the above-mentioned. 前記正極と前記負極の少なくとも一方に点在する前記低密度部分の平面形状は略円形状であって、この略円形状の低密度部分の平均直径は0.5mm以上で2.0mm以下であることを特徴とする請求項1に記載の非水電解質二次電池の製造方法The planar shape of the low density portion scattered in at least one of the positive electrode and the negative electrode is substantially circular, and the average diameter of the substantially circular low density portion is 0.5 mm or more and 2.0 mm or less. The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1 characterized by the above-mentioned.
JP2001096553A 2001-03-29 2001-03-29 Method for producing non-aqueous electrolyte secondary battery Expired - Fee Related JP4822603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096553A JP4822603B2 (en) 2001-03-29 2001-03-29 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096553A JP4822603B2 (en) 2001-03-29 2001-03-29 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002298922A JP2002298922A (en) 2002-10-11
JP4822603B2 true JP4822603B2 (en) 2011-11-24

Family

ID=18950456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096553A Expired - Fee Related JP4822603B2 (en) 2001-03-29 2001-03-29 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4822603B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649113B2 (en) * 2004-01-20 2011-03-09 株式会社東芝 Nonaqueous electrolyte secondary battery
JP5168763B2 (en) * 2005-08-02 2013-03-27 日産自動車株式会社 Battery electrode
KR101145973B1 (en) * 2009-07-06 2012-05-15 도요타지도샤가부시키가이샤 Method for manufacturing electrode for battery
WO2014054617A1 (en) * 2012-10-05 2014-04-10 シャープ株式会社 Non-aqueous electrolyte secondary battery and method for producing same
JP5573922B2 (en) * 2012-11-06 2014-08-20 日産自動車株式会社 Method for manufacturing battery electrode
DE102022202281A1 (en) 2022-03-07 2023-09-07 Volkswagen Aktiengesellschaft Method of making an electrode, electrode, lithium ion cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923460A (en) * 1982-07-29 1984-02-06 Sanyo Electric Co Ltd Organic electrolyte battery
JPH09283116A (en) * 1996-04-11 1997-10-31 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery
JPH1064514A (en) * 1996-08-13 1998-03-06 Yuasa Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2002298922A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP4878687B2 (en) Lithium secondary battery
CN111480251B (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
WO2011039949A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
US20110159172A1 (en) Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
JP2007227357A (en) Lithium secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP5888512B2 (en) Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
WO2017056984A1 (en) Method for producing negative electrode for lithium ion secondary batteries
CN108463909A (en) Li ion secondary batteries negative material and its manufacturing method, Li ion secondary batteries cathode and Li ion secondary batteries
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP4822603B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4326323B2 (en) Non-aqueous electrolyte battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US20220115669A1 (en) Positive electrode active material
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP2009187819A (en) Method for manufacturing paste for lithium-ion secondary battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP4878690B2 (en) Lithium secondary battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
US20210408520A1 (en) Method of producing negative electrode active material for secondary battery, negative electrode for secondary battery, and lithium secondary battery including the same
US20220131134A1 (en) Positive electrode active material
JP2000195522A (en) Nonaqueous electrolyte seconday battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees