JP4821992B2 - Ground fault detection device - Google Patents

Ground fault detection device Download PDF

Info

Publication number
JP4821992B2
JP4821992B2 JP2006213224A JP2006213224A JP4821992B2 JP 4821992 B2 JP4821992 B2 JP 4821992B2 JP 2006213224 A JP2006213224 A JP 2006213224A JP 2006213224 A JP2006213224 A JP 2006213224A JP 4821992 B2 JP4821992 B2 JP 4821992B2
Authority
JP
Japan
Prior art keywords
ground fault
circuit
fault
current
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006213224A
Other languages
Japanese (ja)
Other versions
JP2008039549A (en
Inventor
直之 月山
茂 成田
宏明 齊藤
弘 米井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Chubu Electric Power Co Inc filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP2006213224A priority Critical patent/JP4821992B2/en
Publication of JP2008039549A publication Critical patent/JP2008039549A/en
Application granted granted Critical
Publication of JP4821992B2 publication Critical patent/JP4821992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は送電鉄塔の地絡故障を検出する地絡検出装置に関する。   The present invention relates to a ground fault detection device that detects a ground fault in a power transmission tower.

本発明に関連する従来技術として、例えば特許文献1に記載の電力送配電線の地絡点表示器および短絡地絡判別回路がある。これは、発電所や変電所に設けられている短絡用継電器と地絡用継電器とでは、短絡用継電器の方が地絡用継電器よりも故障発生時点から短時間で送電を遮断することに着目して、短絡故障では作動させることなく地絡故障の場合にのみ地絡点表示器を作動させるようにしたものである。すなわち、短絡故障の発生時点から短絡用継電器による送電遮断までの間の短い時間幅では時定数回路が予め設定された設定電圧まで充電されないようにし、地絡故障の発生時点から地絡用継電器による送電遮断までの長い時間幅の場合にだけ時定数回路が上記設定電圧に充電されるようにすることにより、地絡故障のみを検出して表示するようにしたものである。   As a conventional technique related to the present invention, for example, there is a ground fault point indicator and a short-circuit ground fault determination circuit of a power transmission and distribution line described in Patent Document 1. This is because the short-circuit relay and the ground fault relay provided in power plants and substations cut off the power transmission in a shorter time from the time of the failure than the ground fault relay. Thus, the ground fault point indicator is operated only in the case of a ground fault without being operated in the case of a short circuit fault. In other words, the time constant circuit is not charged up to a preset voltage in a short time span between the occurrence of a short-circuit fault and the transmission interruption by the short-circuit relay, and from the occurrence of the ground fault to the ground fault relay. Only in the case of a long time width until the power transmission is cut off, the time constant circuit is charged to the set voltage, so that only the ground fault is detected and displayed.

特開平11−142463号公報JP-A-11-142463

このような特許文献1は有効に機能するものであるが、発電所や変電所の短絡用継電器および地絡用継電器の作動時間を考慮することなく地絡故障のみを検出することができれば、これら継電器の作動時間に応じた個々の設定を行う必要がなくなるなど、利便性を向上させることができる。   Such Patent Document 1 functions effectively, but if only a ground fault can be detected without considering the operating time of a short circuit relay and a ground fault relay of a power plant or substation, Convenience can be improved, such as eliminating the need to make individual settings according to the operating time of the relay.

本発明は、このような観点に基づいてなされたものであり、発電所や変電所の短絡用継電器および地絡用継電器の作動時間を考慮することなく、短絡故障に起因する誤作動を防止して地絡故障のみを的確に検出することのできる地絡検出装置を提供することを目的とする。   The present invention has been made based on such a viewpoint, and prevents malfunction caused by a short circuit failure without considering the operation time of a short circuit relay and a ground fault relay of a power plant or substation. It is an object of the present invention to provide a ground fault detection device capable of accurately detecting only a ground fault.

本発明においては、架空地線をもたない送電鉄塔の送電線を支持する最下段の腕金よりも下方の前記送電鉄塔の4つの脚のうちの2つの脚で、短絡故障に起因する誘導電流が逆方向に流れ、地絡故障に起因する故障電流が大地に向かって同一方向に流れる前記送電鉄塔の前記2つの脚のうちの一方の脚に設けられ、前記短絡故障の場合に前記一方の脚を流れる誘導電流を検出し、前記地絡故障の場合に前記一方の脚を大地に向かって流れる故障電流を検出して交流電圧出力を与える第1のカレントトランスと、前記送電鉄塔の前記2つの脚のうちの他方の脚に設けられ、前記短絡故障の場合に前記他方の脚を流れる前記一方の脚とは逆方向に流れる誘導電流を検出し、前記地絡故障の場合に前記他方の脚を大地に向かって流れる前記一方の脚と同一方向に流れる故障電流を検出して交流電圧出力を与える第2のカレントトランスと、前記第1のカレントトランスの交流電圧出力と前記第2のカレントトランスの交流電圧出力とを合成する合成部を含み、この合成部の合成出力に基づいて地絡故障のみを検出する検出手段とを有する地絡検出装置によって、上記目的を達成する。
In the present invention, two legs out of the four legs of the power transmission tower below the lowermost brace that supports the power transmission line of the power transmission tower having no overhead ground line are induced due to a short circuit failure. current flows in the reverse direction, the fault current due to the ground fault is provided on one leg of said two legs of the power transmission pylons flow in the same direction toward the earth, the one in the case of the short-circuit failure A first current transformer that detects an induced current flowing through the legs of the power supply, detects a fault current that flows through the one leg toward the ground in the case of a ground fault, and provides an AC voltage output; and An induced current that is provided on the other leg of the two legs, detects an induced current that flows in the opposite direction to the one leg that flows through the other leg in the case of the short-circuit fault, and the other leg in the case of the ground fault The one leg that flows toward the ground A second current transformer providing an AC voltage output by detecting a fault current flowing in the same direction, the combining unit for combining the AC voltage output of the first of said an AC voltage output of the current transformer second current transformer In addition, the above-described object is achieved by a ground fault detection device including detection means for detecting only a ground fault based on the combined output of the combining unit .

これによれば、発電所や変電所の短絡用継電器および地絡用継電器の作動時間を考慮することなく、地絡故障のみを検出することができる。また、第1および第2のカレントトランスは、短絡故障の場合には逆方向に流れる誘導電流を検出して夫々交流電圧出力を与え、地絡故障の場合には同一方向に流れる故障電流を検出して夫々交流電圧出力を与えるので、短絡故障の場合の合成出力と地絡故障の場合の合成出力とにおいて顕著な差異をもたせることができ、短絡故障を検出することなく地絡故障のみを的確に検出することができる。   According to this, it is possible to detect only a ground fault without considering the operating time of the short-circuit relay and the ground fault relay of the power plant or substation. The first and second current transformers detect induced currents flowing in opposite directions in the case of short-circuit faults and provide AC voltage outputs, respectively, and detect fault currents flowing in the same direction in the case of ground faults. AC voltage output is provided, so that there is a significant difference between the combined output in the case of a short-circuit fault and the combined output in the case of a ground fault, and only a ground fault can be accurately detected without detecting a short-circuit fault. Can be detected.

また、前記第1および第2のカレントトランスが、前記地絡故障の場合には同位相になる交流電圧出力を前記検出手段に与え、前記短絡故障の場合には逆位相になる交流電圧出力を前記検出手段に与えるように前記送電鉄塔の前記2つの脚の前記一方の脚および前記他方の脚に設けられ、前記検出手段の前記合成部が、2つの双方向ツェナーダイオードの直列接続で構成された振幅制限回路であって、前記直列接続の2つの双方向ツェナーダイオードが、故障電流が同一方向になり且つ誘導電流が互いに逆方向になるように直列に接続された前記第1および第2のカレントトランスの直列接続に並列に挿入されると共に、直列に接続された前記第1のカレントトランスと前記第2のカレントトランスとの間の部位が、前記直列接続の前記2つの双方向ツェナーダイオードの一方と他方との間に接続されて、前記合成出力を与える前記振幅制限回路と、定格電流以上の電流の流入を防止する保護抵抗を介して前記振幅制限回路からの合成出力を全波整流する整流回路とを有し、前記地絡故障の場合に前記同位相の交流電圧出力に基づいて全波整流された大きな合成出力を生成し、前記短絡故障の場合には互いに前記逆位相の交流電圧出力に基づいて前記地絡故障の場合の前記合成出力よりも遥かに小さな全波整流された合成出力を与えるように構成される。これにより、地絡故障では大きな合成出力となり、短絡故障ではこれよりも遙かに小さな合成出力となるようにすることが可能となり、短絡故障を検出することなく地絡故障のみを正確に検出することができる。
The first and second current transformers provide an AC voltage output having the same phase in the case of the ground fault to the detecting means, and an AC voltage output having the opposite phase in the case of the short circuit fault. Provided to the one leg and the other leg of the two legs of the power transmission tower so as to be provided to the detection means, and the combining part of the detection means is configured by a series connection of two bidirectional Zener diodes. The first and second bidirectional Zener diodes connected in series so that the fault currents are in the same direction and the induced currents are in opposite directions. A portion between the first current transformer and the second current transformer connected in series to the series connection of the current transformer and connected in series is the two of the series connection. The combined output from the amplitude limiting circuit via the amplitude limiting circuit that is connected between one and the other of the bidirectional Zener diodes to provide the combined output and a protective resistor that prevents inflow of current exceeding the rated current Rectifying circuit for full-wave rectification, and generating a large combined output that is full-wave rectified based on the AC voltage output of the same phase in the case of the ground fault, and mutually in the case of the short-circuit fault A full-wave rectified composite output that is much smaller than the composite output in the case of the ground fault is provided based on an anti-phase AC voltage output. This makes it possible to have a large combined output in the case of a ground fault, and a much smaller combined output in the case of a short-circuit fault, so that only a ground fault can be accurately detected without detecting a short-circuit fault. be able to.

また、前記検出手段は前記第1および第2のカレントトランスの交流電圧出力を動作電源として作動させられる。そのため、バッテリ等の動作電源を設ける必要がなく、バッテリ交換等のメインテナンスが不要で、メインテナンスの容易性を図ることができる。   The detecting means is operated using the AC voltage output of the first and second current transformers as an operating power source. Therefore, it is not necessary to provide an operating power source such as a battery, maintenance such as battery replacement is unnecessary, and maintenance can be facilitated.

また、前記第1のカレントトランスが設けられた前記一方の脚と前記第2のカレントトランスが設けられた前記他方の脚とが、前記送電鉄塔の腕金に支持された送電線と略平行する面を形成する2つの脚であるように構成される。
Further, the one leg provided with the first current transformer and the other leg provided with the second current transformer are substantially parallel to a power transmission line supported by a brace of the power transmission tower. Constructed to be two legs forming a surface.

更に、前記検出手段は、前記合成部に加えて、前記合成部の全波整流された合成出力によって充電される充電回路と、前記充電回路の充電電圧が、短絡故障の場合の充電電圧では到達することができず且つ地絡故障の場合の充電電圧では必ず到達するように設定された閾値以上になった場合に、地絡故障の検出を表わす検出出力を与える検出回路とを有する。これにより、地絡故障時に大きな合成出力によって充電回路が充電されるので、地絡故障時に検出回路の検出出力として所望の電力が得やすくなり、この検出出力によって例えば表示器等を駆動する場合に表示器等の確実な動作を図ることができる。
In addition to the combining unit , the detecting means is charged by a combined output obtained by full-wave rectification of the combining unit, and the charging voltage of the charging circuit reaches the charging voltage in the case of a short-circuit fault. And a detection circuit for providing a detection output indicating detection of a ground fault when the charge voltage in the case of a ground fault is equal to or higher than a threshold set so as to be always reached. As a result, the charging circuit is charged with a large combined output at the time of a ground fault, so that it becomes easy to obtain a desired power as a detection output of the detection circuit at the time of a ground fault, and for example, when a display or the like is driven by this detection output A reliable operation of the display or the like can be achieved.

本発明によれば、発電所や変電所の短絡用継電器および地絡用継電器の作動時間を考慮することなく地絡故障のみを検出することができ、また、短絡故障の場合の合成出力と地絡故障の場合の合成出力とにおいて顕著な差異をもたせることができ、短絡故障を検出することなく地絡故障のみを的確に検出することができる。   According to the present invention, it is possible to detect only a ground fault without considering the operation time of a short-circuit relay and a ground fault relay in a power plant or substation, and it is possible to detect a combined output and a ground in the case of a short-circuit fault. It is possible to make a significant difference from the combined output in the case of a fault, and it is possible to accurately detect only a ground fault without detecting a short-circuit fault.

また、架空地線をもたない送電鉄塔でも地絡故障を確実に検出することができる。   Moreover, it is possible to reliably detect a ground fault even in a power transmission tower having no overhead ground wire.

また、バッテリ等の動作電源を設ける必要がなく、メインテナンスの容易性の向上を図ることができる。   Further, it is not necessary to provide an operating power source such as a battery, and the ease of maintenance can be improved.

また、地絡故障では大きな合成出力を与え、短絡故障ではこれよりも遥かに小さな合成出力を与えるようにすることができるので、短絡故障を検出することなく地絡故障のみを正確に検出することができる。   In addition, it is possible to give a large composite output for ground faults and a much smaller composite output for short circuit faults, so that only ground faults can be detected accurately without detecting short circuit faults. Can do.

更に、地絡故障時に検出回路の検出出力として所望の電力が得やすくなり、この検出出力によって例えば表示器等を駆動する場合に、表示器等の確実な動作を図ることができる。   Furthermore, it becomes easy to obtain desired power as a detection output of the detection circuit at the time of a ground fault, and when the display or the like is driven by the detection output, for example, a reliable operation of the display or the like can be achieved.

発明を実施するための最良の形態として、以下に本発明の一実施例を説明する。   As the best mode for carrying out the invention, an embodiment of the present invention will be described below.

図1は本発明の実施例の一例を示す図である。   FIG. 1 is a diagram showing an example of an embodiment of the present invention.

図1において、参照番号1は送電鉄塔で、第1の脚2、第2の脚3、第3の脚4および第4の脚5の4つの脚を有している。本例では、この送電鉄塔1には架空地線は設けれていない。送電鉄塔1の各腕金6には、送電線7が図示しない碍子を介して支持されている。   In FIG. 1, reference numeral 1 is a power transmission tower having four legs, a first leg 2, a second leg 3, a third leg 4, and a fourth leg 5. In this example, the power transmission tower 1 is not provided with an overhead wire. A power transmission line 7 is supported on each arm 6 of the power transmission tower 1 via an insulator (not shown).

地絡検出装置10は、第1のカレントトランス11、第2のカレントトランス12、検出部13および表示部14を有している。第1および第2のカレントトランス11,12は、送電鉄塔1の腕金6よりも下方で、送電線7と略平行する面ABCDを形成する第1および第2の脚2,3、または、面ABCDに対向し同様に送電線7と略平行する面EFGHを形成する第3および第4の脚4,5に設けられる。本例では、第1のカレントトランス11が、面ABCDを形成する第1の脚2に設けられ、第1の脚2を流れる電流を検出して交流電圧出力を検出部13に与えるようになっており、第2のカレントトランス12が、同様に面ABCDを形成する第2の脚3に設けられ、第2の脚3を流れる電流を検出して交流電圧出力を検出部13に与えるようになっている。後述するように、第1の脚2と第2の脚3とでは、地絡故障時の故障電流は大地に向かって同一方向に流れ、短絡故障時の誘導電流は互いに逆方向に流れる。これは、第3の脚4と第4の脚5とにおいても同様である。検出部13は、第1および第2のカレントトランス11,12の交流電圧出力を入力してこれらを合成し、この合成出力に基づいて地絡故障のみを検出し、その検出出力を表示部14に与え、表示部14を駆動させる。地絡故障時の故障電流が同一方向に流れ、短絡故障時の誘導電流が互いに逆方向に流れることから、短絡故障の場合の合成出力と地絡故障の場合の合成出力とにおいて顕著な差異をもたせることができ、短絡故障を検出することなく地絡故障のみを的確に検出することができる。なお、表示部14としては、火薬を用いた表示手段やソレノイドを用いた表示手段等の従来周知の表示手段を用いることができ、また、検出部13の検出出力を地絡故障の検出信号とし、地絡故障の発生を送信するように構成することも可能である。   The ground fault detection device 10 includes a first current transformer 11, a second current transformer 12, a detection unit 13, and a display unit 14. The first and second current transformers 11 and 12 are located below the arm 6 of the power transmission tower 1 and are formed with a first and second legs 2 and 3 that form a surface ABCD substantially parallel to the power transmission line 7 or It is provided on the third and fourth legs 4 and 5 that form a surface EFGH that faces the surface ABCD and is also substantially parallel to the power transmission line 7. In this example, the first current transformer 11 is provided on the first leg 2 that forms the surface ABCD, detects the current flowing through the first leg 2, and provides an AC voltage output to the detection unit 13. Similarly, the second current transformer 12 is provided on the second leg 3 that similarly forms the surface ABCD, and the current flowing through the second leg 3 is detected to provide an AC voltage output to the detection unit 13. It has become. As will be described later, in the first leg 2 and the second leg 3, the fault current at the time of ground fault flows in the same direction toward the ground, and the induced currents at the time of the short-circuit fault flow in opposite directions. The same applies to the third leg 4 and the fourth leg 5. The detection unit 13 receives the AC voltage outputs of the first and second current transformers 11 and 12 and combines them, detects only a ground fault based on the combined output, and displays the detection output as the display unit 14. The display unit 14 is driven. The fault current at the time of ground fault flows in the same direction, and the induced currents at the time of short circuit fault flow in opposite directions, so there is a significant difference between the composite output in the case of a short fault and the composite output in the case of a ground fault. Therefore, only a ground fault can be accurately detected without detecting a short-circuit fault. The display unit 14 may be a conventionally known display unit such as a display unit using explosives or a display unit using a solenoid, and the detection output of the detection unit 13 is used as a detection signal for a ground fault. It can also be configured to transmit the occurrence of a ground fault.

図2は地絡故障時の故障電流および短絡故障時の誘導電流を示す図で、図1と同符号のものは同一のものを示している。   FIG. 2 is a diagram showing a fault current at the time of a ground fault and an induced current at the time of a short-circuit fault, and the same reference numerals as those in FIG. 1 denote the same parts.

送電鉄塔1に落雷や鳥獣害などによって地絡故障が発生すると、架空地線をもたない送電鉄塔1では、送電鉄塔1の4つの脚2〜5に大地に向かって同一方向に数十Aの故障電流Iaが流れる。   When a ground fault occurs in the power transmission tower 1 due to lightning or bird damage, the power transmission tower 1 having no overhead ground wire has several tens of A in the same direction toward the ground on the four legs 2 to 5 of the power transmission tower 1. Fault current Ia flows.

これに対して、送電線7に短絡故障が発生すると、数十Aの故障電流Iaと比較して極めて大きな数千Aの短絡電流Ibが送電線7に流れ、これによる磁界Mが送電鉄塔1の面ABCDおよび面EFGHを水平方向に貫き、送電鉄塔1の4つの脚2〜5に誘導電流Icが流れる。この誘導電流Icは磁界Mを打消すように流れ、面ABCDの第1の脚2と第2の脚3とでは誘導電流Icの方向が逆方向になり、また、面EFGHの第3の脚4と第4の脚5とでも同様に誘導電流Icの方向が逆方向になる。   On the other hand, when a short-circuit failure occurs in the transmission line 7, a short-circuit current Ib of several thousand A that is extremely large compared to the failure current Ia of several tens of A flows through the transmission line 7, and a magnetic field M thereby generated is transmitted to the transmission tower 1 The induced current Ic flows through the four legs 2 to 5 of the power transmission tower 1 through the plane ABCD and the plane EFGH in the horizontal direction. This induced current Ic flows so as to cancel the magnetic field M, and the direction of the induced current Ic is reversed between the first leg 2 and the second leg 3 of the plane ABCD, and the third leg of the plane EFGH. Similarly, the direction of the induced current Ic is reversed between the fourth leg 4 and the fourth leg 5.

図3は図1における地絡検出装置の取付け部分を示す図で、図1および図2と同符号のものは同一のものを示している。本例では、上述したように、第1のカレントトランス11が送電鉄塔1の第1の脚2に設けられ、第2のカレントトランス12が第2の脚3に設けられている。そして、地絡故障の場合には送電鉄塔1の第1および第2の脚2,3に故障電流Iaが大地に向かって同一方向に流れ、短絡故障の場合には第1および第2の脚2,3に誘導電流Icが逆方向に流れる。第1および第2のカレントトランス11,12は、同一方向に流れる故障電流Iaを検出した場合には同位相の正弦波交流電圧出力を与え、逆方向に流れる誘導電流Icを検出した場合には逆位相の正弦波交流電圧出力を与えるように設けられている。   FIG. 3 is a diagram showing a mounting portion of the ground fault detection device in FIG. 1, and the same reference numerals as those in FIGS. 1 and 2 denote the same components. In this example, as described above, the first current transformer 11 is provided on the first leg 2 of the power transmission tower 1, and the second current transformer 12 is provided on the second leg 3. In the case of a ground fault, the fault current Ia flows in the same direction toward the ground in the first and second legs 2 and 3 of the transmission tower 1, and in the case of a short circuit fault, the first and second legs. 2 and 3, the induced current Ic flows in the opposite direction. The first and second current transformers 11 and 12 provide a sinusoidal AC voltage output having the same phase when the fault current Ia flowing in the same direction is detected, and when detecting the induced current Ic flowing in the reverse direction. It is provided to provide an antiphase sine wave AC voltage output.

図4は図1における検出部13の一例を示す回路図で、図1および図2と同符号のものは同一のものを示している。検出部13は検出手段を構成し、振幅制限回路20、整流回路21、充電回路22および検出回路23を有している。振幅制限回路20および整流回路21は、第1のカレントトランス11の交流電圧出力と第2のカレントトランス12の交流電圧出力とを合成し、その合成出力を与える合成部を構成している。   FIG. 4 is a circuit diagram showing an example of the detection unit 13 in FIG. 1, and the same reference numerals as those in FIGS. 1 and 2 denote the same components. The detection unit 13 constitutes detection means, and includes an amplitude limiting circuit 20, a rectifier circuit 21, a charging circuit 22, and a detection circuit 23. The amplitude limiting circuit 20 and the rectifier circuit 21 constitute a combining unit that combines the AC voltage output of the first current transformer 11 and the AC voltage output of the second current transformer 12 and gives the combined output.

合成部の振幅制限回路20は、直列接続の2つの双方向ツェナーダイオード201,202を有し、第1および第2のカレントトランス11,12からの正弦波交流電圧出力を入力して、それらの振幅制限を行うと共に合成し、その合成出力を抵抗24を介して整流回路21に与える。抵抗24は整流回路21の保護抵抗で、整流回路21を構成するダイオード210,211,212,213が破壊されないように整流回路21に定格電流以上の電流が流入することを防止する。合成部の整流回路21は、振幅制限回路20からの合成出力を全波整流し、全波整流された合成出力を充電回路22に与える。   The amplitude limiting circuit 20 of the synthesizer includes two bidirectional Zener diodes 201 and 202 connected in series. The sine wave AC voltage output from the first and second current transformers 11 and 12 is input, The amplitude is limited and combined, and the combined output is supplied to the rectifier circuit 21 via the resistor 24. The resistor 24 is a protective resistor for the rectifier circuit 21 and prevents the current exceeding the rated current from flowing into the rectifier circuit 21 so that the diodes 210, 211, 212, and 213 constituting the rectifier circuit 21 are not destroyed. The rectifier circuit 21 of the synthesizer performs full-wave rectification on the combined output from the amplitude limiting circuit 20 and provides the combined output obtained by full-wave rectification to the charging circuit 22.

図5は地絡故障の場合の合成部の波形図、図6は短絡故障の場合の合成部の波形図である。   FIG. 5 is a waveform diagram of the combining unit in the case of a ground fault, and FIG. 6 is a waveform diagram of the combining unit in the case of a short circuit failure.

地絡故障の場合には、図5の(a)および(b)に示されるように、振幅制限された第1のカレントトランス11の交流電圧出力と第2のカレントトランス12の交流電圧出力とは同位相で、振幅制限回路20から出力される合成出力は、図5の(c)に示されるように、本例では略2倍の振幅になる。そして、この合成出力が全波整流され、図5の(d)に示される全波整流された合成出力が充電回路22に与えられる。一例として、振幅制限された第1および第2のカレントトランス11,12の交流電圧出力の電圧は例えば+10V〜−10Vで、合成出力の電圧は例えば+20V〜−20Vとなり、全波整流された合成部からの合成出力として20Vの合成出力が与えられる。   In the case of a ground fault, as shown in FIGS. 5A and 5B, the AC voltage output of the first current transformer 11 and the AC voltage output of the second current transformer 12 which are limited in amplitude are Are the same phase, and the combined output output from the amplitude limiting circuit 20 has substantially twice the amplitude in this example, as shown in FIG. The combined output is full-wave rectified, and the combined output subjected to full-wave rectification shown in FIG. As an example, the voltage of the AC voltage output of the first and second current transformers 11 and 12 whose amplitudes are limited is, for example, + 10V to −10V, and the voltage of the combined output is, for example, + 20V to −20V. A combined output of 20V is given as a combined output from the unit.

これに対して、短絡故障の場合には、図6の(e)および(f)に示されるように、振幅制限された第1のカレントトランス11の交流電圧出力と第2のカレントトランス12の交流電圧出力とは逆位相になり、振幅制限回路20から出力される合成出力は、図6の(g)に示されるように、本例では略0の振幅になる。そして、この合成出力が全波整流されることとなり、図6の(h)に示されるように、全波整流された合成出力は本例では略0になる。   On the other hand, in the case of a short-circuit failure, as shown in FIGS. 6E and 6F, the AC voltage output of the first current transformer 11 whose amplitude is limited and the second current transformer 12 The combined output output from the amplitude limiting circuit 20 has an amplitude of approximately 0 in this example, as shown in FIG. 6 (g). Then, the combined output is full-wave rectified, and the combined output subjected to full-wave rectification becomes substantially 0 in this example, as shown in FIG.

このように、地絡故障の場合には合成部から大きな合成出力が与えられ、短絡故障の場合には地絡故障の場合と比較して遥かに小さな合成出力が与えられることとなる。   Thus, in the case of a ground fault, a large combined output is given from the combining unit, and in the case of a short-circuit fault, a much smaller combined output is given compared to the case of a ground fault.

図4に戻り、充電回路22は充電用コンデンサ220とこれに並列挿入された抵抗221とを有し、充電用コンデンサ220が抵抗221との時定数に従って整流回路21からの全波整流された合成出力により充電される。上述したように、地絡故障では大きな合成出力となり、短絡故障では極めて小さな合成出力となるので、地絡故障では充電電圧が大きくなり、短絡故障では地絡故障の場合と比較して遥かに小さくなり、充電電圧に顕著な差が生じることとなる。   Returning to FIG. 4, the charging circuit 22 includes a charging capacitor 220 and a resistor 221 inserted in parallel therewith, and the charging capacitor 220 is a full-wave rectified composite from the rectifier circuit 21 according to the time constant with the resistor 221. Charged by output. As described above, a ground fault fault results in a large combined output, and a short circuit fault results in a very small composite output.Therefore, the charging voltage increases in the case of a ground fault, and much smaller than that in the case of a ground fault. Thus, a significant difference occurs in the charging voltage.

検出回路23は、抵抗230とツェナーダイオード231とトリガ抵抗232との直列接続と、トリガ抵抗232に並列挿入されたノイズ防止用コンデンサ233と、サイリスタ234とを有している。トリガ抵抗232はサイリスタ234のゲートにゲート電圧を与えるものであり、ノイズ防止用コンデンサ233はノイズによるサイリスタ234の誤動作を防止するためのものである。   The detection circuit 23 includes a series connection of a resistor 230, a Zener diode 231, and a trigger resistor 232, a noise prevention capacitor 233 inserted in parallel with the trigger resistor 232, and a thyristor 234. The trigger resistor 232 applies a gate voltage to the gate of the thyristor 234, and the noise prevention capacitor 233 prevents the thyristor 234 from malfunctioning due to noise.

抵抗230とツェナーダイオード231とトリガ抵抗232との直列接続は、充電回路22に並列挿入されていると共に、一方の出力端子25aに接続されている。ツェナーダイオード231は、短絡故障の場合の充電回路22の充電電圧では到達することができず且つ地絡故障の場合の充電回路22の充電電圧では必ず到達するように設定された閾値を与えるもので、充電回路22の充電電圧が所定の電圧以上になることでオン状態になる。一例として、地絡故障時に前述したように全波整流された合成出力として例えば20Vの合成出力が与えられる場合、ツェナーダイオード231は例えば10V〜20Vの間の所定の電圧値でオンするように設定される。これにより、短絡故障時に第1のカレントトランス11と第2のカレントトランス12の交流電圧出力の一方が何らかの理由で小さくなり、両者の交流電圧出力に差が生じ、その結果として例えば比較的大きい合成出力が生成されても、その合成出力は上記例の10Vを越えることはないので、ツェナーダイオード231がオン状態になることはない。   A series connection of the resistor 230, the Zener diode 231 and the trigger resistor 232 is inserted in parallel in the charging circuit 22, and is connected to one output terminal 25a. The zener diode 231 gives a threshold that cannot be reached by the charging voltage of the charging circuit 22 in the case of a short circuit failure and that is always reached by the charging voltage of the charging circuit 22 in the case of a ground fault. The charging circuit 22 is turned on when the charging voltage is equal to or higher than a predetermined voltage. As an example, when a combined output of, for example, 20 V is given as a combined output subjected to full-wave rectification as described above at the time of a ground fault, the Zener diode 231 is set to turn on at a predetermined voltage value between 10 V and 20 V, for example. Is done. Thereby, at the time of a short circuit failure, one of the AC voltage outputs of the first current transformer 11 and the second current transformer 12 becomes small for some reason, and a difference occurs between the two AC voltage outputs. Even if the output is generated, the combined output does not exceed 10 V in the above example, so that the Zener diode 231 is not turned on.

サイリスタ234は、カソードとゲートがトリガ抵抗232に並列挿入されたノイズ防止用コンデンサ233に並列挿入され、アノードが他方の出力端子25bに接続されている。出力端子25a,25bには表示部14が接続され、地絡故障の場合に表示部14に検出出力が与えられるようになっている。   The thyristor 234 has a cathode and a gate inserted in parallel to a noise prevention capacitor 233 inserted in parallel with the trigger resistor 232, and an anode connected to the other output terminal 25b. A display unit 14 is connected to the output terminals 25a and 25b, and a detection output is given to the display unit 14 in the case of a ground fault.

このような構成で、短絡故障が発生すると、短絡故障に起因する誘導電流Icの検出によって第1および第2のカレントトランス11,12から逆位相の交流電圧出力が検出部13の振幅制限回路20に与えられる。短絡故障の場合には交流電圧出力が逆位相であるため、振幅制限回路20から出力される合成出力が図6の(g)に示されるように略0の振幅になり、全波整流された合成出力が図6の(h)に示されるように略0になる。そのため、充電回路22の充電電圧は検出回路23のツェナーダイオード231がオン状態になる閾値よりも遥かに小となり、短絡故障で検出出力が与えられることはない。   With such a configuration, when a short-circuit failure occurs, the AC voltage output of the opposite phase from the first and second current transformers 11 and 12 is detected from the first and second current transformers 11 and 12 by the detection of the induced current Ic resulting from the short-circuit failure. Given to. In the case of a short-circuit failure, since the AC voltage output is in reverse phase, the combined output output from the amplitude limiting circuit 20 has an amplitude of approximately 0 as shown in FIG. The combined output becomes substantially zero as shown in FIG. Therefore, the charging voltage of the charging circuit 22 is much smaller than the threshold value at which the Zener diode 231 of the detection circuit 23 is turned on, and no detection output is given due to a short circuit failure.

一方、地絡故障が発生すると、地絡故障に起因する故障電流Iaの検出によって第1および第2のカレントトランス11,12から同位相の交流電圧出力が検出部13の振幅制限回路20に与えられる。地絡故障の場合には交流電圧出力が同位相であるので、振幅制限回路20から出力される合成出力が図5の(c)に示されるように略2倍の振幅になり、全波整流された合成出力が図5の(d)に示されるように高い電圧値となる。そのため、充電回路22の充電電圧が検出回路23のツェナーダイオード231がオン状態になる閾値以上となり、ツェナーダイオード231のオンによりトリガ抵抗232を介してサイリスタ234にゲート電圧が与えられる。これにより、サイリスタ234がオンし、出力端子25a,25bから検出出力が表示部14に与えられる。   On the other hand, when a ground fault occurs, an AC voltage output having the same phase is supplied from the first and second current transformers 11 and 12 to the amplitude limiting circuit 20 of the detection unit 13 by detecting the fault current Ia caused by the ground fault. It is done. In the case of a ground fault, since the AC voltage output is in phase, the combined output output from the amplitude limiting circuit 20 has a substantially double amplitude as shown in FIG. The combined output thus obtained has a high voltage value as shown in FIG. Therefore, the charging voltage of the charging circuit 22 becomes equal to or higher than a threshold value at which the Zener diode 231 of the detection circuit 23 is turned on, and the gate voltage is applied to the thyristor 234 via the trigger resistor 232 when the Zener diode 231 is turned on. As a result, the thyristor 234 is turned on, and the detection output is given to the display unit 14 from the output terminals 25a and 25b.

検出部13は、上述から明らかなように、第1および第2のカレントトランス11,12の交流電圧出力を動作電源として動作する。そのため、バッテリ等の動作電源を設ける必要がなく、バッテリ交換等のメインテナンスが不要で、メインテナンスの容易性を図ることができる。また、地絡故障時に大きな合成出力によって充電回路22が充電されるので、地絡故障時に検出部13の検出出力として所望の電力が得やすくなり、この検出出力によって例えば表示器等を駆動する場合に表示器等の確実な動作を図ることができる。   As is apparent from the above, the detection unit 13 operates using the AC voltage output of the first and second current transformers 11 and 12 as an operation power supply. Therefore, it is not necessary to provide an operating power source such as a battery, maintenance such as battery replacement is unnecessary, and maintenance can be facilitated. In addition, since the charging circuit 22 is charged with a large combined output at the time of a ground fault, it is easy to obtain desired power as a detection output of the detection unit 13 at the time of a ground fault, and a display or the like is driven by this detection output. In addition, a reliable operation of the indicator or the like can be achieved.

また、前述の特許文献1による従来の地絡点表示器は、短絡用継電器と地絡用継電器の作動時間にほとんど差がない送電線路には適用することができなかったが、本発明にによる地絡検出装置10は、そのような送電線路にも問題なく適用することが可能である。更に、本発明による地絡検出装置10は地絡故障時に大きな合成出力が得られるような構成であるため、従来の地絡点表示器では検出することができないような軽微な地絡故障についても検出が可能となり、地絡検出の精度を向上させることができる。   Further, the conventional ground fault point indicator according to Patent Document 1 described above could not be applied to a transmission line in which there is almost no difference in operating time between the short circuit relay and the ground fault relay, but according to the present invention. The ground fault detection device 10 can be applied to such a power transmission line without any problem. Furthermore, since the ground fault detection device 10 according to the present invention is configured to obtain a large composite output in the event of a ground fault, it can be applied to a minor ground fault that cannot be detected by a conventional ground fault indicator. Detection is possible, and the accuracy of ground fault detection can be improved.

上記実施例では架空地線をもたない送電鉄塔への適用について述べたが、これは架空地線を有する送電鉄塔への適用を除外するものではなく、架空地線を有する送電鉄塔にも適用することができる。架空地線を有する送電鉄塔に適用する場合には、地絡故障による故障電流が大地よりも抵抗の小さい架空地線に多く流れ込むこととなるので、地絡故障時の故障電流を有効に検出するという観点から、第1および第2のカレントトランス11,12は送電線を支持する腕金よりも上方の送電鉄塔の脚に設けられることが望ましい。その他の構成は前述した通りである。   In the above-mentioned embodiment, the application to the transmission tower having no overhead ground wire was described. However, this does not exclude the application to the transmission tower having the overhead ground wire, and is applicable to the transmission tower having the overhead ground wire. can do. When applied to transmission towers with overhead ground wires, fault currents due to ground faults flow more into overhead ground wires with lower resistance than the ground, so the fault current at the time of ground faults can be detected effectively. From this point of view, it is desirable that the first and second current transformers 11 and 12 are provided on the legs of the transmission tower above the braces that support the transmission lines. Other configurations are as described above.

本発明は、架空地線をもたない送電鉄塔でも短絡故障を検出することなく地絡故障のみを確実に検出する検出装置として利用することができ、また、架空地線を有する送電鉄塔に対しても地絡故障のみを確実に検出する検出装置として利用することができる。   The present invention can be used as a detection device that reliably detects only a ground fault without detecting a short-circuit failure even in a transmission tower having no overhead ground wire, and for a transmission tower having an overhead ground wire. However, it can be used as a detection device that reliably detects only ground faults.

図1は本発明の実施例の一例を示す図である。FIG. 1 is a diagram showing an example of an embodiment of the present invention. 図2は地絡故障時の故障電流および短絡故障時の誘導電流を示す図である。FIG. 2 is a diagram showing a fault current at the time of a ground fault and an induced current at the time of a short-circuit fault. 図3は図1における地絡検出装置の取付け部分を示す図である。FIG. 3 is a diagram showing a mounting portion of the ground fault detection device in FIG. 図4は図1における検出部13の一例を示す回路図である。FIG. 4 is a circuit diagram showing an example of the detection unit 13 in FIG. 図5は地絡故障の場合の合成部の波形図である。FIG. 5 is a waveform diagram of the synthesis unit in the case of a ground fault. 図6は短絡故障の場合の合成部の波形図である。FIG. 6 is a waveform diagram of the synthesis unit in the case of a short circuit failure.

符号の説明Explanation of symbols

1 送電鉄塔
2,3,4,5 脚
6 腕金
7 送電線
10 地絡検出装置
11 第1のカレントトランス
12 第2のカレントトランス
13 検出部
20 振幅制限回路
21 整流回路
22 充電回路
23 検出回路
DESCRIPTION OF SYMBOLS 1 Transmission tower 2,3,4,5 Leg 6 Arm 7 Transmission line 10 Ground fault detection apparatus 11 1st current transformer 12 2nd current transformer 13 Detection part 20 Amplitude limiting circuit 21 Rectification circuit 22 Charging circuit 23 Detection circuit

Claims (5)

架空地線をもたない送電鉄塔の送電線を支持する最下段の腕金よりも下方の前記送電鉄塔の4つの脚のうちの2つの脚で、短絡故障に起因する誘導電流が逆方向に流れ、地絡故障に起因する故障電流が大地に向かって同一方向に流れる前記送電鉄塔の前記2つの脚のうちの一方の脚に設けられ、前記短絡故障の場合に前記一方の脚を流れる誘導電流を検出し、前記地絡故障の場合に前記一方の脚を大地に向かって流れる故障電流を検出して交流電圧出力を与える第1のカレントトランスと、
前記送電鉄塔の前記2つの脚のうちの他方の脚に設けられ、前記短絡故障の場合に前記他方の脚を流れる前記一方の脚とは逆方向に流れる誘導電流を検出し、前記地絡故障の場合に前記他方の脚を大地に向かって流れる前記一方の脚と同一方向に流れる故障電流を検出して交流電圧出力を与える第2のカレントトランスと、
前記第1のカレントトランスの交流電圧出力と前記第2のカレントトランスの交流電圧出力とを合成する合成部を含み、この合成部の合成出力に基づいて地絡故障のみを検出する検出手段とを有することを特徴とする地絡検出装置。
Two of the four legs of the transmission tower below the lower arm that supports the transmission line of the transmission tower that does not have an overhead ground line, the induced current caused by a short-circuit fault is reversed. induction flowing flow, fault current due to the ground fault is provided on one leg of said two legs of the power transmission pylons flow in the same direction towards the ground, the one leg in the case of the short-circuit failure A first current transformer for detecting an electric current, detecting a fault current flowing through the one leg toward the ground in the case of the ground fault, and providing an AC voltage output;
Provided on the other leg of the two legs of the power transmission tower, in the case of a short circuit failure, an induced current flowing in the opposite direction to the one leg flowing through the other leg is detected, and the ground fault A second current transformer for detecting a fault current flowing in the same direction as the one leg flowing in the other leg toward the ground and providing an AC voltage output;
A detecting unit that includes a combining unit that combines the AC voltage output of the first current transformer and the AC voltage output of the second current transformer, and that detects only a ground fault based on the combined output of the combining unit; A ground fault detection device comprising:
前記第1および第2のカレントトランスが、前記地絡故障の場合には同位相になる交流電圧出力を前記検出手段に与え、前記短絡故障の場合には逆位相になる交流電圧出力を前記検出手段に与えるように前記送電鉄塔の前記2つの脚の前記一方の脚および前記他方の脚に設けられ、
前記検出手段の前記合成部が、
2つの双方向ツェナーダイオードの直列接続で構成された振幅制限回路であって、前記直列接続の2つの双方向ツェナーダイオードが、故障電流が同一方向になり且つ誘導電流が互いに逆方向になるように直列に接続された前記第1および第2のカレントトランスの直列接続に並列に挿入されると共に、直列に接続された前記第1のカレントトランスと前記第2のカレントトランスとの間の部位が、前記直列接続の前記2つの双方向ツェナーダイオードの一方と他方との間に接続されて、前記合成出力を与える前記振幅制限回路と、
定格電流以上の電流の流入を防止する保護抵抗を介して前記振幅制限回路からの合成出力を全波整流する整流回路とを有し、
前記地絡故障の場合に前記同位相の交流電圧出力に基づいて全波整流された大きな合成出力を生成し、前記短絡故障の場合には互いに前記逆位相の交流電圧出力に基づいて前記地絡故障の場合の前記合成出力よりも遥かに小さな全波整流された合成出力を与えるように構成されたことを特徴とする請求項1に記載の地絡検出装置。
The first and second current transformers provide an AC voltage output having the same phase in the case of the ground fault to the detecting means, and an AC voltage output having the opposite phase in the case of the short circuit fault is detected. Provided to the one leg and the other leg of the two legs of the power transmission tower to give to the means,
The combining unit of the detecting means is
An amplitude limiting circuit configured by series connection of two bidirectional Zener diodes, wherein the two bidirectional Zener diodes connected in series are configured such that the fault current is in the same direction and the induced currents are in opposite directions. A portion between the first current transformer and the second current transformer connected in series is inserted in parallel to the series connection of the first and second current transformers connected in series. The amplitude limiting circuit connected between one of the two bidirectional Zener diodes connected in series and the other to provide the combined output;
A rectifier circuit that full-wave rectifies the combined output from the amplitude limiting circuit via a protective resistor that prevents inflow of a current exceeding the rated current;
In the case of the ground fault, a large combined output that is full-wave rectified based on the AC voltage output in the same phase is generated, and in the case of the short-circuit fault, the ground fault is generated based on the AC voltage outputs that are opposite in phase to each other. The ground fault detection device according to claim 1, wherein the ground fault detection device is configured to provide a full-wave rectified composite output far smaller than the composite output in the case of a failure .
前記検出手段は、更に、
前記合成部の全波整流された合成出力によって充電される充電回路と、
前記充電回路の充電電圧が、短絡故障の場合の充電電圧では到達することができず且つ地絡故障の場合の充電電圧では必ず到達するように設定された閾値以上になった場合に、地絡故障の検出を表わす検出出力を与える検出回路とを有することを特徴とする請求項に記載の地絡検出装置。
The detection means further includes
A charging circuit charged by a combined output rectified by full wave of the combining unit;
When the charging voltage of the charging circuit cannot reach the charging voltage in the case of a short-circuit failure and exceeds a threshold value set so as to be always reached in the charging voltage in the case of a ground fault, The ground fault detection device according to claim 2 , further comprising a detection circuit that provides a detection output indicating detection of a failure .
前記検出手段が、前記第1および第2のカレントトランスの交流電圧出力を動作電源として作動することを特徴とする請求項に記載の地絡検出装置。 4. The ground fault detection device according to claim 3 , wherein the detection means operates using the AC voltage output of the first and second current transformers as an operation power source . 前記第1のカレントトランスが設けられた前記一方の脚と前記第2のカレントトランスが設けられた前記他方の脚とが、前記送電鉄塔の腕金に支持された送電線と略平行する面を形成する2つの脚であることを特徴とする請求項に記載の地絡検出装置。
A surface in which the one leg provided with the first current transformer and the other leg provided with the second current transformer are substantially parallel to a transmission line supported by a brace of the power transmission tower. ground fault sensing device according to claim 2, characterized in that the two legs that form.
JP2006213224A 2006-08-04 2006-08-04 Ground fault detection device Active JP4821992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213224A JP4821992B2 (en) 2006-08-04 2006-08-04 Ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213224A JP4821992B2 (en) 2006-08-04 2006-08-04 Ground fault detection device

Publications (2)

Publication Number Publication Date
JP2008039549A JP2008039549A (en) 2008-02-21
JP4821992B2 true JP4821992B2 (en) 2011-11-24

Family

ID=39174735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213224A Active JP4821992B2 (en) 2006-08-04 2006-08-04 Ground fault detection device

Country Status (1)

Country Link
JP (1) JP4821992B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957877B (en) * 2010-09-20 2013-04-17 中国电力科学研究院 Over-line fault network equating method of multi-circuit transmission lines in one tower with different voltage classes
JP5851207B2 (en) * 2011-11-05 2016-02-03 中部電力株式会社 Ground fault detection device
JP6092519B2 (en) * 2012-02-28 2017-03-08 中部電力株式会社 Ground fault detection device and ground fault detection method
CN105182153A (en) * 2015-08-24 2015-12-23 国网天津静海供电有限公司 Grounding wire fault indicator for distribution transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236629A (en) * 1996-02-29 1997-09-09 Chikushi Denki Kk Method and device for detecting earth steel tower of power transmission line

Also Published As

Publication number Publication date
JP2008039549A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP3763852B2 (en) Method and circuit for monitoring insulation and fault current in AC power supply
ES2813283T3 (en) Apparatus and method for quickly determining faults in an electrical power system
US8072716B2 (en) AFCI device
JP5530769B2 (en) DC circuit leakage detection device
KR101535950B1 (en) Contact failure detection device by counting pulses
JPWO2010082317A1 (en) Protection circuit used in wind power generation system with double-fed induction generator
JP6127824B2 (en) Power conditioner system for photovoltaic power generation
JP4821992B2 (en) Ground fault detection device
US8488284B2 (en) Transformer failure analysis system
KR101326418B1 (en) A test circuit for earth leakage breaker under phase fault
CN109997300A (en) Modular multistage converter with the full bridge unit fault current blocking for wind turbine
AU2013234368B2 (en) Residual current device (rcd) with earth current sensing
US9577423B2 (en) Power system including a load panel protecting a facility from a broken or missing neutral of a split phase electrical distribution configuration
US20120147508A1 (en) Three phase multi-generator ground fault circuit
JP2007312445A (en) Management system for insulation monitoring device
KR101691399B1 (en) Limiter device capable of contact failure detection having delay circuit
RU168498U1 (en) DEVICE FOR THE PROTECTION OF ELECTRIC NETWORKS OF THE MIDDLE CLASS OF VOLTAGE FROM SINGLE-PHASE CIRCUIT TO THE GROUND
US9537307B2 (en) Overvoltage protection method and device
JP6092519B2 (en) Ground fault detection device and ground fault detection method
CN111141990A (en) Ground fault identification and ground line selection method based on zero sequence current resistive component
RU156887U1 (en) DEVICE FOR INTEGRITY CONTROL OF SECONDARY CIRCUITS OF CURRENT TRANSFORMERS IN THREE-PHASE NETWORKS WITH ZERO WIRE
US8300377B2 (en) Swell sustaining transient voltage surge suppressor
Van de Sandt et al. Neutral earthing in off-shore wind farm grids
JP2012078241A (en) Instantaneous voltage drop detector and semiconductor testing device
US9653971B2 (en) Speed detection circuits for permanent magnet alternators

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4821992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250