JP4820921B2 - Amino acid sequence, DNA and method for growing yeast - Google Patents

Amino acid sequence, DNA and method for growing yeast Download PDF

Info

Publication number
JP4820921B2
JP4820921B2 JP2010540528A JP2010540528A JP4820921B2 JP 4820921 B2 JP4820921 B2 JP 4820921B2 JP 2010540528 A JP2010540528 A JP 2010540528A JP 2010540528 A JP2010540528 A JP 2010540528A JP 4820921 B2 JP4820921 B2 JP 4820921B2
Authority
JP
Japan
Prior art keywords
yeast
seq
gene
dna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010540528A
Other languages
Japanese (ja)
Other versions
JPWO2010061923A1 (en
Inventor
伸介 酒井
朋子 岩井
一栄 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2010540528A priority Critical patent/JP4820921B2/en
Application granted granted Critical
Publication of JP4820921B2 publication Critical patent/JP4820921B2/en
Publication of JPWO2010061923A1 publication Critical patent/JPWO2010061923A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C2200/00Special features
    • C12C2200/05Use of genetically modified microorganisms in the preparation of beer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G2200/00Special features
    • C12G2200/11Use of genetically modified microorganisms in the preparation of wine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は酵母に特異的なアミノ酸配列、そのDNA及び形質転換等による遺伝子改変による酵母の育成方法に関する。   The present invention relates to a method for growing yeast by genetic modification by amino acid sequence specific to yeast, its DNA, transformation and the like.

細胞間の凝集は、a型細胞とα型細胞間の性的凝集、出芽娘細胞の母細胞からの未分離、非性的凝集などに起因することが知られているが、本発明は、これらのうちの非性的凝集の制御を目的とする。非性的凝集の機構を説明するモデルとしては、凝集性酵母の細胞表層にあるレクチン様タンパク質と糖鎖の結合で隣り合う酵母が結合しているとするレクチン仮説(例えば非特許文献1参照。)が有力であるが、レクチン様タンパク質の同定は成されていない。このことが、酵母凝集の制御が未だ困難である要因でもある。   Aggregation between cells is known to result from sexual aggregation between a-type cells and α-type cells, unseparation of budding daughter cells from mother cells, non-sexual aggregation, and the like. Of these, the purpose is to control non-sexual aggregation. As a model for explaining the mechanism of nonsexual aggregation, a lectin hypothesis that a lectin-like protein on the cell surface of an aggregating yeast and an adjacent yeast are bound by a sugar chain (see, for example, Non-Patent Document 1). ) Is powerful, but no lectin-like protein has been identified. This is also a factor that makes it difficult to control yeast aggregation.

酵母の凝集性に関与する既知の遺伝子としては、FLO1、FLO5、FLO9、FLO10の特異的なレクチン様タンパク質をコードする遺伝子のファミリーがあり、染色体末端領域(テロメア周辺領域)に存在する。一方、凝集性、産膜、浸潤性増殖、基質付着に関連するタンパク質FLO11/MUC1をコードする遺伝子は、非染色体末端領域に存在することが報告されている。
J.Bacteriol.,150,878(1982)
Known genes involved in yeast aggregability include a family of genes encoding specific lectin-like proteins of FLO1, FLO5, FLO9, and FLO10, which are present in the chromosome end region (region around telomere). On the other hand, it has been reported that a gene encoding the protein FLO11 / MUC1 associated with agglutinability, membrane formation, invasive growth, and substrate adhesion exists in the non-chromosomal terminal region.
J. et al. Bacteriol. , 150, 878 (1982)

既知のFLOタンパク質(FLO1、5、9)は、配列番号1〜5に記載の9アミノ酸の配列のいずれか、あるいは組み合わせた配列を1〜3回有する。   Known FLO proteins (FLO1, 5, 9) have any of the 9 amino acid sequences shown in SEQ ID NOs: 1 to 5, or a combined sequence 1 to 3 times.

この配列部位を構成する繰り返し配列は、FLO1では配列番号4、配列番号1、配列番号5を各1回からなる3回、FLO9では配列番号2、配列番号3を各1回からなる2回、YAL065Cでは配列番号2、配列番号3を各1回からなる2回の繰り返しがあり、FLO5では配列番号2のみ1回で繰り返し無しによって構成されている。   The repetitive sequence constituting this sequence site is SEQ ID NO: 4, SEQ ID NO: 1, SEQ ID NO: 5 three times each in FLO1, SEQ ID NO: 2, SEQ ID NO: 3 twice in FLO9, In YAL065C, there are two repetitions of SEQ ID NO: 2 and SEQ ID NO: 3 each time, and in FLO5, only SEQ ID NO: 2 is configured with no repetition once.

また、FLO8、FLO10、MUC1(FLO11)、YAR061W、YAR062W、YHR213Wには上記の配列はなかった。   Further, FLO8, FLO10, MUC1 (FLO11), YAR061W, YAR062W, and YHR213W did not have the above arrangement.

上記の従来の酵母を用いたアルコールの発酵生産法は、酵母と生成物とを分離することが困難であるため、非効率的であり、アルコール生産性が不十分である欠点があった。この原因は酵母の凝集性の限界にあり、我々はこの問題を解明した結果、アミノ酸配列の何れかを4回以上繰り返す配列を含むことが凝集性向上に寄与することを見出し、本発明に至った。   The above-mentioned conventional fermentation production method of alcohol using yeast has the disadvantage that it is inefficient and alcohol productivity is insufficient because it is difficult to separate the yeast and the product. The cause of this is the limit of the cohesiveness of yeast. As a result of elucidating this problem, we have found that the inclusion of a sequence that repeats any of the amino acid sequences four or more times contributes to the improvement of the cohesiveness, leading to the present invention. It was.

そこで、本発明の課題は、以下の通りである。
(1)酵母に凝集性を付与する活性を有するアミノ酸配列を提供すること;
(2)酵母に凝集性を付与する活性を有するアミノ酸配列をコードする遺伝子DNAを提供すること;
(3)上記の遺伝子DNAを利用して、凝集性が付与または強化された酵母の育種方法を提供すること;
Therefore, the problems of the present invention are as follows.
(1) To provide an amino acid sequence having an activity of imparting aggregability to yeast;
(2) to provide a genetic DNA encoding an amino acid sequence having an activity of imparting aggregability to yeast;
(3) Providing a method for breeding yeast with enhanced or enhanced aggregation by using the above gene DNA;

本発明の他の課題は、以下の記載によって明らかとなる。   The other subject of this invention becomes clear by the following description.

上記課題は以下の各発明によって解決される。   The above problems are solved by the following inventions.

請求項1記載の発明は、配列番号1〜3の何れかで示される配列の繰り返しを4回以上有するアミノ酸配列からなり、酵母に凝集性を付与する活性を有するポリペプチドである。 Invention of Claim 1 consists of an amino acid sequence which has the repetition of the arrangement | sequence shown by either of sequence number 1-3 4 times or more, and is a polypeptide which has the activity which provides aggregation property to yeast .

請求項2記載の発明は、請求項1記載のアミノ酸配列をコードするDNAである。   Invention of Claim 2 is DNA which codes the amino acid sequence of Claim 1.

本発明によれば、酵母に凝集性を付与する活性を有するアミノ酸配列を提供することができ、酵母に凝集性を付与する活性を有するアミノ酸配列をコードする遺伝子DNAを提供することができ、上記の遺伝子DNAを利用して、凝集性が付与または強化された酵母の育種方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the amino acid sequence which has the activity which provides the aggregability to yeast can be provided, The gene DNA which codes the amino acid sequence which has the activity which provides the aggregability to yeast can be provided, The above-mentioned By using the gene DNA, it is possible to provide a method of breeding yeast with imparted or enhanced aggregation.

酵母AM12菌株、及び非凝集性酵母S288C菌株におけるFLO9遺伝子の発現強度の測定結果を示した図The figure which showed the measurement result of the expression intensity | strength of FLO9 gene in yeast AM12 strain and non-aggregation yeast S288C strain In−Fusion法によるプラスミドpAUR123−FLO1/FLO9キメラの作製手順とプライマーの位置を示す図The figure which shows the preparation procedure and primer position of plasmid pAUR123-FLO1 / FLO9 chimera by In-Fusion method pAUR123−FLO1、pAUR123−FLO1/FLO9キメラ、FLO1遺伝子を持たないpAUR123のプラスミドをそれぞれ導入した酵母株3種類について、1分間静置後の沈降性を示す写真。The photograph which shows the sedimentation property after leaving still for 1 minute about three types of yeast strain | stump | stock which each introduce | transduced the plasmid of pAUR123-FLO1, pAUR123-FLO1 / FLO9 chimera, and pAUR123 which does not have FLO1 gene.

はじめに、本発明におけるアミノ酸配列の繰り返し配列について説明する。   First, the repeating sequence of the amino acid sequence in the present invention will be described.

サッカロマイセス属セレビシエ菌の凝集性は、細胞表層のマンナン分子のマンノース残基を隣り合った細胞間で直接結合できる特殊な細胞表層のレクチン様タンパク質(または、FLOcculinタンパク質)の関与が報告されている。この細胞間の相互作用によって、多くの細胞が集合し、最終的に酵母の沈降性が生じる。また、サッカロマイセス属セレビシエ菌の凝集性では糖に対する感受性が異なる2つの表現型が知られており、FLO1はマンノース感受性を示し、NewFLO(FLONS)はマンノースとグルコースに感受性を示す。   The aggregation of Saccharomyces cerevisiae has been reported to involve a special cell surface lectin-like protein (or FLOCculin protein) that can directly bind the mannose residue of the mannan molecule on the cell surface between adjacent cells. This cell-to-cell interaction causes many cells to assemble and ultimately yield yeast sedimentation. In addition, two phenotypes with different susceptibility to sugar are known for the aggregation of Saccharomyces cerevisiae, FLO1 shows mannose sensitivity, and NewFLO (FLONS) shows sensitivity to mannose and glucose.

酵母の凝集性に関与する遺伝子としては、FLO1、FLO5、FLO9、FLO10の特異的なレクチン様タンパク質をコードする遺伝子のファミリーが提案されており、染色体末端領域(テロメア周辺領域)に存在する。一方、凝集性、産膜、浸潤性増殖、基質付着に関連するタンパク質FLO11/MUC1をコードする遺伝子は、非染色体末端領域に存在することが報告されている。   As a gene involved in yeast aggregation, a family of genes encoding specific lectin-like proteins of FLO1, FLO5, FLO9, and FLO10 has been proposed and is present in the chromosome end region (telomere peripheral region). On the other hand, it has been reported that a gene encoding the protein FLO11 / MUC1 associated with agglutinability, membrane formation, invasive growth, and substrate adhesion exists in the non-chromosomal terminal region.

これら全てのFLOタンパク質は、グリコシルフォスファチジルイノシトール(GPI)という糖脂質の一種によって修飾を受け、GPIによって細胞膜に繋ぎ留められている。GPIがあたかも錨のように作用することから、このようなタンパク質はGPIアンカー型タンパク質と呼ばれる。   All these FLO proteins are modified by a type of glycolipid called glycosylphosphatidylinositol (GPI) and are tethered to the cell membrane by GPI. Such a protein is called a GPI-anchored protein because GPI acts like a cocoon.

FLOタンパク質は、共通の3つのドメイン領域から成り、N末端側のレクチンドメイン、セリン・スレオニン残基を多く含む繰り返し配列を含む中央ドメイン、C末端側のグリコシルフォスファシジルイノシトールとのアンカー配列を含むドメインである。   The FLO protein is composed of three common domain regions, and includes an N-terminal lectin domain, a central domain containing a repetitive sequence containing many serine and threonine residues, and an anchor sequence with a C-terminal glycosylphosphatidylinositol. Is a domain.

一部の繰り返し配列の配列については、マンノース感受性のFLO1とマンノースとグルコースに感受性のNewFLO(FLONS)の間の糖に対する感受性の違いに関与していることが報告されているが、繰り返し配列が有する機能についてはほとんど分かっていない。   Some repeat sequences have been reported to be involved in the difference in sensitivity to sugar between mannose-sensitive FLO1 and mannose and glucose-sensitive NewFLO (FLONS). Little is known about the function.

これらの酵母の凝集性に関与する遺伝子の分子レベルの研究としては、FLO1遺伝子の単離とその解析がなされている(YEAST,9,423(1993)およびYEAST,10,211(1994))。FLO1タンパク質は、細胞表層に局在するタンパク質で、酵母細胞の凝集性に係わる因子である(Bony et al.,J.Bacteriol.,179:4929−4936(1997))。そのN末端側から、分泌シグナル領域、酵母細胞の凝集性に係わる領域、そしてC末端領域にGPIアンカー結合領域を有している。また、このアミノ酸配列中には13個所の糖鎖結合部位がある。   As molecular level studies of genes involved in the aggregability of these yeasts, the FLO1 gene has been isolated and analyzed (YEAST, 9, 423 (1993) and YEAST, 10, 211 (1994)). The FLO1 protein is a protein localized in the cell surface and is a factor related to the aggregation of yeast cells (Bony et al., J. Bacteriol., 179: 4929-4936 (1997)). From its N-terminal side, it has a secretory signal region, a region related to the aggregation of yeast cells, and a GPI anchor-binding region in the C-terminal region. This amino acid sequence has 13 sugar chain binding sites.

自然界に存在するFLOタンパク質(FLO1、5、9)は、配列番号1〜3の9アミノ酸配列のいずれか、あるいは組み合わせた配列を1〜3回有する。   The FLO protein (FLO1, 5, 9) existing in nature has any one of the 9 amino acid sequences of SEQ ID NOs: 1 to 3 or a combined sequence 1 to 3 times.

今回本発明者らは、高い凝集性を有する酵母AM12菌由来のFLOタンパク質(AM12 FLO9)中に、9アミノ酸配列の繰り返しを4回有する部位があることを見出した。   The present inventors have found that there is a site having 4 repetitions of 9 amino acid sequences in the FLO protein (AM12 FLO9) derived from yeast AM12 having high aggregation properties.

9アミノ酸の繰り返し配列を4回有するFLOはこれまでに報告がなく、AM12において初めて単離された。   FLO having 4 repeats of 9 amino acids has not been reported so far and was first isolated in AM12.

AM12 FLOタンパク質のペプチド鎖のC末端側領域に、配列番号1、配列番号2、配列番号3、配列番号3を4回繰り返す配列部位がある。   In the C-terminal region of the peptide chain of the AM12 FLO protein, there is a sequence site where SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 3 are repeated four times.

この配列部位を構成する繰り返し配列は、前述のようにFLO1では配列番号4、配列番号1、配列番号5を各1回からなる3回、FLO9では配列番号2、配列番号3を各1回からなる2回、YAL065Cでは配列番号2、配列番号3を各1回からなる2回の繰り返しがあり、FLO5では配列番号2のみ1回で繰り返し無しによって構成されている。   As described above, the repetitive sequences constituting this sequence site are as follows: SEQ ID NO: 4, SEQ ID NO: 1, SEQ ID NO: 5 for each 3 times in FLO1, and SEQ ID NO: 2 and SEQ ID NO: 3 for each time in FLO9. In YAL065C, there are two repetitions of SEQ ID NO: 2 and SEQ ID NO: 3 each time, and in FLO5, only SEQ ID NO: 2 is configured once and no repetition.

また、FLO8、FLO10、MUC1(FLO11)、YAR061W、YAR062W、YHR213Wには上記の配列はなかった。   Further, FLO8, FLO10, MUC1 (FLO11), YAR061W, YAR062W, and YHR213W did not have the above arrangement.

これらの配列を解析した結果、配列番号1〜3を任意に選択し4回以上繰り返した配列を、FLOタンパク質のC末端付近に組み込むことで、酵母の凝集性向上が可能であることを見出した。   As a result of analyzing these sequences, it was found that the aggregation of yeast can be improved by arbitrarily selecting SEQ ID NOs: 1 to 3 and incorporating a sequence repeated four or more times in the vicinity of the C-terminus of the FLO protein. .

4回以上繰り返した配列の例を挙げると、配列番号11を例示できる。   When the example of the arrangement | sequence repeated 4 times or more is given, sequence number 11 can be illustrated.

本発明の繰り返し遺伝子DNAを導入することにより、凝集性が付与あるいは強化された酵母を得ることができる。繰り返し遺伝子DNAを導入する方法としては、遺伝子工学の分野において慣用されているものを用いればよく、それを慣用基準(ANALYTICAL BIOCHEMISTRY 163.391(1987)等)に準じて実施すればよい。具体的には、所望のDNAをベクターに組み込んでこれを酵母に導入する方法、ベクターに組み込まずに直接酵母に導入する方法などを挙げることができる。産業に用いる上では、ベクター保持株よりも染色体導入株が望ましい。   By introducing the repetitive gene DNA of the present invention, it is possible to obtain a yeast imparted with or enhanced aggregability. As a method for repeatedly introducing a genetic DNA, a method commonly used in the field of genetic engineering may be used, and it may be carried out in accordance with conventional standards (ANALYTICAL BIOCHEMISTRY 163.391 (1987), etc.). Specifically, a method of incorporating a desired DNA into a vector and introducing it into yeast, a method of introducing it directly into yeast without incorporating into a vector, and the like can be mentioned. For industrial use, a chromosomally introduced strain is preferable to a vector-carrying strain.

上記のDNAをベクターに組み込んでこれを酵母に導入する方法において、使用可能なベクターとしては、たとえば、YRp系(酵母染色体のARS配列を複製起点とする酵母用マルチコピーベクター)、YEp系(酵母の2μm DNAの複製起点を持つ酵母用マルチコピーベクター)、YCp系(酵母染色体のARS配列を複製起点として持ち、かつ酵母染色体のセントロメアのDNA配列を持つ酵母用シングルコピーベクター)、YIp系(酵母の複製起点を持たない酵母染色体組み込み用ベクター)等、知られているもの全てのものを用いることができる。これらのベクターは文献に記載されており(医学出版センター刊、「酵母のニューバイオテクノロジー」、p.284)、容易に作製することができる。   In the method of incorporating the above DNA into a vector and introducing it into yeast, usable vectors include, for example, the YRp system (multicopy vector for yeast using the ARS sequence of yeast chromosome as the origin of replication), YEp system (yeast Multicopy vector for yeast having 2 μm DNA replication origin), YCp system (single copy vector for yeast having yeast chromosome ARS sequence as replication origin and centromere DNA sequence of yeast chromosome), YIp system (yeast All known ones can be used, such as a yeast chromosome integration vector that does not have a replication origin. These vectors are described in literature (published by Medical Publishing Center, “New Biotechnology of Yeast”, p. 284), and can be easily prepared.

ベクターに組み込まずに直接酵母にDNAを導入する手法の代表的なものとしては、薬剤耐性遺伝子等のマーカー遺伝子を持つプラスミドと導入するDNA配列とで同時に酵母を形質転換する共形質転換法を挙げることができる(特公平5−60918号公報)。上記のような方法において、導入した遺伝子DNAを酵母中で発現させるために、あるいは発現を増加させるためには、転写および翻訳を制御するユニットであるプロモーターを本発明DNA鎖の5’−上流域に、ターミネーターを3’−下流域にそれぞれ組み込めば良い。このプロモーターおよびターミネーターとしては、繰り返し遺伝子それ自身に由来するものの他、アルコールデヒドロゲナーゼ遺伝子(J.Biol.Chem.,257,3018(1982))、ホスホグリセレートキナーゼ遺伝子(Nucleic Acids Res.,10,7791(1982))、グリセロールアルデヒド−3−燐酸デヒドロゲナーゼ遺伝子(J.Biol.Chem.,254,9839(1979))等既に知られている遺伝子由来のもの、もしくは、人工的にそれを改良したものの使用が可能である。より具体的には、ADH(別名ADC)、GAPDH(別名GPD)、PHO、GAL、PGK、ENO、TRP、HIP等のプロモーターやターミネーターを使用することができる。   A typical method for introducing DNA directly into yeast without incorporating it into a vector is a co-transformation method in which yeast is transformed simultaneously with a plasmid having a marker gene such as a drug resistance gene and the DNA sequence to be introduced. (Japanese Patent Publication No. 5-60918). In the method as described above, in order to express the introduced gene DNA in yeast or to increase the expression, a promoter which is a unit controlling transcription and translation is added to the 5′-upstream region of the DNA strand of the present invention. In addition, a terminator may be incorporated in the 3′-downstream region. As the promoter and terminator, in addition to those derived from the repetitive gene itself, an alcohol dehydrogenase gene (J. Biol. Chem., 257, 3018 (1982)), a phosphoglycerate kinase gene (Nucleic Acids Res., 10, 7791). (1982)), a gene derived from a known gene such as the glycerol aldehyde-3-phosphate dehydrogenase gene (J. Biol. Chem., 254, 9839 (1979)), or an artificially modified version thereof. Is possible. More specifically, promoters and terminators such as ADH (aka ADC), GAPDH (aka GPD), PHO, GAL, PGK, ENO, TRP, and HIP can be used.

さらに、適当なプロモーターを選択することにより、本発明DNA鎖の遺伝子を酵母中で制御して発現させることも可能である。例えば、ガラクトキナーゼ遺伝子のプロモーターを使用すれば、培地の糖源をたとえばグルコースからガラクトースに変えることにより発現を増加させることができる。   Furthermore, the gene of the DNA strand of the present invention can be controlled and expressed in yeast by selecting an appropriate promoter. For example, if a galactokinase gene promoter is used, expression can be increased by changing the sugar source of the medium from, for example, glucose to galactose.

本発明は、5回以上繰り返し遺伝子DNAをAM12菌の4回繰り返し遺伝子DNAなどと入れ替えることによる、元来凝集性を有する酵母の凝集性をさらに向上する方法をも包含する。   The present invention also includes a method for further improving the aggregability of yeast having originally aggregability by replacing the gene DNA repeated 5 times or more with the 4 times gene DNA of AM12 bacteria.

また、この逆の転換も本発明により提供された繰り返し遺伝子DNAにより可能である。つまり、本発明の繰り返し遺伝子DNAを破壊することによって、繰り返し遺伝子蛋白を発現させる能力を欠失または減少させたDNAを導入することにより、凝集性が欠失または減少した酵母を得ることができる。繰り返し遺伝子DNAの破壊は、繰り返し遺伝子の繰り返し遺伝子蛋白発現に関与する領域、たとえば、プロモーター領域やコード領域の内部へ単一あるいは複数の塩基を付加あるいは欠失させたり、これらの領域全体を欠失させることにより行うことができる。このようにして繰り返し遺伝子を破壊することによって、繰り返し遺伝子蛋白を発現させる能力を欠失または減少させたDNAは、上記したDNA導入法と同じ手法で酵母に導入することができる。その導入によって、ホスト酵母の染色体DNA中の繰り返し遺伝子と導入したDNAとの間で相同組換えが起こり、ホスト酵母の繰り返し遺伝子が分断されて繰り返し遺伝子蛋白を発現する能力が欠失または減少し、その結果、ホスト酵母の凝集性が欠失または減少すると考えられる。   This reverse conversion is also possible with the repetitive gene DNA provided by the present invention. That is, by disrupting the repetitive gene DNA of the present invention and introducing a DNA having the ability to express a repetitive gene protein deleted or reduced, a yeast with reduced or reduced aggregation can be obtained. The disruption of repetitive gene DNA can be achieved by adding or deleting single or multiple bases in the region involved in repetitive gene protein expression of the repetitive gene, for example, the promoter region or the coding region, or deleting these entire regions. Can be performed. By repeatedly disrupting the gene in this manner, DNA that has been deleted or reduced in ability to express the repetitive gene protein can be introduced into yeast by the same method as the DNA introduction method described above. By the introduction, homologous recombination occurs between the repetitive gene in the chromosomal DNA of the host yeast and the introduced DNA, and the ability of the recombination gene of the host yeast to be disrupted to express the repetitive gene protein is lost or reduced, As a result, it is considered that the aggregation property of the host yeast is lost or reduced.

本発明は、上記の繰り返し遺伝子DNAの発現を抑制することによって、酵母の凝集性を欠失または減少させる方法をも包含する。このような方法の例としては、繰り返し遺伝子DNAを破壊することによって、繰り返し遺伝子蛋白を発現させる能力を欠失または減少させたDNAを導入する方法、アンチセンスRNA法等を挙げることができる。   The present invention also includes a method for deleting or reducing the cohesiveness of yeast by suppressing the expression of the above-mentioned repetitive gene DNA. Examples of such methods include a method of introducing DNA in which the ability to express a repetitive gene protein is deleted or reduced by disrupting repetitive gene DNA, an antisense RNA method, and the like.

本発明において形質転換すべき酵母、すなわちホスト酵母、は分類学上、酵母の範疇に入りうる任意のものであり得る。本発明によって高い凝集性を付与された酵母は、バイオエタノール製造の過程において有用である。また本発明の酵母を培養することを含む醸造製品は、ビール、清酒、焼酎、ワイン、ウイスキー、ブランデーを含むアルコール飲料、また醤油、味噌、みりんなどの調味料、さらには、燃料用アルコールなどを包含する。本発明における醸造製品の製造法としては、前記醸造製品に係わる醸造過程を包含する。   In the present invention, the yeast to be transformed, that is, the host yeast, may be any taxonomically capable of entering the category of yeast. Yeast imparted with high cohesiveness by the present invention is useful in the process of bioethanol production. The brewed product comprising culturing the yeast of the present invention includes alcoholic beverages including beer, sake, shochu, wine, whiskey and brandy, seasonings such as soy sauce, miso and mirin, and alcohol for fuel. Include. The method for producing a brewed product in the present invention includes a brewing process relating to the brewed product.

本発明タンパク質を細胞凝集剤として非凝集性酵母を含む溶液に単純混合することにより酵母凝集効果を得ることもできる。また、細胞間凝集に限らず、例えば細胞を基盤上に固定するような場合(バイオセンサー等)においても応用できる。   The yeast aggregation effect can also be obtained by simply mixing the protein of the present invention with a solution containing non-aggregable yeast as a cell aggregating agent. Further, the present invention can be applied not only to cell-cell aggregation but also to a case where cells are fixed on a substrate (such as a biosensor).

以下に本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

実施例1(酵母AM12菌株由来RNAからのFLO遺伝子断片の単離)
(1−1)Total RNAの抽出 サッカロマイセス属セレビシエ(Saccharomyces cerevisiae)AM12菌株をYPD培地(1% Yeast extract、2% Polypeptone、2% D−glucose)で30℃、8時間培養し、菌体を回収後、Roche Diagnostics社製 High Pure RNA Isolation kitを用いてTotal RNAの抽出を行った。
Example 1 (Isolation of FLO gene fragment from RNA derived from yeast AM12 strain)
(1-1) Extraction of Total RNA Saccharomyces cerevisiae AM12 strain was cultured in YPD medium (1% Yeast extract, 2% Polypeptone, 2% D-glucose) at 30 ° C. for 8 hours, and the cells were collected. Thereafter, total RNA was extracted using a High Pure RNA Isolation kit manufactured by Roche Diagnostics.

(1−2)3’−RACE法によるPCR産物の取得
抽出したTotal RNAを鋳型に、タカラバイオ社製 3’−Full RACE Core Setを用いて、逆転写反応を、続いてPCR反応を行った。Total RNAは65℃で10分間加熱後、氷上で急冷し、1μgを逆転写反応(反応液量20μlの系)に用いた。逆転写反応液組成は、キットのプロトコールに従って行った。PCRサーマルサイクラーの反応条件は、30℃10分間、42℃60分間、95℃5分間、5℃5分間を1サイクル行った。
(1-2) Acquisition of PCR product by 3′-RACE method Using the extracted total RNA as a template, 3′-Full RACE Core Set manufactured by Takara Bio Inc. was used for reverse transcription reaction, followed by PCR reaction. . Total RNA was heated at 65 ° C. for 10 minutes and then rapidly cooled on ice, and 1 μg was used for the reverse transcription reaction (reaction volume 20 μl). The reverse transcription reaction solution composition was performed according to the protocol of the kit. The reaction conditions of the PCR thermal cycler were 30 ° C. for 10 minutes, 42 ° C. for 60 minutes, 95 ° C. for 5 minutes, and 5 ° C. for 5 minutes.

次に、得られた逆転写反応液1μlを用い、以下の反応液組成、および反応条件でPCR反応を行った。PCR用酵素としては、東洋紡社製の高正確性ポリメラーゼKOD −Plus− Ver.2を用いた。その結果、約0.6kbpのPCR断片が得られた。PCR反応条件として94℃2分間の後、98℃10秒間、60℃30秒間、68℃5分間を1サイクルとして30サイクル行い、反応終了後は4℃にした。   Next, 1 μl of the obtained reverse transcription reaction solution was used to carry out PCR reaction under the following reaction solution composition and reaction conditions. As an enzyme for PCR, Toyobo's highly accurate polymerase KOD-Plus-Ver. 2 was used. As a result, a PCR fragment of about 0.6 kbp was obtained. PCR reaction conditions were 94 ° C. for 2 minutes, followed by 30 cycles of 98 ° C. for 10 seconds, 60 ° C. for 30 seconds, and 68 ° C. for 5 minutes, and 4 ° C. after completion of the reaction.

Forwardプライマーとして、c00258−F1を用いた(配列番号6)。
5’−CTGCTCGAGCTCGGCTACTGTGAATGATGTTG−3’
As a Forward primer, c00258-F1 was used (SEQ ID NO: 6).
5′-CTGCTCGAGCTCGGCCTACTGTGAATGATGTGTG-3 ′

Reverseプライマーはタカラバイオ製 3’−Full RACE Core Setの3sites Adaptor Primerを用いた。   As the reverse primer, 3 sites Adapter Primer of 3'-Full RACE Core Set manufactured by Takara Bio Inc. was used.

(1−3)PCR産物の回収
PCR産物を1%のTAEアガロースゲルにて電気泳動を行った結果、約0.6 kbpの位置にバンドが見られた。このバンドをゲルから切り出し、キアゲン社製のQiagen quick Gel extraction kitを用いて抽出精製を行った。
(1-3) Recovery of PCR product As a result of electrophoresis of the PCR product on a 1% TAE agarose gel, a band was observed at a position of about 0.6 kbp. This band was cut out from the gel and extracted and purified using a Qiagen quick Gel extraction kit manufactured by Qiagen.

(1−4)TAクローニング
東洋紡社製TArget CloneTM−Plus−キットを用いて、PCR産物をpTA2ベクター(アンピシリン耐性遺伝子をマーカーとして持つ)に組み込み、大腸菌DH5αに形質転換した。次に、得られたアンピシリン耐性を示す大腸菌から東洋紡社製のMagExtractor‐Plasmid−を用いてプラスミド抽出を行った。抽出したプラスミドを制限酵素EcoRIで処理し、1%のTAEアガロース電気泳動を行った結果、pTA2ベクターにPCR産物が組み込まれていることが確認された。
(1-4) TA Cloning Using TARGET Clone -Plus-kit manufactured by Toyobo Co., Ltd., the PCR product was incorporated into a pTA2 vector (having an ampicillin resistance gene as a marker) and transformed into E. coli DH5α. Next, plasmid extraction was performed from the obtained Escherichia coli showing ampicillin resistance using MagExtractor-Plasmid- manufactured by Toyobo. The extracted plasmid was treated with the restriction enzyme EcoRI and subjected to 1% TAE agarose electrophoresis. As a result, it was confirmed that the PCR product was incorporated into the pTA2 vector.

(1−5)塩基配列決定
PCR産物を組み込まれたpTA2ベクターを鋳型に、Dye Terminator サイクルシーケンス反応を行った。次に、BECKMAN COULTER社製のCEQ8000 DNA Analysis Systemを用い、塩基配列の決定を行った。PCR産物の両側は、ユニバーサルプライマーのM13 Primer M3とM13 Primer RVを用いて解読を行った。次に、得られた塩基配列を基に設計した以下のプライマーを用いてPCR産物の内側の配列を決定した。最終的に、二つの独立した実験から得られたPCR産物を組み込まれたpTA2ベクターについて、遺伝子断片の全長配列を解読し、二つが一致していることを確認した。
(1-5) Base sequence determination A Dye Terminator cycle sequence reaction was performed using a pTA2 vector in which a PCR product was incorporated as a template. Next, the nucleotide sequence was determined using CEQ8000 DNA Analysis System manufactured by BECKMAN COULTER. Both sides of the PCR product were decoded using universal primers M13 Primer M3 and M13 Primer RV. Next, the sequence inside the PCR product was determined using the following primers designed based on the obtained base sequence. Finally, for the pTA2 vector into which the PCR product obtained from two independent experiments was incorporated, the full-length sequence of the gene fragment was decoded and it was confirmed that the two were in agreement.

<配列決定に用いたプライマー>
M13 Primer M3 (配列番号7)
5’−GTAAAACGACGGCCAGT−3’
M13 Primer RV(配列番号8)
5’−CAGGAAACAGCTATGAC−3’
c00258−F3(配列番号9)
5’−CTGCTCGAGCTCATGAACAGTGCTACCAGTGAG−3’
c00258−F4(配列番号10)
5’−ACAGTAGTCACCTCTTCGCT−3’
<Primers used for sequencing>
M13 Primer M3 (SEQ ID NO: 7)
5'-GTAAAACGACGGCCAGGT-3 '
M13 Primer RV (SEQ ID NO: 8)
5′-CAGGAAACAGCTATGAC-3 ′
c00258-F3 (SEQ ID NO: 9)
5′-CTGCTCGAGCTCATGAACAGTGCTACCAGTGAG-3 ′
c00258-F4 (SEQ ID NO: 10)
5′-ACAGTAGTCACCCTTCTGCT-3 ′

(1−6)塩基配列からアミノ酸への変換、比較解析
得られた塩基配列からアミノ酸への変換は、株式会社ゼネティックス製の遺伝子情報処理ソフトウェア GENETYX(登録商標)Ver.9 Windows(登録商標)版を用いて行った。
(1-6) Conversion from Base Sequence to Amino Acid and Comparative Analysis The conversion from the obtained base sequence to amino acid was carried out by Gene Information Co., Ltd., GENETYX (registered trademark) Ver. 9 Performed using a Windows® version.

得られた酵母AM12菌株由来RNAからのFLO遺伝子断片の配列を配列番号12に示す。   The sequence of the FLO gene fragment from the obtained RNA derived from the yeast AM12 strain is shown in SEQ ID NO: 12.

実施例2
<既知配列との比較>
既知配列との比較は、インターネットを介した同ソフトウェアの塩基配列対塩基配列データベースのBLAST検索(BLASTN)、タンパク質配列対タンパク質配列データベースのBLAST検索(BLASTP)、および付属のホモロジー解析機能、マルチプルアライメント機能を用いて行った。
Example 2
<Comparison with known sequence>
Compared with known sequences, the BLAST search (BLASTN) of the base sequence to base sequence database, the BLAST search (BLASTP) of the protein sequence to protein sequence database, and the attached homology analysis function and multiple alignment function via the Internet It was performed using.

既知の遺伝子と比較した結果、FLO1と最も相同性が高く、他にFLO9、YAL065C、FLO5とも相同性が見られた。   As a result of comparison with known genes, the homology was highest with FLO1, and other homology was also observed with FLO9, YAL065C, and FLO5.

また、遺伝子断片は、FLO1(1537アミノ酸)のC末側の1376〜1554に位置する。FLO9、5でもC末端側に位置し、YAL065Cでは全長に相当することが分かった。   The gene fragment is located at 1376 to 1554 on the C-terminal side of FLO1 (1537 amino acids). FLO9 and 5 were also located on the C-terminal side, and YAL065C was found to correspond to the full length.

更に比較をすることにより、分離したアミノ酸配列には、配列番号1、配列番号2、配列番号3、配列番号3の4回繰り返し配列が存在することを見出した。   By further comparison, it was found that the isolated amino acid sequence has a sequence repeated four times of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 3.

他の遺伝子の相当する部位では、同様のアミノ酸の配列が、FLO1で3回、FLO9とYAL065Cで2回、FLO5で1回見つかった。   At corresponding sites in other genes, similar amino acid sequences were found 3 times in FLO1, twice in FLO9 and YAL065C, and once in FLO5.

実施例3(酵母AM12菌由来ゲノムDNAからのFLO9遺伝子の単離、及び部分配列の決定)
(3−1)フォスミドゲノムライブラリーの作製
AM12菌株をYPD培地で30℃、8時間培養し、菌体を回収後、Genomic DNA Buffer Set & Genomic−tip(キアゲン製)を用いてゲノムDNAを抽出した。ゲノムDNAをDNA断片化装置によりランダムに断片化し、Mighty Cloning Blunt End(タカラバイオ製)を使用してDNA断片の末端を平滑処理し、パルスフィールド電気泳動による33〜48kb付近のサイズのDNAをゲルから分画した。切り出したゲル断片からDNAを精製し、インサートDNAとした。調整したインサートDNA断片とベクターpCC1FOS(EPICENTER製)をT4DNAリガーゼ(タカラバイオ製)を用いて4℃で終夜ライゲーション反応を行なった。ベクターライゲーション後、MaxPlax Lambda packaging Extract(EPICENTER製)を用いて、in vitro packagingを行った。ライブラリーの一部を用いて宿主大腸菌EPI300に形質転換し、タイターを測定した。また、ランダムに選択した16個の白コロニーよりFosmid DNAを抽出し、Not Iで制限酵素処理した後、パルスフィールド電気泳動でインサートサイズが30Kb以上であることを確認した。
Example 3 (Isolation of FLO9 gene from genomic DNA derived from yeast AM12 and determination of partial sequence)
(3-1) Preparation of fosmid genomic library After culturing AM12 strain in YPD medium at 30 ° C. for 8 hours and collecting the cells, genomic DNA Buffer Set & Genomic-tip (manufactured by Qiagen) was used to obtain genomic DNA. Extracted. Genomic DNA is randomly fragmented with a DNA fragmentation device, the ends of the DNA fragments are smoothed using Mighty Cloning Blut End (manufactured by Takara Bio Inc.), and a DNA having a size of 33 to 48 kb is gelled by pulse field electrophoresis. It fractionated from. DNA was purified from the excised gel fragment and used as insert DNA. The prepared insert DNA fragment and vector pCC1FOS (manufactured by EPICENTER) were subjected to ligation reaction overnight at 4 ° C. using T4 DNA ligase (manufactured by Takara Bio). After vector ligation, in vitro packaging was performed using MaxPlax Lambda packaging Extract (manufactured by EPICENTER). A portion of the library was used to transform into host E. coli EPI300 and titer was measured. Further, Fosmid DNA was extracted from 16 randomly selected white colonies, treated with restriction enzyme with Not I, and confirmed to have an insert size of 30 Kb or more by pulse field electrophoresis.

(3−2)クローンプールグリセロールストック作製
約1万クローン分のライブラリー溶液を宿主大腸菌EPI300に導入し、形質転換体を作製した。方法は、10mM MgSOと0.2%(w/v)のマルトースを添加したLB培地に宿主大腸菌EPI300のシングルコロニーを植菌し、37℃で3〜5時間振とう培養を行った。遠心して集菌し、上清を廃棄した後、上清と等量の10mM MgSOに、菌体を懸濁した。
(3-2) Preparation of Clone Pool Glycerol Stock A library solution of about 10,000 clones was introduced into host E. coli EPI300 to prepare a transformant. In the method, a single colony of host E. coli EPI300 was inoculated into an LB medium supplemented with 10 mM MgSO 4 and 0.2% (w / v) maltose, and cultured with shaking at 37 ° C. for 3 to 5 hours. The cells were collected by centrifugation, the supernatant was discarded, and the cells were suspended in 10 mM MgSO 4 in the same amount as the supernatant.

SM buffer(50mM Tris−HCl pH7.5、100mM NaCl、10mM MgSO、0.01% gelatin)を加えて希釈し100μlに合わせたライブラリー溶液を菌体懸濁液100μlに加えて混合し、37℃で1時間静置培養した。終濃度が12.5μg/mlになるように、クロラムフェニコールを添加したLB寒天培地(100μmol/ml IPTG、40μg/ml X−Gal)に播種し、37℃で一晩培養した。クロラムフェニコール耐性寒天培地を入れた96穴プレートの1ウェルに、100クローンになるように形質転換体を添加し、終夜37℃で、静置培養をした。実際に含まれるクローン数は、これと同時に1ウェルに添加したのと同じ量をシャーレ寒天培地にプレーティングし計測した。SM buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgSO 4 , 0.01% gelatin) was added and diluted to add 100 μl of the library solution to 100 μl of the cell suspension and mixed. The culture was allowed to stand at 1 ° C. for 1 hour. The LB agar medium (100 μmol / ml IPTG, 40 μg / ml X-Gal) supplemented with chloramphenicol was inoculated to a final concentration of 12.5 μg / ml and cultured at 37 ° C. overnight. A transformant was added to one well of a 96-well plate containing a chloramphenicol-resistant agar medium so that 100 clones were formed, followed by stationary culture at 37 ° C. overnight. The number of clones actually contained was measured by plating the same amount as that added to one well at the same time on a petri dish agar medium.

培養後の96穴プレートの各ウェルに、20%グリセロール含有クロラムフェニコールLB液体培地を添加した。コロニーを懸濁後に新しい96穴プレートに移し変え、クローンプールグリセロールストックプレートとした。作製したグリセロールストック溶液についてはタイターの確認を行った。   Chloramphenicol LB liquid medium containing 20% glycerol was added to each well of the 96-well plate after culture. After suspension, the colonies were transferred to a new 96-well plate to obtain a clone pool glycerol stock plate. The titer of the produced glycerol stock solution was confirmed.

(3−3)クローンプールDNA調整
作製したクローンプールグリセロールストックプレートから一部をLB培地に植菌し、培養後にアルカリ‐SDS法を用いてフォスミドDNAを調整し、20μL/wellの滅菌蒸留水に溶解した。
(3-3) Clone pool DNA preparation A part of the prepared clone pool glycerol stock plate was inoculated into LB medium, and after cultivation, fosmid DNA was prepared using the alkali-SDS method, and the sterilized distilled water was added to 20 μL / well. Dissolved.

(3−4)一次スクリーニング
作製した各ウェルのクローンプールDNAを鋳型に、LA Taq polymerase(タカラバイオ製)、FLO9−3Fプライマー(配列番号14)、FLO9−2Rプライマー(配列番号15)を用いて、一次スクリーニングPCR(アニーリング温度55℃、30サイクル)を行った。PCR産物の電気泳動を行い、バンドが見られたウェルを一次陽性クローンとした。
(3-4) Primary screening Using the prepared clone pool DNA of each well as a template, LA Taq polymerase (manufactured by Takara Bio Inc.), FLO9-3F primer (SEQ ID NO: 14), and FLO9-2R primer (SEQ ID NO: 15) Primary screening PCR (annealing temperature 55 ° C., 30 cycles) was performed. The PCR product was electrophoresed and the well in which a band was observed was used as a primary positive clone.

FLO9−3F(配列番号14)
5‘−TGGTCAAGCAGTTATAGTGTA−3’
FLO9−2R(配列番号15)
5‘−AGTTATCAAAGCATTCGCCAA−3’
FLO9-3F (SEQ ID NO: 14)
5′-TGGTCAAGCAGTTATAGTGTA-3 ′
FLO9-2R (SEQ ID NO: 15)
5'-AGTTATCAAAGCATTCGCCAA-3 '

(3−5)配列の決定
得られた一次陽性クローンのPCR産物から直接、プライマーウォーキング法によってシーケンスを行い、獲得したクローンの塩基配列の一部を決定した。
(3-5) Sequence Determination A sequence was directly performed from the obtained PCR product of the primary positive clone by the primer walking method, and a part of the base sequence of the obtained clone was determined.

酵母AM12菌由来FLO9遺伝子配列の一部、及び推定される翻訳物の配列は配列番号16に示す。参照配列(Accession No.U12980 Saccharomyces cerevisiae chromosome I left arm sequence)との相同性から推定ORFを決定した。また、3’側の非翻訳領域の相同性から当該のFLO遺伝子は、FLO9遺伝子であった。さらに、ORFの3’側の配列は、実施例1で酵母抽出RNAより逆転写によって得られた配列と一致していることが分かった。   A part of the FLO9 gene sequence derived from the yeast AM12 and the predicted translation sequence are shown in SEQ ID NO: 16. The putative ORF was determined from the homology with the reference sequence (Accession No. U12980 Saccharomyces cerevisiae chromosome I left arm sequence). Further, the FLO gene was the FLO9 gene because of the homology of the 3 'untranslated region. Furthermore, it was found that the sequence on the 3 ′ side of the ORF was identical to the sequence obtained by reverse transcription from the yeast extracted RNA in Example 1.

実施例4(酵母AM12菌株由来FLO9遺伝子の発現解析)
酵母AM12菌株においてFLO9遺伝子が発現しているかどうか、また、その発現強度を調べるために、DNAマイクロアレイ解析を実施した。AM12菌株、及び非凝集性酵母としてS288C菌株をYPD培地で30℃、3時間培養し、菌体を回収後、実施例1と同様に、High Pure RNA Isolation kit(Roche Diagnostics製)を用いてTotal RNAの抽出を行った。抽出したRNAを用いてDNAマイクロアレイ実験を行った。DNAチップは、Yeast Oligo Microarray(V2)(Agilent Order Number 251507210525)(アジレント製)を用い、一色のラベリング方法で行った。このDNAチップには標準株S288C株の全遺伝子6000個に対応したオリゴDNAがのっており、酵母より抽出したRNAとのハイブリダイゼーションにより各遺伝子の発現強度を測定することができる。FLO9に関しては、A_06_P1087のプローブを用いた。
Example 4 (Expression analysis of FLO9 gene derived from yeast AM12 strain)
In order to examine whether the FLO9 gene is expressed in the yeast AM12 strain and the expression intensity thereof, DNA microarray analysis was performed. The AM12 strain and the S288C strain as a non-aggregating yeast were cultured in a YPD medium at 30 ° C. for 3 hours, and the cells were collected. Then, in the same manner as in Example 1, using a High Pure RNA Isolation kit (manufactured by Roche Diagnostics) RNA extraction was performed. DNA microarray experiments were performed using the extracted RNA. For the DNA chip, Yeast Oligo Microarray (V2) (Agilent Order Number 251507210525) (manufactured by Agilent) was used, and a single color labeling method was used. This DNA chip contains oligo DNA corresponding to all 6000 genes of the standard strain S288C, and the expression intensity of each gene can be measured by hybridization with RNA extracted from yeast. For FLO9, the probe A_06_P1087 was used.

解析結果を図1に示す。AM12菌株ではFLO9遺伝子が強く発現していた。一方、凝集性を持たない株であるS288C菌株では、FLO9遺伝子の発現が低い値に留まっていた。   The analysis results are shown in FIG. In AM12 strain, the FLO9 gene was strongly expressed. On the other hand, in the S288C strain, which is a strain having no aggregability, the expression of the FLO9 gene remained at a low value.

実施例5(FLO遺伝子導入酵母の凝集沈降性試験)
(5−1)FLO1遺伝子の酵母発現ベクター(pAUR123−FLO1)の作製
サッカロマイセス属セレビシエY258菌株由来のYAR050W(FLO1)のORF領域(開始コドンから終止コドンを含む)を挿入したBG1805−ampベクターを保持する大腸菌DH5α株をOpen Biosystems社のYeast ORF collectionより入手した(カタログNo.YSC3867−9520537)。Y258菌株由来FLO1遺伝子の配列、及び推定される翻訳物の配列を配列番号18に示す。常法に従って大腸菌よりプラスミドを抽出し、それを鋳型にc02553−F2プライマー(配列番号20)及びc00258−R3プライマー(配列番号21)を用いてPCRを行い、FLO1 ORF領域を増幅した。得られたPCR産物を制限酵素Xho Iで処理し、電気泳動後、ゲルから目的サイズのバンドを切り出し、MagExtractor−PCR&Gel Clean up−キット(東洋紡製)を用いて抽出し、FLO1断片とした。一方、pAUR123ベクター(タカラバイオ製)を制限酵素XhoIで処理後に、CIAP処理し、電気泳動後、ゲルから目的バンドを切り出し、MagExtractor‐PCR&Gel Clean up−キット(東洋紡製)を用いて抽出し、pAUR123−Xho I断片とした。pAUR123−Xho I断片とFLO1断片はT4リガーゼを用いて連結し、連結物を大腸菌HST08Premium(タカラバイオ製)に形質転換し、アンピシリン耐性を示すコロニーを獲得した。コロニーを培養後、常法に従ってプラスミドを抽出精製し、プラスミドpAUR123−FLO1とした。シーケンス解析により、FLO1断片の挿入の向きが正しいことを確認した。
Example 5 (flocculation test of FLO gene-introduced yeast)
(5-1) Preparation of FLO1 gene yeast expression vector (pAUR123-FLO1) BG1805-amp vector inserted with ORF region (including stop codon from start codon) of YAR050W (FLO1) derived from Saccharomyces cerevisiae Y258 strain E. coli strain DH5α was obtained from the Yeast ORF collection of Open Biosystems (catalog No. YSC3867-9520537). The sequence of the FLO1 gene derived from the Y258 strain and the predicted translation sequence are shown in SEQ ID NO: 18. A plasmid was extracted from Escherichia coli according to a conventional method, and PCR was performed using the c02553-F2 primer (SEQ ID NO: 20) and c00258-R3 primer (SEQ ID NO: 21) as a template to amplify the FLO1 ORF region. The obtained PCR product was treated with the restriction enzyme Xho I, and after electrophoresis, a band of the desired size was excised from the gel and extracted using the MagExtractor-PCR & Gel Clean up-kit (manufactured by Toyobo) to obtain a FLO1 fragment. On the other hand, the pAUR123 vector (manufactured by Takara Bio Inc.) was treated with the restriction enzyme XhoI, CIAP-treated, and after electrophoresis, the target band was excised from the gel, extracted using the MagExtractor-PCR & Gel Clean up-kit (manufactured by Toyobo), and pAUR123 -Xho I fragment. The pAUR123-Xho I fragment and the FLO1 fragment were ligated using T4 ligase, and the ligated product was transformed into E. coli HST08 Premium (manufactured by Takara Bio Inc.) to obtain a colony showing ampicillin resistance. After culturing the colony, the plasmid was extracted and purified according to a conventional method to obtain plasmid pAUR123-FLO1. Sequence analysis confirmed that the insertion direction of the FLO1 fragment was correct.

c02553−F2プライマー(配列番号20)
5‘−CTGCTCGAGCTCATGACAATGCCTCATCGCTA−3’
c00258−R3プライマー(配列番号21)
5‘−CGACTCGAGTTAAATAATTGCCAGCAATAAGGACGC−3’
c02553-F2 primer (SEQ ID NO: 20)
5′-CTGCTCGAGCTCATGACAATGCCTCATCGCTA-3 ′
c00258-R3 primer (SEQ ID NO: 21)
5′-CGACTCGAGTTTAAATAATTGCCCAGCAATAAGGAGCGC-3 ′

(5−2)FLO1/FLO9キメラ遺伝子の酵母発現ベクター(pAUR123−FLO1/FLO9の作製
実施例1で取得した酵母AM12菌株由来FLO9C末端の断片(171アミノ酸)は、Y258菌株由来FLO1(907アミノ酸、配列番号18)上の746番目アミノ酸から終止コドンまでの位置に該当する。そこで、Y258菌株由来のFLO1の746番目から終始コドンまでの領域とAM12菌株由来FLO9C末端の断片(171アミノ酸)とを置き換えたFLO1/FLO9キメラタンパク質を発現できるプラスミドの作製を行った。
(5-2) Yeast expression vector of FLO1 / FLO9 chimeric gene (production of pAUR123-FLO1 / FLO9) A fragment of FLO9C terminal derived from the yeast AM12 strain obtained in Example 1 (171 amino acids) was FLO1 derived from Y258 strain (907 amino acids, This corresponds to the position from the 746th amino acid to the stop codon on SEQ ID NO: 18) Therefore, the region from the 746th to the stop codon of FLO1 derived from the Y258 strain was replaced with the fragment (171 amino acids) of the FLO9C terminal derived from the AM12 strain. A plasmid capable of expressing the FLO1 / FLO9 chimeric protein was prepared.

Y258菌株FLO1遺伝子の翻訳産物(配列番号18)新たに作製したFLO1/FLO9キメラ遺伝子の翻訳産物(配列番号22)では、1番目から745番目までのアミノ酸は全く同じである。746番目のアミノ酸以降では、778番目以降、前者が、配列番号4、配列番号1、配列番号5の3回繰り返し配列が存在し、後者では、配列番号1、配列番号2、配列番号3、配列番号3の4回繰り返し配列が存在する。   Y258 strain FLO1 gene translation product (SEQ ID NO: 18) In the newly produced FLO1 / FLO9 chimeric gene translation product (SEQ ID NO: 22), the first to 745th amino acids are exactly the same. From the 746th amino acid onward, the 778th and subsequent amino acids have a sequence that repeats three times of SEQ ID NO: 4, SEQ ID NO: 1, and SEQ ID NO: 5, and the latter includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, There is a 4 repeat sequence of number 3.

その他の部位では、3アミノ酸の違いがあるが、新たに作製したFLO1/FLO9キメラ遺伝子の翻訳産物(配列番号22)は、実質的に、Y258菌株FLO1遺伝子の翻訳産物(配列番号18)の778番目以降の3回繰り返し配列が、配列番号1、配列番号2、配列番号3、配列番号3からなる4回繰り返し配列(配列番号11)に置き換えられているものである。   Although there are 3 amino acid differences at other sites, the translation product of the newly prepared FLO1 / FLO9 chimeric gene (SEQ ID NO: 22) is substantially 778 of the translation product of the Y258 strain FLO1 gene (SEQ ID NO: 18). The third and subsequent repeat sequences are replaced with a four repeat sequence (SEQ ID NO: 11) consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 3.

具体的な作製方法は、次の通りである。実施例1で作製したAM12菌株由来 FLO9のC末端の遺伝子断片(FLO9C)を有するpTAベクターを制限酵素XhoIで処理し、電気泳動にてFLO9C断片部分とベクター部分を分離後、ゲルから目的サイズのバンドを切り出し、MagExtractor−PCR&Gel Clean up−キット(東洋紡社製)を用いて抽出し、FLO9C断片とした。上記で作製したpAUR123−XhoI断片を用い、FLO9C断片とT4リガーゼを用いて連結し、連結物を大腸菌HST08 Premium(タカラバイオ社製)に形質転換し、アンピシリン耐性を示すコロニーを獲得した。コロニーを培養後、常法に従ってプラスミドを調製し、プラスミドpAUR123−FLO9Cとした。シーケンス解析により、FLO9C断片の挿入の向きが正しいことを確認した。   A specific manufacturing method is as follows. The pTA vector having the C-terminal gene fragment of FLO9 (FLO9C) derived from the AM12 strain prepared in Example 1 was treated with the restriction enzyme XhoI, and the FLO9C fragment part and the vector part were separated by electrophoresis. A band was cut out and extracted using MagExtractor-PCR & Gel Clean up-kit (manufactured by Toyobo Co., Ltd.) to obtain a FLO9C fragment. Using the pAUR123-XhoI fragment prepared above, the fragment was ligated using the FLO9C fragment and T4 ligase, and the ligation product was transformed into E. coli HST08 Premium (manufactured by Takara Bio Inc.) to obtain a colony showing ampicillin resistance. After culturing the colony, a plasmid was prepared according to a conventional method, and designated as plasmid pAUR123-FLO9C. Sequence analysis confirmed that the insertion direction of the FLO9C fragment was correct.

次に、図2に示すようにプラスミドpAUR123−FLO1/FLO9キメラを作製した。プラスミドpAUR123−FLO9Cを鋳型に、F9C−F1プライマー(配列番号24)及びp123−R4プライマー(配列番号25)を用いてPCRを行い、ベクター部分を含むプラスミド全長領域を増幅した。得られたPCR産物を電気泳動後、ゲルから目的サイズのバンドを切り出し、MagExtractor−PCR&Gel Clean up−キット(東洋紡製)を用いて抽出し、pAUR123−FLO9C断片とした。一方、前述したOpen Biosystems社のYeast ORF collectionのFLO1 ORF領域(カタログNo.YSC3867−9520537)のプラスミド抽出物を鋳型に、F1N−Fプライマー(配列番号26)及びF9C−R1プライマー(配列番号27)を用いてPCRを行い、Y258FLO1 ORFの1番目から745番目のアミノ酸までの領域を増幅した。得られたPCR産物を電気泳動後、ゲルから目的サイズのバンドを切り出し、MagExtractor−PCR&Gel Clean up−キット(東洋紡製)を用いて抽出し、FLO1−1−745断片とした。pAUR123−FLO9C断片とFLO1−1−745断片はIn−Fusionキット(タカラバイオ社製)を用いて連結し、連結物を大腸菌HST08 Premium(タカラバイオ社製)に形質転換し、アンピシリン耐性を示すコロニーを獲得した。コロニーを培養後、常法に従ってプラスミドを調製し、プラスミドpAUR123−FLO1/FLO9キメラとした。シーケンス解析により、FLO1/FLO9キメラ断片の配列、及び挿入の向きが正しいことを確認し、次の実験に用いた。   Next, plasmid pAUR123-FLO1 / FLO9 chimera was prepared as shown in FIG. PCR was performed using the plasmid pAUR123-FLO9C as a template and the F9C-F1 primer (SEQ ID NO: 24) and p123-R4 primer (SEQ ID NO: 25) to amplify the full-length plasmid region including the vector portion. After electrophoresis of the obtained PCR product, a band of the desired size was excised from the gel, and extracted using MagExtractor-PCR & Gel Clean up-kit (manufactured by Toyobo) to obtain a pAUR123-FLO9C fragment. On the other hand, the F1N-F primer (SEQ ID NO: 26) and F9C-R1 primer (SEQ ID NO: 27) were prepared using the plasmid extract of the FLO1 ORF region (catalog No. YSC3867-9520537) of the above-mentioned Open Biosystems Yeast ORF collection as a template. PCR was performed to amplify the region from the 1st to the 745th amino acid of the Y258FLO1 ORF. After electrophoresis of the obtained PCR product, a band of the desired size was cut out from the gel, and extracted using MagExtractor-PCR & Gel Clean up-kit (manufactured by Toyobo) to obtain a FLO1-1-745 fragment. The pAUR123-FLO9C fragment and the FLO1-1-745 fragment are ligated using an In-Fusion kit (Takara Bio), and the ligation product is transformed into Escherichia coli HST08 Premium (Takara Bio) to show ampicillin resistance. Won. After culturing the colony, a plasmid was prepared according to a conventional method to obtain a plasmid pAUR123-FLO1 / FLO9 chimera. By sequence analysis, it was confirmed that the sequence of the FLO1 / FLO9 chimeric fragment and the direction of insertion were correct, and used for the next experiment.

F9C−F1プライマー(配列番号24)
5‘−CTGTGAATGATGTTGTTACG−3’
p123−R4プライマー(配列番号25)
5‘−CAGTTGATTGTATGCTTGGT−3’
F1N−Fプライマー(配列番号26)
5‘−GCATACAATCAACTGATGACAATGCCTCATCGCTA−3’
F9C−R1プライマー(配列番号27)
5‘−CAACATCATTCACAGTAGCC−3’
F9C-F1 primer (SEQ ID NO: 24)
5′-CTGTGAATGATGTTGTTACG-3 ′
p123-R4 primer (SEQ ID NO: 25)
5'-CAGTTGATTGTTATGCTTGGT-3 '
F1N-F primer (SEQ ID NO: 26)
5'-GCATACAATCAACTGATGGACAATGCCTCATCGCTA-3 '
F9C-R1 primer (SEQ ID NO: 27)
5'-CAACATCATTCAGAGTAGCC-3 '

(5−3)非凝集性酵母への各発現ベクターの導入
文部科学省NBRP「酵母」から提供された非凝集性のサッカロマイセス属セレビシエBY1994株(DKD−5D、SH1994)を宿主として用いた。また、上述のpAUR123−FLO1、pAUR123−FLO1/FLO9キメラ、pAUR123の3種類のプラスミドをそれぞれ酵母への導入に用いた。
(5-3) Introduction of each expression vector into non-aggregating yeast Non-aggregating Saccharomyces cerevisiae BY1994 strain (DKD-5D, SH1994) provided by the Ministry of Education, Culture, Sports, Science and Technology NBRP "yeast" was used as a host. In addition, the above three plasmids, pAUR123-FLO1, pAUR123-FLO1 / FLO9 chimera, and pAUR123 were used for introduction into yeast.

具体的な実験は次の通りである。BY1994株をYPD液体培地で30℃、一晩培養したものを前培養液とした。前培養液を40mlのYPD液体培地に植菌して、菌体濁度がOD600で約1になるまで30℃で培養した。培養後の菌体を遠心して集菌し、20mlの0.1M酢酸リチウム溶液(0.1M 酢酸リチウム、0.1M DTT、10mM Tris−HCl、1mM EDTA、pH 7.5)に懸濁し、室温で1時間放置した。再度遠心して、集菌後に、滅菌水で2回洗菌し、さらに、1Mソルビトールで1回
洗菌した。最終的に、50μlの1Mソルビトールを加えて、菌を懸濁した。100μlの酵母懸濁液と0.1μg〜1μgのプラスミドDNAを混合して、0.2cmギャップのキュベットに分注して、氷中で10分間静置した。キュベットをジーンパルサーシステム(バイオラッド社製)にセットし、1.5kV、25μF、200Ω、パルス1回の条件で、エレクトロポレーションを行った。エレクトロポレーション後の菌液を1Mソルビトールで希釈し、オーレオバシジン1μg/mlを添加したYPD寒天平板培地上に塗末
した。30℃で3〜4日間培養後に、オーレオバシジン耐性を示すコロニーを獲得した。オーレオバシジン1μg/mlの終濃度で添加したYPD液体培地でコロニーを培養後、常法に従ってゲノムDNAを調製し、それを鋳型に、pAUR123Fプライマー(タカラバイオ社製)及びpAUR123Rプライマー(タカラバイオ社製)を用いてPCR(アニーリング温度60℃、30サイクル)を行い、増幅が確認できたものをプラスミド保持株とした。
The specific experiment is as follows. The BY1994 strain was cultured overnight in a YPD liquid medium at 30 ° C. as a preculture solution. The preculture was inoculated into 40 ml of YPD liquid medium and cultured at 30 ° C. until the cell turbidity reached about 1 at OD 600 . The cultured cells are collected by centrifugation, suspended in 20 ml of a 0.1 M lithium acetate solution (0.1 M lithium acetate, 0.1 M DTT, 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) at room temperature. And left for 1 hour. Centrifugation was performed again, and the cells were collected, washed twice with sterilized water, and further washed once with 1M sorbitol. Finally, 50 μl of 1M sorbitol was added to suspend the bacteria. 100 μl of yeast suspension and 0.1 μg to 1 μg of plasmid DNA were mixed, dispensed into a 0.2 cm gap cuvette, and allowed to stand in ice for 10 minutes. The cuvette was set in a gene pulser system (manufactured by Bio-Rad), and electroporation was performed under the conditions of 1.5 kV, 25 μF, 200Ω, and one pulse. The bacterial solution after electroporation was diluted with 1M sorbitol and smeared on a YPD agar plate medium supplemented with 1 μg / ml of aureobasidin. After culturing at 30 ° C. for 3 to 4 days, colonies showing aureobasidin resistance were obtained. After culturing colonies in YPD liquid medium added at a final concentration of 1 μg / ml of aureobasidin, genomic DNA was prepared according to a conventional method, and pAUR123F primer (Takara Bio) and pAUR123R primer (Takara Bio) were used as templates. PCR product (annealing temperature 60 ° C., 30 cycles) was used, and a plasmid-carrying strain was confirmed that amplification was confirmed.

(5−4)各ベクター導入酵母の凝集沈降性の比較
前述のpAUR123−FLO1、pAUR123−FLO1/FLO9キメラ、FLO1遺伝子を持たないpAUR123のプラスミド(タカラバイオ社製)をそれぞれ導入した酵母株3種類について、オーレオバシジンの終濃度が1μg/mlになるように添加したYPD液体培地5mlに植菌し、30℃で2日間の振とう培養を行った。培養後に試験管を静置し、目視によって各株の凝集沈降性を比較した。
(5-4) Comparison of Aggregation Precipitation of Each Vector-Introduced Yeast Three types of yeast strains into which the above-mentioned pAUR123-FLO1, pAUR123-FLO1 / FLO9 chimera, and pAUR123 plasmid without FLO1 gene (manufactured by Takara Bio Inc.) were introduced. Was inoculated into 5 ml of YPD liquid medium added so that the final concentration of aureobasidin was 1 μg / ml, followed by shaking culture at 30 ° C. for 2 days. After incubation, the test tube was allowed to stand, and the aggregation and sedimentation properties of each strain were compared visually.

図3は、1分間静置後の試験管の写真である。図3中、左がpAUR123ベクターを導入した酵母、中央がpAUR123−FLO1を導入した酵母、右がpAUR123−FLO1/FLO9キメラを導入した酵母である。pAUR123ベクターを導入した酵母では、その後10分間以上静置しても菌体の沈降は見られなかった。pAUR123−FLO1を導入した酵母についても、目視でわずかに判別できる沈降性が見られる程度であった。一方、pAUR123−FLO1/FLO9キメラを導入した酵母では、1分間の静置で、試験管の底面への沈降が見られた。このことより、遺伝子に配列番号1〜3で示される繰り返し配列の何れかを4回繰り返すように遺伝子改変することで、FLO遺伝子が機能して生じる酵母の凝集沈降性が強化されることが示された。   FIG. 3 is a photograph of the test tube after standing for 1 minute. In FIG. 3, the left is the yeast introduced with the pAUR123 vector, the middle is the yeast introduced with pAUR123-FLO1, and the right is the yeast introduced with the pAUR123-FLO1 / FLO9 chimera. In the yeast into which the pAUR123 vector was introduced, no bacterial cell sedimentation was observed even after standing for 10 minutes or longer. Also about the yeast which introduce | transduced pAUR123-FLO1, the sedimentation property which can be discriminate | determined slightly visually is only a grade. On the other hand, in the yeast introduced with the pAUR123-FLO1 / FLO9 chimera, sedimentation to the bottom of the test tube was observed after standing for 1 minute. This indicates that the gene aggregation modification of the gene so that any of the repetitive sequences represented by SEQ ID NOs: 1 to 3 is repeated four times enhances the aggregation and sedimentation of yeast produced by the function of the FLO gene. It was done.

Claims (2)

配列番号1〜3の何れかで示される配列の繰り返しを4回以上有するアミノ酸配列からなり、酵母に凝集性を付与する活性を有するポリペプチドA polypeptide comprising an amino acid sequence having four or more repeats of the sequence represented by any of SEQ ID NOs: 1 to 3, and having an activity of imparting aggregability to yeast . 請求項1記載のアミノ酸配列をコードするDNA。  DNA encoding the amino acid sequence according to claim 1.
JP2010540528A 2008-11-27 2009-11-27 Amino acid sequence, DNA and method for growing yeast Expired - Fee Related JP4820921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540528A JP4820921B2 (en) 2008-11-27 2009-11-27 Amino acid sequence, DNA and method for growing yeast

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008302729 2008-11-27
JP2008302729 2008-11-27
JP2010540528A JP4820921B2 (en) 2008-11-27 2009-11-27 Amino acid sequence, DNA and method for growing yeast
PCT/JP2009/070052 WO2010061923A1 (en) 2008-11-27 2009-11-27 Amino acid sequence, dna, and enzyme producing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011161849A Division JP4980483B2 (en) 2008-11-27 2011-07-25 Yeast and its breeding method

Publications (2)

Publication Number Publication Date
JP4820921B2 true JP4820921B2 (en) 2011-11-24
JPWO2010061923A1 JPWO2010061923A1 (en) 2012-04-26

Family

ID=42225793

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010540528A Expired - Fee Related JP4820921B2 (en) 2008-11-27 2009-11-27 Amino acid sequence, DNA and method for growing yeast
JP2011161849A Expired - Fee Related JP4980483B2 (en) 2008-11-27 2011-07-25 Yeast and its breeding method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011161849A Expired - Fee Related JP4980483B2 (en) 2008-11-27 2011-07-25 Yeast and its breeding method

Country Status (3)

Country Link
JP (2) JP4820921B2 (en)
MY (1) MY148523A (en)
WO (1) WO2010061923A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY148523A (en) * 2008-11-27 2013-04-30 Mitsui Shipbuilding Eng Amino acid sequence, dna and method for breeding yeast

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135896A (en) * 1982-12-17 1984-08-04 Mitsui Eng & Shipbuild Co Ltd Production of alcohol by fermentation
JP2003235579A (en) * 2002-02-19 2003-08-26 Bio Energy Kk OPTIMIZATION OF CELL CORTEX EXPRESSION SYSTEM USING FLOCCULATION PROTEIN Flo1
JP2008253154A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method for producing alcohol

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9404246A (en) * 1993-02-26 1999-06-15 Sapporo Breweries Yeast and yeast agglutination genes containing the same
MY148523A (en) * 2008-11-27 2013-04-30 Mitsui Shipbuilding Eng Amino acid sequence, dna and method for breeding yeast

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135896A (en) * 1982-12-17 1984-08-04 Mitsui Eng & Shipbuild Co Ltd Production of alcohol by fermentation
JP2003235579A (en) * 2002-02-19 2003-08-26 Bio Energy Kk OPTIMIZATION OF CELL CORTEX EXPRESSION SYSTEM USING FLOCCULATION PROTEIN Flo1
JP2008253154A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method for producing alcohol

Also Published As

Publication number Publication date
WO2010061923A1 (en) 2010-06-03
JP4980483B2 (en) 2012-07-18
JP2011254827A (en) 2011-12-22
JPWO2010061923A1 (en) 2012-04-26
MY148523A (en) 2013-04-30

Similar Documents

Publication Publication Date Title
CN113699135B (en) Adenine base editor fusion protein without PAM limitation and application thereof
KR102253479B1 (en) Promoter variant
DK2588616T3 (en) PROCEDURE FOR MAKING A RELATIONSHIP OF INTEREST
KR20170138543A (en) Expression constructs and methods for genetically engineering methylnutritic yeast
CN108949869B (en) Carbon-source-free repression pichia pastoris expression system, and establishment method and application thereof
JP2011516085A (en) Functional enhancement of yeast to minimize ethyl carbamate production via altered transporter expression
EP3138917B1 (en) Method for the expression of polypeptides using modified nucleic acids
US10519203B2 (en) Gene for biosynthesis of core structure of ophiobolin
WO1996023877A1 (en) Gene imparting flocculability to yeast and gene product
EP3105254B1 (en) Hybrid proteins and uses thereof
KR20200010285A (en) Genomic Engineering of Biosynthetic Pathways Inducing Increased NADPH
JP4700395B2 (en) Promoters for use under acidic conditions and use thereof
KR101659732B1 (en) Protein Expression System Induced by Heavy Metals And Biosensor for Detecting Heavy Metals
CN104232611A (en) Recombinant beauveria brongniartii proteinase K as well as industrial production and purification method thereof
US20180327801A1 (en) METHOD FOR PREPARING RECOMBINANT PROTEINS THROUGH REDUCTION OF rnpA GENE EXPRESSION
CN110204605B (en) Application of transcription factor C/EBP alpha as transcription factor of ACOX1 promoter region
JP4820921B2 (en) Amino acid sequence, DNA and method for growing yeast
KR100227405B1 (en) Yeast agglutination genes and yeast containing them
KR20130096111A (en) Expression vector comprising gene coding for e. coli phosphoglycerate kinase as a novel fusion partner
EP1670932B1 (en) Libraries of recombinant chimeric proteins
CN110358753B (en) Fusion protein based on CjCas9 and VPR core structural domain, corresponding DNA targeting activation system and application thereof
CN112708602B (en) Dioscorea zingiberensis-derived diosgenin synthesis related protein, coding gene and application
CN106119137B (en) Method for improving protein secretion capacity of filamentous fungi
Scherens et al. Sequencing and functional analysis of a 32 560 bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIP1 and SEC17 genes
CN109385484B (en) DNA bar code, primer, kit, method and application

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees