JP4820980B2 - PIN type circularly polarized light-emitting semiconductor element and laser element - Google Patents

PIN type circularly polarized light-emitting semiconductor element and laser element Download PDF

Info

Publication number
JP4820980B2
JP4820980B2 JP2005020427A JP2005020427A JP4820980B2 JP 4820980 B2 JP4820980 B2 JP 4820980B2 JP 2005020427 A JP2005020427 A JP 2005020427A JP 2005020427 A JP2005020427 A JP 2005020427A JP 4820980 B2 JP4820980 B2 JP 4820980B2
Authority
JP
Japan
Prior art keywords
semiconductor
circularly polarized
polarized light
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005020427A
Other languages
Japanese (ja)
Other versions
JP2006210626A (en
Inventor
健一郎 田中
比呂夫 宗片
剛 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005020427A priority Critical patent/JP4820980B2/en
Priority to PCT/JP2006/301702 priority patent/WO2006080548A1/en
Publication of JP2006210626A publication Critical patent/JP2006210626A/en
Application granted granted Critical
Publication of JP4820980B2 publication Critical patent/JP4820980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06236Controlling other output parameters than intensity or frequency controlling the polarisation, e.g. TM/TE polarisation switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Description

本発明は、外部印加電圧により、円偏光度(右回りと左回り)を高速で変調して、左回り円偏光と右回り円偏光を直接発光することができる円偏光発光半導体素子、及び、該素子の構造を共振器構造に構成した円偏光発光レーザ素子に関するものである。   The present invention provides a circularly polarized light-emitting semiconductor element capable of directly emitting left-handed circularly polarized light and right-handed circularly polarized light by modulating the degree of circular polarization (clockwise and counterclockwise) at high speed by an externally applied voltage, and The present invention relates to a circularly polarized light emitting laser element having a resonator structure.

現在、光の偏光や位相を扱う光学技術の発展が目覚しい。円偏光を得る最も一般的な従来方法は、発光ダイオードやレーザ等の外部光源から出力する光を、直線偏光子と波長板(λ/4板)に通して、円偏光状態を形成する方法である。しかし、この方法においては、左回り円偏光状態と右回り円偏光状態を切り替えるために、波長板を機械的に回転させなければならない。   Currently, the development of optical technology that handles the polarization and phase of light is remarkable. The most common conventional method for obtaining circularly polarized light is a method of forming a circularly polarized state by passing light output from an external light source such as a light emitting diode or laser through a linear polarizer and a wave plate (λ / 4 plate). is there. However, in this method, the wave plate must be mechanically rotated to switch between the counterclockwise circular polarization state and the clockwise circular polarization state.

それ故、円偏光状態を切り替える変調周波数が、波長板の機械的な回転の周波数に律速されてしまい、円偏光状態の変調(切り替え)を高速化するのには限界がある。また、この方法による円偏光状態の変調周波数は、数kHz程度以下にとどまり、さらなる高速での変調は期待できない。   Therefore, the modulation frequency for switching the circular polarization state is limited by the frequency of mechanical rotation of the wave plate, and there is a limit to speeding up the modulation (switching) of the circular polarization state. Moreover, the modulation frequency of the circularly polarized state by this method is only about several kHz or less, and modulation at higher speed cannot be expected.

円偏光状態を高速に変調する他の従来方法は、光弾性変調器を用いる方法である。この方法においては、外部光源から出力する光を直線偏光子に通し、その後、光弾性変調器に入射する。光弾性変調器に交流電圧(通常、50kHz程度)を印加すると、光弾性変調器を透過する光に、交流電圧に同期して、右回り円偏光と左回り円偏光が交互に現れる。   Another conventional method of modulating the circular polarization state at high speed is a method using a photoelastic modulator. In this method, light output from an external light source is passed through a linear polarizer and then incident on a photoelastic modulator. When an AC voltage (usually about 50 kHz) is applied to the photoelastic modulator, right-handed circularly polarized light and left-handed circularly polarized light appear alternately in the light transmitted through the photoelastic modulator in synchronization with the AC voltage.

この方法では、出力光の円偏光度(左回り、右回り)の変調周波数を、上記従来方法に比べて高くできるが、右回り円偏光と左回り円偏光を交互に現れるようにしかできず、右回り円偏光又は左回り円偏光を、任意のタイミングで形成することは原理的に不可能である。   With this method, the modulation frequency of the degree of circular polarization (left-handed, right-handed) of the output light can be made higher than that of the conventional method described above, but it can only cause the right-handed circularly polarized light and the left-handed circularly polarized light to appear alternately. In principle, it is impossible to form clockwise circularly polarized light or counterclockwise circularly polarized light at an arbitrary timing.

また、上記いずれの従来方法においても、上記問題点があることに加え、外部に複数の光学素子(直線偏光子+波長版、又は、直線偏光子+光弾性変調器)を必要とするので、装置・機器の小型化には限界がある。さらに、光学素子(機器)は高価であり、光損失が大きい上、独立した検出器、又は、光源、変調器等の光学機器を複数個隣接して配列することも困難である。   In addition, in any of the above conventional methods, in addition to the above problems, a plurality of optical elements (linear polarizer + wavelength plate, or linear polarizer + photoelastic modulator) are required outside. There is a limit to the miniaturization of devices and equipment. Furthermore, the optical element (device) is expensive, has a large light loss, and it is difficult to arrange a plurality of optical devices such as independent detectors or light sources and modulators adjacent to each other.

このような問題点を背景に、円偏光を直接発する光源として、磁性体と半導体とを組み合わせた円偏光半導体レーザが提案されている(特許文献1〜3、参照)。
特許文献1には、「活性領域を有するpn接合またはpin接合構造の半導体素子の上部又は下部又はその両方に磁性体電極を設け、該磁性体電極により活性領域にスピン偏極した電子又は正孔を注入するようにした光半導体素子」が開示されている。
Against the background of such problems, a circularly polarized semiconductor laser combining a magnetic material and a semiconductor has been proposed as a light source that directly emits circularly polarized light (see Patent Documents 1 to 3).
Patent Document 1 discloses that “electrons or holes spin-polarized in an active region by providing a magnetic electrode on the upper or lower portion of a semiconductor element having a pn junction or a pin junction structure having an active region, or both. An optical semiconductor device "is disclosed.

上記素子を用いる光学装置では、磁性体電極上に、導体コイル(外部光学機器)を重ね合わせ、該導体コイルに電流パルスを流して磁性体電極の磁化の方向を切り替え、右回り円偏光と左回り円偏光を切り替えている。   In the optical device using the above element, a conductor coil (external optical device) is overlaid on the magnetic electrode, and a current pulse is passed through the conductor coil to switch the magnetization direction of the magnetic electrode. The circularly polarized light is switched.

特許文献2及び3には、同様に、「ヘテロ接合を形成する半導体層に、磁性体層を通してスピン偏極電子を注入して、スピン偏極キャリアを再結合させて円偏光を発信する光半導体装置」が開示されている。   Similarly, in Patent Documents 2 and 3, “an optical semiconductor that emits circularly polarized light by injecting spin-polarized electrons into a semiconductor layer forming a heterojunction through a magnetic layer and recombining spin-polarized carriers” An apparatus "is disclosed.

この光半導体装置においては、外部磁場(外部機器)による磁性体の磁化反転によって円偏光を変調する。   In this optical semiconductor device, circularly polarized light is modulated by magnetization reversal of a magnetic material by an external magnetic field (external device).

しかし、上記いずれの円偏光発光半導体素子も、円偏光度の変調制御に外部磁場の変調を利用しているので、変調の高速化が困難である。   However, since any of the above circularly polarized light-emitting semiconductor elements uses modulation of an external magnetic field for modulation control of the degree of circular polarization, it is difficult to increase the modulation speed.

そこで、最近に至り、光半導体素子に直接電場を印加し円偏光状態を変調制御する試みが提案されている(非特許文献1及び2、参照)。しかし、この提案においても、円偏光度(右回り、左回り)を高速で変調制御するまでには至っていない。即ち、円偏光状態(左回り、右回り)を、外部電場により、直接、高速で変調制御する方法は提案されていない。   Therefore, recently, an attempt has been proposed to apply a direct electric field to an optical semiconductor element to modulate and control the circular polarization state (see Non-Patent Documents 1 and 2). However, even in this proposal, the degree of circular polarization (clockwise, counterclockwise) is not controlled at high speed. In other words, no method has been proposed for directly modulating the circular polarization state (left-handed or clockwise) with an external electric field at high speed.

特許第2708085号公報Japanese Patent No. 2770885 特表平9−501266号公報Japanese National Patent Publication No. 9-501266 米国特許5874749号明細書US Pat. No. 5,874,749 Y.Ohno et al., ”Electrical spin injection in a ferromagnetic semiconductor heterostructure”, Nature 402(1999)790.Y. Ohno et al., “Electrical spin injection in a conjugated semiconductor heterostructure”, Nature 402 (1999) 790. R.Fiederling et al., ”Injection and detection of a spin-polarized current in a light-emitting diode”, Nature 402(1999)787.R. Fiederling et al., “Injection and detection of a spin-polarized current in a light-emitting diode”, Nature 402 (1999) 787.

本発明は、円偏光状態を、外部電場により、直接、高速で制御する方法が提案されていないことに鑑み、外部印加電圧により、円偏光度(右回りと左回り)を高速で変調して、円偏光を出力できる円偏光発光半導体素子、及び、該素子の構造を共振器構造に構成した円偏光発光レーザ素子を提供することを目的とする。   In view of the fact that a method for directly controlling the circular polarization state with an external electric field at high speed has not been proposed, the present invention modulates the degree of circular polarization (clockwise and counterclockwise) at high speed with an externally applied voltage. An object of the present invention is to provide a circularly polarized light-emitting semiconductor element capable of outputting circularly polarized light, and a circularly polarized light-emitting laser element in which the structure of the element is configured as a resonator structure.

本発明者は、上記目的を達成するため鋭意研究した結果、強磁性半導体と非磁性半導体で構成した結合量子井戸構造において発現する、磁性イオンのスピンと半導体中のキャリアスピンとの交換相互作用を利用すると、外部印加電界を変調することにより、円偏光度を直接変調できることを見出した。   As a result of intensive studies to achieve the above object, the present inventor has shown the exchange interaction between the spin of magnetic ions and the carrier spin in the semiconductor, which is manifested in a coupled quantum well structure composed of a ferromagnetic semiconductor and a nonmagnetic semiconductor. When used, it was found that the degree of circular polarization can be directly modulated by modulating the externally applied electric field.

また、外部印加電界の変調を高速化することにより、円偏光度の変調を高速化できることも見出した。   It has also been found that the modulation of the circular polarization degree can be speeded up by speeding up the modulation of the externally applied electric field.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 非磁性半導体層からなる量子井戸構造と、該構造の障壁層に接して、バンドギャップが該障壁層のバンドギャップより小さい磁性半導体層を備え、該量子井戸構造と該磁性半導体層を隔てる上記障壁層が薄く、上記非磁性半導体の量子井戸層におけるキャリアの波動関数と、上記磁性半導体層におけるキャリアの波動関数が結合していて、外部印加電界を、上記磁性半導体層のアップスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧と、上記磁性半導体層のダウンスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧を選択して印加することで、上記磁性半導体層に蓄えられたアップスピン正孔又はダウンスピン正孔を、上記障壁層を通して上記量子井戸構造に選択的に注入し、その結果起きる正孔・電子再結合発光の円偏光度(右回り、左回り)を、直接変調できることを特徴とするp−i−n型円偏光変調発光半導体素子。 (1) and the quantum well structure consisting of non-magnetic semiconductor layer, in contact next to the barrier layer of the structure, a band gap with a small magnetic semiconductor layer than the band gap of the barrier layer, the quantum well structure and the magnetic semiconductor layer And the carrier wave function in the quantum well layer of the non-magnetic semiconductor and the carrier wave function in the magnetic semiconductor layer are combined, and an externally applied electric field is applied to the up spin of the magnetic semiconductor layer. The voltage whose energy level matches the energy level of the valence band of the non-magnetic semiconductor layer forming the quantum well structure and the non-spin energy level of the magnetic semiconductor layer are By selecting and applying a voltage that matches the energy level of the valence band of the magnetic semiconductor layer, the upspin hole or the Dow stored in the magnetic semiconductor layer is reduced. The Nsupin holes, selectively implanted into the quantum well structure through the barrier layer, the result occurs (around the right, left-handed) circular polarization hole-electron recombination light emission, wherein Rukoto and can direct modulation A p-i-n type circularly polarized light-emitting semiconductor element.

) 前記磁性半導体層が、非磁性半導体の障壁層で挟まれ量子井戸層を形成していることを特徴とする前記(1)に記載のp−i−n型円偏光変調発光半導体素子。 ( 2 ) The pin-type circularly polarized light-emitting semiconductor device according to (1 ), wherein the magnetic semiconductor layer is sandwiched between nonmagnetic semiconductor barrier layers to form a quantum well layer. .

) 前記磁性半導体層が、強磁性半導体層であることを特徴とする前記(1)又は(2)に記載のp−i−n型円偏光変調発光半導体素子。 ( 3 ) The pin type circularly polarized light-emitting semiconductor device according to (1) or (2 ), wherein the magnetic semiconductor layer is a ferromagnetic semiconductor layer.

) 前記非磁性半導体が、III−V族非磁性半導体又はII−VI族非磁性半導体であることを特徴とする前記(1)〜()のいずれかに記載のp−i−n型円偏光変調発光半導体素子。 ( 4 ) The pin according to any one of (1) to ( 3 ), wherein the nonmagnetic semiconductor is a group III-V nonmagnetic semiconductor or a group II-VI nonmagnetic semiconductor. Type circularly polarized light-emitting semiconductor element.

) 前記III−V族非磁性半導体が、A1-xInxAs1-ySby(A:Al、Gaのうちのいずれか1種又は2種)であることを特徴とする前記()に記載のp−i−n型円偏光変調発光半導体素子。 Above, wherein the a: (Al, either one or two of Ga A) (5) The group III-V magnetic semiconductor, A 1-x In x As 1-y Sb y The pin type circularly polarized light-modulating light-emitting semiconductor element according to ( 4 ).

) 前記II−VI族非磁性半導体が、AB(A:Cd、Zn、Hgのうちのいずれか1種又は2種以上、B:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする前記()に記載のp−i−n型円偏光変調発光半導体素子。 ( 6 ) The group II- VI nonmagnetic semiconductor is AB (A: any one or more of Cd, Zn, Hg, B: any one of O, S, Se, Te) Or a p-i-n type circularly polarized light-emitting semiconductor element as described in ( 4 ) above.

) 前記磁性半導体が、III−V族磁性半導体又はII−VI族磁性半導体であることを特徴とする前記(1)〜()のいずれかに記載のp−i−n型円偏光変調発光半導体素子。 ( 7 ) The pin type circularly polarized light according to any one of (1) to ( 6 ), wherein the magnetic semiconductor is a group III-V magnetic semiconductor or a group II-VI magnetic semiconductor. Modulated light emitting semiconductor element.

) 前記III−V族磁性半導体が、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)であることを特徴とする前記()に記載のp−i−n型円偏光変調発光半導体素子。 ( 8 ) The group III-V magnetic semiconductor is A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn , Fe, Co, or Ni, or one or more of C, N: P, As, or Sb), ( 7 ) The p-i-n type circularly polarized light-modulating light-emitting semiconductor element described in 1.

) 前記II−VI族磁性半導体が、A1-xxC(A:Cd、Hgのうちのいずれか1種又は2種、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする前記()に記載のp−i−n型円偏光変調発光半導体素子。 ( 9 ) The II-VI group magnetic semiconductor is A 1-x B x C (A: any one or two of Cd and Hg, B: Sc, Ti, V, Cr, Mn, Fe, Co, any one or two or more of Ni, C: O, S, Se, wherein characterized in that it is any one or more of Te) according to (7) p-i-n type circularly polarized light-emitting semiconductor element.

(1) 非磁性半導体層からなる量子井戸構造と、該構造の障壁層に接して、バンドギャップが該障壁層のバンドギャップより小さい磁性半導体層を備え、かつ、共振器構造を備え、該量子井戸構造と該磁性半導体層を隔てる上記障壁層が薄く、上記非磁性半導体の量子井戸層におけるキャリアの波動関数と、上記磁性半導体層におけるキャリアの波動関数が結合していて、外部印加電界を、上記磁性半導体層のアップスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧と、上記磁性半導体層のダウンスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧を選択して印加することで、上記磁性半導体層に蓄えられたアップスピン正孔又はダウンスピン正孔を、上記障壁層を通して上記量子井戸構造に選択的に注入し、その結果起きる正孔・電子再結合発光の円偏光度(右回り、左回り)を、直接変調できることを特徴とするp−i−n型円偏光変調発光レーザ素子。 (1 0) and the quantum well structure consisting of non-magnetic semiconductor layer, in contact next to the barrier layer of the structure, a band gap with a small magnetic semiconductor layer than the band gap of the barrier layer, and comprises a resonator structure, The barrier layer separating the quantum well structure and the magnetic semiconductor layer is thin, and the wave function of carriers in the quantum well layer of the nonmagnetic semiconductor and the wave function of carriers in the magnetic semiconductor layer are combined, and an externally applied electric field The voltage at which the up spin energy level of the magnetic semiconductor layer matches the energy level of the valence band of the nonmagnetic semiconductor layer forming the quantum well structure, and the down spin energy level of the magnetic semiconductor layer is By selecting and applying a voltage that matches the energy level of the valence band of the non-magnetic semiconductor layer having the quantum well structure, the magnetic semiconductor layer can be stored. Up-spin holes or down-spin holes are selectively injected into the quantum well structure through the barrier layer, and the resulting circular polarization degree (right-handed, left-handed) of the electron-recombination light emission, direct modulation can p-i-n-type circularly polarized light modulating light emitting laser element characterized Rukoto.

(1) 前記磁性半導体層が、非磁性半導体の障壁層で挟まれ量子井戸層を形成していることを特徴とする前記(10)に記載のp−i−n型円偏光変調発光レーザ素子。 (1 1) the magnetic semiconductor layer, p-i-n-type circularly polarized light modulating light emitting according to above, wherein the forming the quantum well layer sandwiched between barrier layers of non-magnetic semiconductor (1 0) Laser element.

(1) 前記磁性半導体層が、強磁性半導体層であることを特徴とする前記(1又は(11)に記載のp−i−n型円偏光変調発光レーザ素子。 (1 2 ) The pin circularly polarized light emitting laser element according to the above (1 0 ) or (11 ), wherein the magnetic semiconductor layer is a ferromagnetic semiconductor layer.

(1) 前記非磁性半導体が、III−V族非磁性半導体又はII−VI族非磁性半導体であることを特徴とする前記(1)〜(1)のいずれかに記載のp−i−n型円偏光変調発光レーザ素子。 (1 3 ) The p− according to any one of (1 0 ) to (1 2 ), wherein the nonmagnetic semiconductor is a group III-V nonmagnetic semiconductor or a group II-VI nonmagnetic semiconductor. In type circularly polarized light emitting laser element.

(1) 前記III−V族非磁性半導体が、A1-xInxAs1-ySby(A:Al、Gaのうちのいずれか1種又は2種)であることを特徴とする前記(1)に記載のp−i−n型円偏光変調発光レーザ素子。 (1 4) the group III-V magnetic semiconductor, A 1-x In x As 1-y Sb y: characterized in that it is a (A Al, either one or two of Ga) The p-i-n type circularly polarized light-emitting laser element according to (1 3 ).

(1) 前記II−VI族非磁性半導体が、AB(A:Cd、Zn、Hgのうちのいずれか1種又は2種以上、B:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする前記(1)に記載のp−i−n型円偏光変調発光レーザ素子。 (1 5 ) The group II-VI nonmagnetic semiconductor is AB (A: any one or more of Cd, Zn, Hg, B: any one of O, S, Se, Te) The p-i-n type circularly polarized light emitting laser element according to (1 3 ), wherein the p-in type circularly polarized light-emitting laser element is a seed or two or more kinds.

16) 前記磁性半導体が、III−V族磁性半導体又はII−VI族磁性半導体であることを特徴とする前記(1)〜(15)のいずれかに記載のp−i−n型円偏光変調発光レーザ素子。 ( 16 ) The pin circle according to any one of (1 0 ) to ( 15 ), wherein the magnetic semiconductor is a group III-V magnetic semiconductor or a group II-VI magnetic semiconductor. Polarization modulation light emitting laser element.

17) 前記III−V族磁性半導体が、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)であることを特徴とする前記(16)に記載のp−i−n型円偏光変調発光レーザ素子。 ( 17 ) The group III-V magnetic semiconductor is A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn , Fe, Co, or Ni, or one or more of C, N: P, As, or Sb), ( 16 ) The p-i-n type circularly polarized light-modulating light-emitting laser element described in 1.

18) 前記II−VI族磁性半導体が、A1-xxC(A:Cd、Hgのうちのいずれか1種又は2種、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする前記(16)に記載のp−i−n型円偏光変調発光レーザ素子。 ( 18 ) The II-VI group magnetic semiconductor is A 1-x B x C (A: any one or two of Cd and Hg, B: Sc, Ti, V, Cr, Mn, Fe, Co, any one or two or more of Ni, C: O, S, Se, wherein characterized in that it is any one or more of Te) according to (16) A p-i-n type circularly polarized light emitting laser element.

本発明の円偏光変調発光半導体素子及び円偏光変調発光レーザ素子において、円偏光度の変調周波数は、円偏光発光素子で約100MHzに達し、円偏光発光レーザ素子では約10GHzに達する。この変調周波数は、従来技術で可能な変調周波数(数kHz〜数十kHz)に比べ著しく高い。   In the circularly polarized light emitting semiconductor element and the circularly polarized light emitting laser element of the present invention, the modulation frequency of the degree of circular polarization reaches about 100 MHz for the circularly polarized light emitting element and about 10 GHz for the circularly polarized light emitting laser element. This modulation frequency is significantly higher than the modulation frequency (several kHz to several tens of kHz) possible with the prior art.

また、従来技術では、円偏光状態を形成するのに少なくとも2つの外部光学素子(直線偏光子+波長板、又は、直線偏光子+光弾性変調器)を必要とするが、本発明の上記素子では、そのような外部光学素子(機器)を必要とせずに、左右の偏光状態を形成することができるので、光学装置を小型化できるとともに、さらに、他の半導体と集積化することもできる。   Further, in the prior art, at least two external optical elements (linear polarizer + wavelength plate or linear polarizer + photoelastic modulator) are required to form a circular polarization state. Then, since the left and right polarization states can be formed without requiring such an external optical element (device), the optical device can be miniaturized and further integrated with another semiconductor.

1)まず、円偏光変調発光半導体素子について説明する。   1) First, a circularly polarized light-emitting light-emitting semiconductor element will be described.

(1)素子構造
図1(a)〜(d)に、本発明の円偏光変調発光半導体素子及び円偏光変調発光レーザ素子(本発明素子)において特徴とする4つの素子構造と、そのエネルギー準位構造を示す。
(1) Element Structure FIGS. 1A to 1D show four element structures characteristic of the circularly polarized light emitting semiconductor element and the circularly polarized light emitting laser element of the present invention (element of the present invention) and their energy levels. The coordinate structure is shown.

図1(a)及び(b)に示す素子構造は、バンドギャップの大きい非磁性半導体で形成する障壁層A、バンドギャップの小さい非磁性半導体で形成する量子井戸層B、バンドギャップの大きい非磁性半導体で形成する障壁層C、及び、バンドギャップが障壁層Cのバンドギャップより小さい磁性半導体で形成するバルク層D1(エネルギーは量子化されていない)から構成されている。 The element structure shown in FIGS. 1A and 1B includes a barrier layer A formed of a non-magnetic semiconductor having a large band gap, a quantum well layer B formed of a non-magnetic semiconductor having a small band gap, and a non-magnetic having a large band gap. It is composed of a barrier layer C formed of a semiconductor and a bulk layer D1 (energy is not quantized) formed of a magnetic semiconductor whose band gap is smaller than that of the barrier layer C.

また、図1(c)及び(d)に示す素子構造は、バンドギャップの大きい非磁性半導体で形成する障壁層A、バンドギャップの小さい非磁性半導体で形成する量子井戸層B、バンドギャップの大きい非磁性半導体で形成する障壁層C、バンドギャップが障壁層Cのバンドギャップより小さい磁性半導体で形成する量子井戸層D2(エネルギーは量子化されている)、及び、バンドギャップの大きい非磁性半導体で形成する障壁層Eから構成されている。 In addition, the element structure shown in FIGS. 1C and 1D includes a barrier layer A formed of a nonmagnetic semiconductor having a large band gap, a quantum well layer B formed of a nonmagnetic semiconductor having a small band gap, and a large band gap. A barrier layer C formed of a nonmagnetic semiconductor, a quantum well layer D2 (energy is quantized) formed of a magnetic semiconductor whose band gap is smaller than that of the barrier layer C , and a nonmagnetic semiconductor having a large band gap The barrier layer E is formed.

なお、図1中、F〜Lは、エネルギー準位を示す。   In FIG. 1, F to L indicate energy levels.

上記4つの素子構造においては、バンドギャップの大きい非磁性半導体で形成する障壁層A、Cとバンドギャップの小さい非磁性半導体で形成する量子井戸層Bから構成される量子井戸構造と、該構造の障壁層接して、バンドギャップが該障壁層のバンドギャップより小さい磁性半導体で形成する磁性半導体層D(バルク層D1又は量子井戸層D2)を有する点が共通する。この点が本発明素子の特徴である。 In the above four element structures, a quantum well structure including barrier layers A and C formed of a nonmagnetic semiconductor having a large band gap and a quantum well layer B formed of a nonmagnetic semiconductor having a small band gap; in contact next to the barrier layer, that it has a magnetic semiconductor layer D which band gap is formed in the lower magnetic semiconductor than the band gap of the barrier layer (bulk layer D1 or a quantum well layer D2) in common. This is a feature of the element of the present invention.

異なる点については、以下説明する。   Differences will be described below.

図1(a)及び(b)に示す素子構造において、磁性半導体層Dは、障壁層によって挟まれておらず、量子井戸層を形成しない。上記層Dは、バルク層D1として機能する。   In the element structure shown in FIGS. 1A and 1B, the magnetic semiconductor layer D is not sandwiched between barrier layers and does not form a quantum well layer. The layer D functions as the bulk layer D1.

本発明素子では、磁性半導体の量子化準位が、アップスピンとダウンスピンでエネルギー分裂を起こしていることを利用するが、上記のように、磁性半導体が量子化準位を形成していない場合には、価電子帯の底におけるエネルギーが、アップスピンとダウンスピンでエネルギーが異なる(図中、H、I、参照)ことを利用する。   The element of the present invention utilizes the fact that the quantum level of the magnetic semiconductor causes energy splitting by up-spin and down-spin, but as described above, when the magnetic semiconductor does not form a quantization level In this case, it is used that the energy at the bottom of the valence band differs between upspin and downspin (see H and I in the figure).

図1(c)及び(d)に示す素子構造においては、磁性半導体層Dは、障壁層C及びEによって挟まれて、量子井戸層D2を形成する。そして、量子井戸層D2内では、量子化準位(図中、K、L、参照)が形成されている。即ち、磁性半導体は、量子井戸として機能する。   In the element structure shown in FIGS. 1C and 1D, the magnetic semiconductor layer D is sandwiched between barrier layers C and E to form a quantum well layer D2. In the quantum well layer D2, quantization levels (see K and L in the figure) are formed. That is, the magnetic semiconductor functions as a quantum well.

このように、磁性半導体が量子化準位を形成する場合は、量子化準位の分裂(図中、K、L、参照)を利用する。   Thus, when a magnetic semiconductor forms a quantized level, the splitting of the quantized level (see K and L in the figure) is used.

また、図1(a)及び(c)に示す素子構造においては、非磁性半導体で形成する量子井戸層Bと磁性半導体層D(バルク層D1又は量子井戸層D2)とを隔てる障壁層C(バンドギャップの大きい非磁性半導体からなる)が、図1(b)及び(d)に示す素子構造における障壁層Cに比べて、厚く構成されている。   In the element structure shown in FIGS. 1A and 1C, a barrier layer C (which separates a quantum well layer B formed of a nonmagnetic semiconductor and a magnetic semiconductor layer D (bulk layer D1 or quantum well layer D2) from each other. The non-magnetic semiconductor having a large band gap is formed thicker than the barrier layer C in the element structure shown in FIGS.

上記障壁層Cの層厚が厚い場合には、非磁性半導体で形成する量子井戸層と磁性半導体層において波動関数の重なり又は結合がない。一方、上記障壁層Cの層厚が薄い場合には、上記両層において波動関数は結合している。   When the barrier layer C is thick, there is no overlapping or coupling of wave functions in the quantum well layer and the magnetic semiconductor layer formed of a nonmagnetic semiconductor. On the other hand, when the thickness of the barrier layer C is thin, the wave functions are coupled in both layers.

(2)素子構造の動作原理
ここで、図1(d)に示す素子構造を例にとり、本発明素子の動作原理を説明する。図2(a)に、上記素子構造をとる本発明素子の一例(本発明素子例)を示し、図2(b)及び(c)に、そのエネルギー準位構造を示す。
(2) Operation Principle of Element Structure Here, the operation principle of the element of the present invention will be described by taking the element structure shown in FIG. FIG. 2A shows an example of the element of the present invention having the above element structure (an example of the element of the present invention), and FIGS. 2B and 2C show the energy level structure.

本発明素子例は、基板(n型)Qの上に、バッファ層(n型)Rを介し、図1(d)に示す素子構造を構成するA〜E層が積層され、さらに、非磁性半導体(p型)で形成する障壁層Eの上に、コンタクト層Sが積層されている。そして、上記A〜E層には、バッファ層(n型)Rとコンタクト層Sを介し、電圧Vを印加できるように回路構成する。   In the element example of the present invention, layers A to E constituting the element structure shown in FIG. 1D are laminated on a substrate (n-type) Q via a buffer layer (n-type) R, and further non-magnetic. A contact layer S is stacked on the barrier layer E formed of a semiconductor (p-type). The A to E layers are configured so that a voltage V can be applied via the buffer layer (n-type) R and the contact layer S.

p型強磁性半導体からなる量子井戸層Dにおいては、磁性イオンのスピンと半導体中のキャリアスピンとの交換相互作用により、価電子帯が、上向きスピンと下向きスピン間にエネルギー分裂を起こしている(図中、I、J、参照)。   In the quantum well layer D made of a p-type ferromagnetic semiconductor, the valence band undergoes energy splitting between the upward spin and the downward spin due to the exchange interaction between the spin of the magnetic ion and the carrier spin in the semiconductor ( (See I and J in the figure).

本発明素子例は、量子井戸層Dを構成する強磁性半導体のキューリ温度以下で使用する。キューリ温度は、これまでの報告によれば、150K程度及びそれ以下であるが、近年、さらに高いキューリ温度(例えば、室温以上)を持つ強磁性半導体が報告されている。本発明素子で使用する強磁性半導体は特定のものに限定されないので、本発明素子の動作は、必ずしも低温環境下だけに制限されない。   The element example of the present invention is used below the Curie temperature of the ferromagnetic semiconductor constituting the quantum well layer D. According to previous reports, the Curie temperature is about 150 K or less, but in recent years, a ferromagnetic semiconductor having a higher Curie temperature (for example, room temperature or higher) has been reported. Since the ferromagnetic semiconductor used in the element of the present invention is not limited to a specific one, the operation of the element of the present invention is not necessarily limited only to a low temperature environment.

なお、強磁性半導体は、キューリ温度以下で自発磁化を有しているので、本発明素子の動作において、該素子に外部磁場を印加する必要はないが、より大きな円偏光度を得るために、動作時(又は動作前)に、外部磁場を適宜印加して着磁してもよい。   In addition, since the ferromagnetic semiconductor has spontaneous magnetization below the Curie temperature, it is not necessary to apply an external magnetic field to the element in the operation of the element of the present invention, but in order to obtain a larger degree of circular polarization, During operation (or before operation), an external magnetic field may be applied as appropriate for magnetization.

図2に示す本発明素子例では、量子井戸層Dは、量子井戸層Bに比べ、層厚が薄くなっており、量子井戸層Dにおける量子化準位(伝導帯L、価電子帯I、J)は、量子井戸層Bにおける量子化準位(伝導帯M、価電子帯K)より高くなっている。   In the element example of the present invention shown in FIG. 2, the quantum well layer D has a smaller thickness than the quantum well layer B, and the quantization level (conduction band L, valence band I, J) is higher than the quantization level (conduction band M, valence band K) in the quantum well layer B.

量子化準位が上記関係にある素子に、順方向電圧Vを印加すると、n型領域にある電子は、図2(a)中、A→Eの方向へ移動し、p型領域にある正孔は、E→Aの方向へ移動するが、電子は、中央の障壁層Cによりブロックされるので、i型非磁性半導体で形成する量子井戸層Bに蓄積され、一方、正孔は、p型強磁性半導体で形成する量子井戸層Dに蓄積される。   When a forward voltage V is applied to the element whose quantization level has the above relationship, electrons in the n-type region move in the direction of A → E in FIG. The hole moves in the direction of E → A, but the electrons are blocked by the central barrier layer C, so that they are accumulated in the quantum well layer B formed of an i-type nonmagnetic semiconductor, while the holes are p Is accumulated in the quantum well layer D formed of the type ferromagnetic semiconductor.

そして、上記素子に、量子井戸層Bの量子化準位Kと、量子井戸層Dにおけるアップスピンをもつ正孔の量子化準位Iが一致するような電圧(V=Va)を印加すると、アップスピンを持つ正孔のみが、共鳴トンネル現象により量子井戸層Bに移動し、量子井戸層Bで再結合し、発光する(図2(b)、参照)。   Then, when a voltage (V = Va) is applied to the above element so that the quantization level K of the quantum well layer B matches the quantization level I of holes having an up spin in the quantum well layer D, Only holes having an up spin move to the quantum well layer B due to the resonant tunneling phenomenon, recombine in the quantum well layer B, and emit light (see FIG. 2B).

この時、光学選択則により、アップスピンを持つ電子とアップスピンを持つ正孔のみが再結合し、左回り円偏光(σ-)の発光が観測される。 At this time, according to the optical selection rule, only electrons with up-spin and holes with up-spin are recombined, and emission of counterclockwise circularly polarized light (σ ) is observed.

さらに、量子井戸層Bの量子化準位Kと、量子井戸層Dのダウンスピンを持つ正孔に対する量子化準位Jが一致するような電圧(V=Vb)を印加すると、ダウンスピンを持つ正孔のみが共鳴トンネル現象により、量子井戸層Bに注入され、再結合し、発光する(図2(c)、参照)。   Furthermore, when a voltage (V = Vb) is applied so that the quantization level K of the quantum well layer B and the quantization level J for holes having a down spin of the quantum well layer D coincide with each other, the down spin is obtained. Only holes are injected into the quantum well layer B by the resonant tunneling phenomenon, recombine, and emit light (see FIG. 2C).

この時、光学選択則により、ダウンスピンを持つ電子とダウンスピンを持つ正孔のみが再結合し、右回り円偏光(σ+)の発光が観測される。 At this time, according to the optical selection rule, only electrons with down spin and holes with down spin recombine, and light emission of clockwise circularly polarized light (σ + ) is observed.

以上の原理により、電圧VaとVbの間で印加電圧を、所定の周波数で変調することにより、右回り円偏光(σ+)と左回り円偏光(σ-)を、上記周波数に従って変調できる。この点が、本発明素子における特徴的動作である。 Based on the above principle, by modulating the applied voltage between the voltages Va and Vb at a predetermined frequency, clockwise circularly polarized light (σ + ) and counterclockwise circularly polarized light (σ ) can be modulated according to the frequency. This is a characteristic operation of the element of the present invention.

(3)ここで、本発明素子で用いる半導体の材料について説明する。   (3) Here, semiconductor materials used in the element of the present invention will be described.

p型又はn型の非磁性半導体は、III−V族非磁性半導体又はII−VI族非磁性半導体が好ましい。特に、III−V族非磁性半導体としては、A1-xInxAs1-ySby(A:Al、Gaのうちのいずれか1種又は2種)が好ましく、また、II−VI族非磁性半導体としては、AB(A:Cd、Zn、Hgのうちのいずれか1種又は2種以上、B:O、S、Se、Teのうちのいずれか1種又は2種以上)が好ましい。 The p-type or n-type nonmagnetic semiconductor is preferably a group III-V nonmagnetic semiconductor or a group II-VI nonmagnetic semiconductor. In particular, as the group III-V magnetic semiconductor, A 1-x In x As 1-y Sb y (A: Al, either one or two of Ga) is preferred, and, II -VI Group As the nonmagnetic semiconductor, AB (A: any one or more of Cd, Zn, Hg, B: any one or more of O, S, Se, Te) is preferable. .

p型磁性半導体としては、III−V族磁性半導体が好ましい。特に、III−V族磁性半導体としては、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)が好ましい。 As the p-type magnetic semiconductor, a III-V magnetic semiconductor is preferable. In particular, III-V group magnetic semiconductors include A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn, Any one or more of Fe, Co, and Ni, and any one or more of C: N, P, As, and Sb) are preferable.

また、i型磁性半導体は、III−V族磁性半導体又はII−VI族磁性半導体が好ましい。   Further, the i-type magnetic semiconductor is preferably a group III-V magnetic semiconductor or a group II-VI magnetic semiconductor.

特に、III−V族磁性半導体としては、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)が好ましい。 In particular, III-V group magnetic semiconductors include A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn, Any one or more of Fe, Co, and Ni, and any one or more of C: N, P, As, and Sb) are preferable.

また、II−VI族磁性半導体としては、A1-xxC(A:Cd、Hgのうちのいずれか1種又は2種、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:O、S、Se、Teのうちのいずれか1種又は2種以上)が好ましい。 In addition, as the II-VI group magnetic semiconductor, A 1-x B x C (A: any one or two of Cd and Hg, B: Sc, Ti, V, Cr, Mn, Fe, Co , Any one or more of Ni, and any one or more of C: O, S, Se, and Te) are preferable.

2)次に、円偏光変調発光レーザ素子について説明する。   2) Next, a circularly polarized light emitting laser element will be described.

円偏光変調発光レーザ素子の素子構造は、円偏光変調発光半導体素子の素子構造と基本的に同じであり、該構造を共振器構造にすることで、レーザ発光を実現することができる。   The element structure of the circularly polarized light emitting laser element is basically the same as the element structure of the circularly polarized light emitting semiconductor element, and laser emission can be realized by making the structure into a resonator structure.

レーザ発光は、面発光型及びストライプ発光型のどちらも可能であるが、より大きな円偏光度を持つレーザを発光するためには、素子構造を、強磁性半導体が面内磁化を有している場合(例えば、(Ga、Mn)As)はストライプ発光型の素子構造(図3(a)、(b)、参照)とし、強磁性半導体が垂直磁化を有している場合(例えば、(Ga、Mn)As:N)は、面発光型の素子構造(図4(a)〜(c)、参照)とするのが好ましい。   The laser emission can be either a surface emission type or a stripe emission type, but in order to emit a laser having a larger degree of circular polarization, the element structure has a ferromagnetic semiconductor with in-plane magnetization. The case (for example, (Ga, Mn) As) is a stripe light emitting element structure (see FIGS. 3A and 3B), and the case where the ferromagnetic semiconductor has perpendicular magnetization (for example, (Ga , Mn) As: N) is preferably a surface-emitting element structure (see FIGS. 4A to 4C).

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done.

本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

また、応用例を幾つか示したが、本発明素子の応用は、これら応用例に限定されるものではない。本発明は、その特徴(素子構造及び動作原理)を利用する限りにおいて、種々の応用が可能なものである。   Although some application examples are shown, the application of the element of the present invention is not limited to these application examples. The present invention can be applied in various ways as long as the characteristics (element structure and operation principle) are utilized.

(実施例1)円偏光変調発光半導体素子の作製
A.成膜
分子線エピタキシー法(MBE法)を用い、Siドープn型GaAsの上に、下記の手順に従って成膜を行った。
Example 1 Fabrication of Circularly Polarized Modulated Light-Emitting Semiconductor Element Film Formation A film was formed on Si-doped n-type GaAs according to the following procedure using molecular beam epitaxy (MBE).

1.基板温度600℃で、バッファ層として、厚さ2μmのSnドープn−GaAs層(キャリア濃度5×1018/cm3)を成膜。 1. An Sn-doped n-GaAs layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 2 μm was formed as a buffer layer at a substrate temperature of 600 ° C.

2.基板温度600℃で、厚さ50nmのSnドープn−Al0.3Ga0.7As層(キャリア濃度5×1018/cm3)を成膜(障壁層)。 2. An Sn-doped n-Al 0.3 Ga 0.7 As layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 50 nm was formed (barrier layer) at a substrate temperature of 600 ° C.

3.基板温度600℃で、厚さ4nmのノンドープGaAs層を成膜(量子井戸層)。   3. A 4 nm thick non-doped GaAs layer is formed at a substrate temperature of 600 ° C. (quantum well layer).

4.基板温度600℃で、厚さ5nmのノンドープAl0.3Ga0.7As層を成膜(障壁層)。 4). A non-doped Al 0.3 Ga 0.7 As layer having a thickness of 5 nm was formed at a substrate temperature of 600 ° C. (barrier layer).

5.基板温度210℃で、厚さ5nmの強磁性半導体(p型)の(Ga、Mn)As層(Mn濃度4%、キャリア濃度5×1019/cm3)を成膜(量子井戸層)。 5). A ferromagnetic semiconductor (p-type) (Ga, Mn) As layer (Mn concentration 4%, carrier concentration 5 × 10 19 / cm 3 ) with a substrate temperature of 210 ° C. is formed (quantum well layer).

6.基板温度210℃で、厚さ20nmのBeドープp−AlGaAs層(キャリア濃度5×1018/cm3)を成膜(障壁層)。 6). A Be-doped p-AlGaAs layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 20 nm was formed (barrier layer) at a substrate temperature of 210 ° C.

7.基板温度210℃で、厚さ100nmのBeドープp−GaAs層(キャリア濃度5×1019/cm3)を成膜(コンタクト層)。 7). A Be-doped p-GaAs layer (carrier concentration 5 × 10 19 / cm 3 ) having a thickness of 100 nm was formed at a substrate temperature of 210 ° C. (contact layer).

B.加工
MBE法で作製した上記素子構造を、(110)面をへき開面としてへき開した。素子長(L)は300μm、幅(W)は200μmである。上部に、p電極としてTi(5nm)/Au(50nm)を蒸着した。蒸着後、n−GaAs基板の裏面をICホルダの銅電極上に、Inでマウントした。さらに、p電極を、金線でICホルダの端子に接続した。
B. Processing The element structure produced by the MBE method was cleaved with the (110) plane as a cleavage plane. The element length (L) is 300 μm, and the width (W) is 200 μm. On top, Ti (5 nm) / Au (50 nm) was deposited as a p-electrode. After vapor deposition, the back surface of the n-GaAs substrate was mounted with In on the copper electrode of the IC holder. Furthermore, the p-electrode was connected to the terminal of the IC holder with a gold wire.

C.円偏光出力の検出
(C-1)上記素子の強磁性半導体(Ga、Mn)Asのキューリ温度は100Kであるので、該素子を液体窒素温度(77K)に冷却した。強磁性半導体は、キューリ温度以下で自発磁化を有している(容易化軸は面内)ので、素子に外部磁場を印加する必要はないが、より大きな円偏光度を得るために、動作時(又は動作前)に、磁場印加用の永久磁石を置いて、0.55Tesla程度の磁場を印加して着磁してもよい。
C. Detection of circularly polarized light output (C-1) Since the Curie temperature of the ferromagnetic semiconductor (Ga, Mn) As of the element was 100K, the element was cooled to a liquid nitrogen temperature (77K). Ferromagnetic semiconductors have spontaneous magnetization below the Curie temperature (the easy axis is in-plane), so there is no need to apply an external magnetic field to the device, but in order to obtain a greater degree of circular polarization, (Or before the operation), a permanent magnet for applying a magnetic field may be placed and magnetized by applying a magnetic field of about 0.55 Tesla.

図5(a)に、電流・電圧特性を、また、図5(b)に、出力光強度の印加電圧依存性を示す。印加電圧Va=0.7V、及び、Vb=0.71Vのそれぞれにおいて、極値が現れていることが解る。出力光の波長を、光スペクトラムアナライザーを用いて測定した結果、該波長は770nmであった。   FIG. 5A shows the current / voltage characteristics, and FIG. 5B shows the applied voltage dependence of the output light intensity. It can be seen that extreme values appear at each of the applied voltages Va = 0.7V and Vb = 0.71V. As a result of measuring the wavelength of the output light using an optical spectrum analyzer, the wavelength was 770 nm.

(C-2)次に、出力光の円偏光度の測定を行った。図6に、円偏光高速変調発光半導体素子からの出力光の円偏光度を検出するために構成した機器配列を示す。   (C-2) Next, the degree of circular polarization of the output light was measured. FIG. 6 shows an apparatus arrangement configured to detect the degree of circular polarization of output light from a circularly polarized high-speed modulation light emitting semiconductor element.

出力光を、光学遅延軸を水平面に対し45°傾けた光弾性変調器に通した後(λ/4遅延)、水平面に対し偏光角0に設定したグランレーザプリズム(直線偏光子)を通し、直線偏光とした後の光強度をホトダイオードで受光した。   The output light is passed through a photoelastic modulator whose optical delay axis is inclined by 45 ° with respect to the horizontal plane (λ / 4 delay), and then passed through a Glan laser prism (linear polarizer) set at a polarization angle 0 with respect to the horizontal plane. The light intensity after linear polarization was received by a photodiode.

光弾性変調器は、印加電圧を調整して、偏光角0の直線偏光が入射したときに、右回り・左回りの円偏光が50kHzの周波数で交互に生じるように調整した。   The photoelastic modulator was adjusted by adjusting the applied voltage so that when linearly polarized light with a polarization angle of 0 was incident, clockwise and counterclockwise circularly polarized light was alternately generated at a frequency of 50 kHz.

ホトダイオードから生じた光電流は、電流・電圧増幅器(増幅率106V/A)により電圧信号に変換・増幅した後、デジタルストレージオシロスコープ(入力インピーダンス100MΩ)に入力した。 The photocurrent generated from the photodiode was converted into a voltage signal and amplified by a current / voltage amplifier (amplification factor 10 6 V / A) and then input to a digital storage oscilloscope (input impedance 100 MΩ).

図7に、得られた出力光の波形を示す。円偏光度Pは、I+、I-を、それぞれ右回り円偏光、左回り円偏光の強度として、下記の式によって定義される。 FIG. 7 shows the waveform of the obtained output light. The degree of circular polarization P is defined by the following equation, where I + and I are the intensity of clockwise circularly polarized light and counterclockwise circularly polarized light, respectively.

P=(I+−I-)/(I++I-
図5(c)に、円偏光度の印加電圧依存性を示す。円偏光度Pは、最大で20%である。本素子を用いて、電流値を一定にし、電圧をVaとVbの間で変調することにより、左回り円偏光と右回り円偏光の間で変調を行った。本素子において、円偏光度の最大変調周波数は、約100MHzであった。
P = (I + −I ) / (I + + I )
FIG. 5C shows the applied voltage dependence of the degree of circular polarization. The circular polarization degree P is 20% at the maximum. Using this element, modulation was performed between counterclockwise circularly polarized light and clockwise circularly polarized light by making the current value constant and modulating the voltage between Va and Vb. In this device, the maximum modulation frequency of the degree of circular polarization was about 100 MHz.

(実施例2)円偏光変調発光レーザ素子の作製
A.成膜
分子線エピタキシー法(MBE法)を用い、Siドープn型GaAsの上に、下記の手順に従って成膜を行った。
Example 2 Fabrication of Circularly Polarized Modulated Light-Emitting Laser Element Film Formation A film was formed on Si-doped n-type GaAs according to the following procedure using molecular beam epitaxy (MBE).

1.基板温度600℃で、バッファ層として厚さ2μmのSnドープn−GaAs層(キャリア濃度5×1018/cm3)を成膜。 1. A Sn-doped n-GaAs layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 2 μm was formed as a buffer layer at a substrate temperature of 600 ° C.

2.基板温度600℃で、厚さ50nmのSnドープn−Al0.3Ga0.7As層(キャリア濃度5×1018/cm3)を成膜。 2. An Sn-doped n-Al 0.3 Ga 0.7 As layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 50 nm was formed at a substrate temperature of 600 ° C.

3.基板温度600℃で、厚さ5nmのノンドープGaAs層を成膜。   3. A non-doped GaAs layer having a thickness of 5 nm is formed at a substrate temperature of 600 ° C.

4.基板温度600℃で、厚さ5nmのノンドープAl0.3Ga0.7Asを成膜。 4). A non-doped Al 0.3 Ga 0.7 As film having a thickness of 5 nm was formed at a substrate temperature of 600 ° C.

5.基板温度210℃で、厚さ5nmの強磁性半導体(p型)の(Ga、Mn)As層(キャリア濃度5×1019/cm3)を成膜。 5). A ferromagnetic semiconductor (p-type) (Ga, Mn) As layer (carrier concentration 5 × 10 19 / cm 3 ) having a thickness of 5 nm was formed at a substrate temperature of 210 ° C.

6.基板温度210℃で、厚さ20nmのBeドープp−Al0.3Ga0.7As層(キャリア濃度5×1018/cm3)を成膜。 6). A Be-doped p-Al 0.3 Ga 0.7 As layer (carrier concentration 5 × 10 18 / cm 3 ) having a thickness of 20 nm was formed at a substrate temperature of 210 ° C.

7.基板温度210℃で、厚さ100nmのBeドープp−GaAs(キャリア濃度1×1019/cm3)を成膜。 7). A 100-nm-thick Be-doped p-GaAs (carrier concentration 1 × 10 19 / cm 3 ) was formed at a substrate temperature of 210 ° C.

B.加工
MBE法で作製した上記素子構造の上部を、ホトリソグラフィで加工し、Al0.3Ga0.7Asをストライプ状に残した。ストライプ幅(S)は10μmとした(図3(b)、参照)。その後、同じくホトリソグラフィを用いて、Al0.3Ga0.7As上に、p電極として、Ti(5nm)/Au(20nm)を蒸着した。
B. Processing The upper part of the element structure manufactured by the MBE method was processed by photolithography to leave Al 0.3 Ga 0.7 As in a stripe shape. The stripe width (S) was 10 μm (see FIG. 3B). Thereafter, likewise using photolithography, on Al 0.3 Ga 0.7 As, a p-electrode was deposited Ti (5nm) / Au (20nm ).

次いで、素子構造を、GaAsの(110)へき開面に沿ってへき開した。素子長(L)は300μm、幅(W)は200μmである。へき開面での反射率を上げるため、へき開面に、ZnSとMgF2を交互に積層した誘電体多層膜を蒸着した。本素子における発信波長770nmでの誘電体多層膜の反射率は約98%である。 The device structure was then cleaved along the (110) cleaved surface of GaAs. The element length (L) is 300 μm, and the width (W) is 200 μm. In order to increase the reflectance at the cleavage plane, a dielectric multilayer film in which ZnS and MgF 2 were alternately laminated was deposited on the cleavage plane. In this device, the reflectance of the dielectric multilayer film at a transmission wavelength of 770 nm is about 98%.

p電極を、金線でICホルダの端子に接続した。また、上記素子構造の裏面を、ICホルダの銅電極(n電極)上に、Inでマウントし、さらに、n電極を、金線でICソケットの端子に接続した。   The p-electrode was connected to the terminal of the IC holder with a gold wire. Moreover, the back surface of the element structure was mounted with In on the copper electrode (n electrode) of the IC holder, and the n electrode was connected to the terminal of the IC socket with a gold wire.

C.円偏光出力の検出
図8に、出力レーザ光の波長を光スペクトラムアナライザーにより測定した結果を示す。順方向印加電圧0.70Vの時、及び、0.71Vの時に、レーザ発振が起きた。
C. Detection of Circularly Polarized Output FIG. 8 shows the result of measuring the wavelength of the output laser beam with an optical spectrum analyzer. Laser oscillation occurred when the forward applied voltage was 0.70V and 0.71V.

図9に、印加電圧0.70V及び0.71Vの時のレーザ出力の順電流依存性を示す。印加電流を一定にして印加電圧を変調することにより、左回り・右回りの両円偏光度を変調することができた。最大変調周波数は約10GHzであった。   FIG. 9 shows the forward current dependence of the laser output when the applied voltages are 0.70V and 0.71V. By modulating the applied voltage with a constant applied current, it was possible to modulate both the counterclockwise and right-handed circular polarization degrees. The maximum modulation frequency was about 10 GHz.

以上、(実施例1)及び(実施例2)で説明したように、本発明素子は、円偏光変調光半導体素子として、実際に機能するものである。したがって、本発明素子の応用例として種々考えられるが、典型的な応用例を、以下に説明する。   As described above in (Example 1) and (Example 2), the element of the present invention actually functions as a circularly polarized light modulation optical semiconductor element. Therefore, various application examples of the element of the present invention can be considered, and typical application examples will be described below.

(応用例1)光学異性体の存在比率の測定装置
本発明素子を用いて、図10に示すような上記測定装置を構成できる。
Application Example 1 Apparatus for Measuring the Abundance Ratio of Optical Isomers Using the element of the present invention, the above-described measuring apparatus as shown in FIG. 10 can be configured.

光学異性体は、旋光度以外の物理的性質、化学的性質が同じであるため、光学異性体の存在比率を測定するためには、右回り・左回りの円偏光に対する吸収率の差を検出する必要がある。この時、上記吸収率の差を高感度で測定するためには、出力光の円偏光度を高速変調し、光学異性体を透過した光強度の変調成分を検出する方法が最も有用である(位相検波法)。   Since optical isomers have the same physical and chemical properties other than optical rotation, in order to measure the abundance ratio of optical isomers, the difference in absorbance with respect to clockwise and counterclockwise circularly polarized light is detected. There is a need to. At this time, in order to measure the difference in the absorptance with high sensitivity, the method of detecting the modulation component of the light intensity transmitted through the optical isomer by high-speed modulation of the circular polarization degree of the output light is most useful ( Phase detection method).

本発明素子は、出力光の偏光度を、外部印加電圧の変調により高速で変調できるので、位相検波法に従う測定装置に応用できる。   The element of the present invention can be applied to a measuring device according to the phase detection method because the degree of polarization of output light can be modulated at high speed by modulation of an externally applied voltage.

図10に、L−グルタミン酸水溶液の光学異性体の存在比率を測定する測定装置の一構成を示す。   In FIG. 10, one structure of the measuring apparatus which measures the abundance ratio of the optical isomer of L-glutamic acid aqueous solution is shown.

左回り円偏光と右回り円偏光を、被測定試料のL−グルタミン酸水溶液に照射する。L−グルタミン酸は、光学的異性体で、左回り円偏光を選択的に強く吸収する。   The L-glutamic acid aqueous solution of the sample to be measured is irradiated with counterclockwise circularly polarized light and clockwise circularly polarized light. L-glutamic acid is an optical isomer and selectively absorbs left-handed circularly polarized light.

被測定試料を通過した円偏光をホトダイオードに入力し、出力電流を電流/電圧変換増幅器で増幅し、デジタルオシロスコープに入力する。   Circularly polarized light that has passed through the sample to be measured is input to a photodiode, the output current is amplified by a current / voltage conversion amplifier, and input to a digital oscilloscope.

被測定試料のL−グルタミン酸水溶液は、100mdegの円二色性を示すことが、別の測定で解かっているので、パーソナルコンピュータ(図示なし)で、被測定試料の円二色性を計算して一致性を確認する。一計算例で、約100degの円二色性を得た。このように、本発明素子を用いることにより、光学異性の円二色性を高精度で測定できる。   Since the L-glutamic acid aqueous solution of the sample to be measured shows circular dichroism of 100 mdeg by another measurement, the circular dichroism of the sample to be measured is calculated by a personal computer (not shown). Check for consistency. In one calculation example, a circular dichroism of about 100 deg was obtained. Thus, by using the element of the present invention, the circular dichroism of optical isomerism can be measured with high accuracy.

(応用例2)エリプソメトリ装置
本発明素子を、エリプソメトリ装置に応用することができる(図11、参照)。エリプソメトリ装置では、光源からの光を直線偏光子により直線偏光して、試料に、斜めに入射し、その反射光の楕円率を測定するが、この方法では、少なくとも、三つの外部光学素子(機器)を必要とする(図11(a)、参照)ので、装置全体の小型化には限界がある。
Application Example 2 Ellipsometry Device The element of the present invention can be applied to an ellipsometry device (see FIG. 11). In the ellipsometry apparatus, light from a light source is linearly polarized by a linear polarizer, incident on a sample obliquely, and the ellipticity of the reflected light is measured. In this method, at least three external optical elements ( Device) (see FIG. 11A), there is a limit to downsizing the entire apparatus.

しかし、本発明素子を用いると、図11(b)に示すように、必要な光学素子(機器)は、直線偏光子一つであるので、装置全体を大幅に小型化できる。   However, when the element of the present invention is used, as shown in FIG. 11B, the required optical element (equipment) is one linear polarizer, so that the entire apparatus can be greatly reduced in size.

(応用例3)高速光通信用光源
既存の光通信網では、光強度の強弱を信号の0、1に対応させて通信を行う。通信の多重化を実現するため、偏光の自由度を用いることが考えられるが、従来技術では、右回り・左回りの円偏光度を、外部の光学素子(機器)で制御しなければならず、光源の小型化、さらに、高速化も困難である。
(Application example 3) Light source for high-speed optical communication In an existing optical communication network, communication is performed with the intensity of light corresponding to 0 or 1 of a signal. In order to realize communication multiplexing, it is conceivable to use the degree of freedom of polarization. However, in the conventional technology, the degree of clockwise and counterclockwise circular polarization must be controlled by an external optical element (equipment). It is difficult to reduce the size of the light source and to increase the speed.

本発明素子は、外部電圧を高速で変調することにより、右回り円偏光、左回り円偏光を高速で変調できるので、本発明素子を光源として用いることにより、既存の光通信網において、多重化高速通信を達成できる。   Since the present invention element can modulate right-handed circularly polarized light and left-handed circularly polarized light at high speed by modulating the external voltage at high speed, it can be multiplexed in an existing optical communication network by using the present invention element as a light source. High-speed communication can be achieved.

(応用例4)ナノ構造磁気メモリの磁区構造の観察
左回り円偏光と右回り円偏光では、試料表面の垂直磁化の方向に対応して反射率が異なるので、磁気ランダムアクセスメモリ(MRAM)などの表面の磁区構造を直接観察するための小型光源として用いることができる。
(Application Example 4) Observation of magnetic domain structure of nanostructured magnetic memory Since the reflectivity differs between the left-handed circularly polarized light and the right-handed circularly polarized light according to the direction of the perpendicular magnetization of the sample surface, magnetic random access memory (MRAM), etc. It can be used as a small light source for directly observing the magnetic domain structure on the surface of the substrate.

本発明によれば、外部印加電圧により、右回り・左回りの円偏光度を、高速で制御することがきる。即ち、外部印加電圧の周波数を変調して、出力光の偏光度を高速で変調制御することができる。   According to the present invention, the degree of clockwise and counterclockwise circular polarization can be controlled at high speed by an externally applied voltage. That is, the frequency of the externally applied voltage can be modulated and the degree of polarization of the output light can be modulated and controlled at high speed.

また、本発明は、外部の光学素子(機器)を必要としないので、光学装置を小型化できるとともに、さらに、半導体と集積化することもできる。   Further, since the present invention does not require an external optical element (device), the optical device can be miniaturized and can be further integrated with a semiconductor.

したがって、本発明は、光学技術だけでなく、生産技術、情報通信技術、スペクトロスコピー、ナノテクノロジー、量子操作技術を基盤とする先端技術産業における利用可能性が極めて大きいものである。   Therefore, the present invention has extremely high applicability not only in optical technology but also in advanced technology industries based on production technology, information communication technology, spectroscopy, nanotechnology, and quantum manipulation technology.

本発明素子の素子構造と、そのエネルギー準位構造を示す図である。It is a figure which shows the element structure of this invention element, and its energy level structure. 図1(d)に示す素子構造を基礎とする本発明素子例を示す図である。(a)は素子構造を示し、(b)及び(c)は動作原理を示す。)は素子構造を示し、(b)及び(c)は動作原理を示す。It is a figure which shows the example of this invention element based on the element structure shown in FIG.1 (d). (A) shows the element structure, and (b) and (c) show the principle of operation. ) Shows the element structure, and (b) and (c) show the principle of operation. 本発明のストライプ発光型レーザ素子(強磁性半導体が面内磁化している)の一例を示す図である。It is a figure which shows an example of the stripe light emission type laser element (The ferromagnetic semiconductor has magnetized in the surface) of this invention. 本発明のストライプ発光型レーザ素子(強磁性半導体が面内磁化している)の他の例を示す図である。It is a figure which shows the other example of the stripe light emission type laser element (The ferromagnetic semiconductor is magnetized in a surface) of this invention. 本発明の面発光型レーザ素子(強磁性半導体が垂直磁化している)の一例を示す図である。It is a figure which shows an example of the surface emitting laser element (the ferromagnetic semiconductor is perpendicularly magnetized) of this invention. 本発明の面発光型レーザ素子(強磁性半導体が垂直磁化している)の他の例を示す図である。It is a figure which shows the other example of the surface emitting laser element (the ferromagnetic semiconductor is perpendicularly magnetized) of this invention. 本発明の面発光型レーザ素子(強磁性半導体が垂直磁化している)の上面を示す図である。It is a figure which shows the upper surface of the surface emitting type laser element (The ferromagnetic semiconductor is perpendicularly magnetized) of this invention. 本発明の特電流・電圧特性を示す図である。It is a figure which shows the special current and voltage characteristic of this invention. 本発明の出力光強度の印加電圧依存性を示す図である。It is a figure which shows the applied voltage dependence of the output light intensity of this invention. 本発明の円偏光度の印加電圧依存性を示す図である。It is a figure which shows the applied voltage dependence of the circular polarization degree of this invention. 円偏光度を検出する機器配列例を示す図である。It is a figure which shows the example of an apparatus arrangement | sequence which detects a circular polarization degree. 出力光の波形を示す図である。It is a figure which shows the waveform of output light. 出力レーザ光の波長を光スペクトラムアナライザーにより測定した結果を示す図である。It is a figure which shows the result of having measured the wavelength of the output laser beam with the optical spectrum analyzer. レーザ出力の順電流依存性を示す図である。It is a figure which shows the forward current dependence of a laser output. 本発明素子を用いた光学異性体の存在比率の測定装置の構成例を示す図である。It is a figure which shows the structural example of the measuring apparatus of the abundance ratio of the optical isomer which used this invention element. エリプソメトリ装置の構成例を示す図である。(a)は、従来の構成例を示し、(b)は、本発明素子を用いた構成例を示す。It is a figure which shows the structural example of an ellipsometry apparatus. (A) shows the example of a conventional structure, (b) shows the example of a structure using this invention element.

符号の説明Explanation of symbols

A 障壁層(バンドギャップの大きい非磁性半導体で形成される層)
B 量子井戸層(バンドギャップの小さい非磁性半導体で形成される層)
C 障壁層(バンドギャップの大きい非磁性半導体で形成される層)
D 磁性半導体層(バンドギャップの小さい磁性半導体で形成される層)
D1 バルク層(エネルギーは量子化されていない)
D2 量子井戸層(エネルギーは量子化されている)
E 障壁層(バンドギャップの大きい非磁性半導体で形成される層)
F〜M エネルギー準位
Q 基板(n型)
R バッファ層(n型)
S コンタクト層
A barrier layer (layer formed of non-magnetic semiconductor with large band gap)
B Quantum well layer (layer formed of non-magnetic semiconductor with small band gap)
C barrier layer (layer formed of non-magnetic semiconductor with large band gap)
D Magnetic semiconductor layer (a layer formed of a magnetic semiconductor having a small band gap)
D1 bulk layer (energy is not quantized)
D2 quantum well layer (energy is quantized)
E barrier layer (layer formed of non-magnetic semiconductor with large band gap)
F to M Energy level Q Substrate (n-type)
R buffer layer (n-type)
S contact layer

Claims (18)

非磁性半導体層からなる量子井戸構造と、該構造の障壁層に隣接して、バンドギャップが該障壁層のバンドギャップより小さい磁性半導体層を備え、該量子井戸構造と該磁性半導体層を隔てる上記障壁層が薄く、上記非磁性半導体の量子井戸層におけるキャリアの波動関数と、上記磁性半導体層におけるキャリアの波動関数が結合していて、外部印加電界を、上記磁性半導体層のアップスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧と、上記磁性半導体層のダウンスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧を選択して印加することで、上記磁性半導体層に蓄えられたアップスピン正孔又はダウンスピン正孔を、上記障壁層を通して上記量子井戸構造に選択的に注入し、その結果起きる正孔・電子再結合発光の円偏光度(右回り、左回り)を、直接変調できることを特徴とするp−i−n型円偏光変調発光半導体素子。 A quantum well structure comprising a nonmagnetic semiconductor layer; and a magnetic semiconductor layer having a band gap smaller than that of the barrier layer adjacent to the barrier layer of the structure, and separating the quantum well structure from the magnetic semiconductor layer. The barrier layer is thin, the carrier wave function in the quantum well layer of the nonmagnetic semiconductor and the carrier wave function in the magnetic semiconductor layer are combined, and the externally applied electric field is applied to the up spin energy level of the magnetic semiconductor layer. The voltage that matches the energy level of the valence band of the nonmagnetic semiconductor layer that forms the quantum well structure and the down spin energy level of the magnetic semiconductor layer form the nonmagnetic semiconductor layer that forms the quantum well structure. valence voltage matching the energy level of the valence band by applying by selecting, up-spin holes or Daunsupi stored in the magnetic semiconductor layer P of the hole, then selectively implanted into the quantum well structure through the barrier layer, resulting occur circular polarization hole-electron recombination light emission (around the right, counter-clockwise), characterized in that the, can be modulated directly -In type circularly polarized light-emitting semiconductor element. 前記磁性半導体層が、非磁性半導体の障壁層で挟まれ量子井戸層を形成していることを特徴とする請求項1に記載のp−i−n型円偏光変調発光半導体素子。 2. The pin type circularly polarized light-emitting semiconductor device according to claim 1, wherein the magnetic semiconductor layer is sandwiched between nonmagnetic semiconductor barrier layers to form a quantum well layer. 前記磁性半導体層が、強磁性半導体層であることを特徴とする請求項1又は2に記載のp−i−n型円偏光変調発光半導体素子。 The magnetic semiconductor layer, p-i-n-type circularly polarized light modulating light emitting semiconductor device according to claim 1 or 2, characterized in that a ferromagnetic semiconductor layer. 前記非磁性半導体が、III−V族非磁性半導体又はII−VI族非磁性半導体であることを特徴とする請求項1〜のいずれか1項に記載のp−i−n型円偏光変調発光半導体素子。 The pin type circularly polarized light modulation according to any one of claims 1 to 3 , wherein the nonmagnetic semiconductor is a group III-V nonmagnetic semiconductor or a group II-VI nonmagnetic semiconductor. Light emitting semiconductor element. 前記III−V族非磁性半導体が、A1-xInxAs1-ySby(A:Al、Gaのうちのいずれか1種又は2種)であることを特徴とする請求項に記載のp−i−n型円偏光変調発光半導体素子。 The group III-V magnetic semiconductor, A 1-x In x As 1-y Sb y: to claim 4, characterized in that the (A Al, either one or two of Ga) The p-i-n type circularly polarized light-modulating light-emitting semiconductor element described. 前記II−VI族非磁性半導体が、AB(A:Cd、Zn、Hgのうちのいずれか1種又は2種以上、B:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする請求項に記載のp−i−n型円偏光変調発光半導体素子。 The II-VI group nonmagnetic semiconductor is AB (A: any one or more of Cd, Zn, Hg, B: any one or two of O, S, Se, Te) The pin-type circularly polarized light-modulating light-emitting semiconductor element according to claim 4 , wherein: 前記磁性半導体が、III−V族磁性半導体又はII−VI族磁性半導体であることを特徴とする請求項1〜のいずれか1項に記載のp−i−n型円偏光変調発光半導体素子。 Wherein the magnetic semiconductor is, III-V group magnetic semiconductor or a group II-VI p-i-n-type circularly polarized light modulating light emitting semiconductor device according to any one of claims 1 to 6, characterized in that a magnetic semiconductor . 前記III−V族磁性半導体が、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)であることを特徴とする請求項に記載のp−i−n型円偏光変調発光半導体素子。 The group III-V magnetic semiconductor is A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn, Fe, Co, Ni or one or more of, C: N, P, as , p according to claim 7, characterized in that any one or more) of Sb -In type circularly polarized light-emitting semiconductor element. 前記II−VI族磁性半導体が、A1-xxC(A:Cd、Hgのうちのいずれか1種又は2種、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする請求項に記載のp−i−n型円偏光変調発光半導体素子。 The II-VI group magnetic semiconductor is A 1-x B x C (A: any one or two of Cd and Hg, B: Sc, Ti, V, Cr, Mn, Fe, Co, Ni any one or more of, C: O, S, Se , according to claim 7, characterized in that any one or more) of the Te p-i- n-type circularly polarized light-emitting semiconductor element. 非磁性半導体層からなる量子井戸構造と、該構造の障壁層に隣接して、バンドギャップが該障壁層のバンドギャップより小さい磁性半導体層を備え、かつ、共振器構造を備え、該量子井戸構造と該磁性半導体層を隔てる上記障壁層が薄く、上記非磁性半導体の量子井戸層におけるキャリアの波動関数と、上記磁性半導体層におけるキャリアの波動関数が結合していて、外部印加電界を、上記磁性半導体層のアップスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧と、上記磁性半導体層のダウンスピンエネルギー準位が、上記量子井戸構造をなす上記非磁性半導体層の価電子帯のエネルギー準位と一致する電圧を選択して印加することで、上記磁性半導体層に蓄えられたアップスピン正孔又はダウンスピン正孔を、上記障壁層を通して上記量子井戸構造に選択的に注入し、その結果起きる正孔・電子再結合発光の円偏光度(右回り、左回り)を、直接変調できることを特徴とするp−i−n型円偏光変調発光レーザ素子。 A quantum well structure comprising a non-magnetic semiconductor layer; a magnetic semiconductor layer having a band gap smaller than that of the barrier layer adjacent to the barrier layer of the structure; and a resonator structure, the quantum well structure a magnetic semiconductor layer above the barrier layer is thin separating, and wave functions of the carriers in the non-magnetic semiconductor quantum well layer, be bonded wave functions of the carriers in the magnetic semiconductor layer, an externally applied electric field, the magnetic The voltage at which the up spin energy level of the semiconductor layer matches the energy level of the valence band of the nonmagnetic semiconductor layer forming the quantum well structure, and the down spin energy level of the magnetic semiconductor layer by applying selected voltages to match the energy level of the valence band of the non-magnetic semiconductor layer constituting the structure, up stored in the magnetic semiconductor layer Pins holes or down spin hole, the through barrier layer selectively implanted into the quantum well structure, resulting occur circular polarization hole-electron recombination light-emitting (about right, counterclockwise) the direct modulation A p-i-n type circularly polarized light emitting laser element characterized by being capable of being produced. 前記磁性半導体層が、非磁性半導体の障壁層で挟まれ量子井戸層を形成していることを特徴とする請求項1に記載のp−i−n型円偏光変調発光レーザ素子。 The magnetic semiconductor layer, p-i-n-type circularly polarized light modulating light emitting laser device according to claim 1 0, characterized in that to form a quantum well layer sandwiched between barrier layers of non-magnetic semiconductor. 前記磁性半導体層が、強磁性半導体層であることを特徴とする請求項10又は11に記載のp−i−n型円偏光変調発光レーザ素子。 The magnetic semiconductor layer, p-i-n-type circularly polarized light modulating light emitting laser device according to claim 1 0 or 11, characterized in that the ferromagnetic semiconductor layer. 前記非磁性半導体が、III−V族非磁性半導体又はII−VI族非磁性半導体であることを特徴とする請求項1〜1のいずれか1項に記載のp−i−n型円偏光変調発光レーザ素子。 The non-magnetic semiconductor, p-i-n type circular according to any one of claims 1 0 to 1 2, which is a group III-V magnetic semiconductor or a II-VI nonmagnetic semiconductor Polarization modulation light emitting laser element. 前記III−V族非磁性半導体が、A1-xInxAs1-ySby(A:Al、Gaのうちのいずれか1種又は2種)であることを特徴とする請求項1に記載のp−i−n型円偏光変調発光レーザ素子。 The group III-V magnetic semiconductor, A 1-x In x As 1-y Sb y: claims 1 to 3, characterized in that the (A Al, either one or two of Ga) The p-i-n type circularly polarized light-modulating light-emitting laser element described in 1. 前記II−VI族非磁性半導体が、AB(A:Cd、Zn、Hgのうちのいずれか1種又は2種以上、B:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする請求項1に記載のp−i−n型円偏光変調発光レーザ素子。 The II-VI group nonmagnetic semiconductor is AB (A: any one or more of Cd, Zn, Hg, B: any one or two of O, S, Se, Te) p-i-n-type circularly polarized light modulating light emitting laser device according to claim 1 3, characterized in that the higher). 前記磁性半導体が、III−V族磁性半導体又はII−VI族磁性半導体であることを特徴とする請求項115のいずれか1項に記載のp−i−n型円偏光変調発光レーザ素子。 Wherein the magnetic semiconductor is, III-V group magnetic semiconductor or a group II-VI p-i-n-type circularly polarized light modulating light emitting laser according to any one of claims 1 0-15, characterized in that a magnetic semiconductor element. 前記III−V族磁性半導体が、A1-xxC(A:Al、Ga、Inのうちのいずれか1種又は2種以上、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:N、P、As、Sbのうちのいずれか1種又は2種以上)であることを特徴とする請求項16に記載のp−i−n型円偏光変調発光レーザ素子。 The group III-V magnetic semiconductor is A 1-x B x C (A: any one or more of Al, Ga, In, B: Sc, Ti, V, Cr, Mn, Fe, The p according to claim 16 , which is any one or more of Co and Ni and any one or more of C: N, P, As, and Sb). -In type circularly polarized light emitting laser element. 前記II−VI族磁性半導体が、A1-xxC(A:Cd、Hgのうちのいずれか1種又は2種、B:Sc、Ti、V、Cr、Mn、Fe、Co、Niのうちのいずれか1種又は2種以上、C:O、S、Se、Teのうちのいずれか1種又は2種以上)であることを特徴とする請求項16に記載のp−i−n型円偏光変調発光レーザ素子。 The II-VI group magnetic semiconductor is A 1-x B x C (A: any one or two of Cd and Hg, B: Sc, Ti, V, Cr, Mn, Fe, Co, Ni any one or more of, C: O, S, Se , according to claim 16, characterized in that any one or more) of the Te p-i- An n-type circularly polarized light emitting laser element.
JP2005020427A 2005-01-27 2005-01-27 PIN type circularly polarized light-emitting semiconductor element and laser element Active JP4820980B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005020427A JP4820980B2 (en) 2005-01-27 2005-01-27 PIN type circularly polarized light-emitting semiconductor element and laser element
PCT/JP2006/301702 WO2006080548A1 (en) 2005-01-27 2006-01-26 p-i-n TYPE CIRCULAR POLARIZED MODULATED LIGHT EMITTING SEMICONDUCTOR ELEMENT AND LASER ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020427A JP4820980B2 (en) 2005-01-27 2005-01-27 PIN type circularly polarized light-emitting semiconductor element and laser element

Publications (2)

Publication Number Publication Date
JP2006210626A JP2006210626A (en) 2006-08-10
JP4820980B2 true JP4820980B2 (en) 2011-11-24

Family

ID=36740561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020427A Active JP4820980B2 (en) 2005-01-27 2005-01-27 PIN type circularly polarized light-emitting semiconductor element and laser element

Country Status (2)

Country Link
JP (1) JP4820980B2 (en)
WO (1) WO2006080548A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919195B2 (en) * 2008-11-25 2012-04-18 国立大学法人長岡技術科学大学 Magnetic semiconductor element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655445B2 (en) * 1996-09-17 2005-06-02 株式会社東芝 Optical semiconductor device
JP3797936B2 (en) * 2002-01-29 2006-07-19 独立行政法人科学技術振興機構 Circularly polarized spin semiconductor laser using magnetic semiconductor and method of generating laser beam

Also Published As

Publication number Publication date
WO2006080548A1 (en) 2006-08-03
JP2006210626A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
Jonker et al. Robust electrical spin injection into a semiconductor heterostructure
JP5602238B2 (en) Photon source producing entangled photons
Manago et al. Spin-polarized light-emitting diode using metal/insulator/semiconductor structures
Renner et al. Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy
US5874749A (en) Polarized optical emission due to decay or recombination of spin-polarized injected carriers
Chye et al. Spin injection from (Ga, Mn) As into InAs quantum dots
KR100603057B1 (en) Cicular polarization spin semiconductor laser using magnetic semiconductor and laser beam generating method
Fiederling et al. Detection of electrical spin injection by light-emitting diodes in top-and side-emission configurations
Stock et al. High-speed single-photon source based on self-organized quantum dots
JPS61218192A (en) Semiconductor light emitting element
JP4820980B2 (en) PIN type circularly polarized light-emitting semiconductor element and laser element
Ikeda et al. Switching of lasing circular polarizations in a (110)-VCSEL
JP2708085B2 (en) Optical semiconductor device
JP2009158807A (en) Semiconductor laser diode
Heck et al. Experimental and theoretical study of InAs/InGaAsP/InP quantum dash lasers
JPH03236276A (en) Optical functional element
Bhattacharya et al. An electrically injected quantum dot spin polarized single photon source
JP3364655B2 (en) Semiconductor optical device
Xu et al. Carrier recombination dynamics investigations of strain-compensated InGaAsN quantum wells
JP2513265B2 (en) Light modulator
Fathpour et al. Spin-polarised quantum dot light-emitting diodes with high polarisation efficiency at high temperatures
WO2009107627A1 (en) Circularly polarized light-emitting device
US20230408853A1 (en) Device for generating single photons and entangled photon pairs
Blume et al. AlGaInN resonant-cavity LED devices studied by electromodulated reflectance and carrier lifetime techniques
Höpfner et al. Spin relaxation length in quantum dot spin LEDs

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Effective date: 20110721

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150